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Abstract. We study the notion of computable categoricity of computable
structures, comparing it especially to the notion of relative computable cate-

goricity and its relativizations. We show that every 1-decidable computably

categorical structure is relatively ∆0
2-categorical. We study the complexity of

various index sets associated with computable categoricity and relative com-

putable categoricity. We also introduce and study a variation of relative com-

putable categoricity, comparing it to both computable categoricity and relative
computable categoricity and its relativizations.

1. Introduction

This paper contributes to computable (effective) model theory, a subject devoted
to understanding structures with effective presentations. We recall that a structure
is computable if it has a presentation where the universe and atomic diagram are
computable. A very long-term program in computable model theory is to align
syntactic complexity of (aspects of) computable structures with computability-
theoretic properties. As an illustration of this program, we recall the notion of
computable categoricity.

Definition 1.1. A computable structure S is computably categorical if between any
two computable presentations A and B of S, there is a computable isomorphism.1

As is well-known, the countable dense linear order without endpoints is com-
putably categorical using Cantor’s back-and-forth argument. The model-theoretic
view is to try to put this computable categoricity result in some larger framework.
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The idea is that perhaps there is some deeper explanation of this categoricity re-
sult. As it turns out, there is indeed such a deeper reason for countable dense linear
orders: These structures have a certain kind of computable Scott formula (family),
making them relatively computably categorical, a strengthening of computable cat-
egoricity as follows.

Definition 1.2. A computable structure S is relatively computably categorical if
between any two (possibly noncomputable) presentations A and B of S, there is
an isomorphism computable in deg(A) ∪ deg(B), where we identify a presentation
with its atomic diagram; or, equivalently, if for any computable presentation A of S
and any (possibly noncomputable) presentation B of S, there is an isomorphism
computable in deg(B).

We now state the following classical result of Goncharov. It can be viewed as a
computable analog of the Scott Isomorphism Theorem.

Theorem 1.3 (Goncharov [11]). The following are equivalent for a computable
structure S:

(1) The structure S is relatively computably categorical.
(2) The structure S has a c.e. Scott family of (finitary) existential formulas

over some fixed c ∈ S, i.e., a c.e. family Φ of existential formulas over
some fixed c ∈ S such that each a ∈ S satisfies some ϕ ∈ Φ, and if a, b ∈ S
both satisfy the same ϕ ∈ Φ then they are automorphic.

In other words, the orbits of S are effectively isolated by (finitary) exis-
tential formulas.

(3) The structure S has a c.e. family Φ of (finitary) existential formulas over
some fixed c ∈ S such that each a ∈ S satisfies some ϕ ∈ Φ, and if a, b ∈ S
both satisfy the same ϕ ∈ Φ then they satisfy the same existential formulas.

In other words, the existential types of S are effectively isolated by (fini-
tary) existential formulas.

The program of aligning computational properties of structures with effective
syntactic properties goes back to the pioneering work of Goncharov [11], Ash and
Nerode [4] and others, and is the theme of Ash and Knight [2].

Our paper sits squarely within this program. This paper is devoted to try-
ing to understand computable categoricity and the extent to which computable
categoricity aligns itself with effective infinitary Scott formulas via theorems like
Theorem 1.3.

Another goal of this paper is to relate computable categoricity to definability
in arithmetic. The fundamental results of Emil Post showed that computational
complexity (as measured by the jump operator) goes hand in hand with syntactic
definability (as measured by quantifier depth and arithmetical complexity). Post’s
Theorem says that the Σ0

n-sets are the sets many-one reducible to ∅(n), and the
∆0
n+1-sets are exactly the ∅(n)-computable sets. Thus we would anticipate that

there should be some alignment of arithmetic complexity with the syntactic defin-
ability (in arithmetic) of computable structures. A natural way to measure this is
via index sets. In this vein, a rather long-standing open problem in computable
model theory concerns the index set complexity of the computably categorical struc-
tures.

Question 1.4. What is the computational complexity of a computable structure
being computably categorical (in terms of the arithmetic or analytic hierarchy)?
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In this paper, we will establish the computational complexity of a computable
structure being relatively computably categorical. We also establish the compu-
tational complexity of a computable structure being isomorphic to a fixed com-
putably categorical or relatively computably categorical structure. Question 1.4
was resolved by Downey, Kach, Lempp, Lewis, Montalbán, and Turetsky [7] using
techniques from this paper.

Theorem 1.5 (Downey, Kach, Lempp, Lewis, Montalbán, Turetsky [7]). The index
set of the computably categorical structures is Π1

1-complete.

Previously, the best-known lower bound was shown by White [17], namely,
Π0

4-hardness. Recently, Hirschfeldt, Kramer, Miller, and Shlapentokh [13] have
shown that the index set of the computably categorical algebraic fields is Π0

4-hard.

1.1. A First Summary. We start with our motivating questions:

• How does computable categoricity align itself with descriptive complexity
of the structure (in the language of the structure)?
• How does computable categoricity align itself with computational complex-

ity as measured by, for example, the index sets associated with the struc-
tures; that is, to definability in arithmetic?
• How are the considerations above affected by stronger effectivity consider-

ations about the structure, i.e., beyond simple computable presentability?
What happens if the structure is decidable or n-decidable for some n? Does
this make any difference?

Before we give the formal definitions needed for our results, we offer an informal
description of our findings. If we require 2-decidability, then computable cate-
goricity aligns itself with a c.e. Scott family of existential formulas in the sense of
Theorem 1.3 by another result of Goncharov (see Theorem 1.10). If we require
1-decidability, then computable categoricity aligns itself with a c.e. Scott family
of Σc2-formulas. The surprise is that computable categoricity with no extra decid-
ability does not align itself with the existence of a c.e. Scott family of formulas in
any level of the hyperarithmetic hierarchy, as will be shown in [7]. This result uses
technology introduced here.

1.2. Definitions and Our Results in More Detail. To state and demonstrate
our results, we will need some further definitions. Ash extended Theorem 1.3 from
relative computable categoricity to relative ∆0

α-categoricity.

Definition 1.6. A computable structure S is relatively ∆0
α-categorical if between

any two (possibly noncomputable) presentations A and B of S, there is an isomor-
phism which is ∆0

α(A⊕ B); or, equivalently, if for any computable presentation A
of S and any (possibly noncomputable) presentation B of S, there is an isomorphism
computable in ∆0

α(B).

Ash relativized Goncharov’s theorem using “computable infinitary Σα-formulas”
(denoted as Σcα-formulas):

Definition 1.7 (Ash [1]). We define by recursion on computable ordinals α the
collections of Σcα- and Πc

α-formulas (in a computable language L). Each such for-
mula has only a finite number of free variables, though it may have infinitely many
bound variables.

(1) A Σc0- or Πc
0-formula is a quantifier-free first-order L-formula.
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(2) A Σcα-formula, for computable α > 0, is (logically equivalent to) an infi-
nite c.e. disjunction of formulas of the form ∃xϕ(x, y) where each ϕ is a
Πc
β-formula for some β < α and y is the tuple of free variables.

(3) A Πc
α-formula, for computable α > 0, is (logically equivalent to) the nega-

tion of a Σcα-formula.

Theorem 1.8 (Ash [1]). The following are equivalent for a computable structure S:

(1) The structure S is relatively ∆0
α-categorical.

(2) The structure S has a Σ0
α-Scott family of Σcα-formulas over some fixed c ∈

S, i.e., a Σ0
α-family Φ of Σcα-formulas over some fixed c ∈ S such that each

a ∈ S satisfies some ϕ ∈ Φ, and if a, b ∈ S both satisfy the same ϕ ∈ Φ
then they are automorphic. (In other words, the orbits of S are effectively
isolated by Σcα-formulas.)

(3) The structure S has a c.e. family Φ of Σcα-formulas over some fixed c ∈ S
such that each a ∈ S satisfies some ϕ ∈ Φ, and if a, b ∈ S both satisfy the
same ϕ ∈ Φ then they satisfy the same Σcα-formulas. (In other words, the
Σcα-types of S are effectively isolated by Σcα-formulas.)

One might at first guess that the notions of computable categoricity and relative
computable categoricity coincide (although together Theorem 1.3 and Theorem 1.5
indicate that they cannot). However, if we add more computability-theoretic as-
sumptions, then the two notions do coincide. These assumptions are specified in
the following definition.

Definition 1.9. A computable presentation A of a computable structure S is:

(1) decidable if the elementary diagram of A is computable;
(2) n-decidable if the Σn-elementary diagram of A (in the first-order language

of S) is computable.

If S is computably categorical, it is easy to see that some computable presen-
tation of S is decidable (n-decidable) if and only if every computable presentation
of S is decidable (n-decidable).

Goncharov showed that for 2-decidable structures, computable categoricity and
relative computable categoricity coincide.

Theorem 1.10 (Goncharov [11]). A 2-decidable structure is computably categorical
if and only if it is relatively computably categorical.

