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Abstract. We introduce a new hierarchy of computably enumerable degrees.

This hierarchy is based on computable ordinal notations measuring complex-

ity of approximation of ∆0
2 functions. The hierarchy unifies and classifies the

combinatorics of a number of diverse constructions in computability theory.

It does so along the lines of the high degrees (Martin) and the array non-

computable degrees (Downey, Jocksuch and Stob). The hierarchy also gives a
number of natural definability results in the c.e. degrees, including a definable

antichain.

1. Introduction

Ever since Post’s original paper [66], two recurrent themes in computability the-
ory have been understanding the dynamic nature of constructions, and definability
in the structures of computability theory such as the computably enumerable sets
or degrees. Beautiful examples of this phenomenon in the c.e. sets are the realisa-
tion of Post’s programme by Harrington and Soare [48], giving a lattice-theoretic
definable property guaranteeing both incomputability and incompleteness, and the
definability of the double jump classes for c.e. sets of Cholak and Harrington [21].

The work reported here can be seen as contributing to these areas. The goal
of this research announcement is to report on the current results of a program
introduced by the authors and some co-authors, that seeks to understand the re-
lationship between dynamic properties of sets and functions and their algorithmic
complexity, and results in instances of natural definability in the c.e. degrees.

Much of this announcement will report on the authors’ new monograph [27]. In
that monograph, along with the companion papers [30] and [28], we introduce a
new hierarchy of computably enumerable (c.e.) degrees based on the complexity of
approximations of functions in these degrees.

The reader might well ask why we need yet another hierarchy in computability
theory. In this announcement, we discuss three aspects of this work, that show
the importance of the new hierarchy for answering old questions as well as raising
interesting new ones.

(i) A new methodology for classifying and unifying the combinatorics of a
number of constructions from the literature.

(ii) New natural definability results in the c.e. degrees. The classes defined are
subclasses of the low2 degrees and hence are not covered by the current
metatheorems of Nies, Shore and Slaman [65]. Moreover they are amongst
the very few natural definability results (in the sense of [68]) in the c.e.
Turing degrees.

The authors’ research was supported by the Marsden Fund of New Zealand.

1



2 ROD DOWNEY AND NOAM GREENBERG

(iii) The introduction of a number of construction techniques which are injury-
free and highly non-uniform. These would seem to have wider applications.

It is quite rare in computability theory to find a single class of degrees which
capture precisely the underlying dynamics of a wide class of apparently similar
constructions. A good example of this phenomenon is work pioneered by Martin
[60] who identified the high c.e. degrees as the degrees of dense simple, maximal,
hyperhypersimple and other similar kinds of c.e. sets. Another example would be
the promptly simple degrees, investigated by Ambos-Spies, Jockusch, Shore and
Soare [5]. This class can be characterised in terms of both cupping and capping
in the c.e. degrees. A more recent example of current great interest is the class of
K-trivial sets (introduced by Solovay; see Downey, Hirschfeldt, Nies and Stephan
[32] and Nies [64, 63]), which are known to coincide with many other “lowness”
classes.

The common theme here is to identify properties of c.e. sets, or of functions in
a c.e. degree, that determine their strength as oracles in computations. In these
examples, the properties involve the rate of growth of functions in a degree (high
degrees are the ones that contain dominating functions); the speed of the approxi-
mation of a function (sets of promptly simple degree are the ones that have rapid
approximations, in that within a computable bound of time they prove that they
are not computable); and the overall weight of an approximation (sets of K-trivial
degree are those that have approximations with finite weight on incorrect initial
segments, as formalised by the “main lemma” [64, 5.5.1]). A particularly fruitful
class is that of the array computable degrees [34, 35]; see Theorem 4.1 below for
a partial list of equivalent characterisations of this class following this theme. Our
new hierarchy is a generalisation of this notion.

There are several equivalent definitions of array computable degrees, the most
general of which uses domination properties. Within the c.e. degrees, one of the
most useful characterisations concerns approximability of functions in the degree.
Shoenfield’s limit lemma says that every ∆0

2 function has a computable approxima-
tion. Intuitively, the more complicated the function, the more changes the approx-
imation needs to make on a given input. Under this scheme, the c.e. sets are the
simplest (noncomputable) ∆0

2 sets; they have a computable enumeration, which is
an approximation which starts with the empty set and is allowed to change its mind
about membership in the set at most once. Moving up we get more complicated
classes, such as the d.c.e. degrees and more generally the n-c.e. degrees. Beyond
that, an important class of functions is those that have a computable bound on the
number of mind changes of an approximation; these are precisely those functions
which are weak-truth-table reducible to the halting problem H1.

