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Abstract

This article examines work seeking to understand randomness using com-
putational tools. The focus here will be how these studies interact with
classical mathematics, and progress in the recent decade. A few representa-
tive and easier proofs are given, but mainly we will refer to the literature.
The article could be seen as a companion to, as well as focusing on develop-
ments since, the paper “Calibrating Randomness” from 2006 which focused
more on how randomness calibrations correlated to computational ones.

1 Introduction

The great Russian mathematician Andrey Kolmogorov appears several times in
this paper, First, around 1930, Kolmogorov and others founded the theory of
probability, basing it on measure theory. Kolmogorov’s foundation does not seek
to give any meaning to the notion of an individual object, such as a single real
number or binary string, being random, but rather studies the expected values
of random variables. As we learn at school, all strings of length n have the same
probability of 27" for a fair coin. A set consisting of a single real has probability
zero. Thus there is no meaning we can ascribe to randomness of a single object.
Yet we have a persistent intuition that certain strings of coin tosses are less
random than others. The goal of the theory of algorithmic randomness is to
give meaning to randomness content for individual objects. Quite aside from the
intrinsic mathematical interest, the utility of this theory is that using such objects
instead distributions might be significantly simpler and perhaps giving alternative
insight into what randomness might mean in mathematics, and perhaps in nature.
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2 Historical roots

2.1 Borel and von Mises

Predating the work of Kolmogorov are early attempts to answer this kind of
question by providing notions of randomness for individual objects. The modern
theory of algorithmic randomness realizes this goal. One way to develop this
theory is based on the idea that an object is random if it passes all relevant
“randomness tests”. That is, for a desired level of randomness, we would have
computational tests for which we wold regard a real or stringﬂ as random it is
“passed” such tests. The idea is that we could not distinguish the real passing
the test from one that was “really” random.

For example, by the law of large numbers, for a random real X, we would
expect the number of 1’s in the binary expansion of X to have limiting frequency
%. That is, we would expect to have

G<n:X(G) =1} _1

lim —.
n—00 n 2

Moreover, we would expect X to be normal to base 2, meaning that for any binary
string o of length k, the occurrences of ¢ in the binary expansion of X should have
limiting frequency 27%. Since base representation should not affect randomness,
we would expect X to be normal in this sense no matter what base it were written
in, so that in base b the limiting frequency would be b~* for a string o of length
k. Thus X should be what is known as absolutely normal.

The concept of (absolute) normality is due to Borel [26] in around 1909. It
remains a thriving area of number theory, which has had significant advances;
particularly via interactions with algorithmic randomness as we later see. In an
attempt to characterize randomness, normality was extended by von Mises [131] in
1919. Von Mises suggested the following definition of randomness for individual
binary sequences. A selection function is an increasing function f : N — N.
We think of f(i) as the ith place selected in forming a subsequence of a given
sequence. (For the definition of normality above, where we consider the entire
sequence, f(i) = i.) Von Mises suggested that a sequence aga; ... should be
random if any selected subsequence ayyay()... is normal.

The reader will immediately notice the following problem: sequence X with
infinitely many 1’s, post hoc we could let f select the positions where 1’s occur,
and X would fail the test determined by f. However, it does not seem reasonable

IFor this paper we consider “reals” as members of 2* and strings in 2<% unless otherwise
specified. We will denote the j-th bit of a as a(j), and first n bits of a real (or string) o will be
denoted by « [ n.
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to be able to choose the testing places after selecting an X. The question is then:
What kinds of selection functions should be allowed, to capture the intuition that
we ought not to be able to sample from a random sequence and get the wrong
frequencies? The statistician Wald [132] 133] (also famous for his analysis of bullet
damage on warplanes in World War 2) showed that for any countable collection
of selection functions, we could construct a real passing the tests they generate.

It is reasonable to regard prediction as a computational process, and hence re-
strict ourselves to computable selection functionE] The reader will note that Borel’s
and von Mises’ work predates the events the early 1930’s where the notion of a
computable function was clarified by Church, Kleene, Post and famously Turing
[128]. We remark that it is clear that Borel had a very good intuitive understand-
ing of what a computable process was; see Avigad and Brattka for discussion of
the development of computable analysis. But there was no formal clarification
until the Church-Turing Thesis.

Indeed, this suggestion to use computable selection functions was eventually
made by Church [38] in 1940, and this notion is now known as Church Stochas-
ticity. As we will see, von Mises’ approach had a more significant flaw, but we
can build on its fundamental idea: Imagine that we are judges deciding whether
a sequence X should count as random. If X passes all tests we can (in principle)
devise given our computational power, then we should regard X as random since,
as far as we are concerned, X has all the expected properties of a random object.
We will use this intuition and the apparatus of computability and complexity
theory to describe notions of algorithmic randomness.

Aside from the intrinsic interest of such an approach, it leads to useful math-
ematical tools. Many processes in mathematics are computable. Indeed any
process from “real life” would surely be computable. Hence the expected behavior
of such a process should align itself with the behavior obtained by providing it
with an algorithmically random input. Hence, instead of having to analyze the
relevant distribution and its statistics, we can simply argue about the behavior
of the process on a single input. For instance, the expected number of steps of a
sorting algorithm should be the same as that for a single algorithmically random
input. We could also be more fine-grained and seek to understand exactly “how
much” randomness is needed for certain typical behaviors to arise. (See Section[f])

As we will discuss, algorithmic randomness also goes hand in hand with other
parts of algorithmic information theory, such as Kolmogorov complexity, and has
ties with notions such as Shannon entropy and fractal dimension.

2Indeed for practical applications, we might restrict ourselves to polynomial time or even
automatic selections.
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2.2 Some basic computability theory

Given that this is an expository paper in a Logic volume, we will assume that the
reader is more or less cognoscent with the rudiments of classical computability
theory. Thus we will give a brief reprise of the concepts we will be using Given
that this is an expository paper in a Logic volume, we will assume that the reader
is more or less cognoscent with the rudiments of classical computability theory.
Thus we will give a brief reprise of the concepts we will be using In the 1930’s,
Church, Godel, Kleene, Post, and most famously Turing [128] gave equivalent
mathematical definitions capturing the intuitive notion of a computable function,
leading to the Church-Turing Thesis, which can be taken as asserting that a
function (from N to N, say) is computable if and only if it can be computed by
a Turing machineﬂ It has also become clear that algorithms can be treated as
data, and hence that there is a universal Turing machine, i.e., there are a listing
®y, ®q,... of all Turing machines and a single algorithm that, on input (e,n)
computes the result ®.(n) of running ®. on input nﬁ

It is important to note that a Turing machine might not halt on a given input,
and hence the functions computed by Turing machines are in general partial.
Indeed, as Turing showed, the halting problem “Does the eth Turing machine
halt on input n?” is algorithmically unsolvable. Church and Turing famously
showed that Hilbert’s Entscheidungsproblem (the decision problem for first-order
logic) is unsolvable, in Turing’s case by showing that the halting problem can be
coded into first-order logic. Many other problems have since been shown to be
algorithmically unsolvable by similar means.

We write ®.(n)] to mean that the machine ®, eventually halts on input n.
Then (' = {(e,n) : ®.(n)l} is a set representing the halting problem. This set is
an example of a noncomputable computably enumerable (c.e.) set, which means
that the set can be listed (not necessarily in numerical order) by some algorithm.

3This definition can easily be transferred to other objects of countable mathematics. For
instance, we think of infinite binary sequences as functions N — {0,1}, and identify sets of
natural numbers with their characteristic functions.

4The realization that such universal machines are possible helped lead to the development
of modern computers. Previously, machines had been purpose-built for given tasks. In a 1947
lecture on his design for the Automated Computing Engine, Turing said, “The special machine
may be called the universal machine; it works in the following quite simple manner. When we
have decided what machine we wish to imitate we punch a description of it on the tape of the
universal machine ... The universal machine has only to keep looking at this description in
order to find out what it should do at each stage. Thus the complexity of the machine to be
imitated is concentrated in the tape and does not appear in the universal machine proper in any
way. ... [D]igital computing machines such as the ACE ... are in fact practical versions of the
universal machine.” From our contemporary point of view, it may be difficult to imagine how
novel this idea was.
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Another important notion is that of Turing reducibility (which we define for
sets of natural numbers but is similarly defined for functions), where A is Turing
reducible to B, written as A < B, if there is an algorithm for computing A when
given oracle access to B. That is, the algorithm is allowed access to answers to
questions of the form “Is n in B?” during its execution. This notion can be for-
malized using Turing machines with oracle tapes, or by adding the characteristic
function of B to the Kleene partial recursive functions. If A <. B, then we regard
A as no more complicated than B from a computability-theoretic perspective. We
also say that A is B-computable or computable relative to B. The pre-ordering <p
naturally leads to an equivalence relation, where A and B are Turing equivalent
if A<y Band B <y A. The (Turing) degree of A is its equivalence class under
this notion. As we know, if we examine exactly how the access mechanism works
we get other reducibilities refining <7. For example, A <,, B means that there
is a computable f such that z € A iff f(z) € B. The polynomial miniaturization
of this is central in computational complexity theory, as per Garey and Johnson
[62]. Another reducibility of relevance to algorithmic randomness is truth table
reducibility, where A <y B means that A <p B via some procedure ®8 = A such
that for all oracles X, ®¥ is total.

In general, the process of allowing access to an oracle in our algorithms is
known as relativization. As in the unrelativized case, we can list the Turing
machines ®F, ®F ... with oracle B, and let B’ = {{e,n) : ®Z(n)]} be the rela-
tivization of the halting problem to B. This set is called the (Turing) jump of B.
The jump operation taking B to B’ is very important in computability theory, one
reason being that B’ is the most complicated set that is still c.e. relative to B, i.e.,
B’ is c.e. relative to B and every set that is c.e. relative to B is B’-computable.
There are several other important classes of sets that can be defined in terms
of the jump. For instance, A is low if A" <; (/ and high if 0" < A’ (where
0" = (0")). Low sets are in certain ways “close to computable”, while high ones
partake of some of the power of (/' as an oracle. These properties are invariant
under Turing equivalence, and hence are also properties of Turing degrees. These
concepts can be iterated, for example, A®) = (A’)" and the hierarchy of Turing
degrees 0’,0”,... is called the arithmetical hierarchy, and transfinite iterations
are called the hyperarithmetical hierarchy. See e.g. Downey and Hirschfeldt [47],
Rogers [118], or Soare [124].

2.3 Martin-Lof randomness

Von Mises approach refined by Church to consider selection functions restricted
to the computable ones. However, in 1939, Ville [130] showed that von Mises’
approach cannot work in its original form, no matter what countable collection of
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selection functions we choose.

Theorem 2.1 (Ville [I30]). For any countable collection of selection functions,
there is a sequence X that passes all von Mises tests associated with these func-
tions, such that for every n, there are more 0’s than 1’s in X | n.

