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Abstract

Downey, R. and T.A. Slaman, On co-simple isols and their intersection types, Annals of Pure
and Applied Logic 56 (1992) 221-237.

We solve a question of McLaughlin by showing that if A is a regressive co-simple isol, there is a
co-simple regressive isol B such that the intersection type of A and B is trivial. The proof is a
nonuniform 0" priority argument that can be viewed as the execution of a single strategy from a
0®.argument. We establish some limit on the properties of such pairs by showing that if
A XB has low degree, then the intersection type of A and B cannot be trivial (solving
negatively a stronger question of McLaughlin).

1. Introduction

If A and B are sets of integers, we say A is recursively equivalent to B, A=B,
if there is a partial recursive injective function f such that A cdomf, B crafand
f(A)=B. The recursive equivalence type (RET) of a set A is the set
[A]={B | B=A}. We say an RET is an isol if one (or equivalently all) of its
members is immune or finite. We will use boldface letters A and B to refer to
isols. The isols are an effective version of the Dedekind finite ordinals.

The structure of the collection of the isols occurs naturally if one considers
choice-free mathematics and appears in the work of Myhill, Dekker and others.
This early work culminated in the monograph of Dekker and Myhili [4]. We
remark that we now know the intuitive connection between choice-free mathe-
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matics and the theory of the isols can be made precise via Kleene realizability
(see [8]).

Isols also have close connections with nonstandard models of arithmetic; see
[5,6,11,12]. :

In this paper, our interest is the set of co-simple isols, those with co-simple
elements. In particular, we will discuss the collection of co-simple regressive isols.
We denote this final class by Azg. McLaughlin [10] is a good reference for
background information on the isols. _

We recall some nomenclature. A is regressive if either A is finite or there exists
a 1-1 function g:®— @ and a partial recursive function p such that A c dom D,
rag=A, p(g(0))=g(0) and p(g(j + 1)) =g(j). A is retracable if the elements of
A recursively code its initial segments. Formally, A is retracable if there is a
recursive function a such that if » is an element of A, then a(n) is the restriction
of A to [0, n]. If A is verified to be regressive by means of the function gandgis
strictly increasing, then it is not hard to show that A is retracable.

Following [2], the intersection type A N B of a pair of regressive isols (A,B) is
defined as {[AN B]: Ae A & B eB}. If A and B are representatives of A and B,
let A+B=[A®B]. Asin [2], we can see that AAB<{Y: Y<A®B). On
the other hand, if A and B are infinite, then NcAAB (where N=
{0,1,2,...}). Furthermore, both limits are possible.

The behavior of intersection types is not well understood. In this paper we
solve a question of McLaughlin [9, question 4(c)] and [10, §7 and appendix]. We
show the following.

Theorem 1.1. For all A € Azy there exists B € A3y such that A OB =N,

The proof of Theorem 1.1 is given in Section 2. We remark that the proof has
an interesting nonuniformity. Given A, we build an infinite set of candidates for
B. We show that one of these candidates satisfies the conclusion of the theorem.
In Section 3 we show that this nonuniformity in the proof cannot be eliminated.
An aspect of the argument that is of some technical interest is that it is a
primitive 0“)-argument. That is, it is a 0"-argument that involves the execution of
one 0“-strategy in the same way as the Lachlan nondiamond theorem (7] is a
finite injury argument that involves the execution of one ("-strategy.

In Section 3, we also examine a natural extension of Theorem 1.1 suggested by
McLaughlin in [10, §7]). McLaughlin asked whether for each retracable co-simple
A, there is a retracable co-simple set B such that AAB=N and A =, B. This
fails rather strongly, as can be seen from the next theorem.

Theorem 1.2. If A and B are infinite IT sets and A X B has low degree, then
[A] N [B]#N.

Our notation follows [13]. W, denotes the eth recursively enumerable set. In
the context of a stage s in a recursive construction, we bound all computations
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and other parameters being approximated by s. We appeal to the existence of a
recursive pairing function (-, +) that is monotone in both of its arguments. Soare
[13, Chapter XIV] provides a good introduction to the tree method in priority
constructions. We adopt that formalism in Section 2.

2. Positive solution to McLaughlin’s question

Let A be a given infinite co-simple regressive set. As each regressive
co-simple isol contains a retracable set, without loss of generality we shall take A
to be retracable. Given that A is IT? and retracable, we can also assume that A is
given by a retracable construction. That is, we may assume that A is represented
as the intersection of a recursive sequence A,: for each s, {a;,: i € @} enumerates
the elements of A, in increasing order; and for all a;, less than s, if
a;s €A, —A;,y, then i<s and for all j such that i<js<s, @ €A — A,
Conversely, any retracable construction will produce a retracable set. Knowing
that » is an element of A, we can compute the initial segment of A below n since
the approximation to A does not change at any number below # after stage n.

