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Abstract. The K-trivial sets form an ideal in the Turing degrees, which is

generated by its computably enumerable (c.e.) members and has an exact pair
below the degree of the halting problem. The question of whether it has an

exact pair in the c.e. degrees was first raised in [MN06, Question 4.2] and later

in [Nie09, Problem 5.5.8].
We give a negative answer to this question. In fact, we show the following

stronger statement in the c.e. degrees. There exists a K-trivial degree d such

that for all degrees a,b which are not K-trivial and a > d,b > d there exists
a degree v which is not K-trivial and a > v,b > v. This work sheds light to

the question of the definability of the K-trivial degrees in the c.e. degrees.

1. Introduction

The algebraic study of the Turing degrees has been a topic of considerable re-
search in computability theory, ever since the establishment of degree theory as a
research area in [KP54]. In this study, the ideals of this uppersemilattice are of par-
ticular interest. These are downward closed sets of degrees that also closed under
the join operator. The recent study of algorithmic information theory by people in
computability theory has brought forward a wealth of interactions between the two
areas, including the discovery of a new ideal in the Turing degrees: the degrees of
sequences with trivial initial segment complexity, the so-called K-trivial sequences.
Since this discovery in [DHNS03, Nie05], the study of the K-trivial sequences and
degrees has been established as a major area of research in the interface between
computability theory and algorithmic information theory.

Issues of definability have been of special interest in the study of ideals in the
Turing degrees. Such issues were already present in [KP54], where the notion of
exact pairs of ideals was introduced. Two degrees a,b form an exact pair of an
ideal C in the Turing degrees if they are both upper bounds for the degrees in C
and any degree below both a and b is in C. By [KP54, Spe56] every ideal in the
Turing degrees has an exact pair. By [Nie05] every K-trivial degree is bounded by

First version: May 18, 2012. This version: October 26, 2013.

2010 Mathematics Subject Classification. 03D25, 03D32, 68Q30.
Key words and phrases. Computably enumerable, Turing degrees, Kolmogorov complexity,

K-trivial sets, exact pairs.
This research was partially done whilst the authors were visiting fellows at the Isaac Newton

Institute for the Mathematical Sciences, Cambridge U.K., in the programme ‘Semantics & Syn-
tax’. Barmpalias was supported by the Research fund for international young scientists number
613501-10236 from the National Natural Science Foundation of China, and an International Young

Scientist Fellowship number 2010-Y2GB03 from the Chinese Academy of Sciences. Downey was
supported by a Marsden grant of New Zealand. The authors wish to thank André Nies, Ted
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a computably enumerable (c.e. for short) K-trivial degree. Hence for the purpose
of finding exact pairs for this ideal it suffices to consider its restriction to the c.e.
degrees. This turns out to be a Σ0

3 ideal, in the sense that the index set of its
members is Σ0

3. Moreover by [BN11] it has a c.e. upper bound that is strictly
below the degree 0′ of the halting problem (moreover, by [KS09] it has a low upper
bound b, which means that the halting problem relativized to b has degree 0′). By
[Sho81], such ideals have an exact pair strictly below 0′. However it is well known
that such an ideal may or may not have an exact pair in the c.e. degrees (this follows
from the existence of branching and non-branching degrees that was established in
[Lac66, Yat66]). Hence whether or not such an ideal has an exact pair in the c.e.
degrees depends on the specific properties of it. The following question has come
into focus.

Problem (Question 4.2 in [MN06] and Problem 5.5.8 in [Nie09]). Is there an exact
pair for the ideal of the K-trivial sequences in the c.e. degrees?

The purpose of this paper is to give a negative answer to this question. In fact, our
main result can be seen as a very strong negative answer to this question.

Theorem 1.1. There exists a K-trivial c.e. degree d with the following property.
For each pair of c.e. degrees a,b which are not K-trivial, there exists a c.e. degree
v which is not K-trivial and v < a ∪ d,v < b ∪ d.

Here a ∪ d denotes the join (i.e. supremum) of the degrees a,d.
This theorem provides new and interesting information about the K-trivial se-

quences and their computational power. Moreover, as we elaborate in Section 2, it
rests upon deeper information-theoretic properties that are specific to the K-trivial
sequences, rather than some general property that this ideal happened to have. In
contrast, the existence of a low bound of this ideal (another question from [MN06])
was obtained in [KS09] by observing that it satisfied a certain domination property,
and proving that all ideals which share this property have a low bound.

We may obtain a negative answer to our problem by using some known properties
of the K-trivial sequences.

Corollary 1.2. The ideal of the K-trivial sequences does not have an exact pair of
c.e. degrees.

Proof. By [Nie02] there is no low c.e. upper bound for the K-trivial degrees. By
[Nie05] every K-trivial degree is low. Therefore, if two c.e. degrees are an exact
pair for the K-trivial degrees, then both of them are not K-trivial. The corollary
now follows directly from Theorem 1.1. �

Note that the proof of Corollary 1.2 rests on the following weak (and nonuniform)
version of Theorem 1.1: ‘given a pair a,b of c.e. degrees which are not K-trivial,
there exists a K-trivial c.e. degree d and c.e. degree v which is not K-trivial such
that (d ≤ a ∧ d ≤ b)→ (v ≤ a ∧ v ≤ b)’.

The following fact is a direct consequence of the splitting theorem from [Bar11,
Section 5] and [Ste11, Chapter 2]. It shows that by replacing v < a ∪ d,v < b ∪ d
with v ≤ a ∪ d,v ≤ b ∪ d in Theorem 1.1 we obtain an equivalent statement.

