
December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

1

Resolute sequences in initial segment complexity

George Barmpalias

State Key Lab of Computer Science

Institute of Software, Chinese Academy of Sciences

Beijing 100190, China.
E-mail: barmpalias@gmail.com

www.barmpalias.net

Rod G. Downey

School of Mathematics, Statistics and Operations Research

Victoria University, P.O. Box 600
Wellington, New Zealand

Email: rod.downey@vuw.ac.nz

We study infinite sequences whose initial segment complexity is invariant under

effective insertions of blocks of zeros in-between their digits. Surprisingly, such
resolute sequences may have nontrivial initial segment complexity. In fact, we

show that they occur in many well known classes from computability theory,

e.g. in every jump class and every high degree. Moreover there are degrees which
consist entirely of resolute sequences, while there are degrees which do not con-

tain any. Finally we establish connections with the contiguous c.e. degrees, the

ultracompressible sequences, the anti-complex sequences thus demonstrating
that this class is an interesting superclass of the sequences with trivial initial

segment complexity.

Keywords: Kolmogorov complexity, Computably enumerable sets, trivial reals.

1. Introduction

Given an infinite random binary sequence X we may reduce its initial seg-

ment complexity by inserting blocks of zeros between its original digits.

Even a single zero in-between every other digit of X will reduce its com-

plexity dramatically. But what if X is not random? Can we always alter the

complexity of its initial segments by ‘spreading out’ its digits in an effective

manner? Clearly if X has trivial initial segment complexity, the simplifi-

cation of its initial segments will not result in a ‘measurable’ reduction of

their complexity. Surprisingly, there are nontrivial sequences X whose ini-

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

2

tial segment complexity is invariant under such effective ‘block inserting’

operations. Intuitively, these sequences have the property that

it is very hard to locate bits of significant information in their initial segments.

In this article we exhibit such examples in a variety of classes from com-

putability theory and study this proper superclass of the family of sequences

with trivial initial segment complexity. In particular, we establish connec-

tions with a number of notions from computability and Kolmogorov com-

plexity like the jump hierarchy, the contiguous degrees, the ultracompress-

ible sets of [1], the facile sets of [2, Section 8.2] and the anti-complex sets

of [3]. Another notion of computational weakness was studied in [4] but we

have not considered any possible connections with the latter class.

1.1. Formal expressions of resoluteness

We measure the complexity of binary strings σ via the plain Kolmogorov

complexity C(σ) prefix-free Kolmogorov complexity K(σ); this is the length

of the shortest program that produces σ in an underlying plain or prefix-free

machine respectively. For background on Kolmogorov complexity we refer to

[5]. Let X ≤K Y denote ∃c∀n K(X �n) ≤ K(Y �n) + c and similarly X ≤C
Y for the plain complexity. These preorders induce equivalence relations

≡K , ≡C and corresponding degree structures that are known as the K-

degrees and the C-degrees respectively. Intuitively, two sequences in the

same degree have the same initial segment complexity.

The operation of inserting 0s between various digits of a given sequence

is equivalent to shifting the bits of the sequence at various places and filling

in the gaps with 0s. Let us refer to increasing functions f : N→ N as shifts.

If we view an infinite binary sequence X as a set of natural numbers, then

the result of such a shift operation may be expressed as the image of X

under f .

Definition 1.1 (Shifts). An increasing function f : N→ N is called shift.

For each set Z we let Zf = {f(n) | n ∈ Z}. A shift is called trivial if

∀n (f(n) < n+ c) for some constant c.

Invariance under shift operations with respect to the plain and the prefix-

free complexity can be defined as follows.

Definition 1.2 (Invariance). A set Z is K-invariant under f if Z ≡K
Zf and is C-invariant under f if Z ≡C Zf .

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

3

For every sequence Z and every computable shift f we have Zf ≤K Z,

so the application of a computable shift on a sequence may only reduce its

initial segment complexity. Note that if a shift f is trivial then for every

sequence Z the sequence Zf is (modulo finitely many bits) merely the result

of shifting the bits of Z by a fixed number of places. Trivial shifts are not

very interesting from our point of view as they preserve most notions of

complexity on all sequences.

Definition 1.3 (K-resolute sequences). An infinite sequence Z is

called K-resolute if Z ≡K Zf for all computable shifts f . The C-resolute

sequences are defined analogously.

This definition is arguably a faithful formalization of the property that

we discussed earlier, i.e. the ability of a sequence to preserve its initial

segment complexity despite any computable insertion of blocks of 0s in-

between its digits. This is an expression of ‘resoluteness’ of a sequence,

i.e. the inability to locate significant amounts of information in its initial

segments. There are other, similar ways to express this informal concept.

For example, consider property (1).

For all computable shifts f , ∃c∀n K(Z �f(n)) ≤ K(Z �n) + c. (1)

This also expresses a form of ‘resoluteness’ of a sequence. Moreover it is not

hard to see that K-resolute sequences meet (1). Indeed, since there exists a

constant c such that ∀n |K(Zf �f(n))−K(Z �n)| < c, for any computable

shift f ,

if Z ≡K Zf , then ∃c∀n |K(Z �f(n))−K(Z �n)| < c. (2)

We say that a set is weakly K-resolute if it meets condition (1).

Yet another form of ‘resoluteness’ may be expressed in terms of condi-

tional complexity, as in (3). Here an order is a nondecreasing and unbounded

function.

For all computable orders g, ∃c∀n K(Z �n | n) ≤ K(Z �g(n) | n) + c. (3)

Moreover each of the above notions has a version with respect to plain

complexity.

As interesting as it may be, we will not be concerned with the techni-

cal question about the relationship between the above resoluteness notions.

Instead, we focus on the notion of Definition 1.3 and note that our main

results also hold for the two other notions (also with respect to plain com-

plexity).

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

4

In the following, we use the term ‘resolute’ to refer collectively to any

of the above three formal variations on this concept and the versions with

respect to plain complexity, while ‘K-resolute’ is reserved for the notion of

Definition 1.3. A degree is K-resolute if it contains a K-resolute set.

1.2. Resoluteness and complexity

Intuitively, sequences with ‘consistently high complexity’ cannot be reso-

lute. On the other hand, sequences with trivial complexity are resolute. We

give an overview of the relationship between complexity and resoluteness

in more precise terms. In our context, trivial sequences are the K-trivial

sequences, i.e. the sequences X such that ∃c∀nK(X �n) ≤ K(n) + c. It was

shown in [6] that this class is downward closed under Turing reducibility.

