
Turing and Randomness

Rod Downey?

School of Mathematics, Statistics and Operations Research,
Victoria University of Wellington,

PO Box 600, Wellington,
New Zealand.

rod.downey@vuw.ac.nz

Abstract. In an unpublished manuscript, Turing anticipated the basic
ideas behind the theory of algorithmic randomness. He did so by nearly
30 years. Turing used a computationally constrained version of “measure
theory” to answer a question of Borel in number theory. This question
concerned constructing what are called “absolutely normal” numbers. In
this article, I will try to explain what these mysterious terms mean, and
what Turing did.

1 Borel, number theory and normality

1.1 Repeated decimals in fractions

Mathematicians have always been fascinated with patterns in numbers. At a very
early stage of our education, we learn about the special nature of about decimal
expansions of rational numbers. Recall that a real number is rational if it is a
fraction: it can be expressed as p

q for some integers p, q. The reader might re-

member from school, or maybe first year university, that numbers like
√

2 are not
rational, and it can be shown that “most” numbers (in a precise mathematical
sense) are irrational. Long ago, the Greeks showed that a real number between
0 and 1 is rational if and only if it has a finite decimal expansion, or a decimal
expansion which repeats from some point onwards. For example, 1

4 = 0 · 25, and
3
7 = ·428571428571428571.... The astute reader will notice that we need a bit of
care with the 1

4 case as we could also think of it as 0 · .24999999999999999999.....
On the other hand, this alternative expansion does fit the bill about repeating
from some point onwards. For simplicity, we will ignore such ambiguities. The
reader might also remember that we can count using different bases1. Binary is
a standard such base, where each place in the representation represents a power
of 2. For example, 7 = 22 + 21 + 1, and hence in binary, 7 would be written
as 111. In base 3 we only use 0, 1, 2, and express using powers of 3. In base 3,
7 becomes 21 which is 2 × 31 + 1. Note that bases can be bigger than 10, and
we would have to invent symbols to represent the larger “digits”. You may have

? Supported by the Marsden Fund of New Zealand.
1 In fact using base 10 is a relatively recent convention.

noticed the ISBN code on a book. The ISBN code on a book is base 11, and uses
x to represent 102.

The Greek result about repeats in the decimal representation of rationals
remains true if we change the base from base 10 to any base. For instance, in
base 3, 1

4 = ·02020202... In the discussion below, we will henceforth drop the
decimal point and be concerned with infinite sequences.

1.2 Borel and normality

In 1909, Émil Borel [8] was interested in sequences which satisfied the law of
large numbers. This law says that if you repeat an experiment many times, then
the average value should be the expected value. If you toss a fair coin many
times you expect as many heads half of the time. In base 10, this law says that
frequency of choosing a digit between 0 and 9 is exactly what you would expect
in the limit, namely 1

10 . What do we mean by “the limit”? Base 2 corresponds
to tossing a coin. Over time, you would expect as many heads as tails. But
this is only the eventual long term behaviour. If I toss a head, the next toss is
independent of this toss. So with probability 1

2 I would again get a head. But
we expect that if the coin was fair, the law of large numbers states that it will
all “even out in the long run”.

Take such a sequence X representing an infinite collection of coin tosses.
After s coin tosses, we can see how we are going so far by looking at how many
heads we have seen in the first s tosses compared to the total number of tosses
so far. We could examine the ratio at step s:

|{X(k) = 1 | k ≤ s}|
s

.

This denotes the number places of X we have heads (X(k) = 1) after s tosses,
divided by s. If this was a fair coin this frequency should get closer and closer
to 1

2 . Mathematically, we would say that the “limit” as s→∞ is 1
2 .

2 Base 11 is chosen as it is prime, and this allows for certain error correcting aspects
of the ISBN code. The code works by adding the first 9 numbers multiplied by their
position from 1 to 9. Then we put a “check digit” at the end, which is the number
needed to give 0 remainder after multiplying by 10 and dividing the sum by 11. For
example, if the first 9 numbers were 019825080, they 1 · 0 + 2 · 1 + 3 · 9 + 4 · 8 + 5 ·
2 + 6 · 5 + 7 · 0 + 8 · 8 + 9 · 0 = 165, which has remainder 0 when divided by 11, so
the last digit would be 0. The system imagines someone ordering a book, say, and
making an error. Using this check digit allows us to detect any single error such as
writing 3 in place of 2 in this number, since the weighted sum of first nine numbers
would be 170. The next multiple of 11 is 16 × 11 = 176, so if the number written
on the order was correct the last digit would have been 6, but it was not, it was 0.
ISBN codes will also detect any error caused by the transposition of two numbers,
like switching 9 and 5. This only works as 11 is prime. The whole modern apparatus
of error correcting codes enabling us to send information across noisy channels and
figuring out what was sent relies on more high powered versions of arithmetic of
primes to powers. For example, the Internet, and digital television, CD’s, DVD’s,
MP3’s would all be impossible without such mathematics.

More generally, we say that a sequence X is Borel normal to base n if it is
exactly the same except we use an “n-sided coin”. Using the notation above, if
we represent X in base n, then for any digit between 0 and n− 1, we need

lim
s

|{X(k) = i | k ≤ s}|
s

=
1

n
.

Borel defined a real number (an infinite sequence) to be absolutely normal if it
was normal when written in any base.