Proposition 1.3. If c is a c.e. degree which is not K-trivial then there exist c.e.
degrees a < c and b < c which are not K-trivial and c = a ∪ b.
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Since there exists a ∆0
2 exact pair for the K-trivial degrees, the phenomenon

described in Theorem 1.1 is specific to c.e. sets. The following observation contrasts
Proposition 1.3 and confirms this intuition from a different angle.

Proposition 1.4. There exists a degree x < 0′ which is not K-trivial and for every
K-trivial degree d, the only c.e. degrees that are computable from x ∪ d are also
computable from d.

Proof. A degree that is 1-generic relative to every K-trivial degree has the desired
properties, but is not necessarily below 0′. Moreover no 1-generic set has degree 0′.
Hence it suffices to show that there exists a degree that is 1-generic relative to every
K-trivial degree and computable from the halting problem. This follows from the
fact (see [KS09]) that there exists a function that is computable from the halting
problem and dominates all partial computable functions relative to any K-trivial
set. �

The proof of Theorem 1.1 rests on a few facts about K-trivial sequences and
initial segment Kolmogorov complexity. We present these, along with their use in
the proof, in Section 2. Some background on Kolmogorov complexity and K-trivial
sequences that is directly relevant to our result is given in Section 2.1. For back-
ground material on computability theory we refer to [Odi89]. The main property
of Kolmogorov complexity that is used in the proof of Theorem 1.1 is discussed in
Section 2.3. It is a result from [Bar13] which roughly says that any two c.e. sets of
nontrivial initial segment complexity must have common lengths in their character-
istic sequences where their complexity rises simultaneously. Our proof is essentially
a derivation of Theorem 1.1 from this result. This route reduces the complexity of
the main construction and results in a transparent presentation.

Two more tools from Kolmogorov complexity are used in order to reduce the
calculations further and avoid the dynamic construction of machines in the main
construction. The first is the use of Solovay functions to express K-triviality, which
is based on [BD09, BMN11]. The second one is the standard computable invariance
property that is intrinsic to most notions in Kolmogorov complexity. Both of these
tools are discussed in Section 2.2. Section 2.5 provides the exact form of the result
from [Bar13] that will be used in the main argument, which is given in Section
3. These few preparatory steps (including the formulation of a sufficient set of
requirements in Section 3.1) reduce the main argument to the simple construction
and verification of Sections 3.3 and 3.4.

2. Preliminary facts

In this section we provide a number of notions and results that are needed for
the proof of Theorem 1.1. Some of these facts are known, while others are original.

2.1. Background on Kolmogorov complexity and K-trivial sequences. A
standard measure of the complexity of a finite string was introduced by Kolmogorov
in [Kol65] (an equivalent approach was due to Solomonoff [Sol64]). The basic idea
behind this approach is that simple strings have short descriptions relative to their
length while complex or random strings are hard to describe concisely. Kolmogorov
(and Solomonoff) formalized this idea using the theory of computation. In this
context, Turing machines play the role of our idealized computing devices, and
we assume that there are Turing machines capable of simulating any mechanical
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process which proceeds in a precisely defined and algorithmic manner. Programs
can be identified with binary strings.

A string τ is said to be a description of a string σ with respect to a Turing
machine M if this machine halts when given program τ and outputs σ. Then
the Kolmogorov complexity of σ with respect to M (denoted by KM (σ)) is the
length of its shortest description with respect to M . It can be shown that there
exists an optimal machine V , i.e. a machine which gives optimal complexity for all
strings, up to a certain constant number of bits. This means that for each Turing
machine M there exists a constant c such that KV (σ) < KM (σ) + c for all finite
strings σ. Hence the choice of the underlying optimal machine does not change
the complexity distribution significantly and the theory of Kolmogorov complexity
can be developed without loss of generality, based on a fixed underlying optimal
machine U .

When we come to consider the initial segment complexity of infinite strings, it
becomes important to consider machines whose domain satisfies a certain condition;
the machine M is called prefix-free if it has prefix-free domain (which means that
no program for which the machine halts and gives output is an initial segment
of another). Prefix-free complexity was introduced by Levin [Lev73] and Chaitin
[Cha75]. Similarly to the case of ordinary Turing machines, there exists an optimal
prefix-free machine U so that for each prefix-free machine M the complexity of
any string with respect to U is up to a constant number of bits larger than the
complexity of it with respect to M . We let K denote the prefix-free complexity
with respect to a fixed optimal prefix-free machine. Order the binary strings first
by length and then lexicographically. This standard ordering of the strings induces
a computable bijections between N and the binary strings. Under this bijection we
may identify numbers and strings. In this sense we may talk about the complexity
K(n) of a number n as being the complexity of the string that is represented by n.

The original motivation behind Kolmogorov complexity was a mathematical def-
inition of random infinite sequences. Kolmogorov’s idea was that these should be
infinite sequences with very complex initial segments. Based on this intuition, Levin
[Lev73] and Chaitin [Cha75] gave a robust definition of randomness for infinite bi-
nary sequences, which coincided with Martin-Löf randomness (already defined in
[ML66]). They called X random if ∃c∀n,K(X �n) ≥ n − c. In other words, X
is random if its initial segments cannot be ‘compressed’ (i.e. be described more
concisely) by more than a constant number of bits.

In this paper we are concerned with the other end of the spectrum: sequences
with trivial initial segment complexity. These are sequences whose initial segments
are very highly compressible, in the sense that they have very short descriptions.

Definition 2.1 (K-trivial sequences). An infinite binary sequence X is called K-
trivial if ∃c∀n, K(X �n) ≤ K(n) + c.