Hence, if X is K-trivial and f is a computable shift then Xf ≡K X. In

other words, K-trivial sequences are K-resolute.

On the other end of the spectrum, a sequence X is called random if

there exists a constant c such that ∀n K(X �n) ≥ n − c. It is clear that

random sequences are not K-resolute. In fact, much more is true. A set is

called complex if ∀n K(X �f(n)) ≥ n for some computable function f . This

definition is from [7,8] where it was shown to be equivalent to the condition

that a diagonally noncomputable function is weak truth table reducible to

X. Clearly complex sets are not weakly K-resolute (i.e. they do not meet

(1)). It follows that complex sets are not K-resolute. Similar considerations

apply to the C-resolute sets.

In turns out that K-resolute sets have very low initial segment complex-

ity, but not necessarily trivial complexity. A class of sequences of ‘ultra-

low’ initial segment complexity was introduced in [1]. We say that X is

ultracompressible if for all computable orders h, there exists c such that

K(X �n) ≤ K(n) + h(n) for all sufficiently large n. A related class of se-

quences of low complexity was introduced in [3]. A set X is anti-complex

if for all computable orders f we have C(X �f(n)) ≤ n for all but finitely

many n. It is not hard to see that in this definition it does not matter if we

use prefix-free complexity instead of plain complexity. Also, it is not hard

to see that every ultracompressible set is anti-complex.

The proof of the following observation uses two notions from com-

putability theory. A set X is called superlow if the jump X ′ of X is truth-

table reducible to the halting problem ∅′. Also, a degree a is called ar-

ray computable if there exists a function that can be computed from the

halting problem with computable use of this oracle, which dominates all

a-computable functions.

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

5

Proposition 1.1. Every K-resolute set is ultracompressible (hence, anti-

complex). The converse is not true, even for c.e. sets.

Proof. Let X be a K-resolute set. In order to show that it is ultracom-

pressible, let g be a computable order. Without loss of generality we may

assume that g is onto. Let f be a computable increasing function such

that g(f(n)) = n2 for all n. Since g is onto, f(n) can be defined by

searching for the least number m such that g(m) = n2. Then there ex-

ists some constant c such that K(Xf �n) ≤ K(n) + 2
√
g(n) + c for all

n, since Xf �n has at most
√
g(n) nonzero bits. Since X is K-resolute,

∃d∀n, K(X �n) ≤ K(n) + 2
√
g(n) + d. Since limn(g(n) − 2

√
g(n)) = ∞

this implies that K(X �n) ≤ K(n) + g(n) for almost all n. Hence X is

ultracompressible.

For the second clause we note that by [2, Theorem 8.2.29], every set with

array computable c.e. degree is ultracompressible. Also, by [3, Theorem

1.3] (and the fact that the array computable c.e. degrees are exactly the

c.e. traceable degrees) every set with array computable c.e. degree is anti-

complex. On the other hand, by [2, Exercise 8.2.10], every superlow set is

array computable. Hence it suffices to construct a superlow c.e. set which

is not K-resolute. This is entirely similar to the typical construction of a

superlow c.e. set which is not K-trivial (e.g. see [2, Exercise 5.2.10]) where

K-triviality is replaced by (1). We leave this argument as an exercise for

the motivated reader, as it does not present any novel features.

A variation of ultracompressible sets was introduced in [2, Section 8.2] in

terms of conditional complexity. A sequence X is called facile if for each

order h and all sufficiently large n we have K(X �n | n) ≤ h(n). It is not

hard to see that every facile set is ultracompressible.

Proposition 1.2. All sequences that meet resoluteness condition (3) are

facile, but the converse does not hold (even for c.e. sets).

The first clause of this proposition is straightforward while the proof of

the second clause is entirely analogous to the argument in the proof of

Proposition 1.1.

The analogues of Propositions 1.1 and 1.2 with respect to plain com-

plexity also hold (with similar proofs). We illustrate some of the above

observations In Figure 1, where one may interpret ‘resolute’ with any of

the three notions of resoluteness that we considered (i.e. K-resoluteness or

one of (1), (3) and the plain complexity versions of these notions). Note

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

6

that in the case of (3), one may also replace ‘ultracompressible’ with ‘facile’

since the latter property is guaranteed by (3). Sparse sets will be defined

in Section 2.

Ultracompressible

Resolute

K-trivial
Sparse

Fig. 1. Classes of sequences of low initial segment complexity.

2. Resoluteness and sparseness

Intuitively, any information in a resolute set is coded in a very sparse way. In

other words, a block of high complexity in a sequence may be used in order

to reduce its initial segment complexity significantly, by ‘spreading out’ the

bits of this block. In this section we formulate a notion of sparseness that is

sufficient to guarantee resoluteness, and flexible enough to provide examples

in many classes from computability theory. A concrete motivation for this

notion as a tool for the study of resoluteness is the following observation.

By direct coding on the values of the iterations of a given computable shift

f we show that there are many sequences whose initial segment complexity

is invariant under the application of f .

Proposition 2.1. Let f be a computable shift. Every many-one degree con-

tains a set X such that X ≡K Xf .

Proof. Let Y be a set and g(n) = fn(0). Define X = {g(n) | n ∈ Y } so

that Y ≡m X. It remains to show that KM (X �n) ≤ K(Xf �n) + 1 for a

prefix-free machine M and all n. Let F = {f i(0) | i ∈ N} and given n > 0

let t0, . . . tk be the first k + 1 members of F that are less than n. Then all

bits of X �n are 0 except perhaps ti, i ≤ k. Moreover X(ti) = Xf (ti+1) for

all i < k. Hence in order to describe X �n we just need a description of

Xf �n and the value of X(tk). This shows that there is a machine M such

that ∀n (KM (X �n) ≤ K(Xf �n) + 1).

The bits of X of Proposition 2.1 that carry some information (‘significant

bits’) are far apart with respect to f . In particular, the image of the position

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

7

of each such bit under f is the position of the next significant bit. In fact,

for the equivalence X ≡K Xf it suffices that the image under f of each

significant bit is at most as large as the position of the next significant

bit. This property is illustrated in Figure 2 (where ‘diamonds’ indicate the

significant bits and ‘dots’ indicate the rest of the bits) and is the motivation

for Definition 2.1. Given an increasing function g and two sets (viewed as

infinite binary sequences) X,Y we denote by X⊗gY the set that is obtained

by replacing the g(i)th bit of X with the ith bit of Y , for each i.