Let {@.: ec w} denote an enumeration of all partial recursive injective
functions. We shall produce retracable constructions of IT] sets X and Y, for each
e € 0. At stage s, we let X, and Y, ; denote our approximations to X and ¥,. We
let {x;,: i€ ®}, {y..,: i€ w} be increasing enumerations of X and Y,. We
satisfy the following II, requirement R:

[(Ve)(lWel =0 > W¢EX) & (Ve)(lim Xes =X, exists)

& ()X cdomg; > Ig,(X)NAl<)]| or,
@)| (Vo)W == > W ¢ ¥) & (¥e)lim v, =, exiss)

& (V))(dom g5, > () N4l <))

We write R as R'"R". We shall decompose R into infinitely many IT,
requirements. It is probably easiest to think of trying to meet the pseudo-
requirements:

P: [W=o= W.¢X,

N,: limx, =x, exists,
5

and the IT, requirement

R.: (domg@,5X= |p.(X)NA|<®) or R
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Should we fail to meet one of the P, or N, or one of the first disjuncts of an R,,
then, for some fixed ¢, we must meet all the requirements in R%:

Pyt (dom @, 2 X & |p(X)NA|=x) & (|W|=0>W,¢Y,),
N, (domg,oX&|p.(X)NA|l=w) & (Iim Veis = Ye.: exists),

R.;: (dom@p.o2X&|p.(X)NA|=x) & dom@, oY, > |@.(Y.) NA|<e,

Note that we do not need to meet any of the P, ; and N, ; unless it appears that X
is contained in the domain of ¢, and the set @.(X)N A is infinite. The crucial
requirements are, of course, the R,;, the others being met by standard
techniques. Here our construction reduces to the IT; level since we will be able to
obtain Y, uniformly from e.

2. 1. The basic module

Fix ¢ and i. For a single R,; we will have a primary strategy and a back up
strategy.

The primary strategy is to try to force |@.(X)NA|<ew (i.e., should
dom @, > X). We say that x; , is e-good if . .(x;,)| ¢ A,. Say that'a set is e-good
if all but finitely many of its elements are e-good. The idea is to make X e-good
for-every e such that X is contained in the domain of g,.

Remark. Dropping the requirement that X be retracable, Friedberg’s construc-
tion of a maximal recursively enumerable set can be adapted to build a set X that
is good. For a fixed e, if dom ¢, > X, we can wait for the appearance of an x,
such that x,, is e-good. Upon finding such an x, ,, we can set xg ;.1 =X, by
enumerating o, . . . , Xg—1.5 iNtO X 1 Similarly, given that the first k£ elements
of X are e-good, we can await an opportunity to make x,.. €-good. Infinitely
many e-good elements would appear by the fact that A is co-simple. As
Friedberg did in his maximal set construction, we can use an e-state construction
to combine the strategies associated with different recursive functionals. We
isolate the conclusion as follows.

Obsexvation. Given any co-simple isol A we can effectively find a co-simple isol B
such that A A B =N.

The additional requirement that our sets be retracable prohibits our directly
applying the Friedberg strategy. In particular, we cannot enumerate
X000 X150« o o3 Xpm1, into X, ,, without also enumerating x; . into X, ;.

For the basic module, our primary goal is to ensure that Y, is i-good. Failing
this, we will ensure that X is e-good. Matters will be arranged so that if, for any i,
we fail to make Y, i-good, then we will make X e-good and end the effect of R,.
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R, has a trivial outcome when X is not a subset of the domain of ¢,. Assume
that this outcome is not realized,

R, has two nontrivial outcomes. In its IT; outcome, R, ensures that for every i
either Y, is i-good or Y, is not contained in the domain of ¢;. In its X5 outcome,
there is an { such that Y, is contained in the domain of ¢, yet R, cannot ensure
that Y, is i-good. However, the condition that Y, cannot be made i-good will
imply that R, can ensure that X is e-good. We have the following dichotomy.
Either every R, has the X; outcome and X is the good set or there is an e such
that for every i, we ensure that Y, is i-good. In the latter case, Y, is the good set.
Thus, our overall organization is to establish a disjunction of II, and 3,
conditions, either of which implies the existence of a good set.

R, ; is the basic submodule of R,, working on the pair e and i as described
above. The program for R,; is listed below. We define auxiljary functions f and g
(equal to f; and g,;) as pointers for this module. Also, the module need only act
during e-expansionary stages, since we get a global win on R, should X not be a
subset of dom ¢,.

Step 0. Set £(0) =0, g(0) =0. (As usual f(s + 1) =f(s) etc. unless we explicitly
change them.) Protect y, (. and xzy).
Step 1. Wait for a stage s when @; (¥.,4¢).5))- Let y be equal to ye o(s),s- Note, if
the strategy waits forever in Step 1, then dom ¢; 3 Y.
Case la. @i(y) ¢ A,.
Action. Declare y to be i-good. Set g(s +1) = g(s) + 1 and return to
Step 1.
Case 1b. @(y) € A,.
Action. Protect y and go to Step 2.
Step 2. Wait for a stage ¢ greater than or equal to s such that either @e,(Xrey.00 )
or gi(y) ¢ A..
Case 2a. @(y) ¢ A,
Action. Return to Case 1a (with ¢ substituted for ).
Case 2b. @,(xs)..) ¢ A,
Action. Declare xg,, to be e-good, set f(t+ 1) equal to f(£) + 1 and
return to Step 2.
Case 2c. Otherwise.
Action. Protect xy, , and go to Step 3.