In his 1909 paper, Borel observed that “almost every” real number is abso-
lutely normal. Mathematically, this can be expressed by saying that the collec-
tion of absolutely normal numbers has Lebesgue measure 1, which corresponds
to saying that if you threw a dart at the real line, with probability 1 it would
hit an absolutely normal number.

Turing’s work was motivated by the following two questions asked by Borel:

1. Can there be an irrational number normal to one base and not another?
2. Can you give an explicit construction of an absolutely normal number?

We are more concerned here with question 2. The reader might guess that
numbers like

√
2, π, log 2, e etc are all absolutely normal. They are certainly

explicit.
√

2 and log 2 are what are called algebraic irrational numbers, in that
they correspond to solutions of “algebraic” equations which only use simple
arithmetic operations. For instance

√
2 is a solution to x2−2 = 0. It is conjectured

that every algebraic irrational number is absolutely normal. Our attempts to
establish this conjecture are as pitiful as they could possibly be. No explicit
example has ever been proven to be normal even to a single base!. Bailey and
Crandall [2] in 2001, suggested an unproven “dynamical” hypothesis arising from
“experimental mathematics”. Assuming their hypothesis, we can prove that, for
example, e and π, as well as every algebraic irrational number, are all absolutely
normal.

Another way of constructing normal numbers was discovered by Turing’s
friend the economist Champernowne (who later held chairs in both Cambridge
and Oxford) in 1933 as an undergraduate. What you do is simply write the
digits in increasing order. This to base to, the Champernowne number is C10 =
0.12345678910111213141516 This can be done to any base. These are easily
proven to be normal in the base that they are written, but we have no idea as
to how to show that they are normal when expressed in terms of another base,
which we think they are. In place of all of the integers, 1,2,3,... we could take some
set a1 < a2 < . . . and use this set to also define a similar sequence. For example,
if we use the primes we could write CP = 0.2357111317 Remarkably, this
sequence is known to be normal in base 10, as shown by Copeland and Erdös in
1946 in [17]. Unfortunately, it is not known if the primes written in base 2 result
in such a normal sequence to base 2. The Copeland-Erdös base 10 proof relies
on the “density” of primes in the relevant base.

As with many problems in number theory, it is easy to make conjectures, but
hard to prove things!

2 Turing’s approach

So failing to have natural examples of absolutely normal numbers, we might ask
what would be an explicit example.

In a manuscript [46], thought to have been written around 1938, and never
published in Turing’s lifetime, Turing suggested that the an absolutely normal
number n would be explicitly constructed if the number was computable; mean-
ing that we could build some computer which could compute the expansion of n
with any desired precision. Any irrational number met in “normal mathematics”
will have this property, as all have rapidly converging approximations. For ex-
ample, e = 1

1! + 2
2! + . . ., and hence calculating e = 2.718281828459045235 . . . is

computable. This method of computing e was known to Euler as early as 1748.
Similar series are known which rapidly converge to π, and this is true of any
other “natural” constant.

As we will see, Turing’s approach anticipates a line of research going back
to the early 20th century, but really only realized in the early 1960’s. Before we
look at Turing’s work we will briefly describe this body of work. This analysis
will enable us to say exactly what Turing did, and how he did it.

3 von Mises and Ville

The late 1920s and early 1930s saw an adequate foundation for the theory of
probability being built. This theory culminated in the celebrated work of Kol-
mogorov [25]. The foundation is based on the idea of the expected behaviour of
some event in a probability space; and hence based around measure theory. I will
try to explain these terms. The foundation is more or less what you would learn
in school. The underlying concept is that we don’t give any meaning to an explicit
string (finite sequence of coin tosses, say) being random, but look at expected be-
haviour of events. Tossing a coin n times takes place in a “space of possibilities”
(in this case, the collection of all binary strings of length n), and we would assign
any sequence of length n probability 2−n of occurring. (Here for the time being
we will concern ourselves with base 2, heads or tails.) For example, tossing 4
times results in the space of possibilities {0000, 0001, 0010, 0011, . . . , 1111}, each
of which has probability 2−4 of occurring.

In the infinite case we look at the event of a sequence having a certain string as
its initial segment. Such and event might be beginning with 101. The probability
that we begin a sequence of coin tosses with head, tail, head is 2−3 = 1

8 . The
mathematical way to express this is that the uniform Lebesgue measure of the
collection of all sequences extending 101 is 2−3, or, more generally, extending
some strings of length n is 2−n. Using this idea, we are reduced to understanding
similar measures on probability spaces. There is a huge and deep theory of these
objects way beyond the scope of this article, but for our purposes it suffices to
keep the coin tossing example in mind.

Less commonly known is that Kolmogorov’s foundation came well after an
earlier attempt to try to give meaning to the notion of randomness for an in-
dividual sequence. This is completely contrary to Kolmogorov’s approach since

in that approach all sequences are equally likely. However, none but the most
contrary would suggest that the sequence S = 010101010101010... was random.
The question is: “How to differentiate between such a sequence and the kind of
sequence claimed to come from, say, quantum effects?”. As we mentioned above,
the first thing you learn in elementary probability theory at school is that any
two sequences of coin flips of length n with an unbiased coin are equally likely,
and have probability 2−n.

Clearly we could try to apply tests to a sequence to test its apparent ran-
domness. A random sequence should pass the law of large numbers and hence
in the limit should the number of 0’s and 1’s should have the same frequency.