The assumption of 2-decidability cannot be dropped completely, as observed by
Goncharov [12]; in fact, Kudinov showed that even 1-decidability is not sufficient
to ensure computable categoricity and relative computable categoricity coincide.

Theorem 1.11 (Kudinov [14]). There is a 1-decidable structure that is computably
categorical but not relatively computably categorical.

Our first main theorem shows that Goncharov’s result “almost” holds for 1-de-
cidable structures.

Theorem 1.12. Any 1-decidable, computably categorical structure is relatively
∆0

2-categorical.

We will prove Theorem 1.12 in Section 2, and related results in Section 3.
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The reader might perceive an emerging pattern here, namely, that weakening
the decidability hypothesis by a quantifier level increases the level of relative cate-
goricity by a jump. Thus, the natural guess would be that with 0-decidability (i.e.,
computable presentability), computable categoricity would imply relative ∆0

3-cat-
egoricity. Alas, this attractive pattern is far from the truth as evidenced by the
following:

Theorem 1.13 (Downey, Kach, Lempp, Lewis, Montalbán, Turetsky [7]). For
every computable ordinal α, there is a computably categorical structure that is not
relatively ∆0

α-categorical.

This suggests the following natural, and important, question.

Question 1.14. Is there a computably categorical structure that is not relatively
hyperarithmetically categorical?

In contrast to the concept of computable categoricity, relative computable cate-
goricity turns out to be relatively simple to classify in terms of its complexity: In
Section 4, we prove the following:

Theorem 1.15 (Folklore). The index set of the relatively computably categorical
structures is Σ0

3-complete.

In Section 4, we also examine the index set complexity of certain fixed com-
putably categorical and relatively computably categorical structures, such as tor-
sion-free abelian groups and structures with unusual index sets. In Section 5, we
introduce the related notion of relative computable categoricity above a degree and
examine its relationship with computable categoricity and relative computable cat-
egoricity and its relativizations. Whilst these results are not particularly difficult,
they do shed more light on this material.

We refer the reader to [2] for background on computable model theory and
effective algebra. Notation is more or less standard and generally follows [2] and [15].

2. Every 1-Decidable Computably Categorical Structure is
Relatively ∆0

2-Categorical

In this section, we show that computable categoricity implies relative ∆0
2-cate-

goricity amongst 1-decidable structures. The crux of the proof is Lemma 2.2.

Definition 2.1. For a structure A and tuples a, p ∈ A, denote by Σn-tpp(a) the
set

Σn-tpp(a) := {ϕ(x, y) ∈ Σn : A |= ϕ(a, p)}

and denote by Σcn-tpp(a) the set

Σcn-tpp(a) := {ϕ(x, y) ∈ Σcn : A |= ϕ(a, p)},

where in both cases we consider only finitary (or infinitary, respectively) formulas
in the language of the structure.

Lemma 2.2. If A is computably categorical and 1-decidable, then there is a tuple
p ∈ A such that distinct Σ1-types over p are incomparable under inclusion, and for
any a, a′ ∈ A, if Σ1-tpp(a) = Σ1-tpp(a

′), then Σc2-tpp(a) = Σc2-tpp(a
′).
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Note here that for a tuple a, the (finitary, first-order) Σ1-type determines the
(computable infinitary) Σc1-type as well as the (classically infinitary) Σi1-type. (This
relationship, of course, fails at higher levels.)

Proof of Lemma 2.2. We build a computable presentation B isomorphic to A and
attempt to make B not computably isomorphic to A. The amount of B constructed
when we consider the computable function ϕe witnessingA and B being computably
isomorphic will determine the parameter p.

In order to ensure A and B are classically isomorphic, we build an isomorphism
F : B → A in a ∆0

2-manner. We build B by constructing its atomic diagram in
stages. At each stage s, we enumerate the next atomic sentence true about A into
the atomic diagram of B as determined by the isomorphism F (as approximated at
stage s).

Let {ψi}i∈ω be a computable enumeration of all Σ1-formulas in the language
of A.

Strategy Defeating ϕe: We fix a partial computable function ϕe : B → A and seek
to ensure that ϕe is not an isomorphism.

Let s0 be the stage at which this strategy is initialized. This strategy takes no
action until a stage s1 > s0 when Bs0 ⊆ domFs1 and As0 ⊆ rangeFs1 . We then let
b0 := Bs1 and restrain the strategy, in the sense that F � b0 cannot be changed by
this strategy. At every stage s after becoming active, before we enumerate the next
sentence into the atomic diagram of B, we look for an opportunity to change F
in such a way that it still extends to an isomorphism, but such that F ◦ ϕ−1e is
guaranteed not to be an automorphism of A (ensuring that if F is an isomorphism,
as it will be, then ϕe is not an isomorphism). We will find such opportunities if the
types do not obey the conclusion of the lemma.

Before describing the strategy, we note the following. For any stage t > s1,
suppose b is a tuple from the domain of Bt, and let δt(b0, b, f) be the atomic diagram
of Bt, where f := Bt\(b0 ∪ b). Suppose a ∈ A. At a stage s > s1, we can redefine F
to map b to a without changing F � b0 if and only if A |= ∃x

[
δs−1(Fs−1(b0), a, x)

]
.

Here, we consider δs−1 instead of δs because when this strategy acts at stage s, we
have not yet enumerated the next sentence into the atomic diagram of B.

At a stage s > s1, we consider every triple (b, b
′
, d) with b, b

′ ∈ dom(ϕe,s) and

d ∈ dom(ϕe,s)\(b0 ∪ b). If this is the first stage at which we have considered this

triple, we use 1-decidability to determine if there is a tuple c ∈ A|d| such that

A |= ∃y
[
δs−1(Fs−1(b0), Fs−1(b

′
), c y)

]
,

i.e., we ask whether we can redefine F by putting Fs(b) := Fs−1(b
′
) and Fs(d) := c

while respecting the restraint. If there is no such c, we never consider this triple
again (since we cannot redefine F , there is no point in considering it further). If
there is such a c, we search for one and assign it to this triple. When we consider
this triple at future stages, this is the c to which we refer.

Then, for every triple (b, b
′
, d) being considered (along with its associated c), we

use 1-decidability to determine if

(1) A |=
[
ψi(Fs−1(b), Fs−1(d))⇐⇒ ¬ψi(Fs−1(b

′
), c)

]
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for some i < s, i.e., we ask whether redefining F by putting Fs(b) := Fs−1(b
′
) and

Fs(d) := c might be useful. If so, fix some triple and some i0 < s for which (1)
holds. We use 1-decidability to determine whether

(2) A |=
[
ψi0(ϕe(b), ϕe(d))⇐⇒ ψi0(Fs−1(b), Fs−1(d))

]
,

i.e., we determine whether or not it is necessary to perform any action to prevent

F ◦ ϕ−1e from being an automorphism. If (2) holds, we put Fs(b) := Fs−1(b
′
) and

Fs(d) := c, and extend Fs such that As ⊆ rangeFs and Bs ⊆ domFs. If (2) fails, we
put Fs(b) := Fs−1(b) and Fs(d) := Fs−1(d), and extend Fs such that As ⊆ rangeFs
and Bs ⊆ domFs. Regardless of whether (2) holds or fails, we declare the strategy
complete.

If (1) fails for all triples being considered and all i < s, we repeat the above

process with ∃y δs in place of ψi. That is, for every triple (b, b
′
, d) and associated c

being considered, we use 1-decidability to determine if

(3) A |= ¬∃y
[
δs(Fs−1(b0), Fs−1(b

′
), c y)

]
,

i.e., we ask whether we will lose the ability to redefine F after we enumerate the
next atomic sentence into the diagram of B. If (3) fails for every triple, we will not
lose the ability to redefine F , so we leave F alone and take no further action for
this strategy at stage s.

If (3) holds for some triple, fix a triple for which it holds. We will lose the ability
to redefine F , so we use 1-decidability to determine if

(4) A |= ∃y
[
δs(ϕe(b0), ϕe(b), ϕe(d) y)

]
,

i.e., we determine whether or not it is necessary to perform any action to prevent

F ◦ ϕ−1e from being an automorphism. If (4) holds, we put Fs(b) := Fs−1(b
′
) and

Fs(d) := c and extend Fs such that As ⊆ rangeFs and Bs ⊆ domFs. If (4) fails, we
put Fs(b) := Fs−1(b) and Fs(d) := Fs−1(d), and extend Fs such that As ⊆ rangeFs
and Bs ⊆ domFs. Regardless of whether (4) holds or fails, we declare the strategy
complete.

The strategy has two outcomes: wait and stop. Of course, these correspond to
whether the strategy has been declared completed.

Construction: We put these strategies on a tree, performing a straightforward
finite-injury argument in the usual manner. At each stage, the visited strategies
on the tree act in priority order. After they have acted, if no strategy defined Fs,
we define Fs by extending Fs−1 to include As and Bs in the range and domain,
respectively. Then the global strategy building B acts by taking the next atomic
sentence θs(a) true about A and enumerating θs(Fs(a)) into the atomic diagram
of B.

