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1. Introduction

In the last few years we have seen some very exciting progress in our understanding
of algorithmic randomness and its relationship with computability and complex-
ity. These results have centered around a programme which attempts to answer
questions of the following form: when is one real more random than another?
How should this be measured? How would such measures of calibration relate to
other measures of complexity of reals, such as the traditional measures of relative
complexity like Turing degrees, which measure relative computability? These in-
vestigations have revealed deep and hitherto unexpected properties of randomness,
anti-randomness and algorithmic complexity, as well as pointing at analogs in other
areas, and answering questions from apparently completely unrelated areas.

In this paper I will attempt to give a brief (and biased) overview of some of
the more recent highlights. I apologize for ignoring important work relating the
collection of random strings with complexity theory such as [1, 2], and work on
randomness for computably enumerable sets such as Kummer [48, 49] and Muchnik
and Positelsky [71], purely for space reasons. This overview will be too short to
give a complete account of the all of the progress. For a fuller picture, I refer the
reader to the long surveys of Downey, Hirschfeldt, Nies and Terwijn [28], Downey
[16, 15, 17], Terwijn [96] and the upcoming monographs Downey and Hirschfeldt
[22]1, and Nies [77].

We will look at various methods of calibration by initial segment complex-
ity such as those introduced by Solovay [89], Downey, Hirschfeldt, and Nies [26],
Downey, Hirschfeldt, and LaForte [23], Downey [16], as well as other methods such
as lowness notions of Kučera and Terwijn [47], Terwijn and Zambella [97], Nies
[75, 76], Downey, Griffiths and Reid [21], and methods such as higher level ran-
domness notions going back to the work of Kurtz [50], Kautz [38], and Solovay [89],
and other calibrations of randomness based on changing definitions along the lines
of Schnorr, computable, s-randomness, etc. Particularly fascinating is the recent
work on lowness, which began with Downey, Hirschfeldt, Nies and Stephan, and
developed in a series of deep papers by Nies [75, 76] and his co-authors.

1Available in prelimininary form at www.mcs.vuw.ac.nz/∼downey
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2. Preliminaries

Since most of our results are concerned with effectiveness/computability, we as-
sume that the reader is familiar with the basic facts concerning computability the-
ory/recursion theory. Thus, we will regard countable sets as effectively coded in
the natural numbers and consider effective processes on them as computable ones.
For example, an effective prediction function would be classified according to it
computability. We assume that the reader is also familiar with semi-computable
(computably enumerable) processes such as the computably enumerable set cod-
ing the halting problem ∅′ = {(e, x) : the e-th program halts on input x}. Such
computable enumerable problems can be represented by sets W defined as x ∈ W

iff ∃yR(x, y), where R is a computable relation. We will call a set in the form
∃yR(x, y), Σ0

1. If N − A is Σ0
1, then we say that A is Π0

1. If A is both Σ0
1 and Π0

1

we say that A is ∆0
1 (and this is the same as being computable). This process can

be extended to the arithmetical hierarchy. We will say that A is Σ0
n iff there is a

Π0
n−1 relation R such that x ∈ A iff ∃yR(x, y). (Equivalently, x is in A iff ∃y∀z . . .

(with n alternations)Q(x, y, z, . . . ) and Q computable.) Analogously, we can define
Π0

n and ∆0
n. We will also assume that the reader is familiar with the process of

relativization which means that we put oracles (allowing for “read only memory”)
on our machines. These oracles allow for computations in which a finite number of
effectively generated membership queries of the oracle set are allowed. Thus, for
instance, A′ = {(e, x) : the e-th program halts on input x when given oracle A}.
This is the halting problem relativized to A, usually pronounced “A-jump”. If we
classify sets under the preordering ≤T we will write A ≤T B to mean that mem-
bership of A can be computed by a program with access to B as an oracle. (Here
we identify sets with their characteristic functions, and hence as reals: members
of Cantor space 2ω.) The equivalence classes of ≤T , which calibrate countable sets
into classes of “equi-computability” are called Turing degrees, after the famous
Alan Turing. We remark that the simplest kind of Turing reduction is called an
m-reduction (for many-one) and is defined as follows: A ≤m B means that there
is a computable function f such that x ∈ A iff f(x) ∈ B. Thus to figure out if
x is in A from B, the algorithm simply says : compute f(x) and ask B if f(x)
is in B. It is easy to show that for any computably enumerable set A, A ≤m ∅′,
so that the halting problem ∅′ if m-complete, in that it is the most complicated
computably enumerable set as measured by m-reducibility2. We remark that the
relativization of the halting problem be algorithmically unsolvable is that A′ 6≤T A

for any set A. The relativization of the halting problem is intrinsically tied with
the halting problem. Namely, ∅′′, which is defined as the halting problem gained
with the halting problem as an oracle is a natural Σ0

2 set and it can compute any
Π0

2 set and any Σ0
2 set, and similarly for ∅(n+1).

Any other notions from computability needed are introduced in context. We
also refer the reader to Soare [86] for further background material in computabil-

2Additionally, it might seem that there might be various versions of the halting problem
depending of which programming language, or which encoding, is used. It can be shown that
that are all of the same m-degree, and hence are basically all the same. More on this in the
context of randomness later.
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ity, and to Li-Vitanyi [56] or Calude [6] for general background in algorithmic
randomness.

In this paper “real” will be interpreted as a member of Cantor space 2ω with
sub-basic clopen sets [σ] = {σα : α ∈ 2ω}, for σ ∈ 2<ω. This space is equipped
with the standard Lebesgue measure, where, for σ ∈ 2<ω, µ([σ]) = 2−|σ|. There
have been investigations on other measures than the uniform one, and on other
spaces (the latter notably by Gács [34]), but space precludes a thorough discussion
here. For Cantor space up to degree things, speaking loosely, it does not matter
measure is used, so long as it is not atomic. Finally, the initial segment of a real
α (or a string) of length n will be denoted by α ↾ n.

3. Three approaches to randomness

In terms of measure a any two reals occur with probability zero, yet we would argue
that a real α = 01010101 . . . would not seem random. How should we understand
this?

3.1. Martin-Löf randomness. The first author to attempt to grapple
with trying to “define” randomness was von Mises [101]. Von Mises was a statisti-
cian and attempted to define randomness in terms of statistical laws. For instance,
he argued that a random real should pass all statistical tests. Thus, he argued,
if one “selected” from a real α = a0a1 . . . some subsequence ai0 , ai1 , . . . , then

limn→∞
|{j:aij

=1∧1≤j≤n}|

n
should be 1

2 . Naturally, von Mises lacked the language
needed to suggest which selection rules should be considered. That awaited the
development of computable function theory in the 1930’s by Church and others,
which then allowed us to argue that a random real should be “computably stochas-
tic” in the sense of von Mises.