The problem with this classification of complexity is that it does not align at all
with the Turing degrees: a function which has a simple approximation can compute
a function with only complicated ones. Indeed the failure is complete: a c.e. set,
namely H1, computes all ∆0

2 functions. This is solved by combining the two notions
together: we say that a c.e. degree is weak if all the functions in that degree have
simple approximations. In the first example, a c.e. degree is array computable if
and only if every function in that degree has an approximation with at most n mind
changes on the nth input.

We generalise this notion by using a hierarchy defined by Ershov [42, 43, 44]. His
idea is that a witness for the approximation converging is a simultaneous “counting
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down” some ordinal. The longer the ordinal, the more room the approximation
has to change its mind about the value of the function being approximated; well-
foundedness implies that the number of changes will be finite. If a ∆0

2 function
has an approximation with an associated counting down an ordinal α, we call it
α-computably approximable, α-c.a. for short.1 Associating mind changes with a
counting down ω is the same as imposing a computable bound on the number of
mind changes, and so the ω-c.a. functions are precisely those which are weak-truth-
table reducible to H1. Finally, we call a c.e. degree totally α-c.a. if every function
in that degree is α-c.a. This gives us a transfinite hierarchy of complexity within
the low2 c.e. degrees. We then identify new levels of this hierarchy by considering
uniform versions (the first uniform level is the array computable degrees), and new
limit levels, the totally ă α-c.a. degrees. We identify which levels of the hierarchy
are proper (see for example Theorem 3.2 below), and investigate degree-theoretic
properties such as maximal elements (for example, Theorem 7.2). We also discuss
the choice of canonical computable presentations of the ordinal α.

It turns out that two levels of this hierarchy, namely totally ω-c.a. degrees and to-
tally ă ωω-c.a. degrees, capture the dynamics of a number of constructions already
present in the literature and widely used. The first is a non-uniform version of array
computability, and similarly to that class, we obtain equivalent characterisations
of the totally ω-c.a. degrees using algorithmic randomness, strong reducibilities,
or Cantor-Bendixson rank (see for example Theorems 4.3, 4.5 and 6.2). A par-
ticular area is that of embeddings of finite lattices into the c.e. degrees. Here we
characterise the totally ă ωω-c.a. degrees as those which do not bound a copy of
the non-distributive 1-3-1 lattice. Together with Theorem 4.5, this gives a solution
for the long-standing quest of finding complexity-theoretic characterisations of the
classes of degrees below which we can find certain lattice-theoretic structures, such
as the 1-3-1 lattice or critical triples, which we discuss below. Our hierarchy theo-
rems then show that some of these classes do not coincide (Theorems 5.2 and 5.4).
These results also show that these two levels of our hierarchy are definable in the
structure of the c.e. degrees (as a partial order), indeed naturally so.

2. α-computably approximable functions

As discussed, Shoenfield’s Limit Lemma states that the ∆0
2 functions are those

functions g that have a computable approximation: a uniformly computable se-
quence xgsy of functions which converge to g — in the discrete topology, so this
means that for all n, gspnq “ gpnq for all but finitely many s. As mentioned, the
intuition is that simpler functions have low bounds on the “mind-change” function
#ts : gs`1pxq ‰ gspxqu.

Ershov [42, 43, 44] developed and refined this idea and created a transfinite
hierarchy of complexity. Fixing an ordinal α, associated with the approximation
xgsy we have a computable sequence xosy of functions os : ω Ñ α; ospnq can be
thought of as the “number of times” we are still allowed to change our mind; the
requirements are that xospnqy is non-increasing in s, and that os`1pnq ă ospnq if
gs`1pnq ‰ gspnq. Such an approximation is called an α-computable approximation,
and a function which has an α-computable approximation we call α-computably
approximable (or α-c.a.).