Step 3. Enumerate y, g0 - - - 5 Yo, iNt0 Y, ).
Step 4. Wait for a stage u greater than or equal to ¢ such that @; .(Vegqu.u) ). Let
y =ye,y(u),u-

Case 4a. @(y) ¢ A,.
Action. Declare y to be i-good, set g(u +1) equal to g(u)+1 and
return, to Step 4.

Case 4b. ¢,(y) € A,, but @(y) <max{@,,(F): § <y}.
Action. Go to Step 3.
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Case 4c. Otherwise.
Action. Protect y. See whether @, (%)) ¢ A,. If this is the case,
then declare x;(,, . as e-good and set f(u + 1) =f(x) + 1. Go to Step
5.
Step 5. Enumerate Xpg 41y, u41s - - - » Xusrusr 00 Xyi
Step 6. Wait until either @, ,(¥;¢).0)] or @:(¥) ¢ A,.
Case 6a. @,(y)¢A,.
Action. Go to Case 4a.
Case 6b. tpe(xf(q),q) ¢Aq
Action. Declare xg, , as e-good, set f(g+1)=f(g)+1 and go to
Step 6.
Case 6c. @.(%p(),q) €A, DUt @(xs¢g), ) = max{g, ,(£): £<x}.
Action. Return to Step 5.
Case 6d. Otherwise.
Action. Protect xs ,. Return to Step 3.

Remark. The basic idea is to ensure that during any stage either ¥, or X is
covering A. Thus any A-change becomes helpful (at least in the basic module).
Also note that the construction in some sense favors Y. .

2.2. Verification of the basic module

X and Y, are retracable as they have retracable constructions. For the basic
module we see that

(i) f(x)— < implies @.(x) N A =4 (as f is incremented only when we achieve
Xf(s),s €-g0od);

(ii) g(s)— = implies @,(Y,) N A =@ (similarly);

(iii) lim,f(s) <& lim,g(s) < iff one of dom @, $ X or dom ¢; P Y, holds.

To see that (iii) holds suppose otherwise. Let ¢ be such that f(f)=
lim, £(s), g(t) =lim,g(s). Assume that dom ¢, > X and dom ¢; > Y,. We give a
recursive procedure to compute A. Given a number z, we compute A[z] as
follows. We run our construction until a stage u >t where @, .(¥r..)) >z and
iu(Ve ga.)| > z. Recall that A is presented by a retracable construction. If A
were to change below z during a stage v greater than u, then every number
between z and v would enter the complement of A during stage v. Since this
would cause a change in whichever of f or g was covering A during stage v, it
follows that A,[z] = A[z].

2.2.1. The outcomes of the basic module (in order of priority)
(i, ©)— almost all of Y, is i-good.
(e, ) — almost all of X is e-good.
(i, w)~—dom @, > X but dom ¢; 3 ¥..
(e, w)—dom ¢, P X.
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2.2.2. Coherence of the strategies and the a-module

We first consider the coherence of the collection of {R.; ieN} amongst
themselves.

The potential conflicts are handled by IT, strategies. The simplest case is for
two requirements R,; and R,; where i <j. As usual there are essentially two
important versions of R,,. One is guessing (i, w) and the other is to the left of
this and is guessing (i, ®). The other outcomes such as (e, ) of the R.; module
have no subsequent R, ; since this outcome wins all of {R, ,: k € w}. This will be
taken care of in the definition of the priority tree.

The version of R, ; guessing (i, w) believes that dom ¢, > X and dom @; 3 Y,.
Thus it appears correct at (e-expansionary) stages where we have set y equal to
Yes(s).s and we are waiting for @, (y) to halt. Following the basic module, while
we are waiting for @, ,(y) to converge, there will be (unless g(s) = 0} an x, equal
t0 Xs().5, devoted to covering a portion of A,.

The obvious strategy here for R, is to begin a new module working on £ >x
and 7 >y. To do this we use new (e,j)-pointers £ ;(s) and g.;(5). Note that if it
later turns out that @,(y)|, then we can abandon these versions of £, ; and g. ;. So
this strategy does not cause any injury to either of R, ; or R, ; for a single pair.

The difference will be that now the rules for X have changed. Now we can get
some element x = X;, () permanently kept in X yet @.(x) € A. Such an x draws
attention to the fact that we win @; on Y, but we must be very careful to argue
that if there are infinitely many such x with @.(x)€A (due to the action of
infinitely many R, ;), then we ensure that |@,(Y,) N A| <o or dom ¢; p Y, forall i.
This same problem will occur in the other version of R.; as we shall see, and
really is the crucial point of the whole argument.

The version of R, ; guessing (i, @) knows that R., will produce a stream of
i-good numbers for Y,. Then R, ; refines this stream and only works with i-good
numbers. Furthermore, it seems reasonable to only let R, ; act on y,, for k>j
and only when we have seen g;(s) increase. (Since it is guessing g:(s)—> «). At any
stage s, Y, will appear as

Gos - +s9ns Z0s -3 Zns Pos-- s Py

where the g, are both j- and i-good, the z, are only i-good and the p, are neither.