Unfortunately, Wald and others showed that there are some significant prob-
lems (see van Lambalgen [99] for a discussion) with this approach, known as com-
putable stochasticity. Here I refer the reader to Ambos-Spies [3], Merkle [62, 63],
and Uspensky, Semenov and Shen [98]. The first really acceptable version of von
Mises idea was developed by Per Martin-Löf in [60]. He argued that any effec-
tive statistical test was an effective null set and a random real should be one that
simply avoids any effective null set.

The notion of an effective collection of reals is are called effective classes. As a
direct analog of the arithmetical hierarchy. A Σ0

1 class U is a “c.e. set of reals” in
the sense that there is a computable relation R such that for each real α, α ∈ U iff
∃xRα(x), where Rα denotes R with oracle α. An equivalent definition is that U is
a Σ0

1 class iff there is a c.e. set of intervals W such that U = ∪{[σ] : σ ∈ W}. Now
we can make our intuition of avoiding all effective statistical tests more precise, as
follows.

Definition 3.1. (Martin-Löf [60]) A set of reals A ⊆ 2ω is Martin-Löf null (or
Σ1-null) if there is a uniformly c.e. sequence {Ui}i∈ω of Σ0

1-classes (called a Martin-
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Löf test) such that µ(Ui) ≤ 2−i and A ⊆
⋂

i Ui. α ∈ 2ω is Martin-Löf random, or
1-random, if {α} is not Σ1-null.

This definition and variations form common bases for the theory of algorith-
mic randomness. There are also two other approaches aside from the measure-
theoretical. These include the incompressibility paradigm and the unpredictability
paradigm.

It is possible to calibrate randomness in a method similar to the arithmetical
hierarchy, by defining n-randomness exactly as above, except that Σ0

1 null sets are
replaced by Σ0

n null sets. It can be shown (Kurtz [50]) that n + 1-randomness is
1-randomness relative to ∅(n), Stuart Kurtz [50] was the first meaning that if ∅′ is
given as an oracle, what is the analog of Martin-Löf randomness. to systematically
examine the relationship between n-randomness and the computability, although
some unpublished work was to be found in Solovay [89], and 2-randomness was
already to be found in Gaifman and Snir [35], in implicit form.

There has been quite some work clarifying the relationship between Turing
reducibility and n-randomness. For example, it has long been known that if a is
n+1-random then a is GLn, meaning that a∪0n = (a∪0)n, and that the “almost
all” theory of degrees is decidable (Stillwell [93]). Recently some lovely new work
has emerged. As an illustration, we mention the following unexpected result.

Theorem 3.2 (Miller and Yu [69]). Suppose that A ≤T B and B is n-random and
A is 1-random. Then A is n-random.

3.2. Kolmogorov complexity. The key idea here is that a random string
(as generated by a coin toss, say) should not be easily described by a short program.
Thus, 10100 is easily described by a description much shorter than its length.
This incompressibility idea was the famous approach pioneered by Kolmogorov
[41] (also cf. Solomonoff [88]). For our programming language (which we take
as Turing machines) we consider the lengths of strings σ producing a string τ .
Think of σ as a description of τ under the action of the machine N . Then the N -
complexity of the τ is the length of the shortest σ from which N produces τ . Since
we can enumerate the machines M0, M1, . . . , we can make a universal machine M

which acts as M(1e+10σ) = Me(σ).Thus, there is canonical choice for the choice
of machine up to a constant, and we define the (plain) Kolmogorov complexity of
τ as

C(τ) = min{|σ| : M(σ) = τ}.

The we would say that τ is C-random iff C(τ) ≥ |τ |. We will also need conditional
versions of this (and other) measures. We will write C(σ|ν) as the conditional
plain complexity of σ given ν as an oracle. (We will use analogous notation for K

below.)
Plain Kolmogorov complexity produces a nice theory of randomness for strings,

but as Martin-Löf argued, plain complexity fails to capture the intentional meaning
of “the bits of σ producing the bits of τ”. This is the length of σ itself can be
used in the program, giving τ + |τ | many bits of information. Thus, it is easily
shown that if α is sufficiently long then there is some n such that C(α ↾ n) < n,
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meaning that there are no random reals if we take randomness to mean that all
initial segments should be random3.

This problem was overcome by Levin [51, 54], Schnorr [84], and Chaitin [10]),
using monotone, process and prefix-free complexities. Here we focus on the prefix-
free complexity. Recall that A of intervals is called prefix-free iff for all σ, τ , if
σ ≺ τ , then [σ] ∈ A implies [τ ] 6∈ A. Note that for such a set A,

µ(A) =
∑

{2−|σ| : [σ] ∈ A}.

Levin and then Chaitin defined prefix-free Kolmogorov complexity using ma-
chines whose domains were prefix free. Again there is a universal one U (same
argument) and we define

K(τ) = min{|σ| : U(σ) = τ}.

Finally we can define a real to be K-random iff for all n, K(α ↾ n) ≥ n − O(1).
The concepts of Martin-Löf randomness and K-randomness are tied together as
follows.

Theorem 3.3 (Schnorr, see Chaitin [10, 12]). A ∈ 2ω is Martin-Löf random if
and only if it is K-random.

Given Schnorr’s Theorem, Solovay had asked whether lim infs K(Ω ↾ n)− n →
∞. This was solved affirmatively by Chaitin. However, there is a very attractive
generalization of this due to Miller and Yu who show that the complexity of a
random real must be above n eventually by “quite a bit.”

Theorem 3.4 (Ample Excess Lemma, Miller and Yu [69]). A real α is random iff

∑

n∈N

2n−K(α↾n) < ∞.

Corollary 3.5 (Miller and Yu [70]). Suppose that f is an arbitrary function with∑
m∈N

2−f(m) = ∞. Suppose that α is 1-random. Then there are infinitely many
m with K(α ↾ m) > m + f(m).

