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Abstract

A real is called c.e. if it is the halting probability of a prefix free
Turing machine. Equivalently, a real is c.e. if it is left computable in
the sense that L(a) = {¢ € Q : ¢ < a} is a computably enumerable
set. The natural field formed by the c.e. reals turns out to be the field
formed by the collection of reals of the form a — 5 where « and 5 are
c.e. reals. While c.e. reals can only be found in the c.e. degrees, Zheng
has proven that there are A degrees that are not even n-c.e. for any
n and yet contain d.c.e. reals.

In this paper we will prove that every w-c.e. degree contains a d.c.e.
real, but there are w+ 1-c.e. degrees and, hence A degrees, containing
no d.c.e. real.
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1 Introduction

The central interest in classical computability theory has been the under-
standing the computational complexity of sets of positive integers, yet, even
in the original paper of Turing [15], a central topic is interest in effectiveness
considerations for reals. Of particular interest to computable analysis (e.g.
Weihrauch [16]) and to algorithmic information theory (e.g. Li-Vitanyi [11]),
is the collection of computably enumerable reals.

A real « is computably enumerable! if we can effectively generate it from
below. That is, the left cut L(a) = {q¢ € Q : ¢ < a} forms a c.e. set.
Equivalently, a real is c.e. if there is a computable sequence of rationals
{¢; - i € N} with ¢;41 > ¢; converging to . If we can effectively compute
the radius of convergence, then the real is computable, in the sense that we
can compute effectively the n-th bit of its dyadic expansion. Finally, for
interest in Kolmogorov complexity, a real is c.e. iff it is the measure of the
domain of a prefix-free Turing? machine; that is, a halting probability. If
M is a universal prefix-free the real obtained by this is called €2, Chaitin’s
halting probability, and is definitely not computable because it has no such
converging sequence. In fact, whilst the easiest way to generate a c.e. real is
to take a c.e. set W and let o = .W, the real whose dyadic expansion if the
characteristic function of W, it is not hard to see that €2 is not even in this
form.

Various authors have contributed to the study of the collection of c.e.
reals. See [3, 4, 5, 6, 7, 16, 17].

However, it is clear the the collection of c.e. reals do not behave well
algebraically since, for instance, 1 — € is not c.e.. Because of this, in [1],
Ambos-Spies, Weihrauch and Zheng investigated the collection of the differ-
ences of c.e. reals, D = {a — f : a, § c.e. reals } and proved that D is closed
under the arithmetic operations, and hence forms a field. We call reals in D
d.c.e. reals. The following proposition gives an analytical characterization of
d.c.e. reals:

Proposition 1 (Ambos-Spies, Weihrauch and Zheng [1]) A real number x

'We remark that there have been a host of other names for this class including the left
computable, left computably enumerable, lower semi-computable, etc reals.

2Recall that a Turing machine M is called prefix-free iff for all o, 7 if 0 < 7 and M (o) |,
then M (7) 1. Such machines have measurable domains with the standard measure on 2%,
being p({a € 2¥ : 0 < a}) =271



is d.c.e. iff there is a computable sequence (xs) of rational numbers which
converges to x such that ) _|xs — v41| < ¢ for a constant c.

We remark that because of Theorem 77, we can easily see that the field
of d.c.e. reals is in fact a real closed field. The proof is simple. If x is d.c.e.
and (z4) converges to = such that > |rs — xsyq]| is finite, then the sequence

(y/z5) converges to v/z and the sum ) |\/Z; — \/Ts31] is finite too. That is
Vv is d.ce..

However, Zheng has shown that the class of d.c.e. reals is not closed under
computable monotone functions.

Say that a real § is proper d.c.e. if § is d.c.e. and does not equal to any
c.e. real. An easy example of a proper d.c.e real is found by taking 0 as a
binary expansion of a proper 2-c.e. set, or a proper d.c.e. set, since a 2-c.e.
set can be regarded as the difference of two c.e. sets. We recall the definition
of the boolean algebra of n-c.e. sets.