Here K(n) denotes the complexity of the number n. It follows from the basic prop-
erties of Kolmogorov complexity that K(n) and K(0n) are equal up to an additive
constant. Hence the first n bits of a K-trivial sequence have the same complexity as
the sequence 0n. By identifying subsets of N with their characteristic sequence we
can also talk about K-trivial sets of numbers. Chaitin drew some attention to K-
trivial sets by noticing that they are computable from the halting problem and by
asking whether they are all computable. Solovay [Sol75] produced the first example
of a noncomputable K-trivial set. The work in [DHNS03] signaled a renewed interest
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on this notion and initiated a deeper study of K-triviality which revealed surprising
connections between initial segment complexity and classical computability. For ex-
ample, Hirschfeldt and Nies showed in [Nie05] that K-triviality is downward closed
under Turing computation. Moreover the K-trivial sets form an ideal in the Turing
degrees, which is generated by its c.e. members (in the sense that every K-trivial
set is computable by a c.e. K-trivial set).

2.2. Solovay functions and computable invariance. Building on work from
[Sol75], the following characterisation of K-trivial sets was given in [BD09].

(2.1)

There exists a computable function g : N→ N such that

(?) X is K-trivial ⇐⇒ ∃c∀n (K(X �n) ≤ g(n) + c)

for all sets X and also
∑
n 2−g(n) is a random real.

Here by a random real we mean a real number in (0, 1) whose binary expansion is
a random sequence. Later it was demonstrated in [BMN11] that the functions g
of (2.1) are exactly the computable tight upper bounds of the Kolmogorov function
K(n), in the sense for some constant c we have K(n) ≤ g(n) + c for all n and
g(t) ≤ K(t)+c for infinitely many t. These functions were called Solovay functions.
By [BD09, HKM09] a computable function g is a Solovay function if and only if∑
n 2−g(n) is a random real.
Note that (2.1) replaces a non-computable component in the definition of K-

triviality (namely K(n)) with a computable function. In certain situations this
allows for a simplification of the calculations involved in arguments about the K-
trivial sets. This is the case with the proof of Theorem 1.1.

Before we fix a Solovay function for use in the proof of Theorem 1.1, let us discuss
a few basic facts about Solovay functions. We start with a certain computable
invariance that is common in many notions related to Kolmogorov complexity.

Proposition 2.2 (Computable invariance of Solovay functions). Let f be a Solovay
function and let mi : N→ N be a computable increasing sequence. Then i 7→ f(mi)
is a Solovay function.

Proof. Since (mi) is increasing and computable, ∃c∀i, K(i) ≤ K(mi) + c. Hence
i 7→ f(mi) is a computable upper bound of K(i). Also ∃b∀i, K(mi) ≤ K(i) + b. So
i 7→ f(mi) is a computable tight upper bound of K(i) and the proposition follows
from the characterization of Solovay functions from [BMN11]. �

It is well known (e.g. see [Nie09, Exercise 5.2.9]) that if (mi) is a computable
increasing sequence then ∃b∀i, K(X �i) ≤ K(X �mi) + b The following fact is a
direct consequence of the above observation and Proposition 2.2.

Proposition 2.3 (K-triviality in terms of Solovay functions). Let f be a Solovay
function and let mi : N → N be a computable increasing sequence. A set X is
K-trivial if and only if ∃c∀i, K(X �mi) ≤ f(mi) + c.

The following observation is a direct consequence of the fact that
∑
t 2−f(t) is

noncomputable when f is a Solovay function.

Proposition 2.4 (Accumulation of weight in Solovay functions). If (mi) is a com-
putable increasing sequence and f is a Solovay function then for every k there exist
infinitely many n such that

∑
t>mn

2−f(t) > 1
n−k−1 .
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In the following sections, we fix a computable function g as in (2.1) and use (?) as a
characterisation of K-triviality. A c.e. real is a real that is the limit of a computable
non-decreasing sequence of rationals. Define

(2.2) Ω =
∑
i

2−g(i) and Ωn =
∑
i<n

2−g(i).

The letter Ω is often used to denote the halting probability of a universal prefix-free
machine. Since these numbers coincide with the random c.e. reals (e.g. see [DH10,
Section 9.2] or the original references [KS01, CHKW01]) we may use it in order to
denote

∑
n 2−g(n). Without loss of generality we may assume that Ω < 1/4. A set

X is called low for Ω if Ω is random relative to X. Here are some facts about this
class of sets that we are going to use in this article (for more information on this
topic we refer to [Nie09, Section 8.1]). The low for Ω sets form a proper superclass
of the K-trivial sets. Inside the ∆0

2 sets, the low for Ω sets coincide with the K-
trivial sets. Let us fix the computable bijection (m,n) 7→ 〈m,n〉 that we used, since
we will need to refer to it in later section

In this and the previous background section we focused on aspects of K-triviality
that are directly relevant to the proof of Theorem 1.1. For a more thorough pre-
sentation of the research area algorithmic randomness and complexity-theoretic
weakness we refer to the monographs [Nie09, DH10], while [LV97] is a standard
reference for the more general theory of Kolmogorov complexity.

2.3. Common complexity in pairs of c.e. sets of nontrivial complexity.
Much of the excitement about the K-trivial sequences comes from the fact that
they provide an ideal platform for the study of the interaction between the infor-
mation that can be coded into an infinite binary sequence and the complexity of its
initial segments. The latter has been a primary focus of research in the interface
between computability theory and Kolmogorov complexity. The fact that there are
noncomputable K-trivial sequences showed that one can code nontrivial informa-
tion into a sequence without increasing the complexity of its initial segments. A
limitation to this phenomenon was revealed in [DHNS03] where it was shown that
K-trivial sequences cannot compute the halting problem (in other words, they are
not Turing complete). In contrast, there are Turing complete sequences of arbitrar-
ily low nontrivial prefix-free initial segment complexity. More precisely, in [Bar13] it
was shown that for every c.e. set A which is not K-trivial, there exists a Turing com-
plete c.e. set V of lower complexity, i.e. such that ∃c∀n, K(V �n) ≤ K(A �n) + c.
This was also generalized for the case of any finite collection Ai, i < k of c.e.
sets which are not K-trivial, producing a Turing complete c.e. set V such that
∃c∀n∀i < k, K(V �n) ≤ K(Ai �n) + c. A consequence this fact is (see [Bar13,
Corollary 1.7]) is that

(2.3)
if A,B are c.e. sets which are not K-trivial, then for each c there
exists n such that min{K(A �n),K(B �n)} > K(n) + c.