In 1919, Richard von Mises [48] attempted to give a basis for randomness
based upon a generalization of the law of large numbers which used arbitrary
chosen subsequences. Von Mises’ idea was to consider any possible selection of
a subsequence and ask that the selected subsequence also be normal. The point
here is that the sequence S = 010101010101010... is certainly not random but is
does obey the law of large numbers as there are equal numbers of 0’s and 1’s in
the limit. But clearly if we selected every second bit we would get all 1’s. It is
not reasonable that selecting every second bit of a random number should result
in all 1’s, so S fails this randomness test.

Von Mises generalized this idea as follows. Let f be a place selection function.
That is, f(i) is the i-th place selected. In the law of large numbers f(i) = i. In
the proof that S is not random, f(i) = 2i. f should be increasing. Von Mises
asked that we replace counting

|{X(k) = 1 | k ≤ s}|
s

(which we used in the law of large numbers) by

|{X(f(k)) = 1 | k ≤ s}|
s

,

the ratio of the number of selected places which give heads divided by the number
of selected places.

When should X be regarded as random? We would perhaps say that X is
random if and only if it is random for all possible selections. There is a big
problem with this idea. No sequence X can be random for all selection func-
tions. Since any nontrivial X has infinitely many 0’s, we could simply have an f
which chose the positions of the zeroes of X in increasing order. But surely this
counterexample is spiritually unfair: we are trying to capture the notion that we
should not be able to predict the next bit, and this f is chosen after defining X.
It is always easy to predict the answer if you know it in advance! The question is
”What kinds of selections should be allowed to capture the notion of prediction?”
Our intuition is that prediction is somehow a computational process, and hence
from a modern perspective we would guess we should obey all laws generated
by computable selections.

However, von Mises work predated the work in the 30s clarifying the notion of
computable function, famously culminating in Turing’s [43]. Thus von Mises had

no canonical choice for “acceptable selection rules”. Wald [49, 50] showed that
for any countably infinite3 collection of selection functions, there is a sequence
that is random in the sense of von Mises. [15] proposed restricting f to (partial)
computable increasing functions. A sequence X which defeats all such f is now
called computable stochasticity, and partial computable stochasticity, in the case
of partial computable selections.

Notice in these discussions we are abandoning the idea of absolute random-
ness in some metaphysical sense. Such a notion of “absolute randomness” is
used, for instance, by physicists in an imprecise way4. These discussions lead
to algorithmic randomness, where we will use tools from Turing’s computation
theory to quantify what randomness means. More precisely, since we have aban-
doned the notion of absolute randomness to “levels of randomness”, we use these
tools to calibrate by the computational strictness of the tests the randoms must
pass. The harder the test, the more random we regard the sequence to be.

Does von Mises-Wald-Church computable stochasticity capture the notion
of algorithmic randomness? Alas, the answer is no. A savage blow was dealt to
von Mises’ programme by Ville [47] who proved that for any countable collection
of selection functions, there is a sequence X which is random relative to all of
them, but for each n, there are always more 0′s in X � n, the first n bits of X,
than there are 1’s. I think if you walked into a casino and were told that there
would always be more tails than heads, you would believe it to be a biased coin,
and could probably win some money! Ville suggested that perhaps we could add
von Mises versions of another law (the law of iterated logarithms) to the list.
Perhaps Von Mises’s laws together with the additional laws, captured the notion
of algorithmic randomness. This all seems very ad hoc. The immediate natural
question is : ”Is there yet another such Ville-like counterexample for this set
of laws?” Again the answer is yes, as discussed in Downey-Hirschfeldt [20]. So
again we fail to capture algorithmic randomness.

4 Martin-Löf

The above was how matters stood until 1966 and the work of Per Martin-Löf [33].
Martin-Löf effectivized the notion of a null set from classical measure theory, and
gave a definition of algorithmic randomness based on this idea. Let me explain.

Recall that we are working in the space of infinite sequences of 0’s and 1’s.
As discussed above Lebesgue measure of the collection of all sequences beginning
with some string σ is 2−|σ|, where |σ| denotes σ’s length. Recall that this is the

3 For example, all machine programmes can be thought of as being represented “digi-
tally” as sequences of 0’s and 1’s. Hence we can think of programmes/algorithms as
simply being numbers, and this is a countable (countably infinite) collection as we
can “count” the numbers 1, 2, 3,

4 It is ongoing research to determine what kind of randomness is actually necessary
for parts of physics like the Copenhagen interpretation of quantum mechanics. Deep
questions in physics concern whether the universe can physically generate any of the
following: randomness, non-randomness, computability, incomputability!

probability that a sequence begins with σ. Our example was the measure of
sequences beginning with 101 being 1

8 . This measure being the probability that
a sequence begins with head, tail, head.

Martin-Löf’s idea is that tests of randomness like the law of large numbers are
computable ways of narrowing down the possible X’s which could be considered
as random. More concretely, consider the example S = 01010101.... We don’t
want this to be random. So we would first hope a randomX avoided the collection
of all sequences starting with a 0, namely the “cone” [0] = {0Y : Y is an infinite
sequence of 0′s and 1’s}. This cone of sequences has measure 1

2 , since half of all
sequences begin with a 0 and half with a 1. Failing to pass this first test would
entail the sequence being of the form X = 0Y . We pass the test if the sequence
began with 1Y . Suppose we fail the test and so X = 0Y . We would then hope
that X avoided [010], the set of all sequences starting with 010, being of measure
1
8 . If X does not begin with 010, we are happy as it passes the test. If we fail and
X = 010Z, we would move on to test with [01010] having even lower measure
(probability). We continue this for each such test. We are happy if X eventually
passes the test, as it fails to be in one of these cones.