Ther reader might wonder whether plain compelxity could be used to charcter-
ize 1-randomness. There had been some natural “C-conditions” which had been
shown to guarantee randomness. Martin-Löf showed that if a real had infinitely
often maximal C -complexity then it would be random. That is, Kolmogorov ob-
served that the greatest plain complexity a string σ can have is |σ|. We will say
that a real is Kolmogorov random iff ∃∞n[C(α ↾ n) = n−O(1). If A is Kolmogorov
random it is 1-random. But recently more has been shown. Chaitin showed that

3Specifically, every string ν corresponds to some number (string) in the length/lexicographic
ordering of 2<ω . Given a long string α, take any initial segment α ↾ n. This corresponds to a
number m in this way. Now consider the programme which, on input ρ interprets ρ’s length as
a string γ and outputs γρ. If this programme is enacted on α ↾

n+m

n+1
the segment of α of length

m beginning after α, it will output α ↾ n + m, allowing for compression of arbitrary segments.
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the highest prefix-free complexity a string can have is |σ| + K(|σ|), and we define
α to be strongly Chaitin random iff ∃∞n[(K(α ↾ n) > n + K(n) − O(1)]. Solovay
[89] (see Yu, Ding, Downey [107]) showed that each 3-random is strongly Chaitin
random, and every strongly Chaitin random real is Kolmogorov random and hence
1-random. It is not known if every Kolmogorov random real is strongly Chaitin
random. The following remarkable result shows that Kolmogorov randomness can
be characterized in terms of the randomness hierarchy.

Theorem 3.6 (Nies, Stephan and Terwijn [78]). Suppose that α is Kolmogorov
random. Then α is 2-random.

Theorem 3.7 (Miller [66], Nies, Stephan and Terwijn [78]). A real α is 2-random
iff α is Kolmogorov random.

We remark that there seems no prima facie reason for 2-randomness to be
the same as Kolmogorov randomness! The question of whether there was a natu-
ral condition in terms of plain complexity which characterized 1-randomness was
finally solved by Miller and Yu, having been open for 40 years.

Definition 3.8. (Miller and Yu [69]) Define a computable function G : ω → ω by

G(n) =

{
Ks+1(t), if n = 2〈s,t〉 and Ks+1(t) 6= Ks(t)

n, otherwise.

Theorem 3.9 (Miller and Yu [69]). For x ∈ 2ω, the following are equivalent:

(i) x is 1-random.

(ii) (One direction of this is in Gács [32]) (∀n) C(x ↾ n) ≥ n − K(n) ± O(1).

(iii) (∀n) C(x ↾ n) ≥ n− g(n)±O(1), for every computable g : ω → ω such that t∑
n∈ω 2−g(n) is finite.

(iv) (∀n) C(x ↾ n) ≥ n − G(n) ± O(1).

While it is not hard to show that almost all reals are random (as one would
hope), Schnorr’s Theorem allows us to easily show that there are explicit random
reals. The halting probabilities of prefix-free Turing machines occupy the same
place in algorithmic randomness as computably enumerable sets (the domains of
partial computable functions) do in classical computability theory. They are called
left-computably enumerable reals (left-c.e.) and are defined as the limits of increas-
ing computable sequences of rationals. A special left-c.e. real is Ω =

∑
U(σ)↓ 2−|σ|

where U is a universal prefix free machine.

Theorem 3.10 (Chaitin [10, 12]). Ω is Martin-Löf random.

Chaitin’s Ω has had a lot of popular attention. It allows us to prove Gödel’s
incompleteness theorem and the like using Kolmogorov complexity. Solovay [89]
was the first to look at basic computability-theoretical aspects of Ω. For instance,
consider Dn = {x : |x| ≤ n ∧ U(x) ↓}. Solovay proved that K(Dn) = n + O(1),
where K(Dn) is the K-complexity for an index for Dn. Solovay also proved the
following basic relationships between Dn and Ω ↾ n.
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Theorem 3.11 (Solovay [89]). (i) K(Dn|Ω ↾ n) = O(1)4.

(ii) K(Ω ↾ n|Dn+K(n)) = O(1).

The reader should note that in classical computability theory, we usually talk
of the halting problem, whereas here the definition of Ω seems thoroughly machine
dependent. To try to address this issue, Solovay [89] introduced the following
definition, which is a kind of analytic version of m-reducibility.

Definition 3.12 (Solovay [89]). We say that a real α is Solovay reducible to β (or
β dominates α), α ≤S β, iff there is a constant c and a partial computable function
f , so that for all q ∈ Q, with q < β,

c(β − q) > α − f(q).

The intuition here is a sequence converging to β can generate one converging
to α at the same rate, as clarified by Calude, Hertling, Khoussainov, Wang [9]. It
is easy to see that ≤S implies ≤T for reals. Since there are only O(22d) many reals
within a radius of 2−n+d of a string representing a rational whose dyadic expansion
has length n, it follows that ≤S has the Solovay Property

Lemma 3.13 (Solovay [89]). If α ≤S β then there is a c such that, for all n,

K(α ↾ n) ≤ K(β ↾ n) + c.

The same also holds for C in place of K.

This lemma shows that, if Ω ≤S β, then β is Martin-Löf random. The next
result says the being Ω-like means that a left-c.e. real look like Ω.

Theorem 3.14 (Calude, Hertling, Khoussainov, Wang [9]). Suppose that β is a
left-c.e. real and that Ω ≤S β. Then β is a halting probability. That is, there is
a universal machine Û such that µ(dom(Û)) = β.

The final piece of the puzzle was provided by the following lovely result of
Kučera and Slaman.

Theorem 3.15 (Kučera and Slaman [46]). Suppose that α is random and a left-c.e.
real. Then for all left-c.e. reals β, β ≤S α, and hence α is a halting probability.

We know that all reals have complexity oscillations. The Kučera-Slaman The-
orem says that for left-c.e. random reals, they all happen in the same places.
Downey, Hirschfeldt and Nies [26], and Downey, Hirschfeldt and LaForte [24] were
motivated to look at the structure of computably enumerable reals under Solovay
reducibility. The structure remains largely unexplored.

Theorem 3.16 (Downey, Hirschfeldt and Nies [26]). (i) The Solovay degrees of
left-c.e. reals forms a distributive upper semilattice, where the operation
of join is induced by +, arithmetic addition (or multiplication) (namely
[x] ∨ [y] ≡S [x + y].)

4Indeed, Dn ≤wtt Ω ↾ n via a weak truth table reduction with identity use, where a Turing
reduction is a weak truth table one if there is a computable bound on the size of the queries used.
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(ii) This structure is dense.5 In fact if a < b < [Ω] then there exist incomparable
b1,b2 with a < b1 ∨ b2 = b.