This fact is the crux of the proof of Theorem 1.1. It says that any pair of c.e.
sets of nontrivial initial segment prefix-free complexity exhibit common lengths of
nontrivial prefix-free complexity. It is just one of a series of results which indicate
that any two c.e. sets of non-trivial initial segment complexity have some kind of
common complexity, or even information. In view of the existence of minimal pairs
in the c.e. Turing degrees (a classic result from [Lac66]), such information is not
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common in the terms of the Turing reducibility but in terms of weaker measures of
relative complexity. See [Bar13, Theorem 1.2] and [Bar10, Theorem 1.3].

Instead of a direct proof, we have chosen to derive Theorem 1.1 as a consequence
of (2.3). This route reduces the bulk of the proof to the rather simple construction
and verification of Section 3. We note that even the proof of (2.3) from [Bar13] is
not direct (strictly speaking) in the sense that it rests on the nontrivial result from
[DHNS03] that Turing complete sets are not K-trivial.

2.4. Construction of prefix-free machines. A (rather simple) direct construc-
tion of a prefix-free machine will be used in Section 2.5. There are certain notions
and tools associated with such constructions, which are standard in the arguments
employed in algorithmic randomness and also relate to the main argument of Sec-
tion 3. We briefly discuss them. The weight of a prefix-free set S of strings, denoted
wgt(S), is defined to be the sum

∑
σ∈S 2−|σ|. The weight of a prefix-free machine

M is defined to be the weight of its domain and is denoted wgt(M). Prefix-free
machines are most often built in terms of request sets. A request set L is a set of
pairs 〈ρ, `〉 where ρ is a string and ` is a positive integer. A ‘request’ 〈ρ, `〉 repre-
sents the intention of describing ρ with a string of length `. We define the weight
of the request 〈ρ, `〉 to be 2−`. We say that L is a bounded request set if the sum of
the weights of the requests in L is less than 1. This sum is the weight of the request
set L and is denoted by wgt(L).

The Kraft-Chaitin theorem (see e.g. [DH10, Section 2.6]) says that for every
bounded request set L which is c.e., there exists a prefix-free machine M with
the property that for each 〈ρ, `〉 ∈ L there exists a string τ of length ` such that
M(τ) = ρ. Hence the dynamic construction of a prefix-free machine can be reduced
to a mere description of a corresponding c.e. bounded request set.

A function is called right-c.e. if it has a computable non-increasing approxima-
tion. Recall that a c.e. real is a real that is the limit of a computable non-decreasing
sequence of rationals. Note that c.e. sets are c.e. reals but the converse does not
hold. The Kraft-Chaitin theorem also implies that the definition of a prefix-free
machine N may be reduced (as far as the function n 7→ KN (n) is concerned) to a
definition of a right-c.e. function h such that

∑
n 2−h(n) < 1. Indeed, given such

a function h we may define KN = h. Then the Kraft-Chaitin theorem guarantees
that such a machine N exists. This useful method of defining prefix-free machines
(when we are only concerned in the corresponding complexity function) will be used
in several proofs in this paper, starting with a proof in the following section. The
prefix relation amongst finite or infinite strings is denoted by ≺.

2.5. Modulus functions of c.e. sets and K-triviality. We use the following
notion of ‘modulus of convergence’ which is associated with the enumeration of a
set or the monotone approximation to a real.

Definition 2.5 (Modulus functions of c.e. sets). Let A be a c.e. set (or real) with
a computable enumeration (A[s]). The modulus function n 7→ a(n) of A maps each
n to 〈n, s〉 where s is the least stage such that A[s] �n≺ A and s > n.

Note that the modulus function of a c.e. set A always refers to a particular com-
putable enumeration (A[s]) of it. In this paper all c.e. sets will be given via a certain
computable enumeration of them. Hence we may talk about the modulus function
of a given c.e. set (suppressing the corresponding computable enumeration) without
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causing confusion. This also means that the modulus function of a c.e. sets comes
automatically with a computable monotone approximation. Moreover according to
Definition 2.5, the image a(n) of the modulus function of a c.e. set encodes n. This
property will be used in the proof of Lemma 2.10.

Modulus functions and K-triviality are related, as we show in this section. We
start with a result which says that functions that are computed from K-trivial sets
do not speed up the canonical computable approximation to Ω. Without extra
effort, we prove this for the larger class of low for Ω sets. This result is not needed
for the proof of Theorem 3 but it gives a pleasing characterization of the c.e. K-
trivial sets which we present in Corollary 2.9.

Lemma 2.6 (Low for Ω functions are slow growing). If A is low for Ω and f ≤T
then there exists a constant c such that Ω− Ωn < 2c · (Ω− Ωf(n)) for all n.

Proof. Without loss of generality we may assume that f is increasing. Indeed,
otherwise we may consider f ′(n) = maxi≤n f(n)+1 and since Ω−Ωf(n) > Ω−Ωf ′(n)
the lemma about f ′ implies the lemma about f .