Definition 2 (Ershov [8, 9]) The difference hierarchy is defined as follows:

(i) A set A C w is called n-computably enumerable (n-c.e., for short), if
there is a computable function f such that for all z € w,

(a) f(z,0) =0,
(b) lim, f(x,s) {= A(z), and
(©) Hs+11 f(x,5) # flz,s + 1)} <n.

(ii) A set A C wis a-computably enumerable (a-c.e., for short) relative to a
computable system S of notations for « if and only if there is a partial
computable (p.c.) function f such that for all k, A(k) = f(k,b), where
b is the S-least notation x such that f(k,z) converges.

By Definition 2, a set A C w is w-c.e. if and only if there are two
computable functions f(z,s), g(x) such that for all x € w,

(a) f(x,0) =0,
(b) lim, f(x,s) 4= A(z), and
(€) s+ 1] f(x,5) # fz,s + 1} < g(x).

The following simple fact is from Arslanov [2] .
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Proposition 3 (Arslanov [2]) Let A be any w-c.e. set. Then there exists
an w-c.e. set B =p A and a computable functions f(x,s) such that for all
T Ew,

(a) f(x,0) =0,
(b) lim, f(x,s) |= B(x), and

(¢) Ks+ 1] fx,s) # [z, s+ 1)} <.

Here is a simple proof of this fact, which was surely known before it was
stated by Arslanov. Suppose that A is w-c.e. with at most g(z) mind changes
for each . Without loss of generality we can suppose that g is an increasing
computable function. Now define B by putting g(z) € B iff x € A. Then
B =,, A and B is w-c.e. via the identity function.

It is easy to see that for any n-c.e. set A, the binary expansiony of A is
a d.c.e. real. The converse is not true. Zheng [18] constructed a d.c.e. real
not contained in any w-c.e. degree.

Additionally, in section 2, we prove that any w-c.e. degree contains a
d.c.e. real.

Theorem 4 Let a be any w-c.e. degree, then a contains a d.c.e. real.

In view of Zheng’s result, and that of Ho [10] that every AY real is the
limit of a computable sequence of rationals, it even seemed reasonable that
perhaps every A degree contained a d.c.e. real. The answer is no. In section
3, we construct a AY set (indeed, an w + 1-c.e. set) not Turing equivalent to
any d.c.e. real.

Theorem 5 There are AY degrees containing no d.c.e. real.

We remark that the method of proof for Theorem 5 is new and may well
have other applications.

Our notation and terminology are standard and generally follow Soare
[14]. For a set A, we use A, to denote the set of elements in A at the end
of stage s. For a given partial computable (p.c.) functional ®, and a set A,
the use function ¢* is bounded by stages. We also assume that if @2 (x)
converges, and y < x, then ¢ (y)[s] also converges. Seta are identified with
their characteristic functions. Finally, A denotes symmetric difference.



2 Every w-c.e. degree contains a d.c.e. real

The proof of Theorem 4 is seperated into two parts. First, we prove that if the
bounding function does not increase too fast, then the binary expansionary
of the corresponding set is a d.c.e. real.

Lemma 6 Let A be any w-c.e. set, and f, g be two functions given in Defi-
nition 2. If . g(x) - 277 is bounded, then .A is a d.c.e. real.

Proof: Let c be a constant such that ) g(z)-27" < c. W.lo.g., suppose
that |As11AA| < 1 forany s. Then {0.A; : s € N} is a computable sequence
of rational numbers converging to 0.A and

D04 =0 A=) {27 w€ AAA} =) 277 g(x) <c

seN seN zeN

By Propostion 1, 0.4 is d.c.e.. 0

Now we combine Lemma 6 with Propostion 3 to give a proof of Theorem
4.