(iii) However, if [Ω] = a ∨ b then either [Ω] = a or [Ω] = b.

Theorem 3.17 (Downey and Hirschfeldt [22]). There exist left-c.e. sets A and B

such that the Solovay degrees of A and B have no infimum in the (global) Solovay
degrees.

Theorem 3.18 (Downey, Hirschfeldt, and LaForte [24]). The first order theory of
the uppersemilattice of the Solovay degrees of left-c.e. reals is undecidable.

We can view Ω as a fundamental operator on reals in the same way as we do for
the jump operator. However, we need real care when dealing with relativizing Ω.
We will take the notion of universal machine to mean that the machine U should
be universal (and hence prefix-free) for all oracles, and if Me is any machine, then
Me should be effectively coded in U , meaning that for some τ , Me(σ) = U(τσ).
This definition avoids pathological machines.

The properties of omega operators acting on Cantor space and their relationship
with, for instance, Turing reducibility was really initiated by Downey, Hirschfeldt,
Miller and Nies [25]. It had been hoped, for instance, that these might be degree
invariant operators on 2ω. This hope failed about as badly as it could.

Theorem 3.19 (Downey, Hirschfeldt, Miller, Nies [25]). For any omega operator
Ω, there are reals A =∗ B (meaning that they differ only by a finite amount) such
that ΩA and ΩB are relatively random (and hence ΩA|T ΩB).

One the other hand, omega operators do have some fascinating properties.

Theorem 3.20 (Downey, Hirschfeldt, Miller, Nies [25]). Omega operators are
lower semicontinuous but not continuous, and moreover, that they are continuous
exactly at the 1-generic reals6.

In some sense Ω is kind of a red herring amongst random reals. It gives the
impression that random reals have high computational power. Also results such
as the famous Kučera-Gács Theorem below say that some random reals have high
computational power.

Theorem 3.21 (Kučera [42], Gács [33]). Every set is Turing (wtt-) reducible to
a Martin-Löf random set.

We remark that it is by no means clear this result should be true. After all,
the very first result connecting measure and computability was the following:

5In fact, Downey and Hirschfeldt [22] have sown the Density Theorem holds for the left-c.e.
reals for any measure of relative randomness which has a Σ0

3 definition, has a top degree of [Ω],
+ is a join, and where the computable sets are in the zero degree.

6Here recall that x is 1-generic means that it is Cohen generic for 1 quantifier arithmetic.
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Theorem 3.22 (de Leeuw, Moore, Shannon, and Shapiro [14]). Define the enu-
meration probability of A as

P (A) = µ({X ∈ 2ω : UX = A}),

where U is some universal machine. Then if P (A) > 0, A is a computably enu-
merable set.

An immediate corollary is the result first stated by Sacks [81] that µ({Y : A ≤T

Y }) > 0 iff A is computable.
The question is : “How do we reconcile the notions of high computational power

and high randomness?”. Frank Stephan gave a clarification to this dichotomy. We
say that a function f is fixed point free iff for all partial computable functions ϕe,
f(e) 6= ϕe(e). We will say a set A has PA if it has the computational power to
compute {0, 1} valued fixed point free function7 Whilst Kučera [44, 45] had shown
that random reals can always compute fixed point free functions8, Stephan showed
that the randoms above the degree of the halting problem are the only ones with
sufficient computational power to be able to compute a {0, 1}-valued one9.

Theorem 3.23 (Stephan [91]). Suppose that a is PA and 1-random. Then 0′ ≤T

a.

All of this might leads the reader to guess that Ω, and hence all halting prob-
abilities, have little to do with algorithmic randomness in general. Again this is
not the case.

Theorem 3.24 (Downey, Hirschfeldt, Miller, Nies [25]). Suppose that A is 2-
random. Then there is a universal machine U and set B such that A = ΩB

U .

That is, almost all randoms are halting probabilities. Notice that Ω is random,
but cannot be a halting probability relative to any oracle.

By analyzing the “majority vote” proof of Sacks Theorem, it is easy to show
that if A is 2-random and B ≤T A, then A is not random relative to B. Thus
Theorem 3.24 stands in contrast the classical theorem from Kurtz’ regrettably
unpublished Thesis. (Proofs of this result and others from Kurtz’s Thesis, and
from Solovay’s notes can be found in Downey and Hirschfeldt [22].)

Theorem 3.25 (Kurtz [50]). Suppose that A is 2-random. Then there is a set
B ≤T A such that A is computably enumerable relative to B.

3.3. Martingales and the prediction paradigm. The last major
approach to the concept of algorithmic randomness uses the intuition that random
reals should be hard to predict. This can be formalized by imagining you had some

7They are called PA degrees since the coincide with the degrees bounding complete extensions
of Peano Arithmetic. (Scott [85], Solovay)

8Additionally, Kučera proved that if A is n-random, then A bounds an n-FPF function. We
refer the reader to [45] or [22] for definitions and details.

9Also, Kjos-Hanssen, Merkle, and Stephan [39] give a variant of in terms of Kolmogorov
complexity and is in some sense an explanation why it is true.
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“effective” betting strategy which worked on the bits of a real α. At each stage
you get to try to predict the next bit of α, knowing the previous n bits. This idea
leads to the following concept.

Definition 3.26 (Levy [55]). A martingale (supermartingale) is a function f :
2<ω 7→ R+ ∪ {0} such that for all σ,

f(σ) =
f(σ0) + f(σ1)

2

(
resp.f(σ) ≥

f(σ0) + f(σ1)

2

)
.

We say that the (super-)martingale succeeds on a real α, if lim supn F (α ↾ n) → ∞.

Martingales were introduced by Levy [55], and Ville [102] proved that null sets
correspond to success sets for martingales. They were used extensively by Doob
in the study of stochastic processes. Schnorr [82, 83] effectivized the notion of a
(super-)martingale.

Definition 3.27. We will define a (super-)martingale f as being effective or com-
putably enumerable if f(σ) is a c.e. real, and at every stage we have effective
approximations to f in the sense that f(σ) = lims fs(σ), with fs(σ) a computable
increasing sequence of rationals.

We remark that the reader might have expected that an effective martingale
would be one with f a computable function rather than one with computable
approximations. This is an important point and we return to it later.

Theorem 3.28 (Schnorr [82]). A real α is Martin-Löf random iff α does not
succeed on any effective (super-)martingale.

Thus, we have nice evidence that we have captured a reasonable notion of
algorithmic randomness in that the three approaches, measure-theoretical, com-
pressional, and predictability, all give the same class.