Define a Martin-Löf test (Vn) relative to A as follows. At stage s + 1, do the
following for each n < s. If Ωf(s) ∈ Vn[s] do nothing. Otherwise let tn[s] be the
last stage since we put something into Vn (and tn[s] = 0 if such a stage does not
exist) and put the interval (Ωf(s),Ωf(s) + 2−n · (Ωs − Ωtn[s])) into Vn.

Clearly µ(Vn) ≤ 2−n · Ω. Moreover (Vn) is uniformly c.e. in A. Hence (Vn) is a
Martin-Löf test relative to A. Since A is low for Ω, there exists n such that Ω 6∈ Vn.
Let (si) be an increasing enumeration of the stages where an enumeration occurred
in Vn and note that there are infinitely many such stages. Then Ωf(si+1)−Ωf(si) >

2−n · (Ωsi − Ωsi−1
) for all i > 0. Hence for each i > 0 we have Ω − Ωsi−1

<
2n · (Ω− Ωf(si)). Hence for each i > 0 and each t ∈ [si−1, si) we have

Ω− Ωt ≤ Ω− Ωsi−1
< 2n · (Ω− Ωf(si)) ≤ 2n · (Ω− Ωf(t)).

Hence for each t we have Ω− Ωt ≤ 2n · (Ω− Ωf(t)) as required. �

We do not know if the converse of Lemma 2.6 holds, thereby giving a characteri-
zation of the low for Ω sets. The interested reader may consult two other charac-
terizations of this class that were obtained in [Mil10] and [BL11] respectively. We
are able to prove that this equivalence holds inside the class of ∆0

2 sets. We present
this result later in this section, in the form of Corollary 2.9.

The following notion of movable markers is implicit in many recursion-theoretic
constructions. We isolate it since it can be used in order to elegantly describe the
enumeration of a c.e. sets and prove Proposition 2.11, which is the ultimate goal of
this section.

Definition 2.7 (Movable markers). A function (n, s) 7→ mn[s] is a system of
movable markers if it is non-decreasing in n, s and if mn[s] 6= mn[s + 1] then
mn[s+ 1] > s.

According to the above definition, a movable marker need not be convergent.

Lemma 2.8 (Complexity of movable markers). Let mn[s] be a computable system
of movable markers such that Ω−Ωn < 2c · (Ω−Ωmn

) for some constant c and all
n, where mn = limsmn[s]. Then there exists d such that K(mn) ≤ K(n) + d for
all n.
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Proof. Assume that Ω−Ωn < 2c · (Ω−Ωmn
) for some constant c and all n. Then

for all n the limit mn is finite. Let g be the Solovay function from (2.2). It suffices
to define a prefix-free machine N such that KN (mn) ≤ g(n) + c for all n. Let ks
be the largest number such that KN (mn)[s] ≤ g(n) + c for all n < ks. Then ks is
defined for all s and by the properties of the following construction, ks ≤ s for all
s. The following construction defines N , along with a partition (Is) of the set of
stages which will be used in order to count the weight of N in the verification. Let
I0 = ∅.

At each stage s + 1 we first check if mi[s] 6= mi[s + 1] for some i < ks. If not,
then we enumerate an N -description of mks [s] of length g(mks [s]) + c and say that
this enumeration is primary. In this case we also define Is+1 = ∅. Otherwise we
search for a stage p > s+ 1 such that

(2.4) Ωmr[p] − Ωr < 2c · (Ωp − Ωmr[p])

where r is the least such that mr moved during the stages in (s, p] (note that
r < ks). By the hypothesis, such a stage p exists. For each i ∈ (s, p) let Ii = ∅.
Define Ip = [mr[p], p]. Note that by Definition 2.7 we have mr[p] ≥ s+ 1, so mr[p]
is greater than all numbers in the intervals Ii for i < p. By (2.4) we have

(2.5)
∑

r≤i<ks

2−g(i) < 2c ·
∑
i∈Ip

2−g(i).

For each i ∈ [r, ks) enumerate an N -description of mi of length g(i) + c. We say
that this enumeration of N -descriptions is secondary. Say that the stages in (s, p]
are dormant and go to stage p+ 1.

By the construction, the intervals Ii are pairwise disjoint. Moreover the weight
of the N -descriptions that correspond to primary enumerations amount to weight
at most

∑
i 2−g(i) < Ω because (ks) is non-decreasing on the stages where pri-

mary enumerations occur. At each stage p where a secondary enumeration of
N -descriptions takes place, by (2.5) the weight of these descriptions is bounded
by
∑
i∈Ip 2−g(i). Hence the total weight of the N -descriptions that correspond to

secondary enumerations is bounded by∑
p

∑
i∈Ip

2−g(i) = Ω.

Hence the total weight of N is bounded by 2 ·Ω < 1. So N is a prefix-free machine.
By the construction, ks →∞ as s→∞ and (through the secondary enumerations)
we also have KN (mn) ≤ g(n) + c. �

We note that by the same argument as in the proof of Lemma 2.6, the converse of
Lemma 2.8 is true. The following characterization is not needed for the proof of
Theorem 1.1 but it is worth mentioning. It says that a c.e. set (or real) is K-trivial
if and only if the monotone approximations to Ω that it can provide are no better
than those that can be provided by a computable function.

Corollary 2.9 (Characterisation of K-trivial c.e. reals). Given a c.e. set (or real)
A the following are equivalent:

(a) A is K-trivial;
(b) for all functions f ≤T A we have ∃c∀n Ω− Ωn < 2c · (Ω− Ωf(n));
(c) ∃c∀n Ω− Ωn < 2c · (Ω− Ωa(n)).
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where (a(n)) is the modulus of its computable enumeration (or monotone approxi-
mation, in the case of c.e. reals).