1In the literature this has been called both “α-c.e.” and “α-computable”. The first is imprecise,
as we discuss in [27].
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As mentioned, a mind-change function with a computable bound is the same as
an ω-computable approximation. In general, the greater the ordinal α, the more
opportunities we have to change our mind, and therefore the more complicated the
limit function g can be. One way to get an idea for the meaning of this notion
is to iterate: an ω2-computable approximation is one for which the mind-change
function has an ω-c.a. bound. Namely, a value ospnq “ ωk ` mk means that
currently we allow ourselves mk further mind-changes; but when we run out, at
some stage t ą s, we can choose a new number mk´1 (as large as we like) and
decare otpnq “ ω ¨ pk ´ 1q `mk´1, giving us mk´1 further opportunities to change
our mind. In short, this is an approximation for which we have a computable
bound on how many times we are allowed to change our mind about how many
times we are allowed to change our mind. Inductively this works for ω3, ω4, . . . (the
behaviour beyond ωω is different).

We remark that in [27] we also point out the relationship of these notions with
bounded versions of the jump, as articulated by Coles, Downey and LaForte [22],

and Anderson and Csima [8]. To wit, if Φ̂e for e P ω is an enumeration of all partial
wtt-procedures, we may define

A: “ txx, yy | Φ̂Ax pyq Óu.

Notice that H1 ”m H
:, but if Q is ∆0

2, then Q: is also ∆0
2. Then, for example, in

the same way that X being ω-c.a. is equivalent to X ďwtt H
1, Y P 2ω being ω2-c.a.

is equivalent to Y ďwtt H
::. This relationship is extended in the obvious way to

the whole hierarchy.

2.1. Canonical ordinals. The definition above of α-computable approximations
requires the functions os to be uniformly computable. This makes sense only if α
is presented in a computable way: as a computable well-ordering of ω, or more
specially, given by an ordinal notation in Kleene’s complete Π1

1-set O (more pre-
cisely, by the restriction of the partial ordering ďO to the notations below a given
notation). An ordinal notation is essentially a computable copy of an ordinal for
which the successor function and the set of limit ordinals are also computable.

But here we run into the problem of picking canonical representatives; not all
computable well-orderings of some order-type α, nor all notations, are computably
isomorphic. If we defined a function to be α-c.a. if it is a-c.a. for some notation a
for α, then the hierarchy becomes trivial; Ershov showed that every ∆0

2 function
is ω2-c.a. according to this definition. The point is that the complexity of the
approximation can be coded by the well-ordering of ω. This resembles the break-
down of Spector’s theorem [71] for strong reducibilities: if a and a1 are two notations
for the same ordinal α, then Ha and Ha1 , the iterations of the Turing jump along
these notations, are Turing equivalent; this allows us to define the degree 0pαq.
However Moschovakis [62] showed that Ha and Ha1 may fail to be m-equivalent.

Ershov and his school often solve this problem by fixing a Π1
1 path through O; but

there is nothing canonical about such a choice. For our purposes ordinals below ε0

more than suffice. For such ordinals, we can put an extra condition on computable
copies which makes the resulting subclass computably unique. The problem above
with ω2 was with copies in which we cannot tell in which copy of ω a given element
is. That is, given some β ă ω2 we want to know the m,n such that β “ ωn `m.
In general, below ε0 what we need is an effective Cantor normal form. For ordinals
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α ă ε0, the exponents α1, . . . , αn appearing in the Cantor normal form

α “ ωα1m1 ` ¨ ¨ ¨ ` ω
αnmn

of α are strictly less than α, and so the function from an ω-copy of α giving the
Cantor normal form (with the exponents again being elements of our copy) is well-
defined, and can be asked to be computable. Note that from this normal form
we can easily identify limit ordinals and successors, so each canonical ordinal is
necessarily an ordinal notation. Any two canonical copies of an ordinal α ă ε0 are
computably isomorphic, and so the resulting notion of an α-computable approxi-
mation, and hence of α-c.a. functions and sets, is well-defined.2

3. A degree hierarchy

Equipped with the robust notion of α-c.a. functions, we now turn to Turing
degrees.

Definition 3.1. Let α ă ε0. A Turing degree d is totally α-c.a. if every function
g P d is α-c.a.

Note that if d is totally α-c.a. then in fact every f ďT d is α-c.a.; taking any
g P d we notice that f is α-c.a. if and only if f ‘ g is α-c.a. We remark that the
case α “ ω is of particular interest, and the definition of totally ω-c.a. degrees was
first suggested by Joseph Miller. Throughout this announcement, unless otherwise
mentioned, we concentrate on c.e. degrees.