Definition 2.1 (Sparse sets). Given an increasing function g we say

that a set A is g-sparse if A = E ⊗f X for a computable set E, a com-

putable function f with g(f(i)) < f(i+ 1) for all i, and some set X. A set

B is called sparse if it is g-sparse for all computable increasing functions g.

Af

f

f

A

Fig. 2. Construction of sparse and resolute sets.

Traditional notions of sparseness are based on the feature that the 1s

have (in a certain sense) ‘low density’ in the initial segment of a sequence.

An example here is the various immunity notions from classical computabil-

ity theory (immune, hyperimmune, hyperhyperimmune etc.). These notions

are closer to the special case of Definition 2.1 with E = ∅. Definition 2.1

also involves a notion of domination. For example, if we require E = ∅ in

the definition then we only get sets A with A′ ≥T ∅′′. Such sets compute a

function that dominates all computable functions. By considering sparse-

ness modulo computable sets (i.e. allowing E to be a computable set that

depends on the choice of g) we obtain a much richer class, as we demon-

strate in the following sections. For example, in Section 3 we show that

sparse sets occur in all jump classes.

We show that sparseness indeed guarantees resoluteness. In order to do

this, we need two technical observations.

Lemma 2.1. Let f, g : N → N be computable increasing functions with

the property that g(n + 1) > f(g(n)) for all but finitely many n. If E is a

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

8

computable set then E ⊗g X ≡K (E ⊗g X)f for all sets X.

Proof. It suffices to find a prefix-free machine M such that

∀n KM

(
(E ⊗g X) �n

)
≤ K

(
(E ⊗g X)f �n

)
+ 1

By the choice of f, g, for each sufficiently large number n we have |g(N) �n
| ≤ |f(g(N)) �n |+1. Hence for each sufficiently large n, in order to describe

the first n bits of E ⊗g X we only need a description of the first n bits of

(E ⊗g X)f and at most one extra bit. It follows that the machine M with

the desired property exists.

The following lemma can be proved similarly.

Lemma 2.2. Let g be an order and let f be a computable increasing

function such that f(n) ≤ g(f(n + 1)) for all but finitely many n. If

Z = E ⊗f X where E is a computable set and X is any set, then

∃c∀n K(Z �n | n) ≤ K(Z �g(n) | n) + c.

If a set A is sparse, then given any any computable order h we have A =

E ⊗f X for some computable set E, some set X and some computable

increasing function f such that f(i) < h(f(i + 1)). Indeed, consider the

increasing function h∗ : n 7→ min{i : max{n, h(n− 1)} < h(i)}. Since A is

sparse, it can be written as E⊗f X for some computable set E, some set X

and some computable increasing function f such that h∗(f(i)) < f(i+ 1).

In particular, f(i) < h(f(i+ 1)) for all i.

The following is a direct consequence of the above discussion, Definitions

1.3, 2.1, and Lemmas 2.1, 2.2. Moreover it holds in terms of plain complexity

by the same arguments.

Corollary 2.1. Every sparse set Z is K-resolute and meets (3).

We can show that there are Turing complete sparse (hence resolute) sets.

Since (by [9]) complete sets are not K-trivial, these are the first (and most

easily produced) nontrivial examples of resolute sets. Without additional

effort, we take a step further and show the following stronger statement. A

degree a is called high if a′ ≥ 0′′.

Theorem 2.1. Every high c.e. degree contains a sparse (hence resolute)

c.e. set.

Proof. Let a be a high c.e. degree and let A be a c.e. set in a. By a

simple variation of Martin’s characterization of high c.e. degrees in terms of

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

9

dominating functions in [10], a computes a sequence (xi) with computable

approximations lims xi[s] = xi satisfying the following properties for each

i, s:

(a) f(xi) < xi+1 for all computable shifts f and all but finitely many

i;

(b) xi[s] < xi+1[s] and xi[s] ≤ xi[s+ 1];

(c) if xn[s] 6= xn[s+ 1] then xn[s+ 1] > s+ 1;

(d) xi[s] ∈ N[i].

Consider the set D consisting of the numbers n such that n = xi[s] for

some i, s such that xi 6= xi[s]. Clearly D is c.e. and is computable from

A. Moreover it is easy to see that it computes A, so that it has degree

a. It remains to show that D is sparse. We define a computable set E

and a computable function g such that D = E ⊗g X for some set X and

f(g(n)) < g(n + 1) for all n. Let i0 be a number such that f(xi) < xi+1

for all i ≥ i0 and let s0 be a stage such that xi[s] = xi for all i ≤ i0 and

s ≥ s0. Define g(0) = xi0 and let g(i + 1) = xi+1[s] for the least stage

s ≥ s0 such that xi+1[s] > f(g(i)) and s > g(xi+1[s]). In this case we say

that g(i + 1) was defined at stage s. According to the hypothesis about

(xi), the function g is total and computable. Moreover f(g(n)) < g(n+ 1)

for all n. The set E is defined recursively as follows. To compute E �n find

the least j, sj such that g(j) is defined at stage sj and g(j) > n. For each

t < n, if t 6∈ g(N) and t = xk[s] for some k < j and s ≤ si let E(t) = 1;

otherwise let E(t) = 0. According to the properties of (xi), after stage si
there will be no additional positions < n occupied by approximations to

the values of (xi). Hence the sets E,D agree on the positions in N− g(N).

Hence D = E ⊗g X for some set X.

The proof of Theorem 2.1 can be modified to a construction of a hyperim-

mune Π0
1 sparse set. Curiously enough, such sets have to be high.

Proposition 2.2. Every sparse hyperimmune set is high.

Proof. Let A be a sparse set which is not high. Let f be an A-computable

function such that for each i there exist at least 2i numbers in A �f(i). Since

A is not high there exists a computable function h such that h(i) > f(i) for

infinitely many i. Since A is sparse, we may choose a computable set E and

a computable function g such that g(i) > h(i) for all i and A = E⊗gX for

some set X. From this presentation it follows that A is not hyperimmune.

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

10

It is, perhaps, not surprising that there are K-resolute sets that are not

sparse. By applying Proposition 2.2 to a K-trivial hyperimmune set we get

the following (since K-trivial sets are not high [6]).

Corollary 2.2. There exists a K-trivial set which is not sparse.

At this point we have justified the diagram in Figure 1. We note that all

of the depicted classes are meager, in the sense of Baire category. Indeed,

every weakly 2-generic set has effective packing dimension 1 so it is not

ultracompressible.