Thus R, ; will be working on z; and R.,; on po. Again we see the same potential
problem. While we await ¢;;(z) to halt, we will need a @.(x) to cover it on A,,
yet when @, .(po)l we will wish to reset X,., by dumping all sufficiently large
numbers less than ¢ into the complement of X. Note that here j>i, so we are
now getting injury from below (i.e., from lower priority subrequirements). Note
that if we later see t;o,-_u(zo)l, then we can await a stage u, = u where @, (po)l
and then dump from x onwards, so if ®;(z0)|, then Y; can live with this.

The only problem is that (j, w) may be the correct outcome with witness zo.
Again this can force some x € X to have ¢.(x) € A. The crucial point to realize
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though is that there can only be infinitely many such x only if (i, %) is the true
outcome of R, ;.

In general the setup is such that if we really do have infinitely many such bad x,
it can only be that they are spread at infinitely many levels of the tree, and an
inductive argument will allow us to argue that then for all { we meet R, ;.

There is no problem with the coherence of the various R, ; and R;; as if f > e,
then f simply plays with e-numbers and the relevant outcomes will be that (e, w)
or (e, ®). For (e, w) the effect is finite. For (e, ) we know that almost all of X is
¢-good and there is only finitely much activity predicted on (i, ). So the I,
modules combine in a standard IT, way.

Now we turn to the details.

2.3. The priority tree

Generate the priority tree T as follows. Let A denote the empty sequence.
Assign A to solving (0, 0) (so that e(A) =i(A) =0).

Assume o has been assigned to solving (e, {). Then « has 4 outcomes from left
to right (i, »), (e, »), (i, w), (e, w) (so that a"(i, ©) € T). Then

a"(i, ) 1is assigned to (e, i + 1),
o (e, ©) is assigned to (e + 1, 0),
a”(i, w) is assigned to (e, i + 1),
a" (e, w) is assigned to (e + 1, 0).

This gives the recursion to define T and the assignment of the R,; requirements.

Remark. In our description of the construction, we write f, and g, for f. s i
and g.(a),ix)- We call a stage s a-expansionary if, for e = e(a), (e, 5) is greater
than max{¢, 0: ¢<s and ¢ is w-expansionary}. By initialization, we mean setting
all parameters to zero and returning the module to zero. During a stage s, we let
M(«a, s) denote the current state of the a-module. M(a, s) will be a number
j€{0,1,2,4, 6} (corresponding to the indices of the steps in the basic module).

We make another notational convention. When a parameter assumes one value
at some substage ¢ which may be changed during a later substage, we indicate its
value during substage ¢ by appending the subscript «. In particular the functions
f(e, s) and g(a, s) will be so indicated when the outcomes (e, ) and respectively
(i, =) appear correct. This is because subsequent modules based on these guesses
can cause enumeration into X (respectively Y,) and cause us to revise our belief
as to how much of X (Y,) we are prepared to believe is e-good (i-good).

Construction. The construction proceeds by stages. During stage 0, we set X and
each ¥, equal to N. During stage s +1, we proceed through the following
sequence of substages.
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0. Define ¢(0,s + 1) =A.

t+1, (t=s).

Step 1. We are given @ =o(f, s +1). Let e=e(@) and i =i(«). Adopt the first
case below to pertain.

Case 0.

Case 1.

()  z>max{lal, r(e, 5): y<La G, w) &y, 5) £ 0},
(i) x, is not e-good at 5.

Case 2.

M(a, s}=0. Define f(a,s+1)=g(a,s+1)=5+1, M(a,s+1)=1,
r(a, s +1)=s5+1 and set ¢,,; = a"(i, ). Initialize all y %, o,,, and
go to Step 4.

M(a, s) = 1. Adopt the first subcase to pertain.

1a. For some 77(j, ®) o, with e(n) =e, we have that y, ., ., is not
j-good.

Action. Set ¢ = a"(i, w) and initialize all y %, 0,.,. Go to Step 4.

1b. For some n7(f, @) c o, e(n) =f, we have X, ), is not f-good.
Action. As in subcase la.

Ic. (px',:(Y)T for Y = Ye,g(as),s

Action. Set ri(a, s +1)=y and r(a, s + 1) =|a|. Define o(t+1, s +
1) = &"(i, w) and go to Step 2. ‘

1d. "p!(y) ¢ As-

Action. Declare y as i-good. Set g,.1(«&, s + 1) =g,.,(&, 5} + 1. Define
ot+1,s+1)=a"(},) and M(a,5s+1)=1. Set r(e;s+1)=0,
r(a, s +1)=|«| and go to Step 2.

le. p(y) € A,.

Action. Set (@, s+1)=y and define o(t+ 1,5 +1)=a (e, w). Set
M(e, s + 1) =2. Initialize all y > a”(i, w). Define f(«, s + 1) to be the
least z such that

(2.1)

Go to Step™2.

M(a, s)=2

2a. for some 17(f, ®) c & with e(n) =f we have xs,5),; is not f-good.
Action. Set 0,4, = a"(e, w) and initialize all y £ 0., with ¥ 3 0,4,
Go to Step 4.

2b. Neither @, ((¥/(a.).s)) DO PAy) ¢ A,.

Action. Define o(t+1,s + 1) = a"(e, w) and (e, s + 1) = f (e, s) and
go to Step 2.

2¢. p(y) ¢ A,

Action. As in subcase 1d.