If α ă β ă ε0 then there is a β-c.a. function which is not α-c.a. However, some
of these differences collapse in our new hierarchy. For example, suppose that d is
totally pα ¨ 2q-c.a. and let f P d. Let gpnq “ f æn. Since g ďT f we can find an
pα ¨ 2q-computable approximation pgs, osq of g. Now either for infinitely many n,
oωpnq “ lims ospnq is smaller than α; by waiting, we can use this to give an α-
c.a. approximation of f . In the other case, ignoring finitely many inputs, we live
entirely in the second copy of α inside α ¨ 2, and again we can translate that to an
α-computable approximation of f . Thus, every totally pα ¨2q-c.a. degree is actually
totally α-c.a. Note the non-uniformity in this argument; it is necessary.

Recall that an ordinal is closed under (ordinal) addition if and only if it is a
power of ω.

Theorem 3.2 ([27]). Let α ă ε0. There is a totally α-c.a. degree that is not totally
γ-c.a. for any γ ă α if and only if α is a power of ω.

We thus get a proper hierarchy of classes of degrees, indexed by the powers of ω
below ε0.

Sketch of proof. In the easy direction, if α is not a power of ω then there is some
β such that α P pωβ , ωβ`1q. The non-uniform argument above generalises to show
that any totally α-c.a. degree is also totally ωβ-c.a.

For the main direction, we will sketch the priority argument. Assume that α is
closed under addition. We enumerate a c.e. set D whose Turing degree is totally

2This approach can certainly be extended beyond ε0 to ordinals such as Γ0, with more stringent

conditions than having computable Cantor normal form. For example, below the first fixed point

of the ε function, we also need to effectively identify β ă α such that εβ is a part of the Cantor
normal form of α. It is not clear exactly how far this can be carried out. In any case, the classes

that we actually use are all well below ε0.
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α-c.a., but not totally γ-c.a. for any γ ă α. To witness the last part, we enumerate
a Turing functional Λ and ensure that ΛpDq is not γ-c.a. for any γ ă α. For
γ ă α, we can effectively enumerate all γ-c.a. functions in a list xfe,γy together
with pγ ` 1q-computable approximations xfe,γs , oe,γs y; and then we aim to meet the
requirements:

P e,γ: ΛpDq ‰ fe,γ .
Qe: If ΦepDq is total, then it is α-c.a.

It turns out that the simplest construction one would hope works, does work.
The strategy for meeting a P e,γ requirement is to pick a witness p (a “follower”) and
change the value of ΛpD, pq whenever we observe that fe,γs ppq “ ΛspDs, pq. This
is of course done by enumerating the use λsppq of the old computation into Ds`1.
This requirement is guaranteed to succeed and only act during finitely many stages;
this is because xfe,γs ppqy must stabilise.

The requirement Qe follows ΦepDq and at various stages “certifies” observed
computations Φe,spDs, xq. Fix some x and let s0 be the least stage at which a
computation ΦepD,xq is certified. Of course only finitely many weaker-priority
positive requirements P d,γ have chosen followers by stage s0. All other weaker-
priority positive requirements will be prohibited from injuring any certified ΦepD,xq
computation in the future. Now we know that oe,γs0 ppq ď γ for each “old” P d,γ . This

means that the “number of times” that P d,γ will ever act is bounded by γ. The
fact that α is closed under addition allows us to tally up all the ordinals for “old”
P d,γ . Since we ensure that any injury to a certified computation indeed comes from
the action of an old P d,γ , this allows us to give a bound (strictly below α) on the
“number of times” ΦepD,xq will be certified.

It is not actually easy to see why we need an infinite-injury construction; the
reason is an intricate interplay between two negative requirements affecting a third
positive requirement. However once we organise everything on a tree of strategies
in the usual way, this problem goes away. A node working for Qe will have Π2{Σ2

outcomes based on the totality of ΦepDq. One thing to note is that we need to
make ΛpDq total; this means that when a node working for P d,γ enumerates λsppq
into D, we need to immediately redefine a new (presumably large) value λs`1ppq.
This is done before recovery is observed for the ΦepD,xq computation, and so the
same node might indeed injure ΦepD,xq multiple times. The ordinal computation
takes this into account. �

3.1. Refinements of the hierarchy. Definition 3.1 is not the most general we
could make.

Definition 3.3. Let α ă ε0. A Turing degree d is totally ă α-c.a. if every function
g P d is γ-c.a. for some γ ă α.