How to generalize this to all computable tests5? Martin-Löf’s idea is to have
levels of tests, T1, T2, Each computer (predictor) is allowed to generate its
own collection of tests. Fix one such computer M and one such sequence. T1 is
the easiest to pass. Since M is generating T1, this can be imagined a collection
of strings s1, s2, . . . where we are saying we don’t want X to begin with s1, nor
s2, nor s3, etc. Of course, we need to be fair since we could never pass the test
saying that that X cannot start with either a 0 or a 1!. So the tests will need
to get smaller in measure. Standardly, T1 is a test of measure ≤ 1

2 , and Tk has
measure ≤ 2−k. Since these are computable tests, we imagine the computer as
generating this list of predictions, T1 = {[s1], [s2], . . .}. For example, suppose
we did not want any sequence with more 0’s than 1’s. Then T1 could be the
collection {[0], [100], [010], . . .}, of overall measure 1

2 . These are M ’s predictions
of initial segments of X. M is wrong if none of them are initial segments of X.
If X extends one of these initial coin tosses, it fails test number T1, since we
predicted an initial segment of X. In the example, X extends 100, say, it fails T1.
As remarked above, it is important for fairness that the tests get smaller as we
are only interested in the limiting behaviour. So we could imagine T2 as being
similarly generated by the same computer M as [r1], [r2] . . . but now we would
ask that the total measure in T2 is ≤ 1

4 , and so on. For example, for testing
“more 0’s than 1’s” the next test could be {[001], [000], [10001], [10010], . . .},
which refines the first test. In general, the total measure of Tk is at most 2−k,
and hence in the limit the measure is 0, so the property the machine tests
is “computably rare” or, equivalently, “computably statistically negligible”. X
passes this test if at some stage k, X does not extend any member of Tk; none of
machine M ’s “level k” predictions about the initial segments of X are correct.

5 The following paragraph is a little technical, but the reader should try to get the gist
of what is being done as it is pretty important. It is summarized by the subsequent
paragraph.

For example, if X began with 10011, it would pass T1 but fail T2 and hence
fails the Martin-Löf test that this M represents. We say that X is Martin-Löf
random if and only if it pass all such tests. Almost all sequences are Martin-Löf
random, and this notion of randomness has been shown to provide a robust basis
for algorithmic randomness.

In summary, Martin-Löf re-formulated all the laws at an abstract level based
upon effectivizing classical measure theory. The measure of a set of sequences
is the mathematical version of its probability. Martin-Löf randomness says that
we regard X as random if and only if it passes all computable tests of com-
putable measure 0. That is, X avoids all computable tests of non-randomness of
computable probability 0.

5 Solomonoff, Kolmogorov, Levin, Chaitin, and Schnorr

There were other approaches to a definition of algorithmic randomness. For
(finite) strings, a suitable definition was formulated by Kolmogorov, who argued
that if a string had identifiable regularities, then we would be able to compress
the string and hence it could not be random. Here we think of a machine M as
a descriptional process, an algorithm τ being processed by M to give an output
σ. Then τ is a description of σ; a programme that M will use to print σ. The
length of τ is a measure of its length as a description, and random σ should be
hard to describe.

As an illustration, consider the sequence σ = 010101010 . . . (1000 times).
A short description τ of σ is “print 01 1000 times”. For the purposes of this
discussion we will regard this description as length 16 by simply counting the
number of symbols. The point is that this length 16 description is producing
an output σ of length 2000. We are exploiting the regularities of this particular
σ to compress the description. Kolmogorov’s intuition was that for a random
sequence there would be no regularities and then the only way to describe σ was
to essentially use σ itself.

More precisely, a string of length n should be random relative to some de-
scriptional process M is and only if the only way to describe it would be to use
a string of the same length. Like white noise, a random string is incompressible.
You can test this with children. Suppose you had a maze which was shaped as
a binary tree of height 6 with boxes in the end. That is, there are 26 possible
routes to get to the boxes. One of the boxes has money in it, and this box is
known to the child. A child is to tell us which box has the money. Now if the box
is the leftmost one all they have to say is always turn left. If the box was found
by say, left-right-left etc, again this is easy to describe. If the place of the prize
is determined randomly, the child would need to tell us the whole sequence6.
This compressibility approach gives rise to the what is now called Kolmogorov
complexity.

6 In the text Li-Vitanyi [31], there is a report of this experiment being done on com-
munication of ants, of the “food-finding” ants describing the location of the food
box in a similar set-up to the “food-gatherer” ants.

The point here is that there are many ways to describe some string. Suppose
I gave you a very long string σ whose bits were the 100th bits of π in its binary
expansion. This string is far from random, but such non-randomness would be
hard to perceive, until this fact was discovered. At the point we discover this
hidden pattern, the the descriptional complexity σ might go from appearing to
be quite random (using σ to describe σ) to be very easy. Mathematically, the
complexity of this string of length n would go from complexity like n, the length
of σ, to about log n+O(1). This latter one being the number of bits needed to
describe n in binary, plus the O(1) for the fixed program printing out that many
100th bits of π.