Verification: We verify F := lims Fs exists and is an isomorphism. Consequently,
there will be a (least) k such that ϕk : B → A is a computable isomorphism. Let σ
be the strategy for ϕk along the true path, and let b0 be the restraint of σ. We
show the desired relationships between the types of tuples of A using p := F (b0).

Claim 2.2.1. The function F := lims Fs exists and is an isomorphism.

Proof. The existence of F follows from the fact that, if a strategy redefines F on
an element (in either the domain or the range), then no lower-priority strategy can
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redefine F on that element. Thus, by induction, the function F can change only
finitely many times on any element (in either the domain or the range).

By construction, the function F is surjective and respects atomic sentences.
Thus, it is injective (as equality is an atomic sentence) and so an isomorphism. �

Claim 2.2.2. If a strategy for defeating ϕe is along the true path and declared
complete, then ϕe is not an isomorphism.

Proof. Let (b, b
′
, d) be the triple we act for. Note that F (b) = Fs(b) and F (d) =

Fs(d).
If we act because of some ψi0 , then regardless of whether (2) holds, we have

A |=
[
ψi0(ϕe(b), ϕe(d))⇐⇒ ¬ψi0(Fs(b), Fs(d))

]
.

If we act because of δs, then regardless of whether (4) holds, we have

A |= ∃y
[
δs(ϕe(b0), ϕe(b), ϕe(d)y)

]
⇐⇒ ¬∃y

[
δs(Fs(b0), Fs(b), Fs(d)y)

]
.

Thus, in either case, we have that F ◦ ϕ−1e is not an automorphism. �

Claim 2.2.3. The Σ1-types over p are incomparable under inclusion.

Proof. Towards a contradiction, we suppose that there are a, a′ ∈ A with

(5) Σ1-tpp(a) ( Σ1-tpp(a
′).

Consider any stage s+ 1 at which σ is visited such that Fs(b) = a and Fs(b
′
) = a′

for some b, b
′ ∈ dom(ϕk,s). Then at such a stage, it will always be possible for σ to

define Fs+1(b) = a′.
Note that (5) is equivalent to Σ1-tp(p a) ( Σ1-tp(p a′). Since F ◦ ϕ−1k is an

automorphism, we have

Σ1-tp(ϕk(b0)ϕk(b)) ( Σ1-tp(p a′).

Fix a formula ψi true of p a′ but false of p a. Then at any stage s > i when the

strategy considers the triple (b0 b, b0 b
′
, ∅), it will redefine F (b) = a′ to defeat ϕk,

contrary to our choice of k. �

Claim 2.2.4. For any tuples a, a′ ∈ A, if Σ1-tpp(a) = Σ1-tpp(a
′) then Σc2-tpp(a) =

Σc2-tpp(a
′).

Proof. Suppose Σ1-tpp(a) = Σ1-tpp(a
′), or equivalently Σ1-tp(p a) = Σ1-tp(p a′).

By symmetry, it suffices to show

Σc2-tp(p a) ⊆ Σc2-tp(p a′).

Fix a formula ∃xχ(p a, x) ∈ Σc2-tp(p a) with χ ∈ Πc
1 and a witness g ∈ A so that

A |= χ(p a, g). We show ∃xχ(p a, x) ∈ Σc2-tp(p a′).

Consider a stage s > s1 when σ is visited, F (b) = a, F (b
′
) = a′ and F (d) = g

have converged, and b0, b, b
′
, d ∈ dom(ϕk,s). Since

A |= ∃x δs(p, a, g x),

from Σ1-tp(p a) = Σ1-tp(p a′), we have

A |= ∃c∃y δs(p, a′, c y).
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Thus, there will be a c assigned to the triple (b0 b, b0 b
′
, d). Since σ is never declared

complete (by Claim 2.2.2), there is never a stage t > s when

A |= ¬∃y [δt(p, a
′, c y)] .

Thus σ will never lose the ability to define F (b) = a′ and F (d) = c.
If there were some ψi such that

A |= ψi(p a
′, c) ∧ ¬ψi(p a, g),

then at some stage when we consider ψi, the strategy σ would be able to defeat ϕk,
contrary to our choice of k.

Thus A |= χ(p a′, c). We conclude ∃xχ(p a′, x) ∈ Σc2-tp(p a′) as desired. �

This completes the proof of Lemma 2.2. �

We are now ready to prove the main theorem of this section:

Theorem 1.12. Any 1-decidable, computably categorical structure A is relatively
∆0

2-categorical.

Proof. Fix the parameters p from the above lemma.
For each a ∈ A, let χa(x) be the infinitary formula

χa(x) :=
∧

ψ∈Π1(p)

A|=ψ(a)

ψ(x),

i.e., the conjunction of all first-order Π1-formulas (with parameters from p) true
of a. As a consequence of 1-decidability, this is a Πc

1-formula.
We show that the family of formulas {χa(x)}a∈A constitutes a Scott family.

By Theorem 1.8, it suffices to show that they isolate the Σc2-types. We therefore
suppose A |= χa(a′) and show Σc2-tpp(a

′) = Σc2-tpp(a). If A |= χa(a′), then every

Π1-fact true of a is true of a′. Hence every Σ1-fact true of a′ is true of a, i.e.,

Σ1-tpp(a
′) ⊆ Σ1-tpp(a).

By Lemma 2.2, it follows that Σ1-tpp(a
′) = Σ1-tpp(a). By Lemma 2.2 again, this

implies that Σc2-tpp(a
′) = Σc2-tpp(a).

We conclude that the family of formulas {χa(x)}a∈A constitutes a Scott family
and so A is relatively ∆0

2-categorical. �

3. Pushing on Isomorphisms and Results Related to Theorem 1.12

Theorem 1.12 raises questions about various ways in which the hypotheses can
be weakened or the conclusion strengthened. In this section, we explore a number
of such variations. None of the constructions are individually particularly difficult,
so we only sketch their proofs. However, these constructions and many of the later
constructions rely on the technique of pushing on isomorphisms. We illustrate this
technique in isolation, demonstrating the existence of a computably categorical
structure S that is not relatively computably categorical.

Theorem 3.1 (Goncharov [12, Theorem 4]). There is a computable structure A
that is computably categorical but not relatively computably categorical.
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Proof. Before discussing the formal details, we informally discuss the requisite ideas.
The structure A will be a directed graph consisting of infinitely many finite con-
nected components. Each component will consist of either two, three, or four cycles
sharing only a single vertex v, termed the root vertex.

In order to prevent A from being relatively computably categorical, we diago-
nalize against all pairs (c,Φ), where c is a finite tuple of elements from the universe
of A and Φ is a c.e. family of existential formulas with parameters from c. We
create vertices v1 and v2 such that v1 and v2 are not automorphic, but Φ cannot
distinguish them.

In order to ensureA is computably categorical, we construct a partial computable
map fj from A to Bj (the jth (partial) directed graph). If A and Bj are isomorphic,
the map fj will be an isomorphism.

More formally, we meet the following requirements to prevent relative com-
putable categoricity:

Ri : The ith pair (ci,Φi) is not a Scott family for A.

We meet the following requirements to ensure computable categoricity:

Sj : If A ∼= Bj , then fj : A ∼= B is a computable isomorphism.

Strategy for Meeting Ri (In isolation): We take the following actions, being careful
to use elements larger than those found in ci:

(1) Fix a large number ` and create two new root vertices v1 and v2.
(2) Attach a loop of length 2 and a loop of length 3` to both v1 and v2 and a

loop of length 3`+ 1 to v1.
(3) For every formula ϕ(x, ci) := (∃y)[ψ(x, y, ci)] in Φi, search for a tuple a1 < s

such that A |= ψ(v1, a1, ci).
(4) If such a formula and tuple are found, attach a loop of length 3`+ 2 to v1

and a loop of length 3`+ 1 to v2.

These actions prevent (ci,Φi) from witnessing that A is relatively computably
categorical: If we never find a formula ϕ and tuple a1, then not every singleton
satisfies some ϕ ∈ Φi.

If we find a formula ϕ and tuple a1, let s be the stage at which these are found.
Then by construction, the component of v1 at stage s embeds into the component
of v2 at stage s+1, and the component of v2 at stage s embeds into the component
of v1 at stage s + 1. This can be extended to an embedding As ↪→ As+1 via
the identity off these components, and notably this embedding maps v1 to v2 and
fixes ci elementwise.

Since ϕ is existential, we have

As |= ϕ(v1, c) =⇒ As+1 |= ϕ(v2, c)

=⇒ A |= ϕ(v2, c),

but v1 and v2 are not automorphic.

Strategy for Meeting Sj (in Isolation): As the construction of A proceeds, we
attempt to define fj so that it maps components in A to components in Bj . Finding
the image of a component in A is a two-step process: We identify root vertices in Bj
as those vertices having out-degree at least two (this is the sole purpose of the
loops of length two). While identifying root vertices in Bj , we also search for cycles
emanating from already identified root vertices in Bj . When we find a component
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in Bj with the same lengths of cycles emanating from it as a component in A, we
map the root vertex and cycles appropriately.