I think if you went to a casino and were told there would always be more
heads that tails you would not think the coin to be fair. We could try to repair
von Mises’ definition by adding further tests, reflecting statistical laws beyond the
law of large numbers. But which ones? Ville suggested ones reflecting the law of
iterated logarithms, which would take care of his specific example. But how could
we know that further examples along these lines—i.e., sequences satisfying both
von Mises’ and Ville’s tests, yet failing to have some other property we expect
of random sequences—would not arise? For more of this, and a modern proof of
Ville’s Theorem see Downey and Hirschfeldt [47], where it is also shown that the
law of iterated logarithms can be defeated.

The situation was finally clarified in the 1960’s by Martin-Lof [96]. In probabil-
ity theory, “typicality” is quantified using measure theory, leading to the intuition
that random objects should avoid null sets. Martin-Lof noticed that tests like von
Mises’ and Ville’s can be thought of as effectively null sets. Instead of considering
specific tests based on particular statistical laws, we should consider all possible
tests corresponding to some precisely defined notion of effectively null set. The
restriction to such a notion gets around the problem that no sequence can avoid
being in every null set. We will see later that this idea was anticipated by Turing
around 1939 in unpublished notes for work on normality.

To give Martin-Lof’s definition, we work for convenience in Cantor space 2,
whose elements are infinite binary sequences. The choice of base is not important.
For example, all of the notions of randomness we consider are enough to ensure
absolute normality. The basic open sets of Cantor space are the ones of the
form [o] = {X € 2¥ : X extends o} for o € 2<¥, where 2<% is the set of finite
binary strings. The uniform measure A on this space is obtained by defining
A[o]) = 27171, We say that a sequence Tp, T1,. .. of open sets in 2 is uniformly
c.e. if there is a c.e. set G C N x 2<% such that T,, = U{[o] : (n,0) € G}.

Definition 2.2. A Martin-Léf test is a sequence Ty, 11, . .. of uniformly c.e. open
sets such that A(7,,) < 27". A sequence X passes this test if X ¢ N, T,. A
sequence is Martin-Lof random (ML-random) if it passes all Martin-Lof tests.

The intersection of a Martin-Lof test is our notion of effectively null set. Since
there are only countably many Martin-Lof tests, and each determines a null set
in the classical sense, the collection of ML-random sequences has measure 1. It
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can be shown that Martin-Lof tests include all the ones proposed by von Mises
and Ville, in Church’s computability-theoretic versions. Indeed they include all
tests that are “computably performable”, which avoids the problem of having to
adaptively introduce more tests as more Ville-like sequences are found.

Martin-Lof’s effectivization of measure theory allowed him to consider the laws
a random sequence should obey from an abstract point of view, leading to a math-
ematically robust definition. As Jack Lutz said in a talk at the 7th Conference
on Computability, Complexity, and Randomness (during the Alan Turing Year
programme in Cambridge, 2012),

“Placing computability constraints on a nonconstructive theory like
Lebesgue measure seems a priori to weaken the theory, but it may
strengthen the theory for some purposes. This vision is crucial for
present-day investigations of individual random sequences, dimensions
of individual sequences, measure and category in complexity classes,
etc.”

2.4 The three approaches

ML-randomness can be thought of as the statistician’s approach to defining algo-
rithmic randomness, based on the intuition that random sequences should avoid
having statistically rare properties. There are two other major approaches:

e The gambler’s approach: random sequences should be unpredictable.

e The coder’s approach: random sequences should not have regularities that
allow us to compress the information they contain.

2.4.1 The Gambler’s Approach

The gambler’s approach may be the most immediately intuitive one. It was for-
malized in the computability-theoretic setting by Schnorr [120], using the idea
that we should not be able to make arbitrarily much money when betting on the
bits of a random sequence. The following notion is a simple special case of the
notion of martingale from probability theory. (See [47, Section 6.3.4] for further
discussion of the relationship between these concepts.)

Definition 2.3. A martingale is a function f : 2<¢ — R>? such that

f(a0) + f(o1)

floy = E21
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for all 0. We say that f succeeds on X if limsup,,_,.. f(X [ n) = co. We call this
a supermartingale if for all o,

f(a0) + f(o1)

flo) = 52

We think of f as the capital we have when betting on the bits of a binary
sequence according to a particular betting strategy. The displayed equation en-
sures that the betting is fair. Success then means that we can make arbitrarily
much money when betting on X, which should not happen if X is random. By
considering martingales with varying levels of effectivity, we get various notions
of algorithmic randomness, including ML-randomness itself, as it turns out.

For example, if we insist that f is computable, we get a notion called com-
putable randomness. Defining randomness for infinite sequences, by in complexity
classes we might restrict f to be polynomial time, giving polynomial time random-
ness (Lutz [91]). We call a function f left-c.e. if there is a computable function
g(+,-) such that

e lim; g(z,s) exists for all z, and

e lim; g(z,s) = f(x), and

e g(x,s+1) > g(x,s) for all z,s.

Right-c.e. reals are defined similarly, but using approximations from above.

Theorem 2.4 (Schnorr [120]). X is ML-random iff no left c.e. (super-)martingale
succeeds on it.

The reader might wonder why we have “left c.e.” in the characterization. The
way to think about this is the following. We want to bet against sequences that
we think are not random. Now as time evolves we will discover more and more
facts. For example, is X was m — e, and we were given the binary expansion
of this thoroughly computable number, which is therefor far from random, we
would probably have trouble discerning the pattern. But as time went on as we
computes more and more (partial) computable functions, we might discover a
predictor yielding bits of X and hence we would like to place more capital on the
bits of X.

Interestingly, this leads us to some basic problems which stubbornly remain
open. First we might ask what happens if we have a partial computable betting
function, but instead of betting on the first bit, then the second, etc we could bet
on some bit, then, depending on the outcome, we could then bit somewhere we
have not yet bet upon. This notion is called non-monotonic randomness.
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Question 2.5 (Muchnik, Semenov and Uspensky [107]). Do ML-randomness and
non-monotonic randomness coincide

The essence of the question is whether partial computable, rather than left c.e.
methods suffice to define ML-randomness. In some sense they do if we replace
martingales by “martingales processes” (a generalization of the martingale idea) as
in Merkle, Mihailovic, and Slaman [98]. Question [2.5| has been open since 1998.
Another apparently difficult problem asks if bias is possible, which one would
suspect that this is not possible. From [47], a Kastergale is a supermartingale
together with a partial computable function h : 2<¢ — {0,1}. Then if h(o) | [s]
we will promise that for all 8 > s, g(ch(0),s’) > g(o,1—h(o),s'). That is we will
always henceforth bias towards, e.g., 0 is h(o) = 0.

Question 2.6. Is Kastergale-random (i.e. random for left-c.e. kastergales) the
same as ML-random?

For some recent progress on these questions, we refer the reader to Barmpalias,
Fang and Lewis-Pye [9].

It is not too difficult to show that ML-randomness is strictly stronger than
computable randomness, but the difference is slight as quantified by computability
theory:

Theorem 2.7 (Nies, Stephan, and Terwijn [112]). If X is a computably random
real and X' 27 0" (X is not high), then X is ML-random. FEvery high degree

contains a computably random real which is not ML-random.

We will strengthen this result soon. Clearly there are many possible variations
on the notion of martingale. For example, we might ask that there is a minimum
possible bet (real casinos don’t allow € as a bet), or indeed we can only bet in
some set of bets like {nj,...,nx} or N. This leads to the interesting notion of
integer-valued betting strategies, and we refer to Bienvenu, Stephan and Teutsch
[24] for more on this. Later we will see that normality can be characterized by
automatic martingales.

There are many other interesting levels of algorithmic randomness. Schnorr
also introduced another notion related to the ML-randomness definition. He de-
fined a notion now called Schnorr randomness, which is like the notion of com-
putable randomness mentioned below Definition [2.3]but with an extra effectiveness
condition on the rate of success of martingales. He also showed that X is Schnorr
random iff it passes all Martin-Lof tests Ty, 17, ... such that the measures A\(T},)
are uniformly computable (i.e., the function n — A\(T},) is computable in the sense
of Section below). We remark that it is also possible to give test characteri-
zations of computable randomness but they are somewhat counter-intuitive. (See
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[47).) It follows immediately from their definitions in terms of martingales that
ML-randomness implies computable randomness, which in turn implies Schnorr
randomness. It is more difficult to prove that none of these implications can be
reversed.

Additionally to Theorem Nies, Stephan and Terwijn [I12] showed that
Schnorr and computable randomness can be separated in the high degrees, but
again coincide in the non-high ones.

2.4.2 The Coder’s Approach

The coder’s approach builds on the idea that a random string should have no
short descriptions. For example, in describing 010101... (1000 times) by the
brief description “print 01 1000 times”, we are using regularities in this string to
compress it. For a more complicated string, say the first 2000 bits of the binary
expansion of e™, the regularities may be harder to perceive, but are still there and
can still lead to compression. A random string should have no such exploitable
regularities (i.e., regularities that are not present in most strings), so the shortest
way to describe it should be basically to write it out in full.

Again we see that Kolmogorov enters the picture: We formalize this using the
well-known concept of Kolmogorov complexity. We can think of a Turing machine
M with inputs and outputs in 2<% as a description system. If M (1) = o then 7
is an M-description of o.

Definition 2.8. The Kolmogorov complexity Cpr(o) of o relative to M is the
length of the shortest 7 such that M(7) = o.

Since we can enumerate all machines {M, | e € N}, we can then take a
universal Turing machine U, which emulates any given Turing machine with at
most a constant increase in the size of programs. To wit, we would consider a
machine U which on input 1°0c would run M.(o). This is called universality
by adjugation. We can then define the (plain) Kolmogorov complezity of o as
C(0) = Cy(o). The value of C(o) depends on U, but only up to an additive
constant independent of . We think of a string as random if its Kolmogorov
complexity is close to its length.

For an infinite sequence X, a natural guess would be that X should be con-
sidered random if every initial segment of X is incompressible in this sense, i.e.,
ifC(X n)=n-— O(l)ﬂ However, plain Kolmogorov complexity is not quite the
right notion here, because the information in a description 7 consists not only of

5Tf, for example, C(c) > n £ O(1), henceforth we will (mostly) use the economical notation
C(o) >" n; and similarly for K below.
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the bits of 7, but also its length, which can provide another log, |7| many bits
of information. Indeed, Martin-Lof (see [90]) showed that it is not possible to
have C(X [ n) > n — O(1): Given a long string p, we can write p = o7v, where
|7] is the position of o in the length-lexicographic ordering of 2<“. Consider the
Turing machine M that, on input 7, determines the |n|th string £ in the length-
lexicographic ordering of 2<“ and outputs 7. Then N(7) = o7. For any sequence
X and any k, this process allows us to compress some initial segment of X by
more than k£ many bits.