Proof of Theorem 4: Let a be any w-c.e. Turing degree and A € a be
an w-c.e. set. By Propostition 3, there is an w-c.e. set B Turing equivalent
to A and a computable function f satisfying (a)-(c) in Propostition 3. Since
Y nen - 27" < 2is bounded, by Lemma 6, 0.B is a d.c.e. real. Therefore, a
contains a d.c.e real. O

We remark here that Theorem 4 can also be proved in a constructive way.
That is, given A as an w-c.e. set, we can construct two c.e. reals «, [ such
that o — 8 is Turing equivalent to A. The main idea of the construction is
as follows.

Let f, g be two computatable functions satisfying the following conditions:

(a) f(z,0) =0,
(b) limg f(x,s) = A(x), and
(¢) Hs: flz,s) # flz,s + 1} < g().

W.lo.g., suppose that for any s € N, [{z: f(x,s) # f(z,s+ 1)} < 1.
Let A, = {x : f(x,s) = 1}. By our assumption on f, for any s € N,
|A8AAS+1| <1



Define a function h such that h(n) = >,  (g9(n) + 2). Obviously, h is
computable. We describe the approximations of o and [ as follows.
First, let ag = ), oy 271 By = 0. ayy1, Bey1 are defined as follows:

« _ ag + 27 (D=1 if Ay = AgpU{n};
st Q otherwise.

By = Bs + 27 (D=1 if Ag1 =AU {n};
st B otherwise.

Then o = lim,_, oy and [ = lim,_,, B are both c.e. and hence a« — 3 is
d.c.e.. It is easy to see that for any n and s, the following hold:

A(n) =0 <= (a5 —B) [[h(n), h(n + 1)) = 100- -- 00
1 < (a,—B,) A1), h(n+1)) =011---11.

oS

vl

E
I

An)=0 <= (a—=pB)[[h(n),h(n+1))=100---00
1 <= (a—=p0)[h(n),h(n+1))=011---11.

a — (3 is Turing equivalent to A.

3 A A) degree containing no d.c.e. reals

In this section, we prove that not every AS-Turing degree contains a d.c.e.
real. To this end, we construct a AJ-set A which is not Turing equivalent
to any d.c.e. real. That is, A is constructed to satisfy the following require-
ments:

Re:A# Q0% V a,—f, # U (1)

where {(®., V., a., B.) : e € N} is an effective enumeration of all 4-tuples
(P, ¥, «, 5), &, computable functionals, and «, 3 c.e. reals. Say that re-
quirement R. has priority higher than R. if e < €.

A is constructed as a AY set by stages. Let A, be the approximation
of A at the end of stage s. Then A = lim,_ ., A,. We now describe a
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strategy satisfying a single requirement. First we define the length function
of agreement for R, at stage s as follows:

l(e, 8) :max{x : As(l') = CI)(;?S_B&S (l')&(ae,s - ﬁe,s) f%,s(I) = \Iﬂ:,; Hpe,s(l‘)}y

where @, is the use function of the functional ®.. Our strategy will ensure
that [(e, s) is bounded during the construction, and hence R, is satisfied.
We first choose a witness = as a big number and wait for a stage s with
l(e,s) > z. Put x into A, and wait for another stage s’ > s with I(e, s') > x.
If there is no such a stage, then R, is satisfied obviously. Otherwise, we
have that o — 8 changes below ¢, s(z) between stages s and s’. That is,
WA o, (z) have changes between s and s'. Note that the only small number
enumerated into A between s and s’ is z, so by taking x out of A, we recover
the computations ¥4 | ¢, .(z) to \Ilfs [ @es(x), and we have a temporary
disagreement between (a. — f¢) [ e.s(z) and U [ ¢, (z). If (e — Be) | pe.s()
don’t change later, then by preserving A on ¢ s(pes(z)), we will have

(e — Be) [ pe,s() # \ij [ e,s(T),

and R, is satisfied again. By iterating such a procedure, we put = into A and
take x out of A alternatively, trying to get a disagreement between A and
®* ) o1 between (e —B:) [ pe.s(x) and U @, ((z). It is easy to check that
if (ae — fe) [ @e.s(x) changes only finitely often, then we can get the wanted
disagreement eventually, and R, is satisfied. However, (a. — ;) [ ¢e.s(z) may
change infinitely often, as pointed out below, even though both a [ e s()
and B, [ pes(7) settle down after a stage large enough.