Conflicts Between Strategies and Their Resolution: Unfortunately, our action to
defeat relative computable categoricity conflicts heavily with our action for com-
putable categoricity. Trying to define a computable isomorphism betweenA and Bj ,
the naive approach would be to wait for the components to appear in A and Bj and
to define the isomorphism appropriately. If and when the components grow in A
or Bj , an opponent would have the opportunity to switch v1 and v2, killing our
computable isomorphism fj . As we need infinitely many pairs of components to
defeat relative computable categoricity, an opponent would have sufficiently many
opportunities to diagonalize against all computable functions.

The critical observation is that this opportunity to diagonalize can be pre-
vented by slowing down the construction: For the finitely many higher-priority
Ri-strategies (which build finitely many finite components), the Sj-strategy de-
fines the computable isomorphism fj nonuniformly. For the components built by
lower-priority Ri-strategies, we use the above-mentioned technique of pushing on
isomorphisms: The Sj-strategy will allow the lower-priority Ri-strategy to extend
its component in Step 4 only gradually as follows:

(4’a) Attach a loop of length 3`+ 2 to v1.
(4’b) Wait until this loop appears in Bj for every j < i for which A ∼= Bj .
(4’c) Attach a loop of length 3`+ 1 to v2.

In this way, the above problem cannot occur: At any time, we will be able to
distinguish v1 and v2 in Bj . Of course, it will likely be the case that A 6∼= Bj for
some j < i, in particular that some Bj with j < i does not have a loop of length
3` + 2. Hence, we may wait at Step 4’b unnecessarily (since we cannot effectively
know whether A ∼= Bj), causing Step 4’c not to be reached. This would cause our
diagonalization attempt against Φi to be unsuccessful.

The solution is to have Ri-strategies guess the outcomes of higher priority Sj-
strategies via a priority tree. Each Ri-strategy will have two outcomes: wait,
(indicating that the strategy is still searching for a formula ϕ and a tuple a1) and
act (indicating that the strategy has found the desired ϕ and a1). Each Sj-strategy
will have an infinite outcome ∞ (indicating that Sj believes A ∼= Bj) and finite
outcomes k for all k ∈ ω (counting the number of times Sj has taken outcome ∞).

Full Strategy for Meeting Ri: We take the following actions, always being careful
to use elements larger than those found in ci:

(1) Fix a large number ` and create two new root vertices v1 and v2.
(2) Attach a loop of length 2 and a loop of length 3` to both v1 and v2 and a

loop of length 3`+ 1 to v1.
(3) For every formula ϕ(x) := (∃y)[ψ(x, y, ci)] in Φi, search for a tuple a1 < s

such that A |= ψ(v1, a1, ci).
(4) If such a formula and tuple are found, attach a loop of length 3`+ 2 to v1.
(5) Wait until the next stage at which the strategy is accessible.
(6) Attach a loop of length 3`+ 1 to v2.

While the strategy is searching at Step 3, it has outcome wait. Once it has
found a formula ϕ and a tuple a1, it has outcome act.
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Full Strategy for Meeting Sj : Let σ on the priority tree be the Sj-strategy in
question. Let s be the current stage. Let k be the number of stages less than s at
which σ had outcome ∞.

We consider certain root vertices in A: For each τ ⊂ σ such that τ̂wait ⊆ σ,
we consider the root vertices created by τ ; for each τ ⊂ σ such that τ̂act ⊆ σ
and τ has reached Step 6, we consider the root vertices created by τ ; and for each
τ 6⊂ σ with τ incomparable with σ̂k, we consider the root vertices created by τ .

For each root vertex v in A we are considering, if fj(v) is not yet defined, we
search Bj,s for a root vertex u with a component identical to the component of v
and define fj(v) := u and then extend fj to an isomorphism of the components.
If fj(v) is defined, and the component of v appears identical to the component
of fj(v) in Bj,s, we extend fj to an isomorphism of the components, if it is not
already.

After this action, if for every vertex v we are considering, fj(v) is defined and fj
is an isomorphism of the components of v and fj(v), then σ has outcome ∞ at
stage s. Otherwise, it has outcome k.

Construction: For an Sj-strategy, we order the outcomes as ∞ < · · · < 2 < 1 < 0.
For an Ri-strategy, we order the outcomes as act < wait. We create a priority
tree by devoting each level to one requirement in some effective fashion. At stage s,
we let all visited strategies of length at most s act in order of priority.

Verification: Define the true path through the priority tree in the usual fashion.
We note the important fact that if the current path moves to the left of a node
on the priority tree that has already been visited, that node can never be visited
again.

It is immediate from the construction that A is a computable presentation.
We verify that it is both computably categorical and not relatively computably
categorical.

Claim 3.1.1. The structure A is computably categorical.

Proof. Fix an index j such that A ∼= Bj , and let σ be the Sj-strategy along the
true path. By assumption, the presentation Bj contains a component isomorphic to
every component of A, so σ will eventually define fj(v) for every vertex it considers.
For the components built by τ ⊂ σ, since σ is on the true path, these components
will never grow once σ begins considering them, so fj is correct on these.

For the components built by strategies τ incomparable with σ, τ can never be
visited after σ begins considering them, and so they can never grow once they are
considered. So fj is correct on these.

For the components built by τ ⊇ σ̂∞, if τ has final outcome wait, then the
components never grow once σ begins considering them.

If τ adds the loop of length 3` + 2 to v1, then before τ added this loop, σ
defined fj(v1) to be an element of Bj with a loop of size 3`+ 1. After τ adds this
loop, σ will never again have outcome ∞ unless a loop of length 3` + 2 appears
attached to fj(v1), and if σ never again has outcome ∞, then v1 is the unique
vertex with a loop of size 3`+1. So the loop of length 3`+2 must appear on fj(v1).

If τ adds the loop of length 3`+ 1 to v2, σ must have outcome ∞ at some stage
after τ attached the loop of length 3`+ 2 to v1. So fj(v1) has a loop of size 3`+ 2
and one of size 3`, and fj(v2) has a loop of size 3`. Then there are only two loops of
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size 3` in A, one with a loop of size 3`+2 and one without, so by elimination fj(v2)
must be the correct image of v2. So the loop of length 3`+1 must appear on fj(v2).

For the components built by τ ⊇ σ̂k for some k, if σ is considering this com-
ponent at stage s, then it has had outcome ∞ more than k many times by stage s.
So the components can never again grow once they are considered, so fj is correct
on these.

By the above, since fj is correct on every component on which it is defined, and
it will be defined on every component it considers, σ must have true outcome∞. So
by construction, every component is considered, and thus fj is an isomorphism. �

Claim 3.1.2. The structure A is not relatively computably categorical.

Proof. Fix an index i and let σ be the Ri-strategy along the true path. Then
either σ will wait forever at Step 3, or it will reach Step 6. In the former case,
the element v1 fails to satisfy any ϕ ∈ Φi. In the latter case, the nonautomorphic
elements v1 and v2 satisfy ϕ ∈ Φi. In either case, the family Φi is not a Scott
family. �

This concludes the proof of Theorem 3.1. �

Having illustrated the technique of pushing on isomorphisms, we return to The-
orem 1.12. One might think that a simpler way to prove it would be to relativize
Goncharov’s Theorem 1.10. After all, if A is 1-decidable, then relative to 0′, the
presentation A is 2-decidable. However, a relativized version of Goncharov’s Theo-
rem 1.10 would require a modified version of computable categoricity as a hypothesis
as follows:

Corollary 3.2. If A is a 1-decidable computable presentation of a structure S
with the property that for every ∆0

2-computable presentation B of S, there is a
∆0

2-computable isomorphism f : B ∼= A, then S is relatively ∆0
2-categorical.

We show that the hypothesis of “∆0
2-computable categoricity” in the above corol-

lary is not implied by computable categoricity:

Theorem 3.3. There is a 1-decidable, computably categorical structure S having a
computable presentation A and a ∆0

2-computable presentation B such that A and B
are not ∆0

2-isomorphic.

Proof. The structure S is an undirected graph. If we were not seeking S to be
computably categorical, the structure S could be built as the union of infinitely
many substructures Si. Each Si would consist of roots vi,j for j ∈ ω ∪ {∞}. For
j ∈ ω, the root vi,j would have a loop of length p2ki for every k < j + 1 and one

of length p2j+1
i ; vi,∞ would have a loop of length p2ki for every k ∈ ω (here pi

is the ith prime). Thus, the substructure Si would consist of an (ω + 1)-chain of
components, with the finite components matching the infinite component for longer
and longer segments, yet each having a unique loop size to distinguish it from the
infinite component and other finite components.