Proof. The implication (a)⇒(b) follows from Lemma 2.6 and the fact that K-
trivial sets are low for Ω. The implication (b)⇒(c) is trivial. For the remaining
implication (c)⇒(a), assume that there exists a constant c such that Ω − Ωn <
2c · (Ω − Ωa(n)) for all n. Note that (a(n)[s]) is a computable system of movable
markers according to Definition 2.7. Hence by Lemma 2.8 there exists a constant
c0 such that K(a(n)) ≤ K(n) + c0. On the other hand there exists a constant c1
such that K(A �n) ≤ K(a(n)) + c1 for each n. Hence there exists a constant p such
that K(A �n) ≤ K(n) + p for all n, which means that A is K-trivial. �

The following observation is the last step that we need in order to derive the
main result of this section which is Proposition 2.11; it connects the complexity of
certain system of movable markers with the initial segment complexities of a pair
of c.e. sets.

Lemma 2.10. Let A,B be c.e. sets (or reals), let (a(n)), (b(n)) be their modulus
functions and let d(n) = min{a(n), b(n)}. If there exists p such that K(d(n)) ≤
K(n)+p for all n then there exists c such that min{K(A �n),K(B �n)} < K(n)+ c
for all n.

Proof. It suffices to show that there exists a prefix-free machines Ma,Mb such that
min{KMa

(A �n),KMb
(B �n)} ≤ K(dn) for all n. Consider Ma which, on input σ

operates as follows. First it waits until U(σ) ↓= 〈n, t〉 for some t, n (where U is the
optimal machine). Then it defines Ma(σ) = At �n. Similarly, on input σ machine
Mb waits until U(σ) ↓= 〈n, t〉 for some t, nand then defines Mb(σ) = Bt �n. Clearly
Ma,Mb are prefix free (as they have the same domain as U). Moreover, for each
n let tn be such that dn = 〈n, t〉. Since d(n) = a(n) or d(n) = b(n) for each n,
we have Atn �n= A �n or Btn �n= B �n for each n. Hence for each n we have
KMa

(A �n) ≤ K(d(n)) or KMb
(B �n) ≤ K(d(n)), which completes the proof. �

Proposition 2.11 (Tool for the main construction). Let A,B be c.e. sets (or reals),
let (a(n)), (b(n)) be their modulus functions and let d(n) = min{a(n), b(n)}. If A,B
are not K-trivial then for each c there exists n such that Ω−Ωd(n) < 2−c · (Ω−Ωn).

Proof. This is a direct consequence of Lemma 2.8, Lemma 2.10 and (2.3). �

Note that the conclusion Ω− Ωd(n) < 2−c · (Ω− Ωn) can be written as∑
i>d(n)

2−g(i) < 2−c ·
∑
i>n

2−g(i)

by (2.2). This is the form that we are going to use when we formulate the require-
ments for the proof of Theorem 1.1 in Section 3.1.

3. Proof of Theorem 1.1

We wish to construct a c.e. set D, whose Turing degree d meets the conditions of
Theorem 1.1. We formulate a sufficient set of requirements for D in Section 3.1 and
give the specifics of the construction in Section 3.2. We conclude with the formal
construction in Section 3.3 and the verification of the requirements in Section 3.4.
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3.1. Requirements for the construction of D. Let U be the universal prefix-
free machine which underlies the prefix-free Kolmogorov complexity function, i.e.
such that K = KU . We may assume that wgt(U) < 2−4. Also let (Ae, Be) be
an effective list of all pairs of c.e. sets. Note that the sets Ae, Be are given via
specific computable enumerations that are provided by a fixed universal Turing
machine. The sets Ae, Be correspond to guesses about representatives of the degrees
a,b of Theorem 1.1. For each pair (Ae, Be) let ae, be denote the corresponding
modulus functions. Moreover let ae[s], be[s] denote their approximations at stage
s. In particular, ae(n)[s] is n if s ≤ n and the least stage t > n with t ≤ s
such that A[t] �n≺ A[s] otherwise; similarly for be(n)[s]. Let (i, j) 7→ 〈i, j〉 be a
standard computable increasing (in both arguments) pairing function and define
N[k] = {〈k, n〉 | n ∈ N}.

We define a version of the parameter min{ae(n), be(n)} which can be treated
dynamically (at any stage of the construction) as a number that is eligible for
enumeration into the set D that will be constructed. Define de(n)[s] to be the least
number in N[〈e,n〉] − D[s] which is larger than min{ae(n)[s], be(n)[s]}. Moreover
let de(n) = lims de(n)[s]. The parameters ae(n)[s], be(n)[s], de(n)[s] can be seen
as movable markers on N. Moreover a direct consequence of their definition is
that they always move monotonically, i.e. ae(n)[s] ≤ ae(n)[s+ 1] and similarly for
be(n)[s], de(n)[s].

We will define a K-trivial c.e. set D and a sequence of c.e. sets (Ve) such that
the following conditions are met.

Re : Ve ≤T Ae ⊕D ∧ Ve ≤T Be ⊕D.

We will also ensure the following condition on Ve.

Pe : If Ae, Be are not K-trivial then Ve is not K-trivial.

These conditions on D, (Ve) are sufficient for the proof of Theorem 1.1. Let g be
a fixed Solovay function, i.e. a function satisfying (2.1), for the duration of this
proof. Without loss of generality we may assume that

∑
i 2−g(i) < 2−4. We may

split each condition Pe into more elementary conditions P ∗ekt. Let (k, i) 7→ nk(i)

be a computable function such that nk(i) < nk(i+ 1) and nk(i) ∈ N[k]. In Section
3.2 we will define a specific such function, but at this point we may express P ∗ekt in
terms of any fixed such choice. We may write nkt to denote nk(t) in the interest of
space.

P ∗ekt :
( ∑
i>de(nkt)

2−g(i) < 2−e−k ·
∑
i>nkt

2−g(i)
)
⇒ K(Ve �nkt

) > g(nkt) + k.