Fix i. (ae — B¢)(i) can be changed by changes of ae(j) or fe(j), where
J > 4. For example, let

Q1 = Qo = 0.101w0, B.1 = 0.100wl and S, 2 = 0.100wO0.

for some w € {0,1}" and n € N. Then we have

n n

—~ —
Gt — By =0.0010T--T1  and ey — ey = 0.00110---00.

The change of B.(n + 4) from 1 to 0 leads to the change of (a. — f3.)(4)
from 1 to 0. We call such a change of a, — . as a “nonlocal-disturbance”.
Note that (c. — f)(4) can be changed infinitely often by these nonlocal-
disturbances since we have infinitely many such ws. Fortunately, if such a
“nonlocal-disturbance” happens, then the corresponding segments of o, — 3,
will be in quite simple forms. This is summarized below:

7



Proposition 7 Let of = 0.alal---al, B9 = 0.bb,--- b and of — 7 =

0.clc)---c for j =0,1. If there are numbers i < k < n such that ¢ # ¢!,
and a? = a}, b9 = b} for allt < k. Then, there is a j € {0,1} such that

cde =011 & ¢ ¢ ¢7=100---0. (2)

Now let’s turn back to consider (a. — Be) [ ¢es(x). Suppose that both
Qe [ e s(x) and B [ e s(x) do not change after a stage large enough, s; say,
then by Proposition 7, the initial segment (a. — 5.) [ ¢(z) can have only one
of two different forms: 0.w011---1 or 0.w100 - - - 0 for some fixed binary word
w. It leads us to use two-attackers to satisfy R., instead of using a single
attacker. That is, at stage s’, instead of taking x out of A, we put  — 1
into A and wait for a stage s” > ¢’ with l(e,s”) > z. At stage s”, we take
x — 1 and z out of A, and wait for a stage s > s” with I(e,s”) > z. As
a consequence, A [ 1.(ges(x)) is recovered to that of stage s. Now we have
three uses of @.(x), i.e., pes(2), e s (x), and e s (). At stage s + 1, we
will have (e s — Besm) [ es(T) = (Qes — Bes) | pes(z). As in stage s, we
put x into A again. We call the procedure between s and s” + 1 a complete
cycle.

Let k be the maximum among ¢, (), ¢es(x), and . ¢ (). Then in a
complete cycle (o, — B.) | k has three different forms. By Proposition 7, in
each complete cycle, a, or 5, must have a change below k. Since a., (. are
both c.e., we can assume that after a stage ¢ large enough, a, [ k and S, [ k
don’t change anymore, and therefore, after ¢, no cycle can be complete. As
a consequence, one of the combinations of A(z — 1) and A(x), 00, 01, or 11,
satisfies the requirement R..

We describe the whole construction of A below.

Construction of A

During the construction, say that a requirement R. requires attention at
stage s+ 1 if z. is defined and I(e, s) > x.. When we initialize a requirement
R., we undefine all parameters associated with it.

Stage s = 0: Do nothing.

Stage s + 1: If no requirement requires attention at stage s + 1, then choose
a least e such that z. is not defined and define z, = s + 2.
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Otherwise, let R, be the requirement of the highest priority requiring
attention and define

01 if Ag(ze —1)As(ze) = 00;
Agii(ze — DAg1(ze) = ¢ 11 if Ag(xe —1)As(ze) = 01; (3)
00 if Ag(ze —1)As(ze) = 11.

Initialize all requirements with lower priority, and declare that R, receives
attention at stage s + 1.

This completes the construction.

We now verify that A constructed above satisfies all the requirements.
We only need to prove the following lemma.

Lemma 8 For any e € N, R, requires and receives attention finitely often.