Of course, taking A to be the standard presentation of S, we could build a
∆0

2-computable presentation B not isomorphic to A via any ∆0
2-isomorphism. This

could be done by using the substructure Si to diagonalize against the ith ∆0
2-func-

tion ϕi : A → B: When ϕi converges on vi,∞, we make its image in B be vi,j for
some large j ∈ ω.
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As we are seeking a computably categorical structure, we alter the isomorphism
type of S to include the pushing on isomorphisms machinery. In particular, we build
a computable structure A, taking S to be its isomorphism type. As we are seeking
a 1-decidable structure, we use large loop sizes rather than powers of primes. After
constructing A, we build the ∆0

2-computable presentation B.
The construction of the components in A proceeds as expected.

Construction of a Component : Using increasing numbers of loops, we build accu-
mulation points in the Σc1-type space.

(1) Set k := 0. Create a root vertex vi,∞ and attach a loop of large size ni,0.
(2) Attach a loop of large size ni,k+1 to vi,∞.
(3) Wait until the next stage this strategy is visited (this allows higher-priority

isomorphism strategies to “push on isomorphisms”).
(4) Create a root vertex vi,k with attached loops of all sizes ni,0, . . . , ni,k. Also

attach a loop of distinct large size mi,k to vi,k.
(5) Increment k and return to Step 2.

Unfortunately, as described above, the resulting structure would not be 1-de-
cidable. For example, “Does vi,∞ have degree at least i?” is a Σ0

1-question, and
answering it would require knowing how many times we reach Step 2. Similarly,
“Are there at least i many loops of size ni,0?” is a Σ0

1-question that requires knowing
how many times we reach Step 4. As a remedy, instead of a single root vertex vi,∞,
we create an infinite collection of root vertices joined by infinitely many paths of
length 2 (that is, we create infinitely many copies of the vi,∞-component, with in-
finitely many paths of length 2 between every two copies of the root vertex). We
do the same for each root vertex vi,k, creating an infinite collection of root vertices
joined by infinitely many paths of length 2. Because of this, for any even size, there
will be a loop of that size attached to vi,j and to vi,∞. So we require that our
sizes ni,k and mi,k are always odd.

We create a tree of strategies as in the proof Theorem 3.1. Some levels will be de-
voted to Sj-strategies, which ensure that if Bj ∼= A, then there is some computable
isomorphism between them. Others will be devoted to Ri-strategies, which simply
perform the above construction of points (with the modifications discussed).

Verification of A: The structure S is computably categorical because of the pushing
on isomorphism technology already illustrated: An isomorphism strategy Sj of
higher priority than Ri can always distinguish the copy of vi,∞ in Bj by the ni,k+1

loop. Because Ri-strategies wait at Step 3, no vi,k with this loop will be created
until the copy of vi,∞ in Bj has distinguished itself with a larger loop. Lower-priority
Sj-strategies non-uniformly know the image of vi,∞ in Bj . The image of vi,k can
always be uniquely identified by the loop of size mi,k.

Of course, the above is not quite correct, because we create infinite collections of
each vi,∞ and each vi,k. So rather than uniquely identifying the point vi,∞ or vi,k
in Bj , we uniquely identify the collection. Once the collection has been found,
however, a simple back-and-forth construction can construct the isomorphism.

Claim 3.3.1. The presentation A is 1-decidable.

Proof. It suffices to show that for any canonically given finite graph G, we can
effectively determine whether or not H occurs as an induced subgraph of A. For a
canonically given finite graph G, we wait until a stage s in the construction when
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a loop of some size ni,k > |G| has been enumerated into the construction, and then
we answer whether or not G is an induced subgraph of A as follows.

First, we identify all simple loops in G of odd length. If any of these loops have
more than 1 vertex of degree greater than 2, we know that G is not an induced
subgraph of A. If any of these loops are of a size we have not yet used as some ni,k
or mi,k by stage s, then since our loop sizes are always chosen large, no loop of that
size will ever be used, and so we know G is not an induced subgraph of A.

Otherwise, every simple loop of odd length has size some ni,k or mi,k already
chosen during the construction. If some loop of size ni,k and some other loop of
size ni′,k′ with i 6= i′ are in the same component, then we know G is not an induced
subgraph of A. Similarly, if a loop of size ni,k is in the same component as a loop
of size mi′,k′ with i 6= i′ or k > k′, then we know that G is not an induced subgraph
of A. Also, if a loop of size mi,k is in the same component as a loop of size mi′,k′

with i 6= i′ or k 6= k′, then we know that G is not an induced subgraph of A.
Finally, if two distinct simple loops of odd length intersect, then we know that G
is not an induced subgraph of A.

Otherwise, call a vertex in G a root if it has degree greater than 2. Note that
any embedding of G as an induced subgraph of A must map the roots of G to roots
of A. Let G′ be the induced subgraph of G containing those vertices which are
roots and also those vertices which are not part of a simple loop of odd length. Any
embedding of G as an induced subgraph of A will give a two-coloring of G′ which
colors all the roots of G′ red and such that every vertex colored blue has degree at
most 2: Color a vertex red if it maps to a root of A, and blue otherwise.

Conversely, if G′ admits a two-coloring which colors all its roots red and such
that every vertex colored blue has degree at most 2, then G can be embedded into A
as an induced subgraph: For each component, if it contains a loop of size mi,k, then
map that component into the collection of copies of vi,k, mapping the red vertices
to roots in A; it the component does not contain a loop of size mi,k for any k, but
does contain one of size ni,k for some k, map the component into the collection of
copies of vi,∞, again mapping red vertices to roots in A; if the component contains
no simple loops of odd sizes, then map the component into the collection of copies
of v0,∞.

Thus we can decide if G is an induced subgraph of A by considering the finitely
many two-colorings of G′. �

Construction of B: We work in the presence of a 0′-oracle. We begin by simply
copying A, while simultaneously studying ∆0

2-functions from A to B. When a
∆0

2-function ϕ` converges on some accumulation point vi,∞ ∈ A with i > `, we
may assume v′i,∞ := ϕ`(vi,∞) is a copy of vi,∞ in B (as otherwise we have won
against ϕ`). We use our oracle to determine if Ri will ever again reach Step 2
and then Step 4. If so, we pause the construction of v′i,∞ until this happens. We
make v′i,∞ the image of the new vi,k instead of vi,∞, defeating the function ϕ`.
Since we are requiring that i > `, our approximation to ϕ`(vi,∞) ∈ B reaches a
limit. �

Just as we relativized Goncharov’s result to 0′ to weaken the decidability re-
quirement, we can do the same for our Theorem 1.12:

Corollary 3.4. If a computable structure A is such that every ∆0
2-computable copy

is isomorphic via a ∆0
2-computable isomorphism, then A is relatively ∆0

3-categorical.
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We have already seen that the hypothesis of “∆0
2-computable categoricity” in

the above corollary is not implied by computable categoricity. Here we show that
the implication can fail very badly:

Theorem 3.5. There is a computably categorical structure A such that every
noncomputable ∆0

2-degree computes a presentation B not isomorphic to A by any
∆0

2-isomorphism.

Proof. Our structure is a directed graph consisting of pairs of components. Each
pair will contain a larger component and a smaller component and be assigned a
distinct prime p. The larger component will be a vertex with loops of sizes pk for
all k ≤ r+2, while the smaller component will be a vertex with loops of sizes pk for
all k ≤ r. The parameter r for the pair will initially be 1, and will grow (possibly
to infinity) as the construction proceeds.

Let {Me}e∈ω be an enumeration of all partial computable structures, {Xi}i∈ω
an enumeration (of partial characteristic functions) of all ∆0

2-sets, and {gj}j∈ω an
enumeration of all partial ∆0

2-functions. We build a structure A and structures
{Bi}i∈ω to meet the following requirements:

Ne : Me
∼= A ⇒ ∃f ≤T ∅ [f :Me

∼= A]

Ri : Bi ≤T Xi and Bi ∼= A
Pi,j : Xi >T ∅ ⇒ ¬[gj : A ∼= Bi]

Strategy for meeting Ne: This is a standard pushing on isomorphisms strategy.

Strategy for meeting Ri: The strategy maintains a Turing functional Γi with Bi =
ΓXii and a bijection Fi mapping components of A to components of Bi. At every
stage, Ri grows the components of Bi to match the corresponding components in A.
These facts about new loops in Bi are enumerated into Γi with use k where pk is
the size of the loop.

If Xi changes to a new version, removing certain loops from Bi, we restore
those loops to Bi by enumerating new axioms for them into Γi. The exception
is if gj,s(x) ↓= Fi,s(x) for some root vertex x of the larger component of some
Pi,j-strategy, and the largest two loops attached to Fi,s(x) are removed: then we
instead take the opportunity to redefine Fi(x), interchanging the role of larger and
smaller components in Bi.
Strategy for meeting Pi,j : We initially choose an unused large prime p and begin
building (in A) the components for p. Let x ∈ A be the root vertex of the larger
component. The behavior of the strategy at stage s depends on whether gj,s(x)↓=
Fi,s(x). If so, we increment r, adding a new loop to each of the two components.
If not, we do nothing.

Construction: We place the Ne- and Pi,j-strategies on a priority tree in the stan-
dard fashion. The Ri-strategies are not placed on the tree, but instead act at every
stage.