The non-uniform collapsing argument above can be used to show that the totally
ă ωβ`1-c.a. degrees are precisely the totally ωβ-c.a. degrees, so we get nothing new
in this case. So the only interesting cases are limits of powers of ω. The construction
proving Theorem 3.2, as it constructs a single function ΛpDq, shows that for any
limit β there is a degree which is totally ωβ-c.a. but not totally ă ωβ-c.a. At limit
powers of ω we do indeed get something new:

Theorem 3.4 ([27]). Let α ă ε0. There is a totally ă α-c.a. degree that is not
totally γ-c.a. for any γ ă α if and only if α is a limit of powers of ω.
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The first new level, that of the totally ă ωω-c.a. degrees, is the main class
investigated in [27]. The proof of Theorem 3.4 is an elaboration on the proof of
Theorem 3.2. We cannot uniformly in γ ă α define some f ďT D which is not
γ-c.a. (or we would string them together to get a function which is not γ-c.a.
for any γ ă α). In the construction, the problem arises when a requirement Qe
tries to give ΦepDq a γ-computable approximation for some γ ă α (which γ, to be
determined); but below γ are requirements P d,β for arbitrarily large β ă α. To
resolve this, a “mother node” η attached to some β ă α (a power of ω) starts a
functional Λη with the aim of making ΛηpDq not β-c.a. Only nodes working for
P d,β whose mother node lies above the node τ working for Qe are allowed to injure
the computations certified by τ ; the ordinal bound on the injuries to τ is given by
adding the finitely many mother nodes above τ ; here we use the fact that α is a
limit of powers of ω. The nodes P d,β whose mother node η lie below τ will not
injure computations certified by τ because only η is responsible for making ΛηpDq
total; η is only accessible during τ -expansionary stages at which we have seen the
τ -computations recover, and so new ΛηpDq uses can be always set to be larger than
the uses of the τ -computations.

Yet another refinement of our hierarchy is motivated by the class of array com-
putable degrees. As we see below in Section 4, our new definability results will allow
us to tie a number of natural constructions together in new degree classes in the
same way as the array noncomputable degrees did in Downey, Jockusch and Stob
[34, 35]. A c.e. degree d is array computable if and only if for some (equivalently,
every) order function h,3 every f P d has a computable approximation whose mind-
change function is bounded by h. In other words, this is like being totally ω-c.a.,
but with a uniform bound on the mind-change function.

This can be generalised to ordinals beyond ω as follows. Let α ă ε0. An α-
order function is a computable function h : ω Ñ α which is non-decreasing and
unbounded in α. For such a function h, an h-computable approximation is an α-
computable approximation xfs, osy for which o0pnq ă hpnq for all n; a function is
h-c.a. if it has an h-computable approximation. We then define a degree d to be
uniformly totally α-c.a. if for some (equivalently, all) α-order function(s) h, every
f P d is h-c.a. Thus a c.e. degree is array computable if and only if it is uniformly
totally ω-c.a.

Every totally ωβ-c.a. degree is uniformly totally ωβ`1-c.a., and so the new, uni-
form levels of our hierarchy slot in between the previous levels; indeed a theorem
akin to Theorems 3.2 and 3.4 states that if α is a power of ω then there are totally α-
c.a. degrees which are not uniformly so, and uniformly totally α-c.a. degrees which
are not totally γ-c.a. for any γ ă α. (In particular, there are c.e. degrees which
are totally ω-c.a. but not array computable.) And if α is a limit of powers of ω
then every totally ă α-c.a. degree is uniformly totally α-c.a., and this implication
is proper.

3.2. Domination. The original definition in [34] of array computability was re-
stricted to c.e. degrees (and in that paper was shown to be equivalent to being
uniformly totally ω-c.a.). This definition was extended in [35] to non-c.e. degrees
but using domination instead. Indeed, a c.e. degree d is array computable if and

3A computable, non-decreasing and unbounded function.



8 ROD DOWNEY AND NOAM GREENBERG

only if some ω-c.a. function dominates every function in d; and this was used as a
general definition.

Such a characterisation holds for all levels of our hierarchy. Indeed, for all α ď ε0,
a c.e. degree d is...

(1) uniformly totally α-c.a. if and only if it is uniformly α-c.a. dominated :
some α-c.a. function dominates all functions in d (Downey, Greenberg,
McInerney, see [27]);

(2) totally α-c.a. if and only if it is α-c.a. dominated : every function in d is
dominated by some α-c.a. function (Diamondstone, Greenberg, Turetsky
[25]);

(3) totally ă α-c.a. if and only if it is ă α-c.a. dominated : for every f P d
there is some γ ă α and a γ-c.a. function dominating f .