Proof: We prove Lemma 8 by induction on e. Assume that, for any i < e,
R; requires and receives attention only finitely often. Let sy be the least
stage after which no requirement R;, ¢ < e, requires attention. By the choice
of sy, R, is initialized at stage s’. Let s; > so be the stage at which z, is
defined. Since R, cannot be initialized after stage sq, x. cannot be canceled
afterwards. We prove below that after a stage large enough, sy > s; say, R.
does not require attention anymore, and hence [(e, s) cannot exceed x. for
s > S9, R, is satisfied.

For a contradiction, suppose that after stage si, there are infinitely many
stages to+ 1,1 + 1,25+ 1, - - - at which R, requires attention. Then, at stage
to+1, we have l(e, tg) > xe, Asy(xe—1)Asy(xe) = 00, Agyi1(xe—1)Asyr1(ze) =
01. By the choice of sg, no requirement with higher priority can put numbers
smaller than v 4 (e 1, (x,)) into A. Since all requirements with lower priority
are initialized at stage ty + 1, when these requirements receive attention
after ¢y + 1, the numbers they put into A or take out of A are all larger
than ¢y, and hence larger than 1. (¢e s, (zc)). Therefore, the computations
\If?zg (peto(xe)) can only be changed by R, itself by changing A(x. — 1) or
A(z.). Thus, by a simple induction, we have for all n € N,

Ato rwe,to(spe,to (l'e)) = Atgn r¢e,to (Qoe,to (xe))



because A(x, — 1)A(z.) changes always in the order 00 — 01 — 11 — 00.
Therefore,

(ae tsn 56 tgn) “06 Jto (xe) = (ae,to - /66,t0> Mpe,to (376)-

This means that the computation <I>et3 (x.) is actually the same as that of

@ftfo(xe) Slmllarly, we can prove that the Computatlon D, tg”i( T.) is the

3n+2

etonra(Te) i the same as

same as that of @, tl( x.), and the computation o)
that of 2 (z,).

e,ta

Let & = max{pe;(z.) : i < 3}. Choose an n large enough such that
l(e,t,) > z., and

O, [k =aei Tk & Pey, [k = Perlk

for any ¢ > t,,. W.o.l.g., suppose that n = 3m for some m. Then A, (z.—
)Atn (l’e) = 00 Athrl( )At 11 (I’e) = 01 and At 1)Atn+2 (Z‘e> = 11.
By our choices of ¢,,, 1,41, 12, We have

q)ae,tn*ﬁe,tn (er _ 1)¢ae st —Be tn (l'e) = 00’ a,nd

n+2 (

e,tn
(I)O‘E’thrl —Be,tni1 ( _ 1)q)ae,tn+1 —Be,tpi1 ( ) —01
etn+1 Le e,tn+1 Te) = .

This implies that

(ae7t7L - Be,tn) [(pe,tn (xe) # (aeatn+l - ﬁe,tn+1) I\S067tn+1 (:L‘e)

and hence (o, — Bet,) [k # (et — Betnyr) [k By Lemma 7, there exists
a binary word w such that (aey, — e, ) [ k takes one of the forms 0.w100- - -0
and 0.w011---1, and (Qey,,, — Betnyy) |k takes the other one. Assume that
(e, = Bet,) I k takes the form 0.w100---0 and (et,,, — Betnyr) [ £ takes
the form 0.w011---1. By the same argument, since (ey,,, — Betni) | K
takes the form 0.w011 - - -1, we know that (cey,,, — Bet,..) [ k takes the form
0.w100---0. Thus,

(Oéeytn+2 - 6e,tn+2) “f - (ae,tn - ﬁe,tn> fka

and hence
00 = P2 Fe(ze — 1) [t )PP (o) [tn] = PL P (2 — 1)L P (2,) = 11.

A contradiction. Therefore, after stage ¢,,, R, can require (and hence receive)
at most two more times

This ends the proof of Lemma 8. 0J
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