A natural guess would be that an (infinite) sequence X is random if and only
if for all n, the first n bits of X are incompressible in the sense outlined above.
Without going into details, the classical (plain) Kolmogorov complexity is not
quite the correct notion for infinite sequences7. The reason for this is that plain
complexity above fails to capture the intentional meaning of the information
of the bits of τ coding the information of σ. There are at least three ways
around this and all rely on restricting the kinds of devices M allowable. Using
prefix-free codes8 by Levin, Chaitin and Schnorr, and in a certain sense even
earlier by Solomonoff [42], there is a natural notion called prefix-free Kolmogorov
complexity, K such that X is Martin-Löf random if and only if the the prefix-free
complexity of the first n bits of X is n or more (up to a constant factor).

Finally, as developed by Schnorr there is a gambler’s version of randomness,
spiritually close to von Mises. A martingale is a betting function on strings
satisfying the expected fairness condition,

f(σ) =
f(σ0) + f(σ1)

2
.

That is, the capital you have accumulated at σ has to be shared over the bets for
σ0 and σ1. A martingale succeeds on a sequence X if and only if using f to make
bets we win an infinite amount of money. Schnorr showed that X is Martin-Löf
random if and only if no (appropriately) algorithmic martingale succeeds on X.
So von Mises’s intuition about prediction has a version that works after all!

7 The reason is that in the formulation above, a description τ into M gives more than
simply the bits of τ to generate σ, but also the length of τ , and hence |τ | + log |τ |
(since we know τ is the length of the program) much information. We know not only
that this is a program, but that the program stops. Using this fact, we can show that
for long strings, the complexity of X � n must always go below n for some lengths
n.

8 That is, the descriptions are like telephone numbers, if τ and ρ are input descriptions
to M and both give outputs, then τ is not a prefix of ρ. No telephone number should
be a prefix of another! The point here is that in plain complexity both 100 and 1001
could be codes of programs (descriptions). Implicitly, if we are using 100 and not
1001, we need a stopping signal after the second 0. This means we are using the fact
that 100 is a program, and we are not using any extension of it. Telephone numbers
avoid this extra information implicitly being used.

In summary, there are three basic approaches to defining random sequences.
They are the statistician’s approach, that a random sequence should have no
computably rare properties; the coder’s approach, that a random sequence should
have no regularities which allow for compression; and the gambler’s approach,
that we should not be able to predict the bits of a random sequence. The three
approaches towards defining the notion of an algorithmically random sequence
all naturally give the same random sequences.

6 Turing’s work

The above describes the main lines or development of algorithmic randomness
up to the point that Martin-Löf gave a suitable definition. Recall that Turing
was interested in absolute Borel normality. Clearly, a random sequence will be
absolutely normal. As we have already seen, if the frequency of 1’s is less than
that of the 0’s you could easily have a betting strategy to allow you to make
infinite capitol in the limit. Take an infinite binary sequence. Suppose it is not
normal in base 10, and in base 10 the frequency of 5’s is lower than expected
infinitely often. In base 10, you could formulate a betting strategy to exploit this
fact. But this will translate back to a strategy which could be used about the
binary expansion, since there is a very tight computable relationship between the
expansions of the two bases. This kind of consideration means that randomness
to any base implies randomness to any other base.

In an unpublished manuscript, Turing attacked the question of an explicit
construction of an absolutely normal number by interpreting “explicit” to mean
computable. His manuscript entitled “A note on normal numbers”, presumably
written in 1938, presents the best answer to date to Borel’s second question: an
algorithm that produces absolutely normal numbers. This early proof of exis-
tence of computable normal numbers remained largely unknown because Tur-
ing’s manuscript was only published in 1997 in his Collected Works, edited by
J. L. Britton [46]. The editorial notes say that the proof given by Turing is in-
adequate and speculate that the theorem could be false. In [4] Becher, Figueira
and Picci reconstructed and completed Turing’s manuscript, trying to preserve
his ideas as accurately as possible and correcting minor errors.

As Becher [3] remarks, the very first examples of normal numbers were in-
dependently given by Henri Lebesgue and Waclaw Sierpiński9 in 1917 [27, 41].
They can also be modified to give computable instances by giving a computable
reformulation of the original constructions of 1917, as shown by Becher and
Figueira [5]. Until recently, as we see below, together with Turing’s algorithm
these are the only known constructions of computable normal numbers. It is
clear that Turing was unaware of the limiting constructions given in [27, 41]. In
any case what is interesting is the way that Turing solved Borel’s question; and
how it relates to Martin-Löf approaches to randomness.

What does Turing’s construction do? His paper says the following:

9 Both published their works in the same journal issue, but Lebesgue’s dates back
to 1909, immediately after Borel’s question.

Although it is known that almost all numbers are [absolutely] normal
no example of [an absolutely] normal number has ever been given. I pro-
pose to show how [absolutely] normal numbers may be constructed and
to prove that almost all numbers are [absolutely] normal constructively.

Turing’s idea is to first give an extension of the law of large numbers to
“blocks” of numbers. Spiritually, the reader can see that not just single digits,
but fixed blocks of numbers should occur with the desired frequency in a random
sequence, else you could bet on the knowledge that they don’t. Why blocks?
The idea is that translating between bases results in correlations between blocks
of integers in one base and blocks in another. Realizing this, key to Turing’s
construction is the following: Turing regards blocks as generating “tests” with
small measure, and hence if we effectivize the notion of null set appropriately,
and avoid such tests, we should have an an absolutely normal number.

In the unpublished manuscript, Turing then develops a computable version
of measure theory, and proves that the sequences which are not absolutely nor-
mal have computable measure 0. Therefore, Turing concludes, there must be a
computable sequence which is absolutely normal.