3.4. Schnorr’s critique. In [82, 83], Schnorr argued that Theorem 3.28
demonstrated a clear failure of the intuition behind the definition of algorithmic
randomness in that it we had computable enumerable betting strategies correspond-
ing to Martin-Löf randomness rather than computable ones. Schnorr proposed the
two variations below, and these have had attracted considerable interest recently.
The first is to replace computably enumerable martingales by computable martin-
gales and obtain the concept of computably random meaning that no computable
martingale can succeed on the real. The second is to take the definition of Martin-
Löf randomness (Definition 3.1) and replace µ(Ui) ≤ 2−i by µ(Ui) = 2−i so that
we know exactly the measure of the test sets, and hence can decide if [σ] ∈ Ui by
waiting until we know the measure of Ui to within 2−|σ|. Some clarification of the
relationships between these two concepts was obtained by Schnorr.

Definition 3.29. We say that a computable martingale strongly succeeds on a
real x iff there is a computable unbounded nondecreasing function h : N 7→ N such
that F (x ↾ n) ≥ h(n) infinitely often.
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Theorem 3.30 (Schnorr [82]). A real x is Schnorr random iff no computable
martingale strongly succeeds on x.

Thus Martin-Löf randomness implies computable randomness which implies
Schnorr randomness. None of the implications can be reversed (van Lambalgen
[99]). These concepts were somewhat ignored for maybe 20 years after Schnorr
defined them, possibly because Martin-Löf randomness sufficed for many tasks, and
because they were rather more difficult to handle. There are no universal tests, for
instance, for Schnorr randomness. Recently, Downey and Griffiths [19] gave a nice
characterization of Schnorr randomness in terms of computable machines. Here
prefix-free M is called computable iff the measure of its domain is a computable
real.

Theorem 3.31 (Downey and Griffiths [19]). A real α is Schnorr random iff for
all computable machines M , there is a constant c such that, for all n, KM (α ↾

n) ≥ n − c.

Related here is yet another notion of randomness called Kurtz or weak random-
ness. We define a Kurtz test (resp. Kurtz n-test) to be a a Σ0

1 (resp. Σ0
n-) class

of measure 1. Then a real A is called weakly (n−)random or Kurtz n-random10 if
it passes all Kurtz (n−)tests, meaning that A ∈ U for all such U . There is a null
test version.

Definition 3.32 (Wang [103]). A Kurtz null test is a collection {Vn : n ∈ N} of
c.e. open sets, such that

(i) µ(Vn) ≤ 2−n, and

(ii) There is a computable function f : N → (Σ∗)<ω such that f(n) is a canonical
index for a finite set of σ’s, say, σ1, . . . , σn and Vn = {[σ1], . . . , [σn]}.

Theorem 3.33 (Wang [103], after Kurtz [50]). A real α is Kurtz random iff it
passes all Kurtz null tests.

Wang also gave a martingale version of Kurtz randomness.

Theorem 3.34 (Wang [103]). A real α is Kurtz random iff there is no computable
martingale F and nondecreasing computable function h, such that for almost all
n,

F (α ↾ n) > h(n).

This should be directly compared with Schnorr’s characterization of Schnorr
randomness in terms of martingales and computable orders. Downey, Griffith and
Reid [21] gave a machine characterization of Kurtz randomness, and showed that
each computably enumerable non-zero degree contained a Kurtz random left-c.e.
real. This contrasted with the theorem of Downey, Griffiths and LaForte [20]

10Now it could be argued that weak randomness is not really a randomness notion at all, but
rather a genericity notion. However, for n ≥ 2 it is certainly a randomness notion, and n = 2
corresponds to “Martin-Lóf tests with no effective rate of convergence.”
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who showed that if a left-c.e. real was Kurtz random, then its Turing degree must
resemble the halting problem in that it must be high (i.e. A′ ≡T ∅′). The definitive
(and rather difficult) result here is the following which builds on all of this work.

Theorem 3.35 (Nies, Stephan and Terwijn [78]). For every set A, the following
are equivalent.

(I) A is high (i.e. A′ ≥T ∅′′).

(II) There exists B ≡T A, such that B is computably random but not Martin-Löf
random.

(III) There exists C ≡T A, such that C is Schnorr random but not computably
random.

Moreover, the examples can be chosen as left-c.e. reals if the degrees are computably
enumerable.

Remarkably, outside of the high degrees the notions coincide.

Theorem 3.36 (Nies, Stephan and Terwijn [78]). Suppose that a set A is Schnorr
random and does not have high degree. Then A is Martin-Löf random.

An even more unexpected collapse occurs for the special class of degrees called
hyprimmune-free degrees. Following Miller and Martin [73], we say that A is
hyperimmune-free iff for all functions f ≤T A, there is a computable function g

such that for all x, f(x) ≤ g(x).

Theorem 3.37 (Nies, Stephan, Terwijn [78]). Suppose that A is of hyperimmune-
free degree. Then A is Kurtz random iff A is Martin-Löf random.

Space precludes me for discussing a very attractive possible refutation of Schnorr’s
critique proposed by Muchnik, Semenov, and Uspensky [72] who looked at non-
monotonic betting strategies, where now we no longer pick the bits of the real
in order. The open question is whether using computable nonmonotonic super-
martingales, we might capture the notion of Martin-Löf randomness. We refer the
reader to the paper of Merkle, Miller, Nies, Reimann and Stephan [65] and [72].

3.5. Hausdorff dimension. Whilst I don’t really have enough space to do
justice to the area, there has been a lot of very interesting work concerning effective
Hausdorff dimension of even single reals and strings. For instance, we would expect
that if Ω = w0w1 . . . then somehow w000w100w200 . . . should be “ 1

3 random.” A
refinement of the class of measure zero sets is given by the theory of Hausdorff
Dimension. In 1919 Hausdorff [36] generalized earlier work of Carathéodory to
define a notion of an s-dimensional measure to include non-integer values. The
basic idea is that you replace measure by a kind of generalized measure, where
µ([σ]) is replaced by 2−s|σ| where 0 < s ≤ 1. With s = 1 we get normal Lebesgue
measure. For s < 1 we get a refinement of measure zero. We can translate this cover
version into a s-gale (a version of martingales, namely f(σ) = 2−s(f(σ0)+f(σ1)).)
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definition in the same way that it is possible to frame Lebesgue measure in terms
of martingales.