2d. @(Xp(ws),s) € As-

Action. Declare Xxs, s as e-good. Set fi(a, s +1)=f.(a, s)+1,
M(e,s+1)=2and o(t+1, s + 1) = a"(e, ). Now set r (o, s + 1) =
|| (but keep (e, s + 1) the same). Go to Step 2.

2e. @.(xf(0,5),5) €A, DUt @.(Xp(asy,:) IS nOt greater than or equal to
max{qpc.,()‘c‘): % Sx_f(r:r,s),.\'}'
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Case 3.

Case 4.
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Action. Set M(w, s +1)=2. Initialize all y> a"(e, w). Enumerate
Xfas),sr - - - » X5, IDLO X, 1. For any yc a with f(y, s + ) =f(a, 5),
set fi1 (v, s +1)=f(a, 5). Go to Step 2.
2f. Otherwise.
Action. Set r(a,s+1)=f(a,5), n(a,s+1)=0 and, enumerate
Yerg(asysr -+« » Vess i0t0 Yo 1. Set o(t+1,5+1) equal to a”(i, w)
and M(a, s +1) equal to 4. For any y < a with g,(y, s + 1) =g(a, 5),
set g.1(7, s +1) =g(a, 5). Go to Step 2.
M(a,s+1)=4.
3a. For some 77(j, )}, with e(n) =e, we have y, .(a.r).s is Dot j-good.
Action. Set o,.,=a"(i,w) and initialize all y < 0,,, such that
v 2 &"(i, w). Go to Step 4.
3b. @;.(N)T.
Action. Define a(t+1, s + 1) = a"(i, w), n(e, s} =y and go to Step 2.
3c. @(y) ¢ A,
Action. Declare y as i-good and set g,.,(a, s + 1) equal to g(w, 5) +1,
o(t+1,5+1) equal to a™(i, ®), n(e, s +1) equal to 0 and r(a, s + 1)
equal to |a|. Set M(a, s + 1) =1 (note, ‘1’ not ‘4’) and go to Step 2.
3d. @i(y) € A, but @,(y) F max{g;.(¥): §=<y}. :
Action. As in subcase 2f except we also initialize all y 2 ¢™ (i, w).
3e. Otherwise.
Action. Set r(w,s+1)=y and now see if @.(xss)s) €A, If so,
declare xg(q,5,5 as e-good and set £ (o, s + 1) =f(a, 5) + 1, rp (e, 5 +
D=lal, o(t+1,5s+1)=a (e, ») and M(e, s + 1) equal to 6. Go to
Step 2.

¥ @xras) €A, set o(t+1,s+1)=a (i, w) but initialize all
v 2 a”(i, w), and set n,(a, s + 1) = |&|. Also enumerate Xsez5y.50 - -« 5 Xoys
into X,,, and M(e, s+ 1)=6. For any y < « if fi(y, s + 1) =f(a, 5),
then set f,,,(y, s + 1) =f(«, 5s) and go to Step 2.
M{a, s +1)=6.
4a. Xf(q5),s 1 not f-good for some 1" (f, ®) c a with e(n) =f.
Action. Define o,,,=a (e, w) and initialize all v, o,,, with y2
0, ;- Go to Step 4.
4b. (P:(y) eAs and (pe.s(xf(a.s),s)T'
Action. Define o(t+1,5+1)=a"(e, w). Set n(e, s+1)=Xsqs.s
and go to Step 2.
4. py) ¢ A,
Action. As in subcase 3c.
4d. (pe(xf(n’. s),-'{) ¢A;.
Action. Declare X, as e-good. Set f (o, s+1)=Ff(a,5)+1,
ot+1,s+1)=a"(e, ®), r,{o,5s+1)=|a| and M(e, s+1)=6. Go
to Step 2. '
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de. ©.(Xp(as5),s) € A; but @.(Xs(4,5,5) is not greater than or equal to

max{@.(£): £ <X¢o5)s}-

Action. As in subcase 3e.

4f. Otherwise.

Action. Set r{a, s + 1) = X¢(5),» M(@, s +1)=4 and n(a, s+ 1)=0.

Define o(t+1,s +1)=a (i, w). Initialize all vy ¢™(i, w) and enu-
MELAte Y, gia)er - - - » Yeoss IO Yory. f yc wand gy, s + 1) = g(a, 5)
set g..1(a@, s + 1) =g(a, 5) and go to Step 2.
Step 2. Initialize all y with o(t+1,s+ 1)<,y and o(t+1,st )¢ v. If =y,
define o,., = o(t + 1, s + 1) and go to stage s + 2. Otherwise go to Step 3.
Step 3. If o(t+ 1,5 + 1) = a"(e, ») or a"(e, w), see if there exists numbers z and
j such that j<e, W, ,cX, and xeW, Wwith z>x;; and z>
max{X, s, T<pa&}. If so, then z=x,, for some k <s. We enumerate
Xpgs ooy % into X,y and initialize all y> a”(e, ©) (respectively
a"(e,w)) and go to Step 4 setting o, =a"(e, @), (a (e, w)).
Otherwise go to substage ¢ + 2.