Here is what Jack Lutz said of this in a lecture at the conference Computabil-
ity, Complexity and Randomness, 2012 at Cambridge:

“Placing computability constraints on a nonconstructive theory like
Lebesgue measure seems a priori to weaken the theory, but it may
strengthen the theory for some purposes. This vision is crucial for present-
day investigations of
– individual random sequences,
– dimensions of individual sequences,
– measure and category in complexity classes, etc.”

What is fascinating here is the clarity here of Turing’s intuition: To construct
absolutely normal numbers, take the classical proof that almost all numbers
are, and re-do this as a computable version. This is essentially the celebrated
approach of Martin-Löf, except that we must be more delicate, since no com-
putable sequence can be Martin-Löf random. This happened almost 30 years be-
fore Martin-Löf’s work. Turing’s analog of Martin-Löf tests are sensitive enough
to exclude absolutely normal numbers, but insensitive enough to allow suitable
computable sequences to pass them.

It is interesting to speculate as to why Turing did not develop the whole
apparatus of algorithmic randomness since he seemed to have many of the ideas
needed for this development. To the best of my understanding, whilst he did
have the notion of a pseudo-random number generator, Turing himself thought
that randomness was a physical phenomenon. Turing certainly recognized the
noncomputable nature of generating random strings. For example, from Turing
[44], we have the following quote.

“ An interesting variant on the idea of a digital computer is a ”digital
computer with a random element.” These have instructions involving the

throwing of a die or some equivalent electronic process; one such instruc-
tion might for instance be, ”Throw the die and put the-resulting number
into store 1000.” Sometimes such a machine is described as having free
will (though I would not use this phrase myself).”

Interestingly, in the sentences after the quote he recognizes the difficulty of
perception of randomness:

“It is not normally possible to determine from observing a machine
whether it has a random element, for a similar effect can be produced
by such devices as making choices depend on the digits of the decimal
for π.”

We know that Turing used algorithms to generate pseudo-random strings,
strings that seemed sufficiently random that they worked the way we would
expect a random source to behave. Perhaps Turing was only concerned with
pseudo-random strings in relation to algorithms in relation to, for example,
cryptography and artificial intelligence as outlined below. Certainly shortly after
1938, the war intervened and, after the war Turing did not return to the topic of
normality. He did not mention randomness except in relation to efficiency and
efficacy of f algorithms. I don’t think he ever considered the problem of defining
an algorithmically random sequence.

7 Turing and randomness as a resource

From my readings of Turing’s works, it is clear that Turing regarded random-
ness as a computational resource. For example, in artificial intelligence Turing
consider learning algorithms. Turing says in [44]

“It is probably wise to include a random element in a learning machine....
A random element is rather useful when searching for the solution of
some problem.”

Turing then gives an example of search for the solution to some numerical
problem, pointing out that if we do this systematically, we will often have a
lot of overhead corresponding to our previous searches. However, if the problem
has solutions reasonably densely in the sample space random methods should
succeed.

Form a modern perspective, we know of many algorithms which work well
randomly. A simple illustration is what is called polynomial identity testing
(PIT). PIT the following problem: Given a polynomial P (X1, . . . , Xn), is that
polynomial identically zero (i.e. results in zero no matter what numbers we sub-
stitute for the variables)? For example, X1X2 −X2X1 is identically zero. Now,
this might seem a very strange and specialized problem, but it turns out that
many problems can be computationally restated as instances of PIT, so that we

can solve them by solving an algorithm for PIT10. There are very efficient ran-
domized algorithms for PIT. In fact, the dumbest algorithm one could imagine
works. Take any random numerical substitutions for X1, X2 . . . Xn, and evalu-
ate the polynomial at those values. If you don’t get zero, the answer is certainly
“no”. If you do evaluate to zero say “yes” . You will be correct with high prob-
ability, roughly speaking because such polynomials are zero quite rarely if they
are not identically zero11.

A major theme in modern algorithm design is to use randomness as a resource
like this. It is fair to say that most computational learning algorithms, like those
that monitor you on the Internet and try to see you things based on learning
your preferences, or those that model physical phenomena, all use randomness
as a resource. This use is anticipated by Turing in his writings. In [45], Turing
even speculates that randomness is somehow necessary for intelligence. To my
knowledge, Turing did not develop this theme mathematically.

This lack of mathematical development is perhaps unfortunate, as there is
an implicit recognition of algorithm complexity in Turing’s writings; such recog-
nition coming from cryptography where large search spaces are used to hide
information, and practical computing where an answer must be found in real
time. Even Turing’s writing about intelligence and the limitations of machines
are full of calculations as to numbers of possible state in computers, etc. Per-
haps Turing could have developed the mathematical theory of computational
complexity (only really developed in the 1960’s and 70’s) had he developed his
ideas further. But this is complete speculation. It is clear that he had an intuitive
understanding of the time and space complexity of computation.

We remark that these complexity issues are very deep. It is a very longstand-
ing open question whether PIT can be solved by a non-randomized determinis-
tic algorithm in polynomial time. Although we have no idea how to construct
such an algorithm, is thought that such an algorithm exists. This is because
of the work of Impagliazzo and Wigderson [24] whose work proved a certain
hardness/randomness tradeoff12. For a long time primality testing, determining
whether a number is prime, had the same status. That is, primality testing has
randomized algorithms which work very quickly, and known for many years. In a
celebrated result first announced in 2002 (published in [1]) Agrawal, Kayal, and

10 Strictly speaking this computational restatement usually happens for polynomials
with coefficients not in the rationals, but over some large finite field, which is a
special kind of mathematical structure whose arithmetic “resembles” the rationals.