There are several ways to get around this problem by modifying the definition
of Kolmogorov complexity. The best-known one is to use prefix-free codes, which
act like telephone numbers. That is, we restrict ourselves to machines M such
that if M(7) is defined (i.e., if the machine eventually halts on input 7) and p
is a proper extension of 7, then M (u) is not defined. There are universal prefix-
free machines, using the same method above, since we can enumerate the partial
prefix-free machines. Then we can take such a machine U and define the prefiz-
free Kolmogorov complexity of o as K(o) = Cy(o). The roots of this notion
be found in the work of Levin, Chaitin, and Schnorr, and in a certain sense—
like the notion of Kolmogorov complexity more generally—even earlier in that of
Solomonoff (see [47,[90]). As shown by Schnorr (see Chaitin [34]), it is indeed the
case that the following theorem holds:

Theorem 2.9 (Schnorr). X is Martin-Lif random if and only if K(X | n) >" n.

We remark that this shows that we our definitions are reasonably robust, in
that all approaches yield the same ML-random reals. We remark that it is possible
to give machine characterizations of computable and Schnorr randomness. For
instance, we can call a machine M a computable domain machine if Addom (M) is
a computable real.

Theorem 2.10 (Downey and Griffiths [46]). X is Schnorr random iff for all
computable domain machines Ky (X | n) >1 n for all n.

We remark that there are other methods to capture ML-randomness using
incompressibility. One is to use things akin to prefix-free complexity, like process
complezity which asks that the action be continuous. That is we have machines
M such that if M (o) | and M(7) |, and o < 7, then M (o) < M (7). Using this
Schnorr and earlier Levin (with an analogous concept) showed that again X is
random iff its segments cannot be compressed. (see [47] for a discussion about
this and similar compressors.) Day [40] gave a nice machine characterization of
computable randomness using a kind of process machine as described below.
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There are other varieties of Kolmogorov complexity, but C and K are the
main ones. For applicationﬁﬂ it often does not matter which variety is used. The
following surprising result establishes a fairly precise relationship between C and

K. Let CW(0) = C(0) and C"+V (o) = C(C™ (o).

Theorem 2.11 (Solovay [125]). K (o) = C(0) + C® () £ O(C®)(0)), and this
result is tight in that we cannot extend it to C™® (o).

There is a simplified version of Solovay’s original proof in [47] using a sugges-
tion of Miller and a useful result known as Symmetry of Information.

Theorem 2.12 (Symmetry of Information for K[FLevin and Gécs [60], Chaitin
[34)). K(o,7) =" K(0)+ K(7 | 0,K(0)) =" K(7) + K(o|1, K(7)).

Using this and other techniques, Bauwens [I3] gave some simpler proofs for
Theorem 2111

There is a vast body of research on Kolmogorov complexity and its applica-
tions. We will discuss some of these applications below; much more on the topic
can be found in the books of Li and Vitanyi [90] (especially for applications) and
Shen, Uspenskyi and Vereshchagin [122].

One notion of compression not to be found in [47], and largely forgotten, is
the following.

Definition 2.13 (Kobayashi [85]). 1. Given f : N — N, we say that X is
f-compressible if there exists Y which computes X via an oracle Turing
machine which queries, for each n, at most the first f(n) digits of Y (i.e.
the Y-use) for the computation of X | n.

2. We say that a real X is Kobayashi incompressible if it is not f-compressible
for any function f such that n — f(n) is unbounded.

A recent result shows that Kobayashi incompressibility actually coincides with
ML-randomness.

Theorem 2.14 (Kobayashi incompressibility and Turing reductions-Barmpalias
and Downey [12], Bienvenu). The following are equivalent:

1. X is Martin-Léf random;

2. For every Y with X <7 Y the Y-use in any such computation of X | n is
bounded below by n — ¢ for some constant ¢ and all n.

SParticularly those involving effective fractal dimension we see later.
"There is also one for C.
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Later we will look at other calibrations of randomness. For some there are
characterizations along the Kobayashi-lines of the above such as for Kurtz ran-
domness using stronger reducibilities than <p.

3 Goals

There are several ways to explore the ideas introduced above. First, there are
natural internal questions

e How do the various levels of algorithmic randomness interrelate?

e How do calibrations of randomness relate to the hierarchies of computability
and complexity theory, and to relative computability?

e How should we calibrate partial randomness?

e Can a source of partial (algorithmic) randomness be amplified into a source
that is fully random, or at least more random?

The books Downey and Hirschfeldt [47] and Nies [109] cover material along these
lines up to about 2010.

We can also consider applications. Mathematics has many theorems that in-
volve “almost everywhere” behavior. Natural examples come from ergodic theory,
analysis, geometric measure theory, and even combinatorics. Behavior that occurs
almost everywhere should occur at sufficiently random points. Using notions from
algorithmic randomness, we can explore exactly how much randomness is needed
in a given case. For example, the set of reals at which an increasing function is
differentiable is null. How complicated is this null set, and hence, what level of
algorithmic randomness is necessary for a real to avoid it (assuming the function
is itself computable in some sense)? Is Martin-Lof randomness the right notion
here? More specifically, suppose that I want to use randomness as a tool in some
combinatorial algorithm. There are many such algorithms which ask for random
seeds; for instance polynomial identity testing. What algorithmic level of source
randomness is needed for applications to obtain results which are close to exact
solutions? Also how does this theory relate to the well-developed theory of e.g.
random graphs?

One recent example comes from an answer to of a question of Bollobas and
of Kahane going back to 1965. In the introduction to his book [25] on random
graphs, Bollobas motivates the use of probabilistic ideas in graph theory. He
mentioned that earlier probabilistic application had been found in analysis via
three seminal papers of Paley and Zigmund [113] 114} 1T5].
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“Paley and Zigmund (1930a,b,1932) had investigated random series of
functions.One of their results was that if the real numbers ¢, satisfy

% ,c2 = 0o then 3°° ¢, cosnz fails to be a Fourier-Lebesgue
series for almost all choices of the signs. To exhibit a sequence of
signs with this property is surprisingly difficult: indeed there is no
algorithm known which constructs an appropriate sequence of signs
from any sequence ¢, with 300 ;2 = 00.”
We remark that an indentical question can be found even earlier in the 1968
version of Kahane’s book (most recently, [80], page 47), on random trigonometric

series:

“A surprising fact is that nobody knows how to construct these signs
explicitly, but a random choice works.”

In recent work, Downey, Greenberg and Tangarra [45] showed that this ques-
tion has a positve answer by showing that the collection of signs where the series
converges forms a Kurtz null test (i.e the complement of a c.e. open set of measure
1)@ Hence by general theorems about Kurtz null tests we know that there is a
computable real which succeeds on this test. There is a huge amount of largely
unexplored work on random trigonometric series, some of which is explored in
[45], and earlier [116].

We can also use the idea of assigning levels of randomness to individual objects
to prove new theorems or give simpler proofs of known ones. We give some
examples later, especially in the area of Hausdorff dimension theory.

3.0.1 The Incompressibility Method

Early examples of this method tended to use Kolmogorov complexity and what
is called the “incompressibility method”. For instance, in 1975, Chaitin [33] (see
also [86]) famously used Kolmogorov complexity to give a proof of a version of
Godel’s First Incompleteness Theorem, by showing the following:

Theorem 3.1 (Chaitin [33]; also Barzdins). For any sufficiently strong, com-
putably axiomatizable, consistent theory T, there is a number L such thatT cannot
prove that C(o) > L for any given string oﬂ

Proof. (Sketch-Kritchman and Raz [86]) (For this proof, C' or K are equally us-
able.) Let L be a large enough integer. Assume for a contradiction that, for some

8We look at Kurtz randomness, a notion of randomness weaker than ML-randomness, later
in the present article.
9This also follows by interpreting an earlier result of Barzdins; see [90, Section 2.7]).
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integer x, there is a proof for the statement "K (x) > L". Let w be the first proof
(say, according to the lexicographic order) for a statement of the form "K(z) > L".
Let z be the integer x such that w proves "K(z) > L". It is easy to give a com-
puter program that outputs z : the program enumerates all possible proofs w, one
by one, and for the first w that proves a statement of the form "K(z) > L", the
program outputs x and stops. The length of this program is a O(1) +log L. Thus,
if L is large enough, the Kolmogorov complexity of z is less than L. Since w is a
proof for "K(z) > L" (which is a false statement), we conclude that the theory is
inconsistent. Note that the number of computer programs of length L bits is at
most 2L + 1 . Hence, for any integer L, there exists an integer 0 < x < 2L + 1,
such that K(x) > L. Thus, for some integer z, the statement "K(x) > L" is a
true statement that has no proof. O

More recently, Kritchman and Raz [86] used these methods to give a proof of
the Second Incompleteness Theorem as WGHE

This article focuses on algorithmic randomness for infinite objects, but we
should mention that there have been many applications of Kolmogorov complex-
ity under the collective title of the incompressibility method, based on the ob-
servation that algorithmically random strings should exhibit typical behavior for
computable processes. For example, as well as the proof of the Incompleteness
Theorem above, this method can be used to give average running times for sort-
ing, by showing that if the outcome is not what we would expect then we can
compress a random input. See Li and Vitanyi [90, Chapter 6] for applications
of this technique to areas as diverse as combinatorics, formal languages, compact
routing, and circuit complexity, among others. Many results originally proved
using Shannon entropy or related methods also have proofs using Kolmogorov
complexity@ For example, Messner and Thierauf [99] gave a constructive proof
of the Lovasz Local Lemma using Kolmogorov complexity.

Other applications come from the observation that in some sense Kolmogorov
complexity provides an “absolute” measure of the intrinsic complexity of a string.
The key is again the notion of conditional Kolmogorov complexity C(o | 7).
Then, for example, C(c | 0) = O(1), and o is “independent of 7”7 if C'(o | 7) =
C(o) — O(1). Researchers comparing two sequences o, T representing, say, two

00ther recent work has explored the effect of adding axioms asserting the incompressibil-
ity of certain strings in a probabilistic way. Bienvenu, Romashchenko, Shen, Taveneaux, and
Vermeeren [23] have shown that this kind of procedure does not help to prove new interesting
theorems, but that the situation changes if we take into account the sizes of the proofs: randomly
chosen axioms (in a sense made precise in their paper) can help to make proofs much shorter
under the reasonable complexity-theoretic assumption that NP # PSPACE.

1 Shannon Entropy is more or less an average Kolmogorov Complexity. Hammer et. al. 2]
looked at how many inequalities for these concepts are interchangeable.
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DNA sequences, or two phylogenetic trees, or two languages, or two pieces of
music, have invented many distance metrics, such as the maximum parsimony
distance on phylogenetic trees, but it is also natural to use a content-neutral
measure of “information distance” like max{C(o | 7),C(7 | ¢)}. There have been
some attempts to make this work in practice for solving classification problems,
though results have so far been mixed. Of course, C' is not computable, but it
can be replaced in applications by measures derived from practical compression
algorithms. See [90), Sections 8.3 and 8.4]. Also see Bennett et. al. [I7] for a
survey of these ideas in abstract Information Distance. We will not give more
details as this area would need a complete survey to itself.

As we will see below, a more recent line of research has used notions of effective
dimension based on partial randomness to give new proofs of classical theorems
in ergodic theory and obtain new results in geometric measure theory.

4 Some interactions with computability

4.1 Halting probabilities

A first question we might ask is how to generate “natural” examples of algorith-
mically random reals. A classic example is Chaitin’s halting probability. Let U
be a universal prefix-free machine and let

Q= > 27l

Uo)d

This number is the measure of the set of sequences X such that U halts on some
initial segment of X, which we can interpret as the halting probability of U.