3.3. Lowness. The definition of array computability in terms of domination shows
that it is a strengthening of being low2: a degree d is low2 if and only if some ∆0

2

function dominates all functions in d. In fact, the ability to list all α-c.a. functions
effectively shows that for any α ă ε0, every totally α-c.a. degree is low2. In other
words, our transfinite hierarchy is a (non-exhaustive) refinement of the low2 degrees.
As we shall later see, this shows that our definability results cannot be achieved
using the Nies-Shore-Slaman metatheorems, as the latter concern classes that are
invariant under the double jump.

We remark that being low2 is often used in constructions involving a given a
totally α-c.a. degree, using a ∆0

3 decision procedure about totality of functions
computable from that degree. Knowing that a degree d is totally α-c.a. gives us
further information; once we have guessed that ΓpDq is total (for some D P d), we
can guess an α-computable approximation for ΓpDq. A somewhat stranger phenom-
enon occurs in constructions of totally α-c.a. degrees: often one first proves that the
constructed set is low2, then this fact is used to help show that the other require-
ments are met. These techniques come into play, for example, when investigating
maximality in our hierarchy; see Section 7.

It is tempting to guess that all members of this hierarchy are low. For example
if A is superlow (meaning that A1 ”tt H

1), then A is certainly array computable
and hence totally ω-c.a. Similarly, if A1 ”tt H

::, then A is certainly totally ω2-c.a.
However, even the array noncomputable degrees contain non-low c.e. sets (Downey,
Jockusch and Stob [34]), and as is shown in [27], all levels of the hierarchy contain
low sets, but no level contains all low c.e. sets. Thus the hierarchy does not align
itself with the low sets in any precise way.

4. Unifying classes

As mentioned in the introduction, a main theme in computability is the identifi-
cation of a common dynamic aspect of a variety of constructions. This is formalised
as multiple characterisations of a class of degrees, such as the high degrees, the
promptly simple degrees, the K-trivial degrees and the array computable degrees
which were discussed above.

In each case, these classes quantify the necessary amount of “permitting” re-
quired to carry out constructions below such a degree. In a typical construction,
a requirement makes infinitely many requests, and we quantify how often these
requests are granted. Namely, we ask a c.e. oracle to change below some specified
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use. High degrees correspond to almost-always permitting; all but finitely many
requests are granted. Promptly simple degrees correspond to prompt permitting;
not all requests will be granted, but some will be granted quickly (within a com-
putable time bound). Similarly, non-K-trivial degrees grant requests which globally
have finite weight. The classifications show that degrees in the class are sufficiently
complicated so that they will permit as required; but also that degrees outside the
class cannot give such permission, and so cannot bound the kind of object being
constructed. In a strong way this says that the standard construction of that kind
of object is the only way to build such an object.

As discussed, an important class that falls in this scheme is the class of array
noncomputable degrees; these are the degrees that provide “multiple permitting”
[35]: roughly, the nth instance of a request needs to be granted n times. Let us
recall some of the results.

Theorem 4.1. A c.e. degree d is array noncomputable if and only if. . .

(1) it is the degree of a perfect thin Π0
1 class (Downey, Jockusch and Stob [34];

Coles, Downey, Herrmann and Jockusch [19]).
(2) it computes a separating Π0

1 class (the class of separators of a pair of disjoint
c.e. sets) which contains no element computing H1; it computes a pair of
separating classes C1 and C2 such that any X P C1 and Y P C2 are Turing
incomparable (Downey, Jockusch, Stob [34]);

(3) it contains a c.e. set A which infinitely often has maximal (plain) Kol-
mogorov complexity: pD8nqCpAænq ě

` 2 log n (Kummer [52]).
(4) it does not have a strong minimal cover in the Turing degrees (Ishmukhame-

tov [49]).
(5) it has effective packing dimension 1 (Downey and Greenberg [29]); it com-

putes a degree which has effective packing dimension 1 but contains no set
of effective packing dimension 1 (Downey and Stephenson [40]).

(6) it contains two left-c.e. reals with no common upper bound in the cL-degrees
of left-c.e. reals4 (Barmpalias, Downey and Greenberg [14]); it contains
a left-c.e. real (equivalently, a set) which is not cL-reducible to any ML-
random left-c.e. real (Barmpalias, Downey and Greenberg [14]).