Similarly, if ¢(z+1, s + 1) = a™(i, ®) (respectively a”(i, w)) and there
exist j<i with W;;cY,,, zeW,, with z>max{r(zs,s): 7<.a and
e(r)=e(a)} and z>y,;,, we enumerate y, ., . . . , Ve 5. int® Y., where
Yers = 2. We then go to Step 4, setting o, = a™(i, ») (¢, w)). If not,
we got to substage £+ 1.

Step 4. For each a c 6, with a"(e, ®) € 6,43 set ry (@, s + 1) =f, (e, s + 1).
(End of Construction)

It is clear that X and Y, are retracable for all e € w, as they are built by
retracable constructions. Let § denote the true path. Note that any P, or P,; can
act at most once. They will therefore be met with finite effect, provided we argue
that along the true path the liminf of the restraints is finite. The following is the
crucial lemma.

Lemma 2.1. Let o = B and (e, i) = (e(a), i(®)).

(i) If a"(e, w) = B, then dom @, ¢ X. lim, f (&, s) = f(a) exists and f(&) > |a],
lim,r (e, 5) exists and lim,(r,(«, 5)) exists and lim,x; ; exists for j <f(a).

(i) If a™(i, w) c B then dom @; P Y,; liminf f,g(w, s) = g(a) exists and g(a) >
|}, liminf;r (e, s) and limr,(e, s) exist and lim inf,y, ; ; exists for j <g(«) and
furthermore (At)(¥s > t)(a = o(u, 8) > o, w)=o(u + 1, 5)).

(it} If a"(e, ) = B, then (Fs)(Vt =s50)(f(a, £) = |a|), lim infox; ; = x; exists for
Jj <|el, and there exists a stage s, s, such that for all k£ liminff(a, £), x,;, € X
implies that x;, Is e-good (and hence almost all of X is e-good), lim,r( e, s) exists
and lim inf (e, ) = || (and drops down when o(t, s) = a" (e, «)).

(iv) If a~(i, ®) = B, then (Aso)(Vt=s0)(g(a, ) =|a|), iminfy.;, =y, exists
Jor j<|al, for all k=liminfg(a, s), V.rs, € Y. implies that y, , ,, is i-good (and
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hence almost all of Y, is i-good), and lim inf min{ri(«, ), r(e, 5)} exists (=|a|)
and both drop down when a(t, s) = o~ (i, ).

Once we have the lemma, we finish the proof by observing that one of (a) or
(b) below must occur:

(a) (Ve)(Fe)(e=e(a) & (a"(e, ) = B v a”(e, w) = B));

(b) @e)(Va)(e=e(@)— (™G, =) = B v &G, w) < B)).

In case (a), then (i) and (iii) imply that [X|=o, and for all e either
dom @, $ X or |@.(X) N A| <. Also the restraints having finite lim inf allows us
to meet P,. Case (b} similarly implies that ¥, does the job.

We prove Lemma 2.1 by induction. Let & = 8 and let s, be a stage where
for all <, o with 7+, v has ceased acting, for all j with P, (P;;) having
higher priority than a, F; (P;;) have ceased acting, and for all y & « the hypotheses
of the lemma hold for y at stage s, (that is, for example, if y~(f, w)<sa
and f = e(}’): then f(}’: SO) =f(Y)! rI(Y: SO) = rl(?): etc')'

Now suppose a"(e, p) = B. Additionally we may assume at s, that all n2 «
with 7% a”(e, p) have ceased acting. Let p = w. Note by initialization we can
suppose that if p > a”(e, w), then p is initialized at s, (or has not yet been
visited) so that M(p, s¢) = 0.

The construction allows for o™ (e, w) = 8 only via Case 2 or Case 4. Note that
when either of these are visited, we will set ry(a, 5) =Xs(4,5y. Also note that
after s, f(@, 5) is only reset when we leave the relevant case and hence
lim, f(a, s) =f(«) exists. To finish the proof of (i) it will suffice to argue that
lim.x; ; = x; exists for j <f(a) (and from this it will follow that x(,, . will witness
the fact that dom ¢, ¢ X as subcase 4¢ cannot pertain more than finitely after to
any particular f(ea, 5) (as @, is 1-1)).

For j<f(a) how can x;, change? By initialization f(p, so) > f(«) for p >
a"(e, w) (this is set at a very large number in Case 0 and (2.1)). Therefore
p > o (e, w) can change x; , for j <f(a).  cannot change such x;, either and by
choice of s, the positive requirements will not change x; after so. Thus we see
that x;, for j <f(a) will only change due to the action of 5 < a. By choice of s,
the only nodes # that will act cofinally with the construction and 1 & & are of the
form n7(f, ®») c & and 57(i, ®) c . Let n be the shortest note whose action
causes x; ; not to reach its limit (f least).

Case 1. n7(f, @) c . Now by construction we see that x;_, ; is f-good for all
s =, some { = s, (minimality of j). Without loss of generality, we may take ¢ = s,,.
Since 7 causes x;, not to reach its limit, we must have j=f(n, s) for infinitely
many §=s,. As X;, is protected until we see @y(x;,)| and 9°(f, ®)c a, it
follows that subcase 2d or 3e must pertain infinitely often. When each of these
subcases pertains (say at substage f), we set f(n,s+1)=f(n,s)+1=k+1.
Now by n we finish with x;, (as it is now f-good) unless some y with
n7(f, @) c y © o causes x;, to enter (and hence cut the sequence back to x;
again). It cannot be that all such y are of the form y~(k, ®) c & where 7 = e(y)
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since, like an e-state construction x;, would be k-good for all such A. Thus this
case reduces to the case that for some y we have ¥ (i, ) c « causing x;, to not
have a limit. We deal with this below in Case 2.