We let P ∗ek denote the conjunction of all P ∗ekt , t ∈ N. We verify that the satisfaction
of Pe may be reduced to the satisfaction of P ∗ek, k ∈ N. Fix e. Assume that Ae, Be
are not K-trivial and P ∗ekt are met for all k, t. Then by Proposition 2.11, for each
k there are infinitely many t such that the left-hand-side of the implication in P ∗ekt
holds. Since each P ∗ekt is met, it follows that for each k there are infinitely many t
such that K(Ve �nkt

) > g(nkt) + k. Since the map (k, i) 7→ nk(i) is computable and
increasing in i, Lemma 2.3 shows that Ve is not K-trivial. Hence (∀k P ∗ek) implies
Pe.

The requirement that D is K-trivial can be expressed as

(3.1) ∃c∀n, K(D �n) ≤ g(n) + c.
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The cost associated with the enumeration of a number n in D at stage s+ 1 of the
construction in view of (3.1) is given by

(3.2) c(n, s) =
∑
n≤i≤s

2−g(i).

The satisfaction of (3.1) will be achieved by ensuring that the total cost of the
enumerations into D is bounded, in other words

(3.3)
∑

(n,s)∈ID

c(n, s) < 1 where ID =
{
(n, s) | n = min{x | x ∈ D[s+ 1]−D[s]}

}
.

The fact that (3.3) implies (3.1) was established in [DHNS03] when g is replaced by
the Kolmogorov function K(n) (also see [DH10, Section 11.1] and [Nie09, Section
5.3] for elaborate presentations of this method). The same argument shows that
this implication holds when K(n) is replaced by any right-c.e function f such that∑
i 2−f(i) < 1.
We close this section by providing a condition which implies Re and shows ex-

plicitly the required Turing reductions. By the definition of ae[s] it follows that
ae(n) (the final position of a(n)[s]) is computable from Ae. Similarly, be(n) is com-
putable from Be. Hence Ae⊕D computes an upper bound of n 7→ de(n) (provided
that N[〈e,n〉] ∩D is finite) and the same is true of Be ⊕D. The following condition
expresses a weak coding of Ve into D.

R∗e :

(
For all k, t, s and all n ∈ [nk(t− 1), nk(t)) ∩ N[k]

n ∈ Ve[s+ 1]− Ve[s]⇒ de(nk(t))[s] ∈ D[s+ 1]−D[s]

)
Condition R∗e implies condition Re. Indeed, suppose that R∗e holds. Then to de-
termine if n ∈ Ve we can first find k such that n ∈ N[k] and then find t such that
n ∈ [nk(t − 1), nk(t)). By the definition of de(nk(t))[s] it follows that it changes
value only when one of the following holds:

• ae(nk(t))[s] changes value and be(nk(t))[s] changes value;
• the current value of de(nk(t))[s] is enumerated into D.

On the other hand, assuming that N[〈e,nk(t)〉]∩D is finite, de(nk(t))[s] reaches a limit
as s→∞. Since ae(nk(t)) is computable from Ae, it follows that we can use Ae⊕D
in order to compute a stage where the approximation to D[s] �de(nk(t))[s]+1 has
reached a limit. By R∗e , at that stage the approximation to Ve(n) has also reached
a limit. So we have computed Ve(n). The same procedure can be performed via
Be⊕D-computations, by first computing be(nk(t)). Hence Ve(n) is also computable
from Be ⊕D.

We have established that a construction of D, (Ve) which meets conditions (3.3)
and R∗e , Pek for e, k ∈ N (and any choice of a computable function (k, i) 7→ nk(i)
which is increasing on i and such that nk(i) ∈ N[k]) is sufficient for the proof of
Theorem 1.1. An underlying assumption is that for each e, n the set N[〈e,n〉] ∩D is
finite, so that de(n)[s] reaches a limit. The latter will be an immediate feature of
the construction.

3.2. Strategy and witnesses for conditions P ∗ek. Recall that P ∗ek denotes the
conjunction of the conditions P ∗ekt of Section 3.1 (which depend on the choice of
(k, i) 7→ nk(i)). The construction of Section 3.3 is driven by actions (enumerations
into D,Ve) for the satisfaction of P ∗ek. Here we define some parameters that are used
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in these actions. For each k we define an increasing sequence (nk(i)) of numbers.
Recall the definitions of (i, j) 7→ 〈i, j〉 and N[k] from Section 3.1. Define

J(〈k, x〉) =
{
〈k,m〉 | m > x+ 1 ∧

∑
t>〈k,m〉

2−g(t) >
1

m− x− 1

}
.

The sets J(i) are uniformly c.e. and by Lemma 2.4 they are all infinite. Hence we
may choose a uniformly computable family of sets J∗(i) such that J∗(i) ⊆ J(i) for
each i. Define (nk(i)) recursively as follows.

nk(−1) = minN[k]

nk(i) = min J∗
(
nk(i− 1)

)
Note that the function (k, i) 7→ nk(i) is computable. Moreover

(3.4)
∑
i>nk(t)

2−g(i) > 1/
∣∣(nk(t− 1), nk(t)

)
∩ N[k]

∣∣.
From this point on, P ∗ekt refers to this choice of (k, i) 7→ nk(i). We say that P ∗ek
requires attention at stage s+ 1 if there is some t < s such that

(3.5)
∑

de(nk(t))[s]<i≤s

2−g(i) < 2−e−k ·
∑

nk(t)<i≤s

2−g(i)

and

(3.6) ∀i ≤ pek[s], K(Ve �i)[s] ≤ g(i) + k

where pek[s] is the largest stage ≤ s where P ∗ek required attention (and pek[s] = 0
if such a stage does not exist). In this case we say that P ∗ek requires attention for t
at stage s+ 1.