Theorem 4.1 (Chaitin [35]). Q above is ML-random.

Proof. (sketch) Using the Recursion Theorem we will build a prefix-free machine
M which as index e within the universal machine U, and e is known in advance.
Then we monitor s = 314y, 2-191[s], the stage s approximation. If we see some
o of length < n —e — 2 enter Qs41 with U(o) = Q4 | n, then we put o into Mg
causing 1°00 to enter Q — Qg, and hence Qg [ n # Q | n. (This proof is from [47]
and resembles the proof of the unsolvability of the Halting Problem.) O

For any prefix-free machine M in place of U we can similarly define a halting
probability. In some ways, halting probabilities are the analogs of computably
enumerable sets in the theory of algorithmic randomness. But, as described above,
they are left-c.e. in the place of c.e.. Calude, Hertling, Khoussainov, and Wang
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[32] showed that every left-c.e. real is the halting probability of some prefix-free
machine.

We should perhaps write Qyy instead of €, to stress the dependence of its par-
ticular value on the choice of universal machine, but the fundamental properties
of €2 do not depend on this choice, much as those of the halting problem do not
depend on the specific choice of enumeration of Turing machines. For partial com-
putable functions, the same could also be said. That is ' = {e | pe(e) |} depends
on the precise enumerations of the partial computable functions. But, of course,
Myhill proved that up to m-reduction (indeed up to computable permutations)
all versions of K had the same degree. So in this sense there is “only one” halting
set.

In our case our halting probabilties are reals, and hence what the analogous
result would entail would be a continuous version of m-reducibility. (The following
is a slight generalization of the earlier version of this concept. See [47])

Definition 4.2 (Solovay [125]). We say that X <g Y iff there is a partial com-
putable function f and a constant ¢ such that for any rational ¢ <Y f(q) {< X
and c(Y — q) > (X — f(q))-

Using this we can effectively convert any Cauchy sequence for Y into one for
X which converges just as fast. It is not hard to show that X <g Y means that
for all n, K(X | n) <t K(Y | n). That is because if I know Y [ n, I can apply
f to get f(Y | n) will be within 2-("~1°8¢) of X | n, and hence if we enumerate
a small diameter of strings around f(Y [ n) we will know that X [ n is one of
them; and this constant is independent of n. Hence by Schnorr’s Theorem, if X
is ML-random and X <g Y then Y is ML-random also. Kucera and Slaman [8§]
showed that every left-c.e. real is reducible to every 2y up to Solovay reducibility,
and hence all such y’s are equivalent modulo this notion.

Theorem 4.3 (Kucera and Slaman [88)]). If X is left-c.e. then X <g Q. That is
Q is Solovay complete.

Proof. (Sketch) The proof is an illustrative “measure recycling” one. Given X =
limg X if X411 [ n # X, [ n, then the opponent has spent at least 27" to make
this change. We would like .1 to make similar change of around 2~("+¢) with
¢ given by the recursion theorem. One way is to put a potential ML-test around

[Qs | n] or alternatively issue a description U(7) = Qg [ n, where |7| = n+ ¢
(meaning, again we build M coded in U by ¢). The total cost is < 1 so we
succeed in forcing €2 to change almost always. O

Hence all universal halting probabilities, being left-c.e. reals are essentially
the same. Solovay reducibility is just one measure of relative randomness which
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can be used, but the reader will see that it is really quite natural. As an analogy
to the study of c.e. sets under m-reducibility, we can study the structure of the
left-c.e. reals under Solovay reducibility. The following result gives some insight
into this structure.

Theorem 4.4 (Downey, Hirschfeldt and Nies [51]).

1. The Solovay degrees of left-c.e. reals forms a distributive dense upper semi-
lattice.

2. The join operation is induced by +. That is [o] V [B] = [a + 5], where [X]
denotes the Solovay degree of X.

3. The Solovay degree of Q is join-irreducible That is, if [a] V [B] = [Q] then
one of a or B is ML-random. (Also obtained earlier by Demuth [42].)

4. Every incomplete Solovay degree of a left c.e. real splits over all lesser ones.

Recently Barmpalias and Lewis-Pye [10] and Miller [102] proved some fasci-
nating results showing that there is a calculus operating here. Is « is left-c.e. then
there is a computable sequence a5 < g1 — . Then Barmpalias and Lewis-Pye
showed the following:

Theorem 4.5 (Barmpalias and Lewis-Pye [10]).

1. If a and B are ML-random left-c.e. reals, then

exists, and this is independent of choice of approzimations for a and 3.

2. Furthermore o — 8 is ML-random iff g—%‘ # 1.

3. And that g—g =sup{c € Q| a—cp is left-c.e} = inf{c € Q | a—cB} is right c.e.}.l

Miller [103] extended these results to what are called d.c.e. reals, being those
of the form X — Y with X and Y left-c.e. reals. Using this he showed that the
nonrandom left-c.e. reals form a real closed field, and 0 is derivation on this field;
meaning it satisfied Leibnitz’ Law:

d(apf) = adf + Boa.
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Consequences of these results are still under active exploration.

Left-c.e. and right-c.e. reals (those of the form 1 — « for a left-c.e. ) occur
naturally in mathematics. Braverman and Yampolsky [29] showed that they arise
in connection with Julia sets, and there is a striking example in symbolic dynamics:
A d-dimensional subshift of finite type is a certain kind of collection of A-colorings
of Z4, where A is a finite set, defined by local rules (basically saying that certain
coloring patterns are illegal) invariant under the shift action

(892)(h) = x(h + g) for g,h € Z% and z € AZ

Its (topological) entropy is an important invariant measuring the asymptotic growthjj
in the number of legal colorings of finite regions. It has been known for some time
that entropies of subshifts of finite type for dimensions d > 2 are in general not
computable, but the following result gives a precise characterization.

Theorem 4.6 (Hochman and Meyerovitch [75]). The values of entropies of sub-
shifts of finite type over Z% for d > 2 are exactly the nonnegative right-c.e. reals.

4.2 Algorithmic randomness and relative computability

Solovay reducibility is stronger than Turing reducibility, so 2 can compute the
halting problem ('. Indeed €2 and (/' are Turing equivalent, and in fact £ can be
seen as a “highly compressed” version of (/. Other computability-theoretically
powerful ML-random sequences can be obtained from the following remarkable
result.

Theorem 4.7 (Gécs [61], Kucera)[87]). For every X there is an ML-random'Y
such that X <1 Y.

The proof of Theorem [4.7]uses a certain kind of weak-truth table procedure and
a kind of “block coding”. Recently Barmpalias and Lewis-Pye [I1] have established
a number of results giving a precise classification of how tightly an arbitrary X
can be coded in to a random Y. This has resulted in a completely new optimal
coding technique which should have other applications.

Theorem and the Turing equivalence of Q with (' do not seem to accord
with our intuition that random sets should have low “useful information”. This
phenomenon can be explained by results showing that, for certain purposes, the
benchmark set by ML-randomness is too low. A set A has PA degree if it can
compute a {0, 1}-valued function f with f(n) # ®,(n) for all n. (The reason for
the name is that this property is equivalent to being able to compute a completion
of Peano Arithmetic.) If we can compute a function of this type which is not
necessarily {0,1} valued, we say that A had DNC, diagonally noncomputable
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degree. Such a function can be seen as a weak version of the halting problem, but
while () has PA degree, there are sets of PA degree that are low, in the sense of
Section and hence are far less powerful than (/.

Theorem 4.8 (Stephan [126]). If an ML-random sequence has PA degree then it
computes (.

Thus there are two kinds of ML-random sequences. Ones that are complicated
enough to somehow “simulate” randomness, and “truly random” ones that are
much weaker.

On the other hand, if we remove the restriction that f must be {0, 1}-valued
we get the following:

Theorem 4.9 (Kucera [87]). If A is ML-random then A computes a DNC' func-
tion.

The explanation of the apparent paradox is that if a function is {0, 1}-valued,
then saying it does not have value 1, means it must have value 0, and conversely.
If more values are possible, saying what it is not does not imply what it is.

Proof. Let A be ML-random. Let f(n) be the position of A [ n in some effective
listing of finite binary strings. Since A is ML-random,

K(f(n))="K(AIn)>"n,

by Schnorr’s Theorem, Theorem On the other hand, if varphi,(n) |, then
K(pn(n)) <™ n, so there are only finitely many n such that f(n) = p,(n).
By altering f at these finitely many places, we obtain an A-computable DNC
function. O

Kucera’s Theorem above received a lot of attention and generalizations. Cru-
cial is the use of Schnorr’s Theorem; but this also has generalizations. For exam-
ple, we call a set A complez if there is an order h such that K(A [ h(n)) > n for
some computable order h, and we say that A is autocomplex if A is h-complex for
some A-computable order.

Theorem 4.10. (Kjos-Hanssen, Merkle, and Stephan [82]). A set is autocomplex
iff it is of DNC degree.

For more on this story, see [47], Ch. 8.
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4.2.1 Stronger randomness

It is known that the class of sequences that can compute (/' has measure 0, so
almost all ML-random sequences are in the second class. This fact is a special
case of the following classical theorem

Theorem 4.11 (de Leeuw, et. al. [41], Sacks [I19]). Suppose that A is noncom-
putable. Then M{X | A <p X} =0.

Proof. This is included as it is a classic “majority vote” argument. Suppose that
)\{X‘ASTX}>O.

Then for some fixed ®, A\{X | ®¥ = A} > 0, by the fact that there are only a
countable number of procedures ®. Then by Lebesgue Density, we can work in
some cone of reals C' where the relative density

MX | X =An0 < X}
MY |o<Y}

.3
1

Then to compute A [ n for n > |o| wait till % of the oracles X extending o have
®X | with a common value. This correctly computes A | n. O

One way to ensure that a sequence is in that class of reals with little usable
information is to increase the complexity of our tests by relativizing them to non-
computable oracles. It turns out that iterates of the Turing jump are particularly
natural oracles to use. Let §(0) = ¢ and 0D = (9(M). We say that X is
n-random if it passes all Martin-Lof tests relativized to to 01, Thus the 1-
random sequences are just the ML-random ones, while the 2-random ones are the
ones that are ML-random relative to the halting problem. These sequences have
low computational power in several ways. For instance, they cannot compute any
noncomputable c.e. set, and in fact the following holds.

Theorem 4.12 (Kurtz [89]). If X is 2-random and Y is computable relative both
to )/ and to X, then'Y is computable.

A precise relationship between tests and the dichotomy mentioned above was
established by Franklin and Ng [58] using another more technical notion of ran-
domness.

We remark that of course, we can relativise the notion of Kolmogorov com-
plexity, and see that as an analog of Schnorr’s Theorem we have X is n-random
iff K9"V(X 1 k) >T k for all k.

Quite remarkably, there is interdefinability between C' and " and simi-
larly K and K 0" We will need the notion of notion of conditional Kolmogorov
complexity C(o | 7) of a string o given another string 7 (and same for K).
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Theorem 4.13 (Vereshchagin [129]). €% (¢) =* limsup,, C(o|n).