11 This is very easy to see for polynomials of one variable. A nonzero cubic polynomial
P (X) = aX3 + bX2 + cX + d can have at most 3 roots. Hence P (X) can evaluate
to zero in at most 3 places. It is highly unlikely a random choice would be unlucky
enough to pick one of those 3 points! The case with many variables is proven by
induction.

12 They prove a truly remarkable result which says roughly that if certain problems
are as hard as we think they are, then ‘BPP=P”, which means that all problems
like PIT with efficient randomized polynomial time algorithms have polynomial time
derandomized versions.

Saxena gave a deterministic (i.e. non-randomized) polynomial time algorithm
for primality testing.

8 Where does this all go?

8.1 Normality

There’s a lot of ongoing work on (absolute) normality, since it is a natural
number-theoretical notion. In terms of its relationship with randomness, it is
possible to show that normality really is a precise calibration of randomness. Nor-
mality corresponds to a kind of randomness property called finite state Hausdorff
dimension, where we look at the behaviour of betting strategies (martingales)
which are controlled by finite state gamblers13. Schnorr and Stimm [39] proved
that a sequence X to base b is normal to base b if and only if the finite state
Hausdorff dimension of X is 1, which is a statement about the Kolmogorov
complexity14 of initial segments of X. Mayordomo and Lutz (in preparation,
the theorem first posted in [34]), and independently, Becher, Heiber and Slaman
[6] have shown that it is possible to construct such sequences which are quite
simple, we can compute the n-th bit of X in polynomial time, somewhere near
O(n2).

8.2 Randomness

There has been a huge amount of work on algorithmic randomness and its appli-
cations to, for example, algorithm design, understanding analysis in mathemat-
ics, Brownian motion, ergodic theory, Markov chain theory, physics, etc. (e.g.
[7, 12, 13, 21, 16, 22, 23]) I won’t even try to present any of this here. For gen-
eral introductions to the area of randomness and its relation to computability,
I refer to Downey and Hirschfeldt [20], Nies [32] and for a general reference to
Kolmogorov complexity you can look at Li-Vitanyi [31]. For a more informal
discussion as to the general theory of randomness, I refer to Zenil [51], which
has essays by leading experts in the area. For more on the mathematical, and
particularly, logical, developments stemming from Turing’s work, I refer to the
forthcoming volume [19].

13 If the reader is unfamiliar with this notion, widely used in computer science, they
should think of them as memoryless machines which plod from one internal state to
the next, processing the bits of the input, purely on the basis of the bit that is being
read and the internal state. The are the most basic of all machines.

14 Specifically, if KF denoted finite state Kolmogorov complexity, then we would ask
that for any finite state machine, lim infn→∞

KF (X�n)
n

= 1. We refer the reader to
Dai et al. [18], Bourke et. al. [10], and to Jack Lutz’s home page for much more
on this topic, and its relationship to things like DNA self-assembly, modeling the
processes of molecular biology.

References

1. M. Agrawal, N. Kayal, N. Saxena. PRIMES is in P Annals of Math. Volume
160 (2004), 781-793.

2. D. Bailey and R. Crandall. On the Random Character of Fundamental Constant
Expansions. Experimental Mathematics, Vol. 10 (2001), No. 2

3. Veronica Becher. Turing’s normal numbers: towards randomness. In S.B.
Cooper, A.Dawar, B. Löwe (eds.), CiE 2012, Lecture Notes in Computer Science
7318: 35-45 Springer, Heidelberg, 2012.

4. V. Becher, S. Figueira, R. Picchi. Turing’s unpublished algorithm for normal
numbers. Theoretical Computer Science 377 (2007), 126–138.

5. V. Becher and S. Figueira. An example of a computable absolutely normal
number. Theoretical Computer Science 270 (2002), 947–958.

6. V. Becher, P. Heiber, and T. Slaman. A polynomial time algorithm for comput-
ing absolutely normal numbers. Proceedings Amer. Math. Soc., in press.

7. L. Bienvenu, A. Day, M. Hoyrup, I. Mezhirov, and A. Shen. Ergodic-type char-
acterizations of algorithmic randomness. To appear in Information and Com-
putation.

8. E. Borel. Les probabilités dénombrables et leurs applications arithmétiques.
Rendiconti del Circolo Matematico di Palermo 27 (1909), 247–271.

9. E. Borel. Leçons sur la thèorie des fonctions. Gauthier Villars, 2nd ed. 1914.
10. C. Bourke, J. Hitchcock, N. Vinodchandran, Entropy rates and finite-state

dimension. Theoretical Computer Science 349(3) (2005), 392–406.
11. Y. Bugeaud, Nombres de Liouville et nombres normaux, Comptes Rendus de

l’Académie des Sciences de Paris 335 (2002), 117–120.
12. V. Brattka, J. Miller, and A. Nies, Randomness and differentiability, to appear.
13. M. Braverman and M. Yampolsky, Non-Computable Julia Sets. Journ. Amer.

Math. Soc., Vol. 19(3), 2006
14. G. Chaitin. A theory of program size formally identical to information theory.