Here we are viewing betting strategies in a hostile environment (a model of Jack
Lutz), where “inflation” is acting so not winning means that we automatically
lose money. (For normal martingales, we are to choose not to bet on some bit
saving our funds for later bits and this has not effect. Here failing to bit means
that our capital shrinks. The most hostile environment where we can win will be
the effective Hausdorff dimension.) That is, roughly speaking, it can be shown
that there is some limsup where the s-measure is not zero, and this is called the
Hausdorff dimension of the set.

The study of effective dimension was pioneered through the work of Jack Lutz
though as with much of the area of randomness there is a lot of history. In any
case, for the effective version through the work of Lutz, Mayordomo, Hitchcock,

Staiger and others we find that the notion corresponds to lim infn
K(A↾n)

n
, and can

take that as a working definition of effective Hausdorff dimension. (Here I must
refer the reader to Lutz [58, 59] for more details and history.)

With this definition, it can easily be shown that the “00” version of Ω above
really has Hausdorff dimension 1

3 and in fact is 1
3 random as in Tadaki [94].

Terwijn [95, 96] and Reimann [80] have very nice results here relating Hausdorff
dimension to degree structures. The latter as well and Lutz and Mayordomo
have also looked at other dimensions, such as effective packing dimension, which

can be characterized as lim supn
K(A↾n)

n
. Again it is possible to examine these

concepts for stronger and weaker randomness notions such as Schnorr dimension.
For instance, Downey, Merkle and Reimann [30] have shown that it is possible
to have computably enumerable sets with nonzero Schnorr packing dimension,
whereas their Schnorr Hausdorff dimension is 0. Much work remains to be done
here with a plethora of open questions.

We finish this section by remarking that Lutz [58, 59] has even developed a
notion of dimension for individual strings. The approach is to replace s-gales by
“termgales” which are the analogues of s-gales for terminated strings. In essence
he has characterized dimension for individual strings exactly in terms of prefix-free
Kolmogorov complexity. Space does not allow for the development of this theory
and we refer the reader to Lutz [58, 59] or Downey and Hirschfeldt [22] for further
details.

4. Calibrating randomness

We have seen that we can classify randomness in terms of initial segment com-
plexity. Thus it seems reasonable to think that we should also be able to classify
relative randomness in terms of relative initial segment complexity. This motivates
the following definition.

Definition 4.1 (Downey, Hirschfeldt, and LaForte [23]). We say a pre-ordering
� is am Q-initial segment measure of relative randomness iff it obeys the Solovay
property met earlier: A � B means that for all n, Q(A ↾ n) ≤ Q(B ↾ n) + O(1).
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Here we are thinking of Q as C or K. We have already seen that Solovay
reducibility is a measure of relative randomness and can be used to characterize the
left-c.e. random reals. However, Solovay reducibility has a number of limitations
such as being too fine and only really relating to left-c.e. reals.

There are a number of other interesting measures of relative randomness. They
include segment ones ≤C and ≤K which are defined in the obvious way. Others
include the following introduced by Downey, Hirschfeldt and LaForte [23]:

(i) A ≤sw B iff there is a c and a wtt procedure Γ with use γ(n) = n + c, and
ΓB = A. If c = 0, then this is called ibT -reducibility and is the one used by
Soare and Csima in differential geometry, such as Soare [87].

(ii) A ≤rK B means that there there is a c such that for all n,

K((A ↾ n)|(B ↾ n + c)) = O(1).

The reducibility (i) is also called effective Lipschitz reducibility and This re-
ducibility has been analyzed by Yu and Ding [105], Barmpalias and Lewis (e.g.
[4]), and Raichev and Stephan (e.g. [79]). While I don’t really have space to
discuss these reducibilities in detail, I would like to point out that they do give
nice insight into relative computability. We briefly consider sw. The idea of this
reducibility is that if A ≤sw B, then there is an efficient way to convert the bits
of B into those of A. The Kučera-Slaman Theorem says that all versions of Ω are
the same in terms of their S-degrees. But we may ask whether there is a “bit”
version of this result? Yu and Ding [105] established the following.

Theorem 4.2 (Yu and Ding [105]). (i) There is no sw-complete c.e. real.

(ii) There are two c.e. reals β0 and β1 so that there is no c.e. real α with
β0 ≤sw α and β1 ≤sw α.

There are other assorted results and reducibilities. However, things are still in
their infancy here. We will simply refer the reader to Downey [17], or Downey and
Hirschfeldt [22] for the current situation.

We return to looking at the basic measures ≤C and ≤K . The reader should
note that these are not really reducibilities but simply transitive pre-orderings.
(Though following tradition we will continue to refer to them as reducibilities.)

Theorem 4.3 (Yu, Ding, Downey [107]). For Q ∈ {K, C}, {X : X ≤Q Y } has
size 2ℵ0 and has members of each degree, whenever Y is random.

The replacement for this theorem is a measure-theoretical one:

Theorem 4.4 (Yu, Ding, Downey [107]). For any real A, µ({B : B ≤K A}) = 0.
Hence there are uncountably many K degrees.

We had hoped that there might be nice hierarchies related to levels of random-
ness. We will denote by Ω(m+1) to be Ω relative to ∅(m). We might have hoped
that Ω(2) was K-above Ω, but that hope turns out to be folourn.
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Theorem 4.5 (Yu, Ding, Downey [107]). For all c and n < m,

(∃∞k)
[
K(Ω(n) ↾ k) < K(Ω(m) ↾ k) − c

]
.

For n = 0, m = 1 Theorem 4.5 was proven by Solovay [89], using totally different
methods.

Miller and Yu have made really significant progress in our understanding here
by introducing yet more measures of relative randomness. They are based around
van Lambalgen’s Theorem which states that for all A, B, B n-random and A is
B-n-random iff A ⊕ B is n-random.

Definition 4.6 (Miller and Yu [69]). We say that α ≤vL β, α is van Lambalgen11

reducible to β if for all x ∈ 2ω, α ⊕ x is random implies β ⊕ x is random.

Miller and Yu’s basic result were as follows.

Theorem 4.7 (Miller and Yu [69]). For all random α, β,

(i) α n-random and α ≤vL β implies β is n-random.

(ii) If α ⊕ β is random then α and β have no upper bound in the vL-degrees.

(iii) If α ≤T β and α is 1-random, then β ≤vL α.

(iv) There are random α ≡vL β of different Turing degrees.

(v) There are no maximal or minimal random vL-degrees, and no join.

(vi) If α ⊕ β is random then α ⊕ β <vL α, β.