(7) it contains a set which is not reducible to the halting problem with tiny use
(Franklin, Greenberg, Stephan and Wu [46]).5

(8) it computes an integer-valued random sequence (Barmpalias, Downey and
McInerney [12]).

The connection between domination properties, approximation properties, and
permitting, exhibited by the array noncomputable degrees, is naturally extended
to the non-totally ω-c.a. degrees. Here multiple permitting is replaced by a non-
uniform version: we specify during the construction, rather than in advance, how
many times we need an instance of a request to be granted. And indeed, the class of
non-totally ω-c.a. degrees captures the combinatorics of a number of constructions.
We defer discussing an important one, that of critical triples, to Section 5, as it is
related to definability results; here we discuss other results.

4X is computable Lipschitz reducible to Y (X ďcL Y ) if it is Turing reducible to Y with use

identity + constant.
5X is reducible to Y with tiny use if for any order function h there is a Turing reduction of X

to Y with use bounded by h.
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4.1. Algorithmic randomness. One area of interest in computability theory and
theoretical computer science is algorithmic randomness. This is the programme
of study which gives meaning to the notion of randomness for individual binary
sequences, both finite and infinite. Another way to look at it is as effective measure
theory.

4.1.1. Presentations of left-c.e. reals. Two related basic notions in this area are
those of an effective open set and a left-c.e. real. An open set is effective (or c.e.)
if one can effectively enumerate all of its basic clopen subsets (in the real line, the
rational intervals it contains). This is the lightface version of the class of open sets.
This is fundamental to randomness because the effectively null sets used to define
notions of randomness are Π0

2, i.e., uniform intersections of effective open sets.
A real is left-c.e. if it is the limit of an increasing sequence of rational numbers;
equivalently, if the left cut it defines is c.e. The left-c.e. reals are those which are
the Lebesgue (fair coin) measure of effectively open sets.

In practice, effectively open subsets of Cantor space 2ω are usually presented
using prefix-free sets of strings: antichains in 2ăω, i.e., sets which contain no com-
parable strings (under the relation of extension). This comes up in many argu-
ments involving effectively null classes (“tests for randomness”); they also appear
as the domains of prefix-free machines, those that are used to define prefix-free
Kolmogorov complexity, which in turn gives an equivalent characterisation of ML-
randomness, the most useful notion of randomness in this area. Indeed, the random
left-c.e. reals are those which are the measures of the domains of universal prefix-free
machines (these numbers are known as Chaitin’s Ω numbers, and are in a strong
sense all equivalent). For more see [31, 64].

Every effectively open set is generated by a c.e. prefix-free set of strings; by
padding (at stage s instead of enumerating a string σ, enumerate all of its extensions
of length s), one can require the set to actually be computable. Bypassing the open
sets, we say that a prefix-free set A is a presentation of a left-c.e. real r if r is the
measure of the open set generated by A; directly, if r is the weight of A:

r “
ÿ

σPA

2´|σ|.

Thus, every left-c.e. real has a computable presentation [70]. On the other hand,
bizarre things can happen. In [36], Downey and LaForte showed that there exist
noncomputable left c.e. reals r, all of whose c.e. presentations are computable, but
that any real of promptly simple degree has a noncomputable presentation; so do
all K-trivial left-c.e. reals, as was shown by Stephan and Wu [72]. We have the
following:

Theorem 4.2 ([27]). Let d be a c.e. Turing degree.

(i) If d is totally ω-c.a., then every left-c.e. real r P d has a presentation A P d.
(ii) If d is not totally ω-c.a., then there is a left-c.e. real r ďT d and a c.e. set

B ăT r which computes every presentation of r.

This result extends the Stephan-Wu Theorem since every K-trivial degree is
totally ω-c.a. The proof uses an elaboration of the “drip feed” strategy used by
Downey and LaForte for their result mentioned above.
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4.1.2. Finite randomness. Another manifestation of total ω-c.a.-ness in algorithmic
randomness is in the notion of finite randomness. Recall that a Martin-Löf (ML)
null set is a Π0

2 set which is effectively null. That is, it is the intersection
Ş

n Un
of a sequence of uniformly effective open sets whose measure tends to 0 with a
computable bound; one usually requires λpUnq ď 2´n for simplicity. The ML-
random sequences are those which are