Journal of the ACM, Vol. 22 (1975), 329–340.
15. A. Church. On the concept of a random sequence. Bulletin of the American

Mathematical Society, Vol. 46 (1940), 130–135.
16. R. Cilibrasi, P.M.B. Vitanyi, and R. de Wolf. Algorithmic clustering of music

based on string compression. Computer Music J., Vol. 28 (2004), 49-67.
17. A. Copeland and P. Erdös. Note on normal numbers. Bull. Amer. Math. Soc.

Vol. 52 (10) (1946), 857860.
18. L. Dai, J. Lutz, E. Mayordomo. Finite-state dimension. Theoretical Computer

Science 310 (2004), 1–33.
19. R. Downey (editor). Turing’s Legacy. To appear, Cambridge University Press.
20. R. Downey and D. Hirschfeldt, Algorithmic Randomness and Complexity,

Springer-Verlag, 2010.
21. W. Fouche. The descriptive complexity of Brownian motion. Advances in Math-

ematics, Vol. 155 (2000), 317–343.
22. H. Fuchs and C. Schnorr. Monte Carlo methods and patternless sequences. In

Operations Research Verfahren, Vol XXV, Symp. Heidelberg, 1977, 443-450.
23. M. Hochman and T. Meyerovitch. A characterization of the entropies of multi-

dimensional shifts of finite type. Annals of Mathematics, Vol. 171 (2010), No.
3, 2011-2038

24. R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits:
derandomizing the XOR lemma. In Proceeding STOC ’97 Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing 220-229.

25. A. N. Kolmogorov. Grundbegriffe der Wahrscheinlichkeitrechnung, Ergebnisse
Der Mathematik. (1933) translated as Foundations of Probability, New York:
Chelsea Publishing Company, 1950.

26. A. N. Kolmogorov, Three approaches to the quantitative definition of informa-
tion, Problems of Information Transmission, 1 (1965), 1–7.

27. H. Lebesgue. Sur certaines démonstrations d’existence. Bulletin de la Société
Mathématique de France 45 (1917), 132–144.

28. L. Levin. Some theorems on the algorithmic approach to probability theory and
information theory, Dissertation in Mathematics Moscow University, 1971.

29. L. Levin. Laws of information conservation (non-growth) and aspects of the
foundation of probability theory. Problems of Information Transmission, Vol.
10 (1974), 206–210.

30. M. Levin. On absolutely normal numbers. English translation in Moscow Uni-
versity Mathematics Bulletin 34:32–39.

31. M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and its Ap-
plications, 2nd edition, Springer-Verlag, 1997.

32. A. Nies, Computability and Randomness, Oxford University Press, 2009.
33. P. Martin-Löf, The definition of random sequences, Information and Control, 9

(1966) 602–619.
34. E. Mayordomo. Construction of an absolutely normal real number in polynomial

time. Preprint, November 2012.
35. C. Schnorr. A unified approach to the definition of a random sequence. Mathe-

matical Systems Theory, Vol. 5 (1971), 246–258.
36. C. Schnorr, Zufälligkeit und Wahrscheinlichkeit. Eine algorithmische

Begründung der Wahrscheinlichkeitstheorie, volume 218 of Lecture Notes
in Mathematics. Springer-Verlag, Berlin–New York, 1971.

37. C. Schnorr and H. Stimm. Endliche Automaten und Zufallsfolgen. Acta Infor-
matica 1 (1972), 345–359.

38. W. Schmidt. On normal numbers. Pacific Journal of Math. 10 (1960), 61–672.
39. W. Sierpiński. Démonstration élémentaire du théorème de M. Borel sur les nom-

bres absolument normaux et détermination effective d’un tel nombre. Bulletin
de la Société Mathématique de France 45(1917), 127–132.

40. R. Solomonoff. A Formal Theory of Inductive Inference, Part I. Information
and Control, Vol 7, No. 1 (1964), 1-22.

41. A. Turing. On computable numbers with an application to the Entschei-
dungsproblem. Proceedings of the London Mathematical Society, Vol. 42 (1936),
230–265, 1936. Correction in Proceedings of the London Mathematical Society,
Vol. 43 (1937), 544–546.

42. A. Turing. Computing machinery and intelligence. Mind, Vol. 59 (1950), 433-
460.

43. A. Turing. Intelligent Machinery, A Heretical Theory 1951, but first published
in The Essential Turing, J. Copeland ed., Claredon Press, Oxford, 2004.

44. A. Turing. A note on normal numbers. In J.L.Britton, editor Collected Works
of A.M. Turing: Pure Mathematics. North Holland, Amsterdam, 1992, 117–119,
with notes of the editor in 263–265. Reprinted in Alan Turing - his work and
impact, S B. Cooper and J. van Leeuwen editors, Elsevier, 2012.

45. J. Ville, Étude Critique de la Notion de Collectif, Gauthier-Villars, 1939.
46. R. von Mises. Grundlagen der Wahrscheinlichkeitsrechnung. Math. Z., Vol. 5

(1919), 52–99.
47. A. Wald. Sur le notion de collectif dans la calcul des probabilitiés. Comptes

Rendes des Seances de l’Académie des Sciences, Vol. 202 (1936), 1080–1083.

48. A. Wald. Die Weiderspruchsfreiheit des Kollektivbegriffes der Wahrschein-
lichkeitsrechnung. Ergebnisse eines mathematischen Kolloquiums, 8 (1937), 38–
72.

49. H. Zenil, Randomness Through Computation: Some Answers, More Questions,
(Hector Zenil editor), World Scientific, Singapore, 2011.