Verification: Clearly A is a total computable structure.

Claim 3.5.1. The Ne-strategies ensure their requirement.

Proof. This is the now-familiar “pushing on isomorphisms” argument: If Ne is of
higher priority than a pair being constructed, then the pair respects Ne’s isomor-
phism by only adding one loop at a time. If Ne is of lower priority than a pair of
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components, then it nonuniformly knows which component is larger and which is
smaller. �

Claim 3.5.2. The Ri-strategies ensure their requirement.

Proof. If Xi is not a true ∆0
2-set, then Ri is trivially satisfied, so we assume that it

is. The use of the loops in Bi does not grow, so since Xi eventually stops changing
on initial segments, Bi eventually stops changing. Thus Bi is an Xi-computable
structure.

Furthermore, at every stage s, Fi,s : As → Bi,s is an isomorphism. Thus on all
components where Fi = lims Fi,s exists, A is isomorphic to Bi. The only compo-
nents at which this limit might not exist are components built by Pi,j-strategies
that infinitely often see gj,s(x) = Fi,s(x). But such components have their r grow to
infinity, and thus the larger and smaller components are identical. Thus it does not
matter which component maps to which, and we may extend Fi to an isomorphism
A ∼= Bi. �

Note that we cannot ask that Fi = lims Fi,s be a total isomorphism, because
then we would be unable to meet requirement Pi,j with gj = Fi.

Claim 3.5.3. The Pi,j-strategies ensure their requirement.

Proof. If Xi is not a true ∆0
2-set, then Pi,j is trivially satisfied, so we assume that Xi

is a true ∆0
2-set. We argue if gj : A ∼= Bi is an isomorphism, then Xi is computable.

Let x be the root vertex of the larger component built by the Pi,j-strategy along
the true path.

We note if gj : A ∼= Bi is an isomorphism, then the parameter r for Pi,j grows
without bound. For if it was bounded, then gj(x) and Fi(x) would coincide as x
would have a unique image in Bi as the appropriate components are finite. How-
ever this would imply that gj,s(x) and Fi,s(x) coincide at infinitely many stages,
causing r to grow without bound, contradicting the boundedness of r.

We therefore assume the parameter r for Pi,j grows without bound. For any n,
let sn be the least stage at which the parameter r equals n. Let t be the least stage
for which gj(x) = gj,s(x) for all s > t, noting t exists as we are supposing gj is an
isomorphism. For any z, we claim that X � z = Xsn � z, where n > z is any number
with sn > t and such that Xs � z was constant for s ∈ [sn, sn+1]. From this it will
follow that X is computable.

To see this, suppose otherwise. Then let t′ > sn be least with X � z = Xt′ � z.
Consider those axioms in Γi concerning loops attached to Fi(x); note that before
stage sn, no facts concerning any loop of size n+2 or greater had been enumerated.
So until stage t′, every axiom concerning a loop of size n + 2 or greater had use
extending Xsn � z. Thus at stage t′, all loops attached to Fi(x) of size at least n+2
are removed from Bi. By assumption t′ > sn+1, so at stage t′, the largest two
loops attached to Fi(x) are both of size at least n + 2. So at stage t′, Ri has the
opportunity to redefine Fi(x), interchanging components. These components might
swap back at a later stage due to Xs � z reverting to Xsn � z, but at every stage
s > t′ with Xs � z = Xt′ � z, we will have Fi,s(x) 6= gj,t(x), and gj,t(x) = gj,s(x) by
choice of t. Since Xt′ � z = X � z, Fi,s(x) and gj,s(x) will differ at all but finitely
many stages s, contrary to the assumption that r grows without bound. �

This completes the proof of Theorem 3.5. �
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4. Index Sets, Computable Categoricity, and Relative Computable
Categoricity

In this section, we study the complexity of index sets associated with com-
putably categorical structures and relatively computably categorical structures. In
particular, we show the index set complexity of relatively computably categorical
structures is Σ0

3-complete. Though the authors are not aware of any proofs of this
fact in the literature, we attribute this result to folklore as it is certainly known
to many. We also show there is a fixed relatively computably categorical structure
whose index set is Σ0

3-complete and a computably categorical structure whose index
set is Π0

1-complete (within M).

Theorem 1.15 (Folklore). The index set of the relatively computably categorical
structures is Σ0

3-complete.

Proof. From the equivalence of (1) and (3) in Theorem 1.3, relative computable
categoricity is easily seen to be Σ0

3.
For Σ0

3-hardness, we make use of (the proof of) Theorem 4.1 of [8]. There,
Downey and Montalbán showed that, given a Σ0

3-set S, there is a uniformly com-
putable sequence {Vi}i∈ω of vector spaces over Q such that Vi is finite-dimensional
if and only if i ∈ S. As it is easy to see that the finite-dimensional vector spaces
over Q are relatively computably categorical (any isomorphism is determined by the
image of the (finitely many) basis elements) and that the infinite-dimensional vector
spaces over Q are not (relatively) computably categorical, Σ0

3-hardness follows. �

If M is any structure, a priori its index set {i : M ∼= Mi} is Σ1
1 as it may

be rather difficult to tell whether or not M and Mi are isomorphic. When M is
computably categorical, it is much simpler as it suffices to check the computable
isomorphisms.

Proposition 4.1. If a computable structure M is computably categorical, then its
index set {i :M∼=Mi} is Σ0

3.

Proof. It suffices to note that M ∼= Mi if and only if there is an index e such
that ϕe is an isomorphism betweenM andMi, i.e., such that ϕe is total, injective,
surjective, and preserves the atomic diagram. These are Π0

2, Π0
1, Π0

2, and Π0
1,

respectively. �

Surprisingly, it is rather difficult to find a particular computably categorical
structure M whose index set is Σ0

3-hard. Natural candidates such as dense lin-
ear orders, equivalence structures with classes all of some fixed size, and infinite-
dimensional vector spaces over a fixed finite field all have Π0

2-index sets. Gen-
eralizing these examples slightly, any fixed computably categorical linear order,
equivalence structure, or vector space has an index set of the complete 1-degree of
d.c.e. sets over 0′.

Torsion-free abelian groups of rank 1 (or, equivalently, subgroups of the rationals)
do provide an example of a (relatively) computably categorical structureM whose
index set is Σ0

3-hard. The only algebraic background we require is Baer’s Theorem,
which can be found in any standard reference (see, e.g., Fuchs [9, 10]).

Theorem 4.2 (with Alexander Melnikov). Let G be the subgroup of (Q : +) gen-
erated by the set { 1p : p a prime}. Then G is relatively computably categorical, and

its index set {i : G ∼= Gi} is Σ0
3-complete.
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Proof. We note G is relatively computably categorical. For if H1 and H2 are pre-
sentations of G, an isomorphism f : H1 → H2 can be defined by fixing a nonzero
element a ∈ H1 and its image b ∈ H2 under a classical isomorphism. Then to define
f(x) for an arbitrary x ∈ H1, it suffices to search for the rational number q such
that x = qa, search for the element y ∈ H2 such that y = qb, and let f(x) := y. This
is readily seen to be an isomorphism and is computable from deg(H1) ∨ deg(H2).

We also note that the index set {i : G ∼= Gi} is Σ0
3 by Proposition 4.1. We show

this index set is Σ0
3-hard by building, for every i, a c.e. subgroup Gi ≤ (Q,+) such

that G ∼= Gi if and only if i ∈ Cof. We then exploit the fact that from an index for
a c.e. subgroup of a computable group, one can effectively obtain an index for an
isomorphic computable group.

Construction: Fix a computable relation R(i, x, y) satisfying

i ∈ Cof if and only if ∃x∃∞y R(i, x, y).

Let P ⊂ ω be the set of primes. We build a co-c.e. set Ai ⊆ P in stages, letting
Ai,s = {as0 < as1 < . . . } be its stage s approximation. At stage s, if R(i, x, s) holds
for some x < s, we choose x least such, and remove asx from Ai. We enumerate 1/asx
into Gi. We also close Gi under the group operations.

Verification: We argue that G ∼= Gi if and only if i ∈ Cof. If i ∈ Cof, choose x least
such that ∃∞y R(i, x, y). Then clearly |Ai| = x. Thus Ge is the subgroup generated
by { 1p : p 6∈ {a0, . . . , ax−1}}. By Baer’s Theorem, this is isomorphic to G.

If instead i 6∈ Cof, then for every x, let yx be least such that for all y > yx and
x′ ≤ x, the predicate R(i, x′, y) does not hold. Then ax = ayxx . Thus |Ai| = ∞,
and so G 6∼= Gi by Baer’s Theorem. �

Analyzing the opposite extreme, it is natural to ask how simple the index set of
a computably categorical structure can be. As determining whether an index is a
presentation of a structure can introduce artificial complexity, we restrict ourselves
to the class of nonempty computable models.