Proof. Let M be our fixed universal plain machine. Let M(r,n) = MY (7)[n],
where both the oracle and the universal machine are being approximated. If n
is large enough and 7 is a minimal-length M W—program for o, then M(1,n) = o,
whence C(o | n) | |r| =+ C?(¢) + O(1). Thus limsup,, C(o|n) < C¥ (o).

For the other direction, let k¥ = limsup,, C(o|n)+ 1. Let V,, = {0 | C(o|n) < k
We have |V,,| < 2k for all n. Let B = {7 | 3Im¥Vn > m(|V,, U {r}) < 2¥}. Then B
is (/-c.e. (unmiformly in k), o € B, and |B| < 2k. Since we can describe o from

(/ by giving its position in the enumeration of B as a string of length k, we have
CY (o) <t k =" limsup,, C(o|n). O

Slightly more complex methods yield the following.

Theorem 4.14 (Bienvenu, Muchnik, Shen, and Vereschagin [21]). K% (¢) =*
lim sup,, K (o |n).

It follows that, for example, n-randomness can be defined using K alone, which
is surprising in that on the face of it K " would seem unrelated to K. We remark
that earlier Solovay [125] has looked at relationships between K and K " and
some of this material can be found in [47]. Also there had been earlier results
showing that 2-randomness, in particular, is naturally definable. We have seen
that Martin-Lof showed that for no X is C(X [ n) >T n for all n. But it is
possible that C(X | n) >T n for infinitely many n, as shown by Martin-Lof [96],
and he also showed that such sets were ML-random.

Theorem 4.15 (Miller [100], Nies, Stephan and Terwijn [I12]). X is 2-random
iff 3°nC(X | n) >* n.

The proof of this result in [I12] uses an interesting notion called a compression
function. We can also look at the K-analog. The maximal complexity n can be is
n+ K(n) + O(1), as proved by Solovay [125]. Yu, Ding and Downey [134] proved
that if a set is 3-random then it infinitely often will reach this complexity on its
initial segments of length n. The final piece of the puzzle was supplied by Joe
Miller:

Theorem 4.16 (Miller [101]). X is 2-random iff 3°nK (X | n) > n+ K(n).

4.2.2 Computational depth

In general, among ML-random sequences, computational power (or “useful infor-
mation”) is inversely proportional to level of randomness. The following is one of
many results attesting to this heuristic.
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Theorem 4.17 (Miller and Yu [104]). Let X <. Y. If X is ML-random and Y
is n-random, then X is also n-random.

Thus the notion that a random sequence has a “high information content”
seems quite wrong. What is missing is the word “useful”. There might be a lot
of information but it is not accessible to a computational procedure. So when
does a real contain useful in formation? One line of investigation in this area was
pioneered by Bennett who defined X to be K-deep if we cannot know about A
in any computable time. To wit, let K? be a time bounded version of prefix-free
complexity.

Definition 4.18. X is called Bennett deep or simply deep for short if for all all
computable ¢t and for all ¢ and almost all n,

K'{(X [n)—K(X n)>c
If X is not deep it is called shallow.

The intuition is that X is deep because it contains a lot of information which
is difficult to discover.

Theorem 4.19 (Bennett [18]).

1. All computable and ML-random sets are shallow.
2. There are deep c.e. sets, such as the halting problem.

The notion of depth has proven quite fruitful in giving insight into intrinsic
information in languages, and several further variations on the notion, mainly
involving orderd™7 (in place of ¢) and C' in place of K) have been studied. For
example, Moser and Stephan [106] showed that a degree is high iff it contains a
“strongly” deep set. See, for instance, [0 [7, [106], etc. As Moser [105] showed,
all of these notions have a common interpretation in terms of computable time
bounds and compression ratios.

All of this might lead one to suspect that € is a bit player in the area of
algorithmic randomness. But perhaps the following two theorems say that in
some sense it is a central concept.

Theorem 4.20 (Downey, Hirschfeldt, Miller, Nies [50]). If X is 2-random then
there is a set Y such that X = QY. That is, almost all random reals are Q-numbers
relative to an oracle.

12That is, a computable nondecreasing unbounded function.
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In the same was that € has c.e. degree we get the following.

Theorem 4.21 (Kurtz [89]). If X is 2-random then there is a Z <7 X such that
degr(X) is c.e. relative to Z.

The original proof of this theorem uses a technique called “measure risking”
which allows for a procedure in a construction to be undefined on some small
measure part of 2¢, and after the fact, it is argued that the construction succeeds
on all 2-randoms. Recently this idea has been portrayed using what has been
dubbed by Shen to be a “fireworks” argument. We will illustrate this new method
with a slightly easier proof that every 2-random bounds a 1-generic degree, where
Z is called 1-generic iff for all c.e. sets of strings W, either 30 < Z and ¢ has not
extension in W, or there is some ¢ < Z and o € W.

The fireworks metaphor is the following. We wish to purchase some fireworks
from a seller who claims that all of them are good, but perhaps we are using them
for an important party and it is crucial that they work when at the time. We have
a lot of money so can test a large number. What we do is to ask the seller to show
us, say, 100. We pick a number n between 1 and 100, randomly. We then test
the first n — 1 of the fireworks and is any fail then we reject the seller’s package.
If all work we accept and will use the n-th one for the party. (Of course we will
need to pay for the first n, but that is another story.) For the seller to have sold
us a dud, they would have to have guessed our n. The probability is at most 1—(1)0.

In computability, we use this idea for probabilistic forcing. Imagine we are
meeting the requirements R, asking that either we have some o0 € W, with o0 < Z
or want to show that for some 0 < Z, and 7 € W, o A 7.

Typically this would be done using the finite extension method, which is Co-
hen forcing with conditions being finite strings. Thus (' can carry out such a
construction. Here we need a probabilistic argument which will work for a 2-
random oracle. Now in this construction we only need to do two things. If we
are in a situation that we have build Z, and there is no extension in W, then
we win by luck; the “passive guess.” So, what we will do is begin a step by step
construction which, for a fixed e, would pick a random n(e) in some suitable in-
terval (depending on the priority) and work with the passive guess for n(e) many
e-steps. That is, we assume that our guess is correct, but sometime later if we
find out that it was not at that stage (i.e. Zs actually had an extension in W)
we would make another step. If we run out of steps say at si, then we will stop
the construction doing the active guess seeking some 7 € W, extending Zj, .

The random oracle is the one supplying the answers, and T'* would build a
Martin-Lof type test, here a (’-computable one, such that oracles can only fail on
such tests, in the sense that the construction would get stuck only inside open sets
generated by the tests. For an (/-computable one, the construction would succeed
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outside it and hence a 2-random could carry the construction out. We refer the
reader to Bienvenu and Patey [22] for more details and an interesting application
to “bushy tree” forcing.

Of course it is impossible to combine Theorems[4.20|and [4.21] We remark that
2 showcases the difference between being c.e. relative to some set and “CEA” (c.e.
relative to and above). In fact relativization of €2 is somewhat counter-intuitive:

Theorem 4.22 (Downey, Hirschfeldt, Miller, Nies [50]). There are sets A =* B
(i.e. the symmetric difference is finite) such that QB|pQA. In fact, they are
relatively random.

For recent related work on 2 as an operator see Holzl et. al. [76].

4.2.3 Calibrating randomness

There are many other interesting calibrations of algorithmic randomness. As
we have seen, Schnorr [I120] argued that his left-c.e. martingale, Theorem [2.4
characterization of ML-randomness shows that this is an intrinsically computably
enumerable rather than computable notion. As well as defining computable ran-
domness he also defined a concept now called Schnorr randomness, which is like
the notion of computable randomness mentioned below Definition but with
an extra effectiveness condition on the rate of success of martingales. He also
showed that X is Schnorr random iff it passes all Martin-Lof tests Ty, 17, . .. such
that the measures A\(T,) are uniformly computable (i.e., the function n — A(7},)
is computable in the sense of Section below). It follows immediately from
their definitions in terms of martingales that ML-randomness implies computable
randomness, which in turn implies Schnorr randomness. It is more difficult to
prove that none of these implications can be reversed. In fact, these levels of
randomness are close enough that they agree for sets that are somewhat close
to computable, as shown by the following result, where highness is as defined in

Section 2.2

Theorem 4.23 (Nies, Stephan, and Terwijn [112]). Every high Turing degree
contains a set that is computably random but not ML-random and a set that is
Schnorr random but not computably random. This fact is tight, however, because
every nonhigh Schnorr random set is ML-random.

One last example of a variation is not called Kurtz random and is defined in
a slightly different way.

Definition 4.24. We say that X is Kurtz random iff for all c.e. open sets O of
measure 1, X € O. The complement of O is called a Kurtz (null) test.
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Kurtz randomness is a weak notion of randomness but coincides with ML-
randomness on the hyperimmune-free degrees{T_g] We mention Kurtz randomness
because it actually comes up in classifying theorems and randomness. For ex-
ample, it can be shown that (with the correct definitions) a suitably computable
bounded function on a closed interval has a Reimann integral iff it is undefined
on Kurtz test. As we will discuss, various notions of algorithmic randomness arise
naturally in applications. We already mentioned the fact that Kurtz randomness
arises in the study of random (divergent) Fourier series [45]. Schnorr randomness
arises a there also for convergent series.

4.3 Randomness-theoretic weakness

As mentioned above, X is ML-random iff K(X [ n) > n — O(1), i.e.,, X’s initial
segments have very high complexity. There are similar characterizations of other
notions of algorithmic randomness, as well as of notions arising in other parts of
computability theory, in terms of high initial segment complexity. But what if the
initial segments of a sequence have low complexity? Such sequences have played
an important role in the theory of algorithmic randomness, beginning with the
following information-theoretic characterization of computability.

Theorem 4.25 (Chaitin [35]). C(X | n) <™ C(n) iff X is computable.

Proof. (Sketch) The first part of this proof is to use a combinatorial pigeonhole
argument to show that

{o €27 | Clo) <n+d} <O2%.

That is, only few strings have short descriptions, and this is independent of n.
Now between lengths 2% and 25! there will be C-random lengths where C'(n) =
log |n|. We can use this fact to build a computable tree of width 2¢ such that if
C(A | n) < C(n)+d for all n, then A is a member of this tree, and hence is
computable. ]

It is also true that if X is computable then K (X [ n) < K(n)+O(1). Chaitin
[36] considered sequences with this property, which are now called K -trivial. He
showed that every K-trivial sequence is (-computabld™] and asked whether they

13 A has hyperimmune-free degree iff for all functions f <7 A, there is a computable function
g such that for all z, f(z) < g(x). Some authors have called these computably dominated for
obvious reasons. If A does not have hyperimmune-free degree it is said to have hyperimmune
degree. All degrees computable from the halting problem are hyperimmune and the non-zero
ones contain Kurtz random reals.