(vii) The Σ0
1 theory of the vL-degrees is decidable.

Miller and Yu show that Ω(n) and Ω(m) have no upper bound in the vL degrees
for n 6= m. This improves the Yu, Ding, Downey (Theorem 4.5) result above. All
of this is filters through an interesting relationship between ≤vL and ≤C ,≤K .

Lemma 4.8 (Miller and Yu [69]). For random α, β,

(i) Suppose that α ≤K β. Then α ≤vL β.

(ii) Suppose that α ≤C β. Then α ≤vL β.

We state the following for ≤K but they hold equally for ≤C , as has been shown
by Miller and Yu.

Corollary 4.9 (Miller and Yu [69]). (i) Suppose that α ≤K β, and α is n-
random and β is random. Then β is n-random.

(ii) If α⊕ β is 1-random, then α|Kβ and have no upper bound in the K-degrees.

11This is closely related to a relation introduced by Nies: He defined A ≤LR B if for all Z, Z is
1-B-random implies Z is 1-A-random. If A and B are both random then A ≤LR B iff B ≤LR A.
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(iii) For all n 6= m, the K-degrees of Ω(n) and Ω(m) have no upper bound.

Miller and Yu have many other very interesting results on the K degrees of c.e.
reals. For instance, they show that if α ⊕ β is 1-random, then α|Kα ⊕ β. Miller
has proven the following.

Theorem 4.10 (Miller [67]). (i) If α, β are random, and α ≡K β, then α′ ≡tt

β′. As a consequence, every K-degree of a random real is countable.

(ii) If α ≤K β, and α is 3-random, then β ≤T α ⊕ ∅′.

Notice that (ii) implies that the cone of K-degrees above a 3-random is count-
able. On the other hand, Miller and Yu have constructed a 1-random whose K-
upper cone is uncountable. The construction of an uncountable random K-degree
uses their method of constructing K-comparable reals. Its proof uses the following
clever lemma. The current proof of Theorem 4.11 is quite difficult.

Theorem 4.11 (Miller and Yu [70]). Suppose that
∑

n 2−f(n) < ∞, then there is
a 1-random Y with

K(Y ↾ n) < n + f(n),

for almost all n.

To finish this section, we mention further evidence that randomness is a “low-
ness” notion. Miller has shown that if α is 3-random then its often useless as an
oracle. We will call α weakly-low for K if (∃∞n)[K(n) ≤ Kα(n)+O(1)]. Thus in a
weakly-low real, the information in α is so useless that it cannot help to compress
n. The following result echoes the theme articulated by Stephan that most random
reals have little usable information in them.

Theorem 4.12 (Miller [67]). (i) If α is 3-random it is weakly-low.

(ii) If α is weakly-low, and random, then α is strongly Chaitin random in that

(∃∞n)
[
K(α ↾ n) ≥ n + K(n) − O(1)

]
.

5. Lowness and triviality

There have been some truly dramatic results in what has now become known as
lowness and triviality. If Q is a measure of relative randomness then we can say
that A is Q-trivial iff A ≤Q 1ω. Thus using Q we cannot distinguish A from a
computable set. We will say that A is Q-low if QA(σ) = Q(σ) + O(1), for all σ.
Thus, for instance A is K-low would mean that KA(σ) = K(σ) + O(1) for all σ.

We say that a set A is low for a randomness notion V iff the randoms relative to
A remain the same. (One would usually expect that fewer sets would be random.)
An apparently weaker notion is that of being low for V tests. That is, every if
{Ui : i ∈ N} is a V A test, then there is a V -test {Ûi : i ∈ N} such that ∩iUi ⊆ ∩iÛi.

We remark that since there are universal Martin-Löf tests the test set notion and
the lowness notion are the same.
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5.1. The remarkable Martin-Löf case. There have been a series of
amazing results in the case of 1-randomness. Historically, these results began with
triviality. An old result of Loveland [57] shows that Q(α ↾ n|n) = O(1) for all n,
(Q ∈ {C, K}) iff α is computable. This result was generalized by Chaitin [11], who
proved the following.

Theorem 5.1 (Chaitin [11]). α is computable iff α ≤C 1ω. (That is, iff α is
C-trivial.)

I think this squares with our intuition that should α be indistinguishable from
a computable string in terms of its initial segment complexity it should itself be
computable. Chaitin also noted that essentially the same proof shows that if α

is K-trivial, the α is ∆0
2 and hence computable from the halting problem. The

breakthrough was again by Solovay.

Theorem 5.2 (Solovay [89]). There are noncomputable α which are K-trivial.

Solovay’s argument was complex and mysterious. It turned out that the ex-
ample α could even be chosen as a computably enumerable set (Calude and Coles
[7], Downey, Hirschfeldt, Nies and Stephan [27], Kummer (unpubl), An A. Much-
nik (unpubl.)). The paper [27] gave a very simple construction of a computably
enumerable K-trivial set along the lines of the Dekker deficiency set. What is
remarkable is that such K-trivial sets solve Post’s problem.

Theorem 5.3 (Downey, Hirschfeldt, Nies and Stephan [27]). Suppose that α is
K-trivial. Then α <T ∅′.

The method of proof of Theorem 5.3 uses what has become known as the
“decanter method”(terminology of Nies) and is unfortunately very complicated,
though it does not use the priority method. No easy proof of Theorem 5.3 is
known.

It was noted that the short [27] proof constructing a K-trivial set strongly
resembled and earlier construction of a computably enumerable set A which was
low for Martin-Löf randomness by Kučera and Terwijn [47]. It was conjectured
that perhaps these classes might have something to do with each other. In a
ground breaking series of papers, Nies (and Hirschfeldt) proved some completely
unexpected facts.

Theorem 5.4 (Nies (and Hirschfeldt for some), [75, 76]). (a) The following classes
of reals coincide.

(i) K-low.

(ii) K-trivial.

(iii) low for Martin-Löf randomness.

(b) All the members A of this class C are superlow in that A′ ≡wtt ∅
′.

(c) The class C forms a natural Σ0
3 ideal in the Turing degrees. There is a low2

computably enumerable degree a such that if c ∈ C, the c < a.
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(d) If A is a K-trivial real, then there is a computably enumerable set Â with
A ≤T Â.