Case 2. n7(i, ©) c . At the same stage s after stage s,, when we visit &, we will
have defined r(w, s) to protect Xs(,) .. Now thereafter when we visit 7, 7 can
only cause enumeration into X,.1 only for those k>f(a,s) because of the
definition of f(#, s) in (2.1) and the fact that we delay enumerating x;, ., until all
those x,, for g <f(h, s) are h-good for all & with y~(h, )= n and A =e(y) (as
in Case 1). Therefore n must respect (in particular) x;; until we have seen
@e,s(X7(a,5),s)|- This establishes (i).

To see (ii) holds, again the crucial part is to show that lim,y. g(a).s = Ve g(a)
exists. (Also here we must argue the existence of the stage r.) Here the argument
is much easier. If ¢”(i, w) < §§, then by construction of the priority tree, for all 7,
if e=e(n), then n~(e, ©) ¢ «. Thus the only nodes which can cause infinitely
much enumeration into Y, of higher priority than « are ones with #7(j, «) c .
But now the argument mimics the one for (i} since such nodes work like e-states
together.

We must also argue for (ii) that (38)(Vs>)(a=o(u, s) > a”(i, w)=o(u +
1, 8)). (This is really needed to get dom ¢; 3 Y,.) Thus we must argue that we
cannot switch infinitely often from a™(i, w) to a"(e, w) and must get struck
awaiting the relevant i-computation to halt. For this we argue exactly as in the
basic module. When we switch from (e, w) to (i, w) we will protect y. This y is
f-good for all y"(i, ©) c o and is therefore immune from enumeration. Similarly
when we have the switch from (i, w) to (e, w), we do so to some x4, ;) s Which is
h-good for all y~(h, =) for k= e(y) (and be protected from such y7(k, «)) and
furthermore this x(4,),s is protected from enumeration by y~(i, =) by the clause
(2.1)(i). Therefore at any stage one side or the other covers A,. But then as A is
retracable and nonrecursive, we must see some outcome ¢ (f, ) or a(i, «) after
stage s, this being a contradiction and giving (ii).

To establish (iii) suppose that a™(e, ) = 8. This implies that there are only
finitely many restraints a must respect that are permanently generated by po
(@ «) for nca but p7(@F ®)pa"(e,») (via (2.1)). Also after stage
8o, r2(@, 8) = || henceforth. It follows that any %~ (i, ©) < o must respect ry(a, s)
(by (2.1)) and hence using the argument we used for (i) we see that limx;, =x;
exists for j<|a|. To complete the proof of (iii) we need to argue that for all
k #liminf f(e, £), X, € X implies that x, ; becomes e-good at some stage s > s,
and some s;. By construction, we know that there will be a stage s, such that
51> 80, Xp(asp).s 18 H-good for all & < e with 7(h, ) c & and h = (7). When we
play the outcome & (e, ), we will allow (e, 5;) to be |&f. This may allow some
enumeration into X by nodes y o a” (e, ), but the virtue of f(«, s) at the end of
substage s will be preserved by r, (by Step 4) and hence by any n"(i, ) ¢ a. It
follows that at the end of stage s, x¢(4,)-1,s 15 €-good, and for some ¢>s5 with
fla, t) =f(a, s), we will have xs, ., is e-good (i.e., at the next o™ (e, ) stage).
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There are now two cases. Either lim inf f(«a, £)— o in which case almost all of X
is e-good or lim inf f (@, ¢) < in which case X is finite. We now get (jii).

To see (iv) is even easier. There is no injury from below for (iv), and we argue
as in (ii) that limy,;, =y.; exists for j<|a|, and similarly almost all of ¥, is
i-good. Finally, whenever we have an «" (i, )-stage, we always set r, = |a| and
n= 0.

3. Related results

In this section we shall prove two related results. First we will show that in
some sense the complexity of the argument of Section 2 cannot be avoided in the
sense there is no uniform solution to McLaughlin’s question.

Theorem 3.1. There is no recursive function f such that Wﬂe) is co-simple
regressive and whenever W, is co-simple regressive, then [W.] N [Wy)] =N,

Proof. We shall prove that we have the ability to build A satisfy the require-
ments, for all e € @ and any f, '

P |We|=x > W.¢A,

N,: lima,, = a, exists
5

(where {a,,: e w} lists A;), and
R if |V;| = and y; retraces V}, then Dy ~V; and |D; NA| =i

Here (V}, 'yf)ee.,: denotes a list of all pairs consisting of a recursively
enumerable set and a partial recursive retracing function (Dy is built by us as the
range of a partial recursive function). That is, by withholding the enumeration of
Vr and y; we ask that V; and y; satisfy the following conditions: ¥y is injective; if
{v];: je w} lists Vi, we ask that if y.(v],)], then (Vk </)[vs.(v])]]; if j=0,
then v, (vhy) =vh,: and if j=1, v (v))=v.(vf_r.). Finally if Kf,s)=
max{x: (Vy <x)[y;,(v) )]}, we ask that V.., =V, implies that I(f,s +1)>
I(f, 5). Note that this means that if {V;| =, then if y; does not retrace V}, (V;, v¢)
will be frozen at some stage.