1This uses a similar argument to that of Theorem [4.25 but now note that we cannot know
K(n) for random n, in the same way that C(n) will be log |n|. Only (' can know this.
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are all in fact computable. Solovay [125] answered this question by constructing
a noncomputable K-trivial sequence. Here is a simple construction of a K-trivial
noncomputable real.

Theorem 4.26 (Zambella [I35], after Solovay [125]). There is a c.e. noncom-
putable K -trivial set.

Proof. This proof is taken from Downey, Hirschfeldt, Nies and Stephan [52]. We
define a c.e. set A as follows:

Agp1 = AsU{z |z € W s Ae least with W, sNAs = DA Z 2~ Ks(w) 2_(2€+1}.
s>y>a

Then A is K-trivial because we can build a machine M such that for all n,
Ky (A n) < K(n)+ 1. We can copy U(n)[s] with o describing n < s by using
1o, unless we change Ag [ n in which case we use a string 10°r with 7 of length
> e + 1. The overall cost of the extra material is < 1 and hence there is enough
space in M to build the extra strings. O

The construction above is now in a class of “cost function” constructions which
are summarized by “do what is cheap enough.” In [52] it is shown that K-trivials
are in fact characterized by cost functions. The class of K-trivials has several
remarkable properties. It is a naturally definable countable class, contained in the
class of low sets (as defined in Section where we identify a set with its charac-
teristic function, thought of as a sequence), but with stronger closure properties.
(In technical terms, it is what is known as a Turing ideal.) Post’s problem asked
whether there are computably enumerable sets that are neither computable nor
Turing equivalent to the halting problem. Its solution in the 1950’s by Friedberg
and Muchnik introduced the somewhat complex priority method, which has played
a central technical role in computability theory since then. Downey, Hirschfeldt,
Nies, and Stephan [52] showed that K-triviality can be used to give a simple
priority-free solution to Post’s problem.

Most significantly, there are many natural notions of randomness-theoretic
weakness that turn out to be equivalent to K-triviality.

Theorem 4.27 (Nies [108], Nies and Hirschfeldt for (1) — (3)). The following
are equivalent.

1. A is K-trivial.

2. A is computable relative to some c.e. K-trivial set.
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3. A is low for K, meaning that A has no compression power as an oracle.
i.e., that K4(0) > K(o) — O(1), where K4 is the relativization of prefiz-
free Kolmogorov complexity to A.

4. A is low for ML-randomness, meaning that A does not have any derandom-
ization power as an oracle, i.e., any ML-random set remains ML-random
when this notion is relativized to A.

There are now over a dozen other characterizations of K-triviality. Some
appear in [47, [109], and several others have emerged more recently (e.g. [64]).
These have been used to solve several problems in algorithmic randomness and
related areas.

Theorem m (2) above says that K-trivials are computable from c.e. K-
trivials. In some sense this means that that they are intrinsically c.e. and cannot,
it seems, by e.g. a forcing construction. Focussing on cost functions has allowed
for a number of recent advances in the area. Nies [I10] (which was available
for some years before it was submitted) was the first to realize that this was a
powerful abstraction in the area. Some recent examples of applications include
[70, 65, 64]. This material seems tied up with derandomization power via another
reducibility A <;r B meaning that M LA O MLB: everything A derandomized,
B does too.

Lowness classes have also been found for other randomness notions. For
Schnorr randomness, for instance, lowness can be characterized using notions
of traceability related to concepts in set theory, as first explored by Terwijn and
Zambella [127].

For example, we have the following.

Theorem 4.28 (Terwijn and Zambella [127]). X is low for Schnorr tests iff X
is computably traceable. This means that there is a computable order h such that
for all f <7 X, we can compute an array of canonical finite sets {Dg(n) | n € N}
called a trace such that for alln, f(n) € Dgy,.

Finally, using some earlier work of Bendregal and Nies, we have the following
for the randomness concept:

Theorem 4.29 (Kjos-Hanssen, Nies and Stephan [83]). X is low for Schnorr
randomness iff X is low for Schnorr tests iff X is computably traceable.

It is easy to see that if X is computably traceable it must be hyperimmune-
free. And it is not hard to prove that there are continuum many computably
traceable sets. The K-trivials are a countable collection of low sets below (.
Thus the classes are very different. In particular, it is not possible to define
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Schnorr randomness using K, nor ML-randomness using Schnorr tests, with any
relativizable definition.

Similar characterizations were found for lowness for Kurtz randomness. Build-
ing on work of several authors, the final characterization for Kurtz randomness
was the following.

Theorem 4.30 (Greenberg and Miller [66]). A is low for Kurtz randomness iff
A is hyperimmune-free and not DNC.

Nies [108] showed that if X is low for computable randomness then X is
computable.

Some of this work is related to coarse and generic computability mentioned
below.

We remark that the use of traceing has become quite influential in computabil-
ity theory. Can we find find a combinatorial definition of K-triviality, (i.e. not
involving K') Nies and others suggested that it was related to jump-traceability.
Let JX denote the universal partial computable function. That is JX (e) denotes
the actual valud™| (if any) of ®.(e).

Definition 4.31 (Figueira, Stephan and Nies [55]). If h is an order, we say that
A is jump traceable at order h, if, for any A-partial computable function p, there
is computable collection of {T, | e € N} of c.e. sets such that p*(e) € T. and
|T.| < h(e) for all e.

We say that A is strongly jump traceable iff it is jump traceable for all orders
h, iff J4 is jump traceable for all orders h.

For example, a c.e. set A is superlow (meaning A’ =4 (') iff A is jump trace-
able. In [55] it is shown that at order h(n) = 22" there are 280 many h-jt sets.

Theorem 4.32 (Cholak, Downey and Greenberg [37]). There is an order h where
A being h-jt implies A is K-trivial.

The order from [37] is around loglogn, but this is certainly not optimal.

Question 4.33. Is there an order-characterization of being K-trivial. The guess
would be that it would not involve a single order but a collection of a certain type,
something like if {h. | he € S} has property X (like some sum coverges) then A
is K-trivial iff A is he-jump traceable for all h. € S.

Now it might seem that strong jump traceability is an artifact of stidies into
randomness and now directly related but several results show that this is not the
case. For example:

'5That is not just if it halts or not.
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Theorem 4.34 (Greenberg, Hirschfeldt, Nies [63]). A is sjt iff A is computable
from every superlow ML-random.

There are similar results about ML-random reals X which are superhigh, which
means that X' = 0" (see [63]), and characterizations involving another notion
of randomness called Demuth randomness, which is defined via generalized ML-
tests. We also remark that super jump traceable sets have been used to solve
open questions in classical computability. For instance,we say that a c.e. set W is
a cea-operator if for all Y, Y <7 WY . A classical theorem of Jockusch and Shore
shows that for all such W there is a c.e. set Y with Y @ WY = (/. This is called
pseudo-jump inversion. Downey and Greenberg solved a longstanding question
above cone avoidance by taking W to be the construction of a noncomputable
strongly jump traceable set (so that WY was “very high” in that (/ would be
stringly jump traceable relative to WY).

Theorem 4.35 (Downey and Greenberg [44]). There is a noncomputable c.e. set
B computable from all c.e. sets C with ' strongly jump traceable relative to C.
That is, W is a c.e. operator which cannot avoid upper cones under inversion.

Recent unpublished work of Downey, Greenberg and Turetsky shows that B
can be chosen to be superhigh. For the latest word here see Greenberg and
Turetsky [71] for a survey of results and techniques.

5 Some applications

5.1 Incompressibility and information content

This article focuses on algorithmic randomness for infinite objects, but we should
mention that there have been many applications of Kolmogorov complexity under
the collective title of the incompressibility method, based on the observation that
algorithmically random strings should exhibit typical behavior for computable
processes. For example, this method can be used to give average running times
for sorting, by showing that if the outcome is not what we would expect then we
can compress a random input. See Li and Vitanyi [90, Chapter 6] for applications
of this technique to areas as diverse as combinatorics, formal languages, compact
routing, and circuit complexity, among others. Many results originally proved
using Shannon entropy or related methods also have proofs using Kolmogorov
complexity. For example, Messner and Thierauf [99] gave a constructive proof of
the Lovéasz Local Lemma using Kolmogorov complexity.

Other applications come from the observation that in some sense Kolmogorov
complexity provides an “absolute” measure of the intrinsic complexity of a string.
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We can define a notion of conditional Kolmogorov complexity C'(o | 7) of a string
o given another string 7. Then, for example, C(o | o) = O(1), and o is “inde-
pendent of 77 if C(o | 7) = C(0) — O(1). Researchers comparing two sequences
o, T representing, say, two DNA sequences, or two phylogenetic trees, or two lan-
guages, or two pieces of music, have invented many distance metrics, such as the
maximum parsimony distance on phylogenetic trees, but it is also natural to use
a content-neutral measure of “information distance” like max{C(c | 7),C(7 | 0)}.
There have been some attempts to make this work in practice for solving clas-
sification problems, though results have so far been mixed. Of course, C' is not
computable, but it can be replaced in applications by measures derived from
practical compression algorithms. See [90, Sections 8.3 and 8.4].

5.2 Effective dimensions

If X = zpz; ... israndom, then we might expect a sequence such as £¢00x100x2200. ..
to be “%—random”. Making precise sense of the idea of partial algorithmic ran-
domness has led to significant applications. Hausdorff used work of Carathéodory
on s-dimensional measures to generalize the notion of dimension to possibly non-
integral values, leading to concepts such as Hausdorff dimension and packing
dimension. Much like algorithmic randomness can make sense of the idea of indi-
vidual reals being random, notions of partial algorithmic randomness can be used
to assign dimensions to individual reals.

The measure-theoretic approach, in which we for instance replace the uniform
measure A on 2* by a generalized notion assigning the value 275191 to [o] (where
0 < s < 1), was translated by Lutz [91) [92] into a notion of s-gale, where the
fairness condition of a martingale is replaced by f(c) = 27%(f(c0) + f(ol)).
We can view s-gales as modeling betting in a hostile environment (an idea due to
Lutz), where “inflation” is acting so that not winning means that we automatically
lose money. Roughly speaking, the effective fractal dimension of a sequence is then
determined by the most hostile environment in which we can still make money
betting on this sequence.

Mayordomo [97] and Athreya, Hitchcock, Lutz, and Mayordomo [§] found
equivalent formulations in terms of Kolmogorov complexity, which we take as def-
initions. (Here it does not matter whether we use plain or prefix-free Kolmogorov
complexity.)
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Definition 5.1. [1;6] Let X € 2¥. The effective Hausdorff dimension of X is

dim(X) = lim inf M

n—00 n

The effective packing dimension of X is

Dim(X) = lim sup M
n—o00 n

It is not hard to extend these definitions to elements of R", yielding effective
dimensions between 0 and n. They can also be relativized to any oracle A to
obtain the effective Hausdorff and packing dimensions dim?(X) and Dim“(X) of
X relative to A.

It is of course not immediately obvious why these notions are effectivizations
of Hausdorff and packing dimension, but crucial evidence of their correctness is
provided by point to set principles, which allow us to express the dimensions of sets
of reals in terms of the effective dimensions of their elements. The most recent
and powerful of these is the following, where we denote the classical Hausdorff
dimension of £ C R™ by dimy(FE), and its classical packing dimension by dim,(E).