The K-trivials form the only known natural nontrivial Σ0
3 ideal in the (com-

putably enumerable) Turing degrees. Item (c) in the above is a special case of a
general unpublished Theorem of Nies that every Σ0

3 ideal in the computably enu-
merable degrees is bounded by a low2 computably enumerable degree. (A proof
can be found in Downey and Hirschfeldt [22].) It is possible that there is a low
(non-computably enumerable) degree a which bounds C, and even possible that
such a degree could be random. This problem seems hard.

Subsequently, other quite deep results have been proven. For instance, we have
seen that if A is noncomputable then µ({X : A ≤T X}) = 0, but since there are
K-low reals, there must be reals A and randoms X such that X is A-random and
A ≤T X . In that case, we say that A is a base of Martin-Löf randomness.

Theorem 5.5 (Hirschfeldt, Nies, Stephan [37]). A is K-trivial iff it is a base of
Martin-Löf randomness.

We remark that Slaman has used the class of K-trivials to solve a longstanding
problem in computable model theory. As a final result in this area we mention
some interesting results of Csima and Montalbán. These results are related to the
enumeration of the K-trivials.

Theorem 5.6 (Chaitin [11], Zambella [108]). There are only O(2d) members of
KT (d). They are all ∆0

2.

The reader might wonder with the nice computable bound how many K-trivial
reals there are. Let G(d) = |{X : X ∈ KT (d)}. Then there is a crude estimate
that G(d) ≤T ∅′′′. This is the best upper bound known. In unpublished work,

Downey, Miller and Yu have shown that G(d) 6≤T ∅′, using the fact that
∑

d
G(d)
2d

is convergent. This is all related to the Csima-Montalbán functions. We say that
f is a Csima-Montalbán function if f is nondecreasing and

K(A ↾ n) ≤ K(n) + f(n) + O(1)

implies that A ↾ n is K-trivial. Such functions can be constructed from ∅′′ ⊕ G.
We define f to be weakly Csima-Montalbán, if we weaken the hypothesis to be
that lim infn f(n) → ∞. Little is known here. It is not known if the arithmetical
complexity of f depends upon the universal machine chosen. We remark that
the original use of Csima-Montalbán functions was to construct a minimal pair of
K-degrees: K-degrees a,b such that a ∧ b = 0.

In other more recent work, Downey, Nies, Weber and Yu [29] have also looked
at lowness for weak 2-randomness. Here it has been shown that such degrees do
exist, and are all K-trivial. It is not known if the converse holds.

5.2. Other lowness and triviality. One thing which this work has brought
(back) to the fore is the use of domination properties in classical computability.
This was first recognized in the study of lowness for Schnorr randomness. Terwijn
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and Zambella [97] defined a degree a to be computably traceable iff there is a single
computable function f such that for all functions g ≤T a, there is a computable
collection of canonical finite sets {Dp(x) : x ∈ N}, such that

(i) |Dp(x)| < f(x), and

(ii) g(x) ∈ Dp(x) for almost all x.

Being computably traceable is a strong form of being hyperimmune-free. Terwijn
and Zambella showed that there are 2ℵ0 many degrees that are hyperimmune-free
yet not computably traceable. There are also 2ℵ0 degrees that are computably
traceable. The following theorem completely classifies the low for Schnorr random
reals. Its proof is far from easy.

Theorem 5.7 (Terwijn and Zambella [97]). A is low for Schnorr random null sets
iff A is computably traceable.

It is clear that if A is low for tests then A is low for Schnorr randoms. But
the converse is not at all clear and had been an open question of Ambos-Spies and
Kučera [3]. The question was finally solved by Kjos-Hanssen, Stephan, and Nies
[40], using Bedregal and Nies [5]. Summarizing the results proven there, we have:

Theorem 5.8 (Kjos-Hanssen, Stephan, and Nies [40]). a is low for Schnorr null
sets iff a is low for Schnorr randomness.

I remark in passing that I am not aware of any lowness notion that differs
for null sets and for the randomness notion. In other work, Nies has examined
lowness for polynomial time randomness, and lowness for computable randomness.
For computable randomness, the answer is rather surprising.

Theorem 5.9 (Nies [76]). Suppose that A is low for computable randomness. Then
A is computable.

Finally there has been a little work on triviality notions here. Recall that
Downey and Griffiths [19] proved that A is Schnorr trivial iff for all computable
machines M , KM (A ↾ n) ≥ n− O(1). This definition naturally allows us to define
a reducibility notion.

Definition 5.10 (Downey and Griffiths [19]). We say that α is Schnorr reducible
to β, α ≤Sch β, iff for all computable machines M , there is a computable machine
M̂ such that KM (β ↾ n) − O(1) > KcM

(α ↾ n), for all n.

This definition allows us to say that a real α is Schnorr trivial iff α ≤Sch 1ω.

Schnorr trivial reals behave quite differently than do Schnorr low reals and the
K-trivials. Downey and Griffiths constructed a Schnorr trivial real and Downey,
Griffiths and LaForte [20] showed that they can even be Turing complete, though
they do not occur in every computably enumerable Turing degree. Subsequently,
they have been investigated by Johanna Franklin [31] Her results are summarized
below.
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Theorem 5.11 (Franklin [31]). (i) There is a perfect set of Schnorr trivials
(and thus some are not ∆0

2.)

(ii) Every degree above 0′ contains a Schnorr trivial.

(iii) Every Schnorr low is Schnorr trivial.

(ii) The Schnorr lows are not closed under join.

Finally, we mention that other lowness notions both in randomness and in
other contexts have been analyzed. Yu [104] (also Miller and Greenberg (unpubl))
proved that there are no sets low for 1-genericity. Sets low for Kurtz randomness
were first constructed by Downey, Griffiths and Reid. They were shown there
to be all hyperimmune-free and were implied by Schnorr lowness. Stephan and
Yu [92] have shown that lowness for Kurtz randomness differs from lowness for
Schnorr randomness and lowness for weak genericity. To wit, they have shown the
following.

Theorem 5.12 (Stephan and Yu [92]). (i) Low for weakly generic is the same
hyperimmune-free plus not of diagonally noncomputable degree.

(ii) There is a set of hyperimmune-free degree which is neither computably trace-
able traceable nor diagonally noncomputable.

(iii) Low for weakly generic implies low for Kurtz random.

(iv) In particular, low for weakly generic and hence low for Kurtz randomness is
not the same as Schnorr low.

The topic of lowness for such concepts remains in its infancy, and promises
fascinating results.
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[42] Kučera, A., Measure, Π0
1 classes, and complete extensions of PA, in Springer Lecture

Notes in Mathematics, Vol. 1141, 245-259, Springer-Verlag, 1985.
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