The reader should note that if we can meet the F., N, for all e € w and R;; for
all i € w any arbitrary f, the recursion theorem will give Theorem 3.1.

We will now describe the strategies, omitting the formal details as they are
routine. We build A by a retracable construction. We meet F, as usual. At any
stage s if we see an unrestrained x € W, ; with W, c A, we enumerate x into
A,,,. Note that if x =a;,, then we ask that i > e, so we automatically meet the
N;. The hard part is to get things into A.

th—s NS
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Let us drop the f. We must meet the overall requirement
R: |V|<w or |V|<® or (Vi)(R;).

In particular R; attempts to either ensure that V = {v,, . .., v;,} or (3t)(Vs >
t)(V, = V) or we get a new witness for R;. For the sake of R;, we define a restraint
r(i, 5). Then the basic strategy is this.

Suppose we have met all the higher priority P, and R, for j <i. For those j <i{
we can suppose that R; has a stable assignment (as becomes clear below). Now R;
will require attentions when we see a stage s where I(s) > k for some least k not
yet assigned. We then set i(s) = k and assign v, to a,,. (That is, we extend our
partial recursive function & we are building to include v, and define é(v. )=
ds,s.)

We then raise r(i, s) = a, ; and restrain A from losing a,, with priority i. This
temporarily satisfies R; and wins with finite effect unless the assignment is not
stable: that is, there exists a stage t >s such that v, ,., #v,, Note that by our
assumptions on the enumeration of V this means that all assignments of £ for
k = k are unstable.

Should this case occur, we must seek a new assignment for v, ,, some u=¢+ 1.
However, if we assigned vy ;.1 10 @,41 41 immediately, we would potentially fail,
since then perhaps lim sup /(s)— c yet lim inf f (s) = k. The obvious solution is to
use a standard infinite injury strategy to give all the F, requirements a window at
stage ¢ + 1. That is, drop the restraint to zero for one state and then give the new
assignment. In this way we get to meet all the P, no matter what the outcome of
R O

The other result we shall examine is generated by the stronger question of
McLaughlin as to whether the main result would hold in a given degree. That is,
given any regressive co-simple A, is there a regressive co-simple B =1 A such that
A NB =N? The answer is no in a very strong sense.

Theorem 3.2. Suppose that A and B are infinite IT, with A X B of low degree.
Then [A] N [B]#N.

Proof. The argument we now give uses a very well-known technique called the
Robinson trick (cf. [13, Chapter XI]), so we again sketch the details.

Let A={) A, and B=("\, B, with Ag=By=w and A,={a;,: iew)}, B,=
{b;s: i € @}. We shall define a partial recursive function f so that |f(A) N B| =0,
To do this we meet the requirements

R.: |f(A)NB|=e

by a finite injury argument. Note that as AX B is low (where AXB=
{{x,y): xe A&y eB}) and I, it follows that (cf. [13, Chapter XI})

{e: W,N(A X B)#6} <0
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By the limit lemma, there is a recursive {0,1}-valued function g such that
lim,g (e, s) = g(e) exists and

gle)=1 iff ee{e: W.N(AXB)##}.

For the same of R, we define numbers x(e, s) and y(e, s). We say that R,
requires attention if e is least such that if x(e, s) and y(e, s) are undefined or
x(e,s)e A, or y(e, s) € B..

Construction. During stage s + 1, the construction proceeds as follows:

Find the least e such that R, requires attention and g(h(e), s} = 0, where for the
sake of R, we have a test set V, whose index h(e) is given by the recursion
theorem. Find the least  and j such that g, ; ¢ dom f; and b;, ¢ dom g,. Enumerate
(@5, b,s) into V,,,,. Compute t =5 + 1 such that either g(k(e), 1) =1or a;, ¢ A,
or b;, ¢ B,. (One must occur.) If g(h(e), ) =1 occurs, define f,1(a;s) = b;, and
x(e,s+1)=a;, and y(e,s+1)=0b;,. If one of the other cases occurs (say
a;; ¢ A,, the other is dual), find the least i’ such that a;. , ¢ dom £, and enumerate
{a; b; ) into V,,,.; and await a stage u =1t + 1 such that either g(h(e), u)=1or
ap,€A, or b, € B,, etc. We continue in this way until the g(k(e), -) =1 option
occurs as it must since |A| = |Bj=c. O
(End of Construction}

To see that the construction works we need only observe that if we map 4, to
b; . at stage s, it is only because g(h(e), £) = 1. If this is a false assignment, then
(a;, b;5) ¢ AX B and hence at some stage u >t we must see g(h(e), w)=0.
Now as lim, g(z, s) = g(z) exists, we can only so switch finitely often. [

It seems reasonable the stronger conjecture might possibly have an affirmative
solution if A has degree 0’. One would need to check that coding combined with
the argument of Section 2. It also seems that one might even prove the stronger
conjecture for any A of high recursively enumerable degree.
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