Theorem 5.2 (Lutz and Lutz [93]).

dimy(E) = gg% ;lé% dim?(X).

dim,(F) = glgi% )S(lé% Dim”(X).

For certain well-behaved sets E, relativization is actually not needed, and
the classical dimension of E is the supremum of the effective dimensions of its
points. In the general case, it is of course not immediately clear that the minima
mentioned in Theorem should exist, but they do. Thus, for example, to prove
a lower bound of « for dimy (E) it suffices to prove that, for each £ > 0 and each A,
the set F contains a point X with dim?(X) > o —e. In several applications, this
argument turns out to be easier than ones directly involving classical dimension.
This fact is somewhat surprising given the need to relativize to arbitrary oracles,
but in practice this issue has so far turned out not to be an obstacle.

For example, Lutz and Stull [95] obtained a new lower bound on the Haus-
dorff dimension of generalized sets of Furstenberg type; Lutz [94] showed that a
fundamental intersection formula, due in the Borel case to Kahane and Mattila,
is true for arbitrary sets.

16Strictly speaking, this should be viewed as a Theorem, but it has become the standard
definition. See [47], Chapter 13 for the full story.
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E C R” is called a Kakeya Set for every point u on the unit sphere S 1,
there is some point v such that the segment {su+v : s € [0,1]} C F; that is E
has unit lines in every direction. This is an important classical concept which has
applications from harmonic analysis to extractors in complexity theory. Using the
point to set principle, Lutz and Lutz [93] gave a new proof of the two-dimensional
case (originally proved by Davies) of the well-known Kakeya conjecture, which
states that, for all n > 2, if a subset of R™ has lines of length 1 in all directions,
then it has Hausdorff dimension n. The method used by Lutz and Lutz filtered
through the following result.

Theorem 5.3 (Lutz and Lutz [93]). Let a,b,z € R. If a is ML-random and x is
M L-random relative to the point (a,b), then the effective Hausdorff dimension of
the point (x,ax +b) is 2.

The proof of Theorems|[5.2]and [5.3]are familiar types of Kolmogorov complexity
calculations, and are far from the classical techniques. Using Theorems [5.2] and
Lutz and Lutz gave the following proof of Davies theorem.

Proof. Let E C R? be a Kakeya set, and let w be the minimizing oracle of Theorem
Let a be random M L-relative to w, and let b be such that the intersection of £
with the line y = ax + b contains a segment. Choose = random relative to (a, b, w)
such that (z,ax + b) € E. Then dim(F) = sup,cp dim®“(z) > dim"*(z, az + b),
which is 2 by Theorem applied relative to the oracle w. ]

There had been earlier applications of effective dimension, for instance in sym-
bolic dynamics, whose iterative processes are naturally algorithmic. For example,
Simpson [123] generalized a result of Furstenberg as follows. Let A be finite and
G be either N or Z%. A closed set X C AC is a subshift if it is closed under the
shift action of G on AY (see Section [4.1)).

Theorem 5.4 (Simpson [123]). Let A be finite and G be either N¢ or Z4. If
X C A% is a subshift then the topological entropy of X is equal both to its classical
Hausdorff dimension and to the supremum of the effective Hausdorff dimensions
of its elements.

In currently unpublished work, Day has used effective methods to give a new
proof of the Kolmogorov-Sinai theorem on entropies of Bernoulli shifts.

There are other applications of sequences of high effective dimension, for in-
stance ones involving the interesting class of shift complex sequences. While initial
segments of ML-random sequences have high Kolmogorov complexity, not all seg-
ments of such sequences do. Random sequences must contain arbitrarily long
strings of consecutive 0’s, for example. For example, if we knew that there was
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no sequence of 0’s of length more than 12, but infinitely many of length 12, we
could easily construct a martingales to succeed: wait for 12 0’s and bet that the
next bit was a 1!

However, for any € > 0 there are e-shift complexr sequences Y such that for
any string o of consecutive bits of Y, we have K (o) > (1 — ¢)|o| — O(1). These
sequences can be used to create tilings with properties such as certain kinds of
pattern-avoidance, and have found uses in symbolic dynamics. See for instance
Durand, Levin, and Shen [53] and Durand, Romashchenko, and Shen [54].

5.3 Randomness amplification

Many practical algorithms use random seeds. For example, the important Poly-
nomial Identity Testing (PIT) problem takes as input a polynomial P(z1,...,x,)
with coefficients from a large finite field and determines whether it is identically
0. Many practical problems can be solved using a reduction to this problem.
There is a natural fast algorithm to solve it randomly: Take a random sequence
of values for the variables. If the polynomial is not 0 on these values, “no” is the
correct answer. Otherwise, the probability that the answer is “yes” is very high.
It is conjectured that PIT has a polynomial-time deterministic algorithmm but
no such algorithm is known.

Thus it is important to have good sources of randomness. Some (including
Turing) have believed that randomness can be obtained from physical sources,
and there are now commercial devices claiming to do so. At a more theoretical
level, we might ask question such as:

1. Can a weak source of randomness always be amplified into a better one?
2. Can we in fact always recover full randomness from partial randomness?
3. Are random sources truly useful as computational resources?

In our context, we can consider precise versions of such questions by taking ran-
domness to mean algorithmic randomness, and taking all reduction processes to
be computable ones. One way to interpret the first two questions then is to think
of partial randomness as having nonzero effective dimension. For example, for
packing dimension, we have the following negative results.

" This conjecture comes from the fact that PIT belongs to a complexity class known as BPP,
which is widely believed to equal the complexity class P of polynomial-time solvable problems,
since, in highly celebrated work, Impagliazzo and Wigderson [78] showed in the late 1990’s that
if the well-known Satisfiability problem is as hard as generally believed, then indeed BPP = P.
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Theorem 5.5 (Downey and Greenberg [43]). There is an X such that Dim(X) =
1 and X computes no ML-random sequence. (This X can be built to be of minimal
degree, which means that every X -computable set is either computable or has the
same Turing degree as X. It is known that such an X cannot compute an ML-
random sequence. )

Theorem 5.6 (Conidis [39])). There is an X such that Dim(X) > 0 and X
computes no Y with Dim(Y) = 1.

On the other hand, we also have the following strong positive result.

Theorem 5.7 (Fortnow, Hitchcock, Pavan, Vinochandran, and Wang [56]). If
e > 0 and Dim(X) > 0 then there is an X -computable Y such that Dim(Y') > 1—e¢.
(In fact, Y can be taken to be equivalent to X wvia polynomial-time reductions.)

For effective Hausdorff dimension, the situation is quite different. Typically,
the way we obtain an X with dim(X) = 3, say, is to start with an ML-random
sequence and somehow “mess it up”, for example by making every other bit a
0. This kind of process is reversible, in the sense that it easy to obtain an X-
computable ML-random. However, Miller [102] showed that it is possible to obtain
sequences of fractional effective Hausdorff dimension that permit no randomness

amplification at all.

Theorem 5.8 (Miller [102]). There is an X such that dim(X) = 3 and if Y <; X
then dim(Y) < 3.

The proof of Theorem is a novel forcing argument resulting in a AY set.
The classification of such fractional dimension degrees is completely open.

Theorem shows that effective Hausdorff dimension cannot in general be
amplified. (In this theorem, the specific value % is only an example.) Greenberg
and Miller [67] also showed that there is an X such that dim(X) = 1 and X does
not compute any ML-random sequences.

There is one very intriguing open question here: We know that if A is random
and Ag @ A; = A then A; is relatively random to Aj_;. This fact is a basic result
called van Lambalgen’s Theorem. It implies that no random set can have minimal
Turing degree.

Question 5.9. Can a set of Effective Hausdorff dimension have minimal Turing
degree?

A positive answer would give a proof of a strengthening of the Greenberg-
Miller Theorem.
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Interestingly, Zimand [136] showed that for two sequences X and Y of nonzero
effective Hausdorff dimension that are in a certain technical sense sufficiently
independent, X and Y together can compute a sequence of effective Hausdorff
dimension 1.

In some attractive recent work, it has been shown that there is a sense in
which the intuition that every sequence of effective Hausdorff dimension 1 is close
to an ML-random sequence is correct. The following is a simplified version of the
full statement, which quantifies how much randomness can be extracted at the

cost of altering a sequence on a set of density 0. Here A C N has (asymptotic)
[Aln| =0
- .

density 0 if lim, oo

Theorem 5.10 (Greenberg, Miller, Shen, and Westrick [68]). If dim(X) = 1 then
there is an ML-random Y such that {n : X(n) # Y (n)} has density 0.

We remark that asymptotic density has seen a lot of work recently. We say
that an algorithm ® coarsely computes a set X if the density of {n | ®(n) # X(n)}
is zero. We say that U generically computes X if U(n) | implies ¥(n) = X(n)
and {n | U(n) 1} has density 1. These concepts arose in combinatorial group
theory. See e.g. Kapovich, Miasnikov, Schupp and Shpilrain [81].

Here is one example applied to a word problem. (The density here is natural
as measured by the words generated by the generators.)

e Let G = (a,b; R) be any 2-generator group.

e Note Any countable group is embeddable in a 2-generator group so there
are uncountably many such G.

o Let F' = (x,y |) be the free group of rank 2.
e H=Gx*(x,y):=(a,b,z,y; R) be the free product of G and F.

e Then the word problem for H is generically solvable in linear time.

To see this, take a long word w on the alphabet {a, b, z, y}ﬂ, e.g. abz~'bxyaxbby. ||
Now erase the a, b symbols, freely reduce the remaining word on {z,y}*!, and if
any letters remain, output “no”. This partial algorithm gives no incorrect answers
because if the image of w under the projection homomorphism to the free group

Fisnot 1, then w# 1 in H.
abz " tbzyaxbby — x layry — yry # 1

The successive letters on {z,y}*! in a long random word w € H is a long random
word in F' which is not equal to the identity. So the algorithm answers “No” on
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a generic set and gives no answer if the image in F' is equal to the identity. This
method is called the quotient method and can be used for any G = (X, R) subgroup
of K of finite index for which there is an epimorphism K — H hyperbolic and
not virtually cyclic, to show generically solvable word problem.

There has been a lot of work understanding coarse and generic computability,
especially in group theory, but also some in computability theory such as Jockusch
and Schupp [79]. One very nice theorem from that paper.

Theorem 5.11 (Jockusch and Schupp [79]). There exists a c.e. set A of density
1 which has no computable subset of density 1.

As well, papers such as [73] and [5] have shown that coarse computability and
algorithmic randomness are very closely related. Here is one typical theorem.

Theorem 5.12 (Hirschfeldt, Kuyper, Jockusch and Schupp [73]). If A is ML-
random and Bi is computable from every coarse description D of A, then B is
K-trivial. Thus, if A is in Q-mndonﬂ then B is computable.

Work is ongoing. It would also be interesting to develop this kind of analysis in
the setting of computable analysis. Here generic case and coarse complexity would
likely be replaced by measure. In some sense this is discussed in the material on
Ergodic Theory below.