The intuition for the main action of the construction is that if (3.5) holds, by
enumerating de(nk(t))[s] into D and changing the approximation to Ve �nk(t) the
cost of the opponent for maintaining (3.6) is a large multiple of our cost for main-
taining (3.3). Our choice of the sequence (nk(i)) ensures that such attacks are
sufficient in order to drive the opponent out of the available descriptions that are
needed for maintaining (3.6). Moreover recall that by the analysis of Section 3.1
(which was based on Proposition 2.11) property (3.5) has to hold for infinitely many
t, if Ae, Be are indeed not K-trivial.

3.3. Construction of the sets D,Ve. At stage s+1 check if there is some 〈e, k〉 <
s such that P ∗ek requires attention. If there is such a number, let 〈e, k〉 be the least
one and let t be the least number such that (3.5) and (3.6) hold. Enumerate
de(nk(t))[s] into D and enumerate the largest number of

(3.7) N[k] ∩
(
nk(t− 1), nk(t)

)
− Ve[s]

into Ve.

3.4. Verification of the requirements. At every stage s+ 1 where P ∗ek requires
attention for t and 〈e, k〉 < s, a change in Ve �nk(t) is caused by an enumeration of
a number of the set in (3.7) into Ve (provided that the set in (3.7) is nonempty).
There are ∣∣(nk(t− 1), nk(t)

)
∩ N[k]

∣∣
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many such enumerations that can be performed. Because of (3.4) and (3.6), each
time that P ∗ek requires attention after such an enumeration, we can count an addi-
tional weight of

1/
∣∣(nk(t− 1), nk(t)

)
∩ N[k]

∣∣
in the underlying universal prefix-free machine U . Since wgt(U) < 2−2,

(3.8) P ∗ek requires attention less than
∣∣(nk(t− 1), nk(t)

)
∩ N[k]

∣∣ times for t.

Hence whenever P ∗ek requires attention in the construction, an enumeration into Ve
will occur. Moreover (the current value of) de(nk(t))[s] will only be enumerated
into D finitely many times. Marker de(i) moves at stage s + 1 only if one of the
following events occur:

(a) A �i [s] 6≺ A[s+ 1] or B �i [s] 6≺ B[s+ 1];
(b) de(i)[s] ∈ De[s+ 1]−De[s].

Clearly (a) can only occur at most finitely many times. Moreover (b) only occurs
if i = nk(t)[s] for some t such that P ∗ek requires attention for t at stage s + 1. By
(3.8), case (b) only occurs at most finitely many times. Consequently,

(3.9) lims de(i)[s] exists for each e.

In other words N[〈e,i〉] ∩ D is finite, which was an underlying assumption for the
requirements of Section 3.1.

Lemma 3.1. For each e, condition Re is met.

Proof. Fix e. The construction clearly meets condition R∗e . By (3.9) and the
analysis in Section 3 it follows that Re is met. �

Lemma 3.2. For each e, condition Pe is met.

Proof. By the discussion of Section 3.1, it suffices to show that P ∗ekt is met for each
k, t. Fix k, t and assume that the left hand side of the implication in P ∗ekt holds.
Then according to the construction, (3.8) implies that K(Ve �nkt

) > g(nkt)+k. �

Lemma 3.3. The set D is K-trivial.

Proof. By the analysis in Section 3.1 it suffices to show (3.3). Let

ID(e, k) =
{(
de(nkt[s− 1]), s

)
∈ ID | s, t > 0

}
.

Note that ID(e, k) contains the pairs in ID that correspond to actions for P ∗ek. In
particular, ID =

⋃
e,k ID(e, k) and it suffices to show that

(3.10)
∑

(n,s)∈ID(e,k)

c(n, s) < 2−e−k−3

for each e, k. Fix e, k and let (xi, si) be a monotone enumeration of ID(e, k), in
the sense that si < si+1 for each i. Let us say that at stage si+1 the ith cycle
of P ∗ek is completed. Note that the sequence (xi, si) is possibly infinite. However
upon the completion of the ith cycle of Pek we may count an additional set of
descriptions of the universal machine U (describing current values of Ve) of weight
at least 2e+k · c(xi, si). This is a consequence of (3.5) and (3.6). For the case that
(xi, si) is finite (so the last cycle is never completed) note that c(xi, si) < 2−e−k−4

for all i due to (3.5). Since wgt(U) < 2−4 we obtain
∑
i c(xi, si) < 2−e−k−3, i.e.

(3.10). �
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According to the analysis of Section 3.1, this concludes the proof of Theorem 1.1.

4. Conclusion

The class of K-trivial sequences and their Turing degrees is far from trivial
and, in fact, has very rich structure. There are several ways one can reveal the
complexities of this class. One of these is the study of the quotient structure of
the c.e. Turing degrees modulo the K-trivial degrees. Intuitively, this structure
gives information about the degrees of unsolvability of c.e. sets when K-trivial
information is available ‘for free’. The following is a direct consequence of Theorem
1.1.

Corollary 4.1. The quotient upper semi-lattice of the c.e. Turing degrees modulo
the K-trivial degrees has no minimal pairs.

We do not know much more about this structure; for example, the following basic
question is open.

Is the quotient upper semi-lattice of the c.e. Turing degrees
modulo the K-trivial degrees dense?

Our result shows that a certain simple definition of the ideal of the K-trivial degrees
with parameters is not possible in the c.e. degrees. In particular, the K-trivial
degrees cannot be defined as the intersection of two lower cones in the c.e. Turing
degrees. The question of parameter definability of this ideal in the c.e. degrees
(briefly discussed in the end of [Nie05]) remains open.
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