Another way to obtain sparse and resolute sets is to use basis theorems

on effectively closed sets. For this purpose, we need the following fact.

Theorem 2.2. There exists a non-empty Π0
1 class with no computable

paths which consists entirely of sparse sequences.

Proof. We will define a partial computable function ϕ with binary values

such that the set of all total extensions of it, is the required Π0
1 class.

Fix a computable double sequence (xn[s]) with x0[s] = 0 and such that

(a)-(d) of Theorem 2.1 hold. Let (ϕe) be an effective sequence of all partial

computable functions. We assume the standard convention that if ϕe(n)[s] ↓
then e, n are less than s. The construction of ϕ is as follows: at stage

s, if ϕe(xe)[s] ↓ for some e < s and ϕ(xe[s]) is undefined, then define

ϕ(xe[s]) = 1 − ϕe(xe)[s]. Moreover for each i < s, if i 6= xe[s] for all e < s

and ϕ(i) is undefined, define ϕ(i) = 0.

For the verification, first note that since each xe[s] reaches a limit as

s→∞ (and each time it is redefined it takes a value on which ϕ is currently

undefined) the Π0
1 class of total extensions of ϕ is perfect. Indeed, there are

infinitely many e ∈ N for which ϕe is the empty function, and for these

numbers e the function ϕ will be undefined on xe := lims xe[s]. Second,

there are no computable extensions of ϕ. Indeed, given e ∈ N, if ϕe is total

then by the construction we have ϕ(xe) 6= ϕe(xe) where xe := lims xe[s].

Finally, we show that every extension of ϕ is sparse. Let g be an increasing

computable function. Then by the properties of (xe[s]) there exists some

e0 such that f(xe) < xe+1 for all e > e0. We may define a computable set

E as follows. Let E �xe0 = ϕ �xe0 and let s0 be a stage where xe0 [s] has

reached a limit. Also let y0 = xe0 . At step e > e0 find a stage s > s0 such

that f(xi)[s] < xi+1[s] for each i ≤ e and xe+1[s] < s. Then define the bits

of E in the interval (ye−1, xe[s]] to be the bits of ϕ in the same interval,

except where ϕ is (currently) undefined in which case we choose value 0.

Also let ye = xe[s].

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

11

For each n, positions between yn and yn+1 in E include the values of

some codes xe[s], where s is the stage found in step n+1 of the construction

of E. By the construction, if (zi) is the sequence of these positions we have

g(zj) < zj+1 for each j. Therefore any extension A of ϕ can be written as

E⊗fX where f(i) = zi and X is some set (giving the bits of A on positions

zi).

A set is called computably dominated if every function computable from it is

dominated by a computable function. The strong version of the computably

dominated basis theorem (see [2, Theorem 1.8.44]) says that every Π0
1 class

without computable paths has a perfect subclass of computably dominated

sets. By applying this basis theorem to the class of Theorem 2.2 we get

more examples of sparse sets.

Corollary 2.3. There are uncountably many computably dominated sparse

sets.

In particular, there are uncountably many resolute sets.

3. Jump inversion with K-resolute sequences

A set A is called superlow if A′ ≡tt ∅′. Curiously enough, it is more in-

volved to produce a non-trivial sparse c.e. set which does not realize the

highest jump, than it is to produce one that does. A possible heuristic ex-

planation for this is that the the notion of sparseness involves some type

of domination (which is characteristic to high sets). Similar remarks apply

to the construction of K-resolute sets (compare with the straightforward

constructions of Section 2 that produce high sets).

Theorem 3.1. There exists a superlow sparse c.e. set A which is not K-

trivial.

Proof. We use a priority tree construction to construct a c.e. set A with

the required properties. Let (Φe) be an effective enumeration of all Turing

functionals and let (ϕe) be an effective enumeration of all strictly increasing

partial computable functions. Without loss of generality we may assume

that, for all e, i, s, if ϕe(i + 1)[s] ↓ then ϕe(i)[s] ↓. Moreover let ∗ denote

concatenation of strings. In order to ensure that A is sparse it suffices to

satisfy the following conditions.

Re : ϕe is total⇒ ∃E,X, g, (A = E ⊗g X and ∀i, ϕe(g(i)) < g(i+ 1))

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

12

where E ranges over all computable sets, X ranges over all sets and g ranges

over all computable functions. In order to ensure that A is not K-trivial

it suffices to construct a prefix-free machine N (as usual, by enumerat-

ing a Kraft-Chaitin set of requests) such that the following conditions are

satisfied.

Pe : ∃n K(A �n) > KN (n) + e.

We will also ensure that A′ ≡tt ∅′ by ensuring that the values of A′ can

be approximated with a computable modulus of convergence. The priority

tree is the full binary tree where each level e is associated with requirements

Re, Pe. In particular, each node of length e has two branches with labels 1,0

that correspond to a guess about whether ϕe is total or not. In addition,

each such node (based on the guesses about the totality of ϕi, i < e) will

work toward the satisfaction of Pe. The construction will proceed in stages

s + 1, where a path δs of length s will be defined through the tree. Given

a node α, we say that stage s is an α-stage if α ⊂ δs. Define `α(s) to be

max{i | ∀j < i ϕ|α|(j)[s] ↓} if s is an α-stage and 0 otherwise. A stage s is

called α-expansionary if `α(s) > `α(t) for all t < s.

Let α→ nα be a one-one function from the nodes of the tree to N such

that the sum of 2−nα for all nodes α is at most 1/2. We fix the priority

list P0, R0, P1, Each node carries a strategy Pα for P|α| and a strategy

Rα for R|α|. Injury of a strategy Pα means the initialization of it and all of

its parameters. There will be no injury of the Rα strategies. Strategy Pα
may be injured either because δs moves to the left of it, or because ΦAi (i)[s]

becomes defined at some stage s for some i < |α| (with appropriately large

use). At stage s + 1 the quota for weight of the N -requests that node α

may enumerate is 2−tα[s], where tα[s] = nα + uα[s] + |α| and uα[s] is the

number of times that Pα has been injured in the stages up to s. A number

is called large at some stage of the construction if it is larger than the value

of every parameter of the construction up to that stage.

Strategy Rα will define a computable sequence (qαi) of potential ‘codes’

such that φe(q
α
i) < qαi+1 for all i such that qαi+1 ↓. If ϕ|α| is partial, the

sequence (qαi) will be finite. These ‘codes’ will be chosen inductively as a

subsequence of (qβi), where β is the largest initial segment of α with β∗1 ⊆ α
(if such segment does not exist, codes are chosen as a subsequence of the

identity sequence). For each α we let pαi = qβi where β is as above, and

pαi = i if such β does not exist.

Strategy for Pα

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

13

(1) Pick a large number mα.

(2) Let Dα be a set of 2tα terms of (pα〈α,2i+1〉) with i > mα.

(3) Let rα = maxDα + 1 and enumerate an N -description of rα of length

tα − |α|.
(4) Wait until K(A �rα)[s] ≤ KN (rα)[s] + |α|.
(5) Enumerate max(Dα −A[s]) into A and go to step 4.

Note that the loop between steps 4 and 5 can only be repeated at most

2tα − 1 times. Hence K(A �rα) > KN (rα) + |α|. We say that node Pα
requires attention at stage s + 1 if α ⊆ δs and the strategy for α is ready

to perform the next step. In other words, in the following cases:

(a) mα is undefined;

(b) mα ↓ but Dα is undefined, and there are 2tα terms of (pαi) as required

in step (2) of the strategy for Pα;

(c) the strategy is in step 4 and K(A �qα)[s] ≤ KN (n)[s] + e.

The strategy Rα operates at α-expansionary stages and defines (qαi). Note

that since ϕ|α| is increasing, we also have qαi ≥ i for all I such that qαi is

defined.

Strategy for Rα

(1) Let qα0 be pα〈α,0〉.

(2) Let j be the largest number such that qαj ↓ and define qαj+1 to be the

least pα〈α,2i〉 which is greater than ϕ|α|(q
α
j).

We say that Rα requires attention at stage s + 1 if α ∗ 1 ⊆ δs and the

strategy is ready to perform the next step. In other words, if qα0 is undefined

or ϕ|α|(q
α
j) is defined for some j but qαj+1 is undefined. The construction

includes an injury of the strategies from the implicit lowness requirement.

Injury of α means injury Pα.

Construction At stage s + 1 define a path δs of length s inductively,

starting from the root and from each node α choosing branch 1 if s is an α-

expansionary stage and 0 otherwise. Injure all nodes to the right of δs. For

each e < s such that ΦAe (e)[s] ↓ with use ue and each α such that |α| ≥ e,

mα[s] < ue injure Pα. For each α ⊂ δs for which Rα requires attention,

execute the next step of Rα. If some Pα with α ⊂ δs requires attention,

pick the least such α, execute the next step of its strategy.

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

14

Verification We first verify that A′ ≤tt ∅′. Each Pα may only be injured

by computations ΦAe (e)[s] ↓ for e ≤ |α|. Every injury of α initiates another

round of the strategy of α. At any round, the maximum amount of enu-

merations into A that α may perform is bounded by the current value of

tα. On the other hand, the current value of tα may be computed by the

number of injuries that α has endured. It follows that there is a computable

bound on the number of times that each computation ΦAe (e)[s] ↓ may be

‘disturbed’ (by enumeration into A below the current use of the compu-

tation). Hence A′ may be computably approximated with a computable

modulus of convergence, which shows that A′ ≤tt ∅′.
Let δ be the leftmost path such that for all n we have δ �n⊂ δs at

infinitely many stages s. By induction we show the following for each α ⊂ δ:

(i) Pα is injured or requires attention finitely many times;

(ii) if α ∗ 1 ⊂ δ then (qαi) is total.

Let α be a node and suppose that these clauses hold for all β ⊂ α. According

to the above discussion, beyond a certain stage the computations ΦAe (e) will

either converge permanently or diverge permanently. Therefore the lowness

requirements will stop injuring Pα. On the other hand (by the induction

hypothesis) beyond a certain stage the strategies Pγ for γ ⊂ α and γ to the

left of α will stop requiring attention. Therefore they will cease enumerating

numbers in to A and Pα will stop being injured. After such a stage, Pα will

stop requiring attention before it has completed 2tα enumerations into A.

This completes the induction step for (i).

For (ii) note that by the induction hypothesis the sequence (pαi) is total.

We may assume that α ∗ 1 ⊂ δ (otherwise (ii) holds trivially). Then there

will be infinitely many α-expansionary stages and, by the construction, (qαi)

will be totally defined. This completes the inductive proof of (i), (ii).

Finally we show that A meets all requirements Pe, Re. Let α be the

unique node on δ of length e. For Pe, let s0 be a stage after which Pα is

not injured. By properties (i)-(iii) that we established it follows that (pαi) is

total. Moreover the terms pα〈α,2i+1〉 may only be enumerated into A by Pα.

Hence the strategy Pα will complete the preliminary steps (1)-(3) and will

enter the loop (4)-(5) thus ensuring (as explained in the remark following

the description of this strategy) that K(A �rα) > KN (rα)+ |α| for a certain

number rα. It follows that Pe is met.

For Re, if α∗0 ⊆ δ then ϕe is partial and Re is met. Otherwise α∗1 ⊆ δ
and by (iii), (qαi) is total. Note that when a term qαi is defined, the strategies

to the right of α∗1 will not enumerate into A any numbers ≤ qαi . The same

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

15

holds for the strategies γ ⊆ α or those that lie to the left of α ∗ 1. Moreover

the only numbers enumerated in A by the strategies extending α ∗ 1 are

terms of (qαi). It follows that α defines a computable set E and the function

g(i) = qαi such that A = E⊗gX for some set X. Moreover by the definition

of (qαi) we have ϕe(g(i)) < g(i+ 1) for all i. Hence Re is met.

In some respect, the construction in the proof of Theorem 3.1 resembles

the construction of a maximal set. However, the lowness requirements ap-

parently make the use of some type of a tree argument necessary.

Corollary 3.1. There exists a superlow K-resolute c.e. set A which is not

K-trivial.

A general jump inversion theorem for sparse sets is easy to obtain since

we have already constructed a perfect Π0
1 class of sparse sets with no com-

putable paths.

Theorem 3.2 (Jump inversion with sparse sets). Every jump class

contains a sparse set. In particular, every degree above 0′ contains the jump

of a sparse set.

Proof. By [11] given a degree a ≥ 0′ and a Π0
1 class P with no computable

members, there exists X ∈ P such that X ′ is a member of a. Therefore the

theorem is a consequence of Theorem 2.2.

The jump inversion for c.e. sparse sets involves a modification of the argu-

ment that we used in the proof of Theorem 3.1.

Theorem 3.3 (Jump inversion with sparse c.e. sets). For every Σ0
2

set S ≥T ∅′ there exists a sparce c.e. set A such that A′ ≡T S.

Proof. The argument here is similar to the one in the proof of Theorem 3.1,

so we use the same notation and terminology. Requirements Re remain the

same and the tree of strategies is also the same. We also need to satisfy S ≡T
A′. The coding of S into A′ will be achieved via the standard ‘thickness’

requirements, only that the codes that are used need to be chosen from

the ones produced by the Re strategies. Let D be a c.e. set such that if

e ∈ S then D[e] = N �n for some n, and if e 6∈ S then D[e] = N[e]. We may

fix an enumeration of D such that at each stage s, if 〈e, n〉 ∈ D[e][s] then

〈e, i〉 ∈ D[e][s] for all i < n. In the following construction, ‘injury’ of a node

α is merely a way to say that δ2s+1 moved to the left of α. We may assume

that if ΦAe is undefined then ΦAe [s] is undefined for infinitely many s.

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

16

Construction At stage 2s+ 1 define a path δ2s+1 of length s inductively,

starting from the root and from each node α choosing branch 1 if s is an

α-expansionary stage and 0 otherwise. For each α ⊂ δ2s+1 for which Rα
requires attention, execute the next step of Rα and injure all nodes that lie

to the right of δ2s+1. At stage 2s + 2, for each α with |α| < s enumerate

into A all pα〈α,2i+1〉 which are defined with i ∈ D[|α|][2s+ 2] and are larger

than all uses of any computations ΦAi (j)[2s + 1] ↓ with j < e and larger

than the last stage where α was injured.

Verification We first verify that A′ ≤T S. Since S computes ∅′, it also

computes D. In order to decide if ΦAe (e) ↓ we first compute a stage s0
at which D[i][s0] = D[i] for all i < e such that D[i] is finite. Moreover

inductively, we may compute whether ΦAi (i) ↓ for each i < e, and a stage

s1 > s0 such that ΦAi (j)[s] ↓ for all s ≥ s1 and each j < e such that ΦAj (j) ↓.
Let ve be the maximum use of the oracle A in these computations. Next, we

ask if there is a stage 2s+2 > s1 such that ΦAe (e)[2s+2] is defined with some

use ue and for all pα〈α,2i+1〉[s] with |α| < e, D[|α|] = N[|α|], pα〈α,2i+1〉[s] > ve

and pα〈α,2i+1〉[s] ≤ ue we have i ∈ D[|α|][2s+2] or the last stage where α was

injured is larger than ue. If such a stage does not exist, then clearly ΦAe (e)

is undefined. Otherwise, the construction will preserve the computation,

hence ΦAe (e) is defined. Hence S computes A′.

Next, we show that S ≤T A′. In order to decide if e ∈ S we first find a

stage s0 at which all computations ΦAi (i), i < e that eventually converge,

actually converge at s0 with correct A use. Moreover let ue be the maximum

of these uses. Then we search for some x such that one of the following holds:

(a) for all α with |α| = e, all i > x and all s > x either pα〈α,2i+1〉[s] is

undefined, or it is ≤ ue or it is a member of A[s];

(b) for all α with |α| = e, all i > x and all x either pα〈α,2i+1〉[x] is undefined,

or it is ≤ ue or it is not a member of A[s].

If e ∈ S we show that (a) holds for some x. Indeed, in this case D[|α|] = N[|α|]

and all defined terms pα〈α,2i+1〉[s] which are not prohibited by the conver-

gence of ΦAi (i), i < e will eventually enter A according to the construction.

By a standard use of ‘true stages’ in the enumeration of A (i.e. stages s

where for the least number n entering A we have A[s] �n is a prefix of A)

we get that all of these terms that are larger than ue will be permitted to

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

17

enter A at some point of the construction.

If e 6∈ S we show that (b) holds for some x. Indeed, in this case D[|α|]

is finite for all α with |α| = e. Let x be larger than all the elements of this

set. Then none of the codes pα〈α,2i+1〉 with i > x that are defined may enter

A.

Furthermore, it is not possible that both (a), (b) occur for some x.

Indeed, let δ be the leftmost path such that δ ⊂ δ2s+1 for infinitely many

s. If α = δ �|α| then (pαi) is total, which shows that at least one of (a), (b)

must fail (for sufficiently large x). Since the search for an x such that (a)

or (b) hold is computable in A′, this gives a computation of whether e ∈ S
from A′.

We conclude with a proof that A meets each Re requirement. Let α be

the unique node on δ of length e and let s0 be a stage such that δs is to the

right of α or an extension of it, for all s ≥ s0. If α ∗ 0 ⊆ δ then ϕe is partial

and Re is met. Otherwise α ∗ 1 ⊆ δ and (qαi) is total. Note that when a

term qαi is defined at some stage s > s0, no numbers pβi for β to the right

of α ∗ 1 will enumerated into A after s, unless they are larger than s. The

same holds for the nodes β which lie to the left of α ∗ 1. Moreover the only

numbers enumerated in A by the strategies extending α ∗ 1 are terms of

(qαi). Finally the finitely many nodes γ that prefix α enumerate computable

(possibly infinite) sets of codes pγ〈γ,2i+1〉 into A. It follows that α can define

a computable set E and the function g(i) = qαi such that A = E ⊗g X for

some set X. Moreover by the definition of (qαi) we have ϕe(g(i)) < g(i+ 1)

for all i. Hence Re is met.

4. Completely resolute and resolute-free degrees

We are interested in two extremes, namely the degrees which do not con-

tain resolute sets and the degrees that consist entirely of resolute sets. A

degree is called completely K-resolute if every set in it is K-resolute. Similar

definitions apply to the other notions of resoluteness that we have consid-

ered. Note that every K-trivial degree is completely K-resolute, so we will

be interested in nontrivial examples of such degrees. A degree is called

resolute-free if it does not contain any resolute set (with respect to any of

the definitions of resoluteness that we have discussed).

It turns out that the existence of such degrees is very related to two

observations between bounded Turing reductions (i.e. weak truth table re-

ductions) and resolute sets. Note that if f is a computable shift and A ≡K B

then Af ≡K Bf .

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

18

Proposition 4.1. If A is K-resolute and A ≡K B then B is also K-

resolute. The same holds for ‘weakly K-resolute’ in place of ‘K-resolute’.

Proof. First, we show the case for K-resolute sequences. Let f be a com-

putable shift. Under the assumptions there are constants ci such that for

all n,

K(B �n) ≤ K(A �n) + c0 ≤ K(Af �n) + c1 ≤ K(Bf �n) + c3.

Hence B ≡K Bf . Since f was chosen arbitrarily, B is also K-resolute.

Second, for the case of weakly K-resolute sequences let f be a com-

putable shift. Under the assumptions there are constants di such that for

all n,

K(B �f(n)) ≤ K(A �f(n)) + d0 ≤ K(A �n) + d1 ≤ K(B �n) + d3.

Since f was chosen arbitrarily, B is also weakly K-resolute.

Proposition 4.2. If B is weakly K-resolute and A ≤wtt B then A ≤K B.

Proof. Since A ≤wtt B there is a computable increasing function f such

that ∃d∀n (K(A �n) ≤ K(B �f(n)) + d). Since B is weakly K-resolute,

there exists a constant c such that ∀n (K(B �f(n))) ≤ K(B �n) + c). Hence

A ≤K B.

These observations point to the fact that in order to produce a degree which

does not contain any resolute sets it suffices to produce a set that is not

resolute and its Turing degree ‘collapses’ to (i.e. contains) a single weak

truth table degree. Similarly, in order to produce a degree which consists

entirely of resolute sets it suffices to produce a resolute set whose Turing

degree ‘collapses’ to (i.e. contains) a single weak truth table degree.

Proposition 4.3. Every computably dominated K-resolute degree is com-

pletely K-resolute. Moreover the same holds for weakly K-resolute in place

of K-resolute.

By the application of the uncountable version of the computably dominated

basis theorem for Π0
1 classes (e.g. see [2, Theorem 1.8.44]) on the class of

Theorem 2.2, along with Corollary 2.1 we have the following consequence.

Corollary 4.1. There exist uncountably many completely K-resolute de-

grees.

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

19

In particular, since there are only countably many K-trivial degrees, there

are completely K-resolute degrees which are not K-trivial. Similar results

hold for the resolute-free degrees.

Corollary 4.2. There exist uncountably many resolute-free degrees.

Indeed, there are uncountably many 1-random computably dominated de-

grees.

Corollary 4.3. Every (weakly) K-resolute sequence computable from a

Martin-Löf random computably dominated degree is computable.

Proof. By Demuth [12] (also see [5, Theorem 8.6.1] for a neat proof) every

noncomputable set that is truth-table reducible to a Martin-Löf random

set is Turing equivalent to a Martin-Löf random set. On the other hand,

there is a Martin-Löf random set of computably dominated degree, and

computably dominated degrees consist of a single truth-table degree. Hence

the statement is a consequence of Propositions 4.1 and 4.2.

We are interested in c.e. examples of completelyK-resolute and resolute-

free degrees. In [3, Theorem 4.3] it was shown that there exists a c.e. degree

which contains no anti-complex sets. Since every ultracompressible set is

anti-complex, this degree does not contain any ultracompressible or (by

Proposition 1.1) resolute sets.

Theorem 4.1. There exists a resolute-free c.e. degree.

Finally, we wish to produce nontrivial examples of completely K-resolute

c.e. degrees. A c.e. degree is called contiguous if all the c.e. sets in it are

weak truth table equivalent. The existence of nontrivial contiguous degrees

was first shown and exploited in [13]. A degree is called strongly contiguous

if all the sets in it are weak truth table equivalent; in other words, it consists

of a single weak truth table degree. The existence of strongly contiguous

c.e. degrees was shown in [14].

Theorem 4.2. Every strongly contiguous c.e. degree is completely K-

resolute.

Proof. We say that a c.e. degree a is ‘wtt-bottomed’ if the c.e. weak truth

table degrees inside a have a least element. It suffices to show that every c.e.

set in the least weak truth table degree inside a wtt-bottomed degree is K-

resolute. Indeed, strongly contiguous c.e. degrees are clearly wtt-bottomed

so the result would follow from Proposition 4.1.

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

20

Assume that a is a ‘wtt-bottomed’ c.e. degree and A is a c.e. set in the

least weak truth table c.e. degree inside a. We show that A is K-resolute.

Given a computable shift f we wish to construct a prefix-free machine M

such that

∀n KM (A �n) ≤ K(Af �n). (4)

Without loss of generality we may assume that the weight of the underlying

universal prefix-free machine U (i.e. the sum of all 2−|σ| such that U(σ) ↓)
is < 2−1. In order to define M , we construct an auxiliary c.e. set B such

that B ≡T A. Let A[s] be the enumeration of A with respect to a standard

enumeration of all c.e. sets (and Turing functionals). The enumeration of

B will be defined in these stages via a standard system of movable markers

δ(n)[s] When we say ‘move δ(n)’ at stage s+1 of the construction we mean

• enumerate δ(n)[s] into B;

• let δ(n)[s+ 1] = 〈n, s+ 1〉;
• let δ(i)[s+ 1] = 〈n, s+ 1〉 for each i ∈ (n, s].

Let δ(0)[0] = 0. We may assume that any number that enters A at stage s

is strictly less than s. Let g(n) = max{i | f(i) ≤ n}. Note that g(n) ≤ n

for all n.

Enumeration of B At stage s + 1 define δ(s + 1)[s + 1] = s + 1. If n

be the least number that enters A, move δ(g(n)). If there is no such n, do

nothing more.

Note that the enumeration of B is well defined. In order to show that

A ≡T B, note that for each m

δ(m) only moves if the approximation to A �f(m+1) changes. (5)

Hence each δ(m) reaches a limit. Moreover, since g(n) ≤ n for all n, every

time that the approximation to A �n changes, the approximation to B �δ(n)
also changes. Also when δ(n) moves, its current value is enumerated in B.

Hence A ≤T B. On the other hand, by (5) and the fact that δ(m)[s] ≥ m

for all s it follows that the approximation to B �n does not change unless

the approximation to A �f(n+1) changes. This shows that B ≤T A. Hence

A ≡T B.

By the hypothesis on A there exists a Turing functional Γ with a com-

putable bound on use function γ such that ΓB = A. Let (si) be an increasing

computable sequence of the ‘expansionary stages’ in the reduction ΓB = A,

i.e. the stages s where the maximum ns such that ΓB �ns= A �ns at stage

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

21

s is larger than the corresponding numbers nt for all t < s. Clearly, nsi ≥ i
for all i. We may assume that if γ(n)[s] is defined then its value is < s.

Suppose that A[st] �n 6= A[st+1] �n for some t and n ≤ t. Then for all k >

t, if A[sk] �n 6= A[sk+1] �n we also have have A[sk] �g(n) 6= A[sk+1] �g(n)
(6)

Indeed, by stage st all γ(i), i ≤ t are defined. In the interval of stages

[st, st+1] some number m < n enters A. Hence in the construction of B

(which runs on the same stages) δ(g(m))[st+1] is defined and larger than

γ(n). Hence if A[sk] �g(n)= A[sk+1] �g(n) for some k > t we also have

A[sk] �g(m)= A[sk+1] �g(m) which means that no number ≤ γ(n) will be

enumerated into B in the interval of stages (sk, sk+1]. Since (si) are ex-

pansionary stages and ΓB = A it follows that A[sk] �n 6= A[sk+1] �n. This

concludes the proof of (6).

Finally we may use (6) in order to construct a prefix-free machine M

with the property (4). We do this dynamically during the stages (si) using

a standard Kraft-Chaitin request set. At stage si, for each n < t such that

KM (A �n)[si] > K(Af �n)[si] we enumerate a description of A �n of length

K(Af �n)[si]. It suffices to show that the ‘weight’ of the requests is bounded

by 1. Fix n. By (6) each description of the universal machine U of a string of

length n (in particular the strings that have been current values of Af �n)

corresponds to at most two M -descriptions (which we enumerate in order to

reduce KM (A �n)). Indeed, (6) says that if we enumerate two descriptions

of A �n based on the same U -description of Af �n (in fact, same value of

Af �n) then the next description of A �n will be enumerated based on a

new description (and new value) of Af �n. Since the weight of the domain

of the universal prefix-free machine is < 2−1, the weight of the request set

for M is bounded by 1.

We note that the proof of Theorem 4.2 is easily adaptable for the other

resoluteness notions that we have considered. For example, it holds with

respect to plain complexity.

A degree a is low if a′ = 0′. By [15] there exists a strongly contiguous

c.e. degree which is not low. Hence we have the following consequence.

Corollary 4.4. There exists a completely K-resolute c.e. degree which is

not low.

A number of questions regarding the relationship between the Turing de-

grees and the K-degrees were raised in [16] and answered in [17]. For exam-

ple, in [17] it was observed that there are uncountably many sets such that

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

22

all of the sets in their Turing degree are in the same K-degree (i.e. have

the same initial segment prefix-free complexity). In particular, the K-trivial

c.e. degrees are not the only degrees such that all of their members are in

the same K-degree. Here we see this phenomenon inside the c.e. degrees.

Corollary 4.5. There exists a c.e. Turing degree which is not low, yet all

the sets in it have the same initial segment (plain or prefix-free) complexity.

We note that by [17] the complete c.e. degree does not have this property,

i.e. it contains sets with different initial segment complexity.

Acknowledgments

This research was partially done whilst the authors were visiting fellows

at the Isaac Newton Institute for the Mathematical Sciences, Cambridge

U.K., in the programme ‘Semantics & Syntax’. Barmpalias was supported

by the Research fund for international young scientists number 611501-

10168 from the National Natural Science Foundation of China, and an

International Young Scientist Fellowship number 2010-Y2GB03 from the

Chinese Academy of Sciences; partial support was also received from the

project Network Algorithms and Digital Information number ISCAS2010-

01 from the Institute of Software, Chinese Academy of Sciences. Downey

was supported by a Marsden grant of New Zealand.

References

1. J. I. Lathrop and J. H. Lutz, Recursive computational depth, Inf. Comput.
153, 139 (1999).

2. A. Nies, Computability and Randomness (Oxford University Press, 2009).
3. J. Franklin, N. Greenberg, F. Stephan and G. Wu, Anti-complexity, lowness

and highness notions, and reducibilities with tiny use, Submitted, (2012).
4. K. M. Ng, F. Stephan and G. Wu, Degrees of weakly computable reals, in

Proceedings of the Second conference on Computability in Europe: logical Ap-
proaches to Computational Barriers, (Springer-Verlag, Berlin, Heidelberg,
January 2006).

5. R. Downey and D. Hirshfeldt, Algorithmic Randomness and Complexity
(Springer, 2010).

6. A. Nies, Lowness properties and randomness, Adv. Math. 197, 274 (2005).
7. B. Kjos-Hanssen, W. Merkle and F. Stephan, Kolmogorov complexity and

the recursion theorem, in STACS , (Berlin, 2006).
8. B. Kjos-Hanssen, W. Merkle and F. Stephan, Kolmogorov complexity and

the recursion theorem, Trans. Amer. Math. Soc. 363 (2011).
9. R. G. Downey, D. R. Hirschfeldt, A. Nies and F. Stephan, Trivial reals, in

December 29, 2012 18:52 WSPC - Proceedings Trim Size: 9in x 6in conshiws

23

Proceedings of the 7th and 8th Asian Logic Conferences, (Singapore Univ.
Press, Singapore, 2003).

10. D. A. Martin, Classes of recursively enumerable sets and degrees of unsolv-
ability, Z. Math. Logik Grundlag. Math. 12, 295 (1966).

11. C. G. Jockusch, Jr. and R. I. Soare, Π0
1 classes and degrees of theories, Trans.

Amer. Math. Soc. 173, 33 (1972).
12. O. Demuth, Remarks on the structure of tt-degrees based on constructive

measure theory, Comment. Math. Univ. Carolin. 29, 233 (1988).
13. R. Ladner and L. Sasso, The weak truth-table degrees of the recursively

enumerable sets, Ann. Math. Logic 8, 429 (1975).
14. R. G. Downey, ∆0

2 degrees and transfer theorems, Illinois J. Math. 31, 419
(1987).

15. K. Ambos-Spies and P. A. Fejer, Degree theoretic splitting properties of re-
cursively enumerable sets, J. Symbolic Logic 53, 1110 (1988).

16. J. S. Miller and A. Nies, Randomness and computability: open questions,
Bull. Symbolic Logic 12, 390 (2006).

17. W. Merkle and F. Stephan, On C-degrees, H-degrees and T-degrees, in
Twenty-Second Annual IEEE Conference on Computational Complexity
(CCC 2007), San Diego, USA, 12–16 June 2007 , (IEEE Computer Society,
Los Alamitos, CA, USA, 2007).