The third question above is whether sources of randomness can be useful ora-
cles. Here we are thinking in terms of complexity rather than just computability,
so results such as Theorem [£.7] are not directly relevant. Allender and others have
initiated a program to investigate the speedups that are possible when random
sources are queried efficiently. Let R be the set of all random finite binary strings
for either plain or prefix-free Kolmogorov complexity (e.g., R = {z : C(z) > |z|}).
For a complexity class C, let C¥ denote the relativization of this class to R. So,
for instance, for the class P of polynomial-time computable functions, P¥ is the
class of functions that can be computed in polynomial time with R as an oracle.
(For references to the articles in this and the following theorem, see [1].)

Theorem 5.13 (Buhrman, Fortnow, Koucky, and Loff [30]; Allender, Buhrman,
Koucky, van Melkebeek, and Ronneburger [3]; Allender, Buhrman, and Koucky

2]).
1. PSPACE C PE,

2. NEXP C NP%,

8They actually proved this for A being only weakly 2-random, meaning that A passes all ML-
tests for which the modulus of convergence is not necessarily computable, only that A(U,) — 0.
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3. BPP C Pﬁ (where the latter is the class of functions that are reducible to
R in polynomial time via truth-table reductions, a more restrictive notion of
reduction than Turing reduction).

The choice of universal machine does have some effect on efficient computa-
tions, but we can quantify over all universal machines. In the result below, U
ranges over universal prefix-free machines, and R, is the set of random strings
relative to Kolmogorov complexity defined using U.

Theorem 5.14 (Allender, Friedman, and Gasarch [4]; Cai, Downey, Epstein,
Lempp, and Miller [31]).

1. Ny Pi%v C PSPACE.
2. Ny NPy C EXPSPACE.

We can also say that sufficiently random oracles will always accelerate some
computations in the following sense. Say that X is low for speed if for any com-
putable set A and any function ¢ such that A can be computed in time ¢(n) using
X as an oracle, there is a polynomial p such that A can be computed (with no
oracle) in time bounded by p(¢(n)). That is, X does not significantly accelerate
any computation of a computable set. Bayer and Slaman (see [20]) constructed
noncomputable sets that are low for speed, but these cannot be very random.

Theorem 5.15 (Bienvenu and Downey [20]). If X is Schnorr random, then it
s not low for speed, and this fact is witnessed by an exponential-time computable
set A.

The proof of this theorem uses a kind of speed-up technique. Interestingly,
whether generic sets speed up computations depends on P # N P?. (See [20], this
result is due to Bayer in his PhD Thesis.)

5.4 Analysis and Ergodic Theory

The setting for this is the area of computable analysis. For simplicity, our spaces
will have dense computable bases, like the rationals in R. Classically we know that
reals are Cauchy sequences, and in computable analysis, we regard a function f as
being computable iff then f is (Type 2) computabld"|if there is a uniform algorithm
® taking fast converging Cauchy sequences for input = (i.e. gx € B(gn,27") for
all k > n) to fast converging Cauchy sequences for output f(x). Notice that

97ype 1 functions take N to itself, and type 2 take type 1 objects to themselves, so act on
infinite sequences.
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since the objects now are infinite, we won’t have a finitely computable equality
operator, rather we will have a computable distance function d in the sense that
if x and y are reals, then uniformly in Cauchy sequences for each we can generate
one for d(x,y). Thus, computable analysis is an area that has developed tools
for thinking about computability of objects like real-valued functions by taking
advantage of separability. We can also relativize it, and it is then not difficult
to see that a function is continuous iff it is computable relative to some oracle,
basically because to define a continuous function we need only to specify its action
on a countable collection of balls. Many results in this are show that our intuition
about “good” vs “bad” is realized. For example we have the following (precise
definitions are not important here.)

Theorem 5.16 (Pour-E and Richards see [I17]). In this setting an operator is
computable iff it is bounded.

A consequence of this is that there is a computable ODE with computable
initial conditions and having no computable solution.

Mathematics is replete with results concerning almost everywhere behavior,
and algorithmic randomness allows us to to turn such results into “quantitative”
ones like the following.

Theorem 5.17 (Brattka, Miller, and Nies [27], also Demuth (1975, see [27]) for
(2))-

1. The reals at which every computable increasing function R — R is differen-
tiable are exactly the computably random ones.

2. The reals at which every computable function R — R of bounded variation
is differentiable are exactly the ML-random ones.

Ergodic theory is another area that has been studied from this point of view.
A measure-preserving transformation 7" on a probability space is ergodic if all
measurable subsets £ such that T7!(E) = E have measure 1 or 0. Notice that
this is an “almost everywhere” definition. We can make this setting computable
(and many systems arising from physics will be computable). One way to proceed
is to work in Cantor space without loss of generality, since Hoyrup and Rojas [77]
showed that any computable metric space with a computable probability mea-
sure is isomorphic to this space in an effective measure-theoretic sense. Then we
can specify a computable transformation 7" as a computable limit of computable
partial maps T}, : 2<% — 2<% with certain coherence conditions. We can also
transfer definitions like that of ML-randomness to computable probability spaces
other than Cantor space.
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The following is an illustrative result. A classic theorem of Poincaré is that
if T' is measure-preserving, then for all F of positive measure and almost all x,
we have T"(x) € E for infinitely many n. For a class C of measurable subsets,
x is a Poincaré point for T with respect to C if for every E € C of positive
measure, T"(x) € E for infinitely many n. An effectively closed set is one whose
complement can be specified as a computably enumerable union of basic open
sets.

Theorem 5.18 (Bienvenu, Day, Mezhirov, and Shen [19]). Let T' be a computable
ergodic transformation on a computable probability space. Every ML-random ele-
ment of this space is a Poincaré point for the class of effectively closed sets.

The reader might note that the hypothesis above did not say T is measure-
preserving.” This case has been analysed, and Frankin and Towsner [59] proved
that the Poincaré recurrence aligns itself to yet another randomness notion called
“weak 2-randomness” which is defined exactly as we did for ML-randomness, ex-
cept that we only asks that A\(7T},) — 0, without knowing the modulus of conver-
gence. Franklin and Towsner (and others) have analysed the Birkhoff recurrence
theorem, and again various interpretations align to randomness notions. In terms
of the physical interpretation of these results, Bravermann, Rojas and Schneider
[28] have argued that, whilst noise makes short term behaviour difficult, in fact
it allows prediction easier in the long term. While many of theorems of Ergodic
theory have been analysed, including the Birkhoff, Poincaré, and von Neumann
ergodic theorems, but some, like Furstenberg’s ergodic theorem, are yet to be
understood.

In analysis, there are other theorems which concern almost everywhere be-
haviour. One of the problems is how to address this effectively, since a function
being computable relative to an oracle imples that it must be continuous. This
means even step functions with a single computable step at, for instance, 0 is
not computable relative to any oracle. There seem several ways around this one
especially in the case of almost everywhere behaviour. One way was suggested by
Hoyrup and Rojas [77] which defines a notion of layerwise computability, namely if
{Un | n € N} is a ML-test then demanding that f is represented by a sequence of
functions f,, such that f,, acts on (names of) reals X outside of U, and correctly
gives an answer, such that if X passes the test, then f(X) = f,(X) for all n. This
is also related to an earlier suggestion of Ko and Friedman [84] who suggested that
it might be reasonable to look at f defined on a Kurtz test. The latter suggestion
might certainly be easier in the setting of computational complexity. Again this
is largely undeveloped.
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5.5 The full circle: Turing, Borel and normality again

We return to Borel’s notion of normality. This is a very weak form of randomness;
polynomial-time randomness is more than enough to ensure absolute normality.
Schnorr and Stimm [121] showed that a sequence is normal if and only if it sat-
isfies a notion of randomness defined using with martingales defined by certain
finite state automata@ Building examples of absolutely normal numbers is an-
other matter, as Borel already noted. While it is conjectured that e, w, and all
irrational algebraic numbers such as v/2 are absolutely normal, none of these have
been proved to be normal to any base. In his unpublished manuscript “A note
on normal numbers”, believed to have been written in 1938, Turing built a com-
putable absolutely normal real, which is in a sense the closest we have come so far
to obtaining an explicitly-described absolutely normal real. (His construction was
not published until his Collected Works in 1992, and there was uncertainty as to
its correctness until Becher, Figueira, and Picchi [I5] reconstructed and completed
it, correcting minor errorsE])

An interesting aspect of Turing’s construction is that he more or less antici-
pated Martin-Lof’s work by looking at a collection of computable ML-style tests
sensitive enough to make a number normal in all bases, yet insensitive enough to
allow computable sequences to pass all such tests. We have seen that the strong
law of large implies fixed blocks of digits should occur with the appropriate fre-
quencies in a random sequence. Translating between bases results in correlations
between blocks of digits in one base and blocks of digits in the other, which is
why this extension allowed Turing to construct absolutely normal numbers. Tur-
ing made enough of classical measure theory computable to generate absolute
normality, yet had the tests refined enough that computable sequence could still
be “random”.

This approach can also be thought of in terms of effective martingales, and
its point of view has brought about a great deal of progress in our understanding
of normality recently. For instance, Becher, Heiber, and Slaman [16] showed that
absolutely normal numbers can be constructed in low-level polynomial time, and
Lutz and Mayordomo (arXiv:1611.05911) constructed them in “nearly linear”
time. Much of the work along these lines has been number-theoretic, connected

20 An finite state automaton is a constrained Turing machine which will read an input tape
and according to the symbol it is reading, and its internal state, transitions to a (perhaps) new
state and moves on to the next symbol to the right of the input tape. The automaton accepts
the input if when it gets to the last symbol it is in one of the designated accept states. It is
possible to have a notion of randomness using “automatic” martingales using this idea and some
definitions a wee bit too technical to include in this article.

21Gee https://www-2.dc.uba.ar/staff/becher/publications.html for references to the pa-
pers cited here and below.
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to various notions of well-approximability of irrational reals, such as that of a
Liouville number, which is an irrational « such that for every natural number
n > 1, there are p, g € N for which |a—§| < q~". For example, Becher, Heiber, and
Slaman [16] have constructed computable absolutely normal Liouville numbers.
This work has also produced results in the classical theory of normal numbers, for
instance by Becher, Bugeaud, and Slaman [I14].

6 Summary

We have given a reasonably self-contained, if perhaps idiosyncratic, account of
many of the basics of algorithmic randomness as well as a number of recent appli-
cations. Clearly the area is in a state of rapid development and we have necessarily
left a lot out, but we suggest that the reader follows up the references for more
details. T have definitely left a huge amount out, such as randomness lower down,
in complexity classes, and also higher up, with II}-randomness, a concept going
back to Martin-Lo6f but having a lot of interest recently, in papers such as Green-
berg and Monin [69] and Hjorth-Nies [74]. Nor do I discuss the developing area
of ML-randomness and quantum physics such as [I11]; nor Brownian motion such
as [07, [116]. These areas are all in rapid growth. The present article should at
least give pointers to the aspirations and scope of such studies.
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