Definition 4.3. For any signature L, denote the class of all nonempty computable
models with signature L by M = ML. Note that we are taking a computable
structure to be a computable subset of ω with computable functions, relations, and
constants (total on the universe).

Proposition 4.4 (with Adam Day). There is an infinite computably categorical
structure M whose index set {i :M∼=Mi} is Π0

1-complete within M.

Proof. The signature L for our structureM has a unary function S, a binary func-
tion f , and constants 0 and 1. The unary function S will be the successor function.
The binary function f will satisfy (∀i ∈ M)(∀s ∈ M)

[
f(i, s) ∈ {0M, 1M}

]
. The

structureM := (M : S, f, 0, 1) will be such that the reduct (M : S, 0, 1) is (isomor-
phic to) the standard model (ω : S, 0, 1), where S is the successor function. The
function f will be used to ensure that an expansion N = (N : S, f, 0, 1) of the
theory of (ω : S, 0, 1) with a nonstandard universe can be easily distinguished as
being nonisomorphic toM. In particular, the construction will exploit our working
within M by building the structure M so that if Mi is to be isomorphic to M, it
must witness any element of itself being standard in an effectively bounded length
of time.
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Fix an enumeration {Mi}i∈ω of all presentations of (candidate) structures in the

signature L. We denote by n̄M and n̄Mi the elements (Sn(0))
M

and (Sn(0))
Mi ,

respectively. We assume that at stage s, the element (s+ 1)
Mi

is not yet defined.
Note that it will be the case that n = n̄M, and that n̄Mi may not exist.

Construction: The universe M of M is ω. As already suggested, we define 0M

and 1M to be 0 ∈ ω and 1 ∈ ω, respectively, and define S(n) = n + 1 for each
n ∈ ω.

At each stage s, we define f(i, s) for all i ∈ ω. At stage s = 0, we define
f(i, 0) = 0 for all i ∈ ω. At stage s > 0, the definition of f(i, s) is, by default,
the value f(i, s − 1). The exception occurs if the structure Mi is challenging the
structure M at stage s, namely, when ı̄Mi and an element x exist in Mi such that
fMi (̄ıMi , x) is defined but x has not yet been seen to be standard. In this case,
let x be the Gödel least such; the definition of f(i, s) is 1 if fMi (̄ıMi , x) = 0Mi

and 0 otherwise, and we say that fM is accepting the challenge by (i, x) starting at
stage s. If x is later seen to be standard inMi at a stage t, then we sayMi defeated
the challenge by (i, x) at stage t. Until the challenge by (i, x) is defeated, fM does
not accept a challenge from any (i, y) with x 6= y. If the challenge is defeated,
then fM accepts the challenge from the next Gödel least element from Mi that
presents a challenge.

Verification: By construction, the structure M is infinite and computable. More-
over, it is computably categorical as a consequence of ω under successor being
computably categorical. It therefore suffices to argue that the set

{i :M∼=Mi}

is Π0
1 in M. Fix an index i. As we are working in M, we may assume SMi and fMi

are total on Mi. For each stage s, we believeM andMi are isomorphic if and only
if

(1) there is no “trivial reason” to believe otherwise, i.e., SMi must appear to
be a successor function on Mi, f

Mi must take the value 0Mi or 1Mi , 0Mi

must not be the successor of any element in Mi, 1Mi must be S(0Mi), and
fMi (̄ıMi , n̄Mi) must equal fM(i, n), and

(2) if fM accepts the challenge by (i, x) starting at stage s, then we have
x ∈

{
0̄Mi , 1̄Mi , . . . , s̄Mi

}
.

We argue that if M 6∼= Mi then there is some stage after which we believe M
and Mi are not isomorphic. If M and Mi are not isomorphic for a trivial reason,
then we will eventually cease believing them to be isomorphic. IfM andMi are not
isomorphic for a nontrivial reason, then the structure Mi must have nonstandard
elements. So there is some nonstandard element x for which fM accepted the
challenge by (i, x) at some stage s, but Mi did not defeat the challenge by (i, x).
Then, once the elements

{
0̄Mi , 1̄Mi , . . . , s̄Mi

}
are defined, we cease believing M

and Mi to be isomorphic by our definition of f(i, s).
Conversely, if we believe that M and Mi are not isomorphic at some stage,

there are two possibilities. If we believe them not isomorphic for a trivial reason,
then certainly M 6∼= Mi. If we believe them not isomorphic because a challenge
by some (i, x) was accepted starting at stage s and x 6∈

{
0̄Mi , 1̄Mi , . . . , s̄Mi

}
, then

there are two cases. If x is a non-standard element ofMi, thenM 6∼=Mi. If x is a
standard element ofMi, then let t be the stage at which the challenge was defeated.
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Then x ∈
{

(s+ 1)
Mi

, . . . , t̄Mi

}
. But by construction, fM(i, n) 6= fMi(i, x) for all

n ∈
{

(s+ 1)
Mi

, . . . , t̄Mi

}
. Thus M 6∼=Mi.

We conclude that the index set of M is Π0
1 in M. We observe that it is easily

seen to be Π0
1-complete: For a Π0

1 formula (∀s) [ϕ(n, s)], construct a structure Mn

by copying M until an s with ¬ϕ(n, s) is seen. At this time, make a “wrong”
definition of fMn , but preserve totality. �

5. Relative Categoricity Above a Degree

The notions of computable categoricity and relative computable categoricity are
traditionally relativized (as in Definition 1.6) by allowing oracle access to a fixed
number of jumps over the presentations of the relevant models. Another method of
relativization would be to allow oracle access to a fixed degree. We explore this idea
in this section. As the constructions are not particularly difficult and introduce no
significant new ideas (relying only on the pushing on isomorphisms machinery), we
only sketch their proofs.

Definition 5.1. Let d be a Turing degree. A computable structure S is relatively
computably categorical above d (or relatively ∆0

α-categorical above d, respectively) if
between any two presentationsA, B ≥T d of S, there is an isomorphism computable
in deg(A) ∪ deg(B) (or ∆0

α(deg(A) ∪ deg(B)), respectively).

Proposition 5.2. For a computable structure S, the following are equivalent:

(1) The structure S is relatively ∆0
α-categorical above d.

(2) Between any two presentations A and B of S, there is an isomorphism
computable in ∆0

α(deg(A) ∪ deg(B) ∪ d).

Proof. If S is trivial, i.e., if there is a tuple of elements such that every permuta-
tion of the universe that fixes this tuple pointwise is an automorphism, then the
equivalence is immediate. We therefore assume S is nontrivial.

For (1) implies (2), we use that the degree spectrum of a structure is upwards
closed (see Theorem 3.21 of [2]). From this, we have a presentation A′ and isomor-
phism g1 : A → A′ with deg(A′) = deg(A) ∪ d and deg(g1) ≤ deg(A) ∪ d; and
a presentation B′ and isomorphism g2 : B → B′ with deg(B′) = deg(B) ∪ d and
deg(g2) ≤ deg(B)∪d. By relative ∆0

α-categoricity above d, there is an isomorphism
f : A′ ∼= B′ with f ∈ ∆0

α((deg(A) ∪ d) ∪ (deg(B) ∪ d)). Then g−12 ◦ f ◦ g1 : A ∼= B
is an isomorphism and deg(g−12 ◦ f ◦ g1) ≤ ∆0

α(deg(A) ∪ deg(B) ∪ d).
The direction (2) implies (1) is immediate. �

For some classes of structures, there is no difference between relative computable
categoricity and relative computable categoricity above d (for any degree d).

Theorem 5.3. A linear order is relatively computably categorical above a degree d
if and only if it is relatively computably categorical.

A Boolean algebra is relatively computably categorical above a degree d if and
only if it is relatively computably categorical.

Proof. The proof that a (relatively) computably categorical linear order can possess
at most finitely many adjacencies succeeds in the presence of a d-oracle, as does
the proof that a (relatively) computably categorical Boolean algebra can possess at
most finitely many atoms. �
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On the other hand, there are classes of structures where this notion does not
coincide with either computable categoricity or relative computable categoricity.

Theorem 5.4. For any nonzero c.e. degree d, there is a structure S that is rela-
tively computably categorical above d but not computably categorical.

Proof. Fix a c.e. set D ∈ d. The structure S we construct is a rigid undirected
graph.

Construction: The isomorphism type of S contains an “ω-spine”, i.e., a sequence
of vertices in order type ω. For each n, two paths emanate from the nth element
of the spine: If n 6∈ D, the paths have lengths 1 and 2; while if n ∈ D, the paths
have lengths 2 and 3. Clearly, this S is computably presentable.

Verification: Towards showing that S is relatively computably categorical above d,
fix presentations A and B of S. We show how deg(A) ∪ deg(B) ∪ d computes an
isomorphism f : A → B. We non-uniformly know the initial elements of the spines
in A and B. The function f maps the ω-spines in the obvious way, noting the
ω-spines of A and B can be effectively found using deg(A) and deg(B). For the nth
element of the spine, if n ∈ D, the function f waits until both a path of length 2
and a path of length 3 appear in both A and B. Then it maps them as appropriate.
If n 6∈ D, the function f waits until both a path of length 1 and a path of length 2
appear in both A and B, mapping them appropriately. It is clear that f is an
isomorphism computable in deg(A) ∪ deg(B) ∪ d.

Towards showing that S is not computably categorical, we exhibit computable
copies A and B of S that are not computably isomorphic. For A, we construct the
ω-spine with a path of length 1 and a path of length 2 at every n ∈ ω. When we
see a number n enter D, we extend the path of length 1 at the nth element of the
ω-spine to be a path of length 3. For B, we construct the ω-spine with a path of
length 1 and a path of length 2 at every n ∈ ω. When we see a number n enter D,
we extend the path of length 1 at the nth element of the ω-spine to be a path of
length 2 and extend the path of length 2 at the nth element of the ω-spine to be a
path of length 3. The unique isomorphism π : A → B computes d as membership
of n in D can be determined by noting whether the initial path of length 1 in A is
mapped to the initial path of length 1 in B (in which case n 6∈ D) or not (in which
case n ∈ D). �

Remark 5.5. We note that Theorem 5.4 can be improved significantly by exploit-
ing the structures introduced by Csima, Franklin, and Shore [5]. Indeed, the result
remains true for any degree d that is d.c.e. and above some 0(α), where α is a
nonlimit computable ordinal.

Theorem 5.6. For any nonzero c.e. degree d, there is a computable structure S
that is computably categorical, relatively computably categorical above d, but not
relatively computably categorical.

Proof. Fix a c.e. setD ∈ d. The structure S is again an undirected graph containing
an ω-spine with two finite paths emanating from each vertex of the ω-spine. As
in Theorem 5.4, we attempt to increase the lengths of the paths emanating from
an element of the ω-spine when n enters D. Here, however, we must respect the
pushing on isomorphism machinery: If n enters D, we immediately increase the
path of length two to a path of length three; we do not increase the path of length
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one to a path of length two until the higher priority isomorphism requirements
permit. Unlike in the proof of Theorem 3.1, diagonalization strategies do not claim
a location to work at until they are ready to act.

Construction: We construct a computable presentation A, taking S to be its
isomorphism type. The structure A contains an ω-spine. Emanating from the
nth element of the spine is a path of length one and a path of length two if n 6∈ D.
If and when n enters D, we extend the path of length two at the nth element of the
spine to a path of length three. Let an be the first element in the path of original
length two (i.e., the element which is adjacent to the nth element of the spine).

As in the proof of Theorem 3.1, we have a tree of strategies, some constructing
isomorphisms and some diagonalizing against Scott families. A strategy σ attempt-
ing to defeat a Scott family (ci, Xi) of existential formulas is ready to act at stage s
if:

(1) The strategy σ has not already acted.
(2) The strategy σ is accessible at stage s.
(3) There is some n ∈ Ds, a previous stage t < s, and some ϕ ∈ Xi such that:

• n 6∈ Dt,
• At |= ϕ(an, ci), and
• the parameter ci is disjoint from the paths emanating from the nth

element of the spine.

A strategy that is ready to act acts by growing the path of length one emanating
from the nth element of the spine into a path of length two (if some other strategy
has not already done this).

Verification: As we build a computable structure, it is immediate that we have a
computably categorical structure as a consequence of the usage of the pushing on
isomorphism machinery. We therefore verify that it is not relatively computably
categorical and that it is relatively computably categorical above d.

Clearly if some strategy σ working to defeat (ci, Xi) acts at some stage, then
(ci, Xi) cannot be a Scott family for S: The formula ϕ holds of an element in the
path of length 3 and of an element in the path of length 2, despite the structure
being rigid. So if (ci, Xi) is a Scott family, then the strategy along the true path
working to defeat it never acts. Consequently, for any n ∈ D and ϕ ∈ Xi, we have
that As |= ϕ(an, ci) only if n ∈ Ds or some element of ci occurs in a path coming
out of n. Thus the computable function

n 7→ (µs) [(∀m ≤ n)(∃ϕ ∈ Xi,s) [As |= ϕ(am, ci)]]

is total and a finite modification of it majorizes the modulus of D, contradicting D
being non-computable.

The structure is relatively computably categorical above d as we can construct
a deg(A) ∪ deg(B) ∪ d-isomorphism between any two presentations A and B. Just
as in Theorem 5.4, we may non-uniformly map the ω-spines. For the nth element
of the ω-spine, we check whether n is in D. If it is, we wait to see a path of length
three in both A and B before mapping either path; if it is not, we wait only to see
a path of length two before mapping either path. In either case, we know that the
other path must be shorter (though we do not necessarily know its length), so our
mapping cannot be wrong. �
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By changing the widgets attached to the elements of the ω-spine, we obtain a
similar theorem at the level of one jump higher.

Theorem 5.7. There is a computable structure S that is computably categorical,
relatively computably categorical above 0′′, but not relatively ∆0

2-categorical.

Proof. The structure S is again an undirected graph with an ω-spine. Unlike in the
proof of Theorem 5.4 and Theorem 5.6, the widgets emanating from the nth element
of the spine will be cliques (vertex sets with edges between every two vertices) rather
than paths. Depending on the behavior of the strategy controlling n, these cliques
will either both be infinite, or of finite sizes k and k + 2 for some k.

We construct a computable presentation A, taking S to be its isomorphism
type. For any Σc2-formula ψ, the statement “A |= ψ(x, c)” is effectively equivalent
to (∀∞y) [ϕ(x, c, y)], for some computable relation ϕ. We therefore diagonalize
against c.e. families of formulas of this form.

Strategy for Defeating a Family (Xi, ci): The strategy is assigned to work with
the nth element of the spine, for some n. We begin by constructing a clique of size
one and a clique of size three emanating from this element. Let an be some point
in the larger clique and bn be some point in the smaller clique.

If σ is accessible at stage s, let t < s be the last stage at which σ was accessible
(with t := 0 if there is no such stage). Let (rs, ϕs) be the least pair (by Gödel num-
ber) such that rs ∈ ω, (∀∞y) [ϕs(x, ci, y)] ∈ Xi,s, and ϕs(an, ci, y) and ϕs(bn, ci, y)
both hold for all y with rs ≤ y < s. If (rt, ϕt) = (rs, ϕs), then σ does nothing at
stage s. Otherwise, the strategy σ grows each clique by one element (being careful
to never use elements of ci).

Construction: We place the strategies on a priority tree in the usual fashion, includ-
ing computable categoricity strategies which use the usual pushing on isomorphism
machinery. At every stage, we let all accessible strategies act in order of priority.

Verification: As we build a computable structure, it is immediate that we have
a computably categorical structure as a consequence of the usage of pushing on
isomorphisms. We therefore verify that it is not relatively ∆0

2-categorical and that
it is relatively computably categorical above 0′′.

Suppose towards a contradiction that (ci, Xi) is a Scott family of Σc2-formulas.
Let n be the number assigned to the strategy along the true path which diagonalizes
against (ci, Xi). If there is some formula ψ(x) = (∀∞y)ψ(x, y) in Xi with A |=
ψ(an, ci) ∧ ψ(bn, ci), then there is some Gödel least pair (r, ϕ) such that (∀y ≥
r)[ϕ(an, ci, y)∧ϕ(bn, ci, y)]. Then this pair will be (rs, ϕs) for all but finitely many s,
and thus the two cliques will be of finite, distinct sizes. Thus an and bn will not be
in the same orbit, contradicting (ci, Xi) being a Scott family.

If there is no such formula ψ, then for every pair (r, ϕ), there is some y > r such
that at least one of ϕ(an, ci, y) or ϕ(bn, ci, y) fails. So (r, ϕ) will not be (rs, ϕs)
for any s > y. So there are infinitely many stages at which the cliques attached
to n grow. So they will be infinite, and thus an and bn will be in the same orbit,
contradicting (ci, Xi) being a Scott family.

The structure is relatively computably categorical above 0′′ because 0′′ can de-
termine the eventual behavior of the strategy controlling n. Given two copies A
and B, if the two cliques at n are infinite, it does not matter which clique in A
maps to which in B, so a simple back-and-forth argument can construct an isomor-
phism. If the two cliques are finite, then 0′′ can determine when they have stopped
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growing, and then we can wait for appropriately sized cliques in A and B before
defining our map. �

Theorem 5.8. There is a structure S that is computably categorical, relatively
∆0

2-categorical, and not relatively computably categorical above d for any degree d.

Proof. The structure built in the proof of Theorem 3.3 suffices. It is computably
categorical by construction. Since it is 1-decidable, by Theorem 1.12, it is relatively
∆0

2-categorical (it is also easy to exhibit a Scott family). For any degree d ≥ 0′,
the construction of B can be modified to produce a d-computable structure which
is not isomorphic to A by any d-computable isomorphism. This suffices as, fixing
an arbitrary degree d, the structure S will not be relatively computably categorical
above d⊕ 0′, and so not relatively computably categorical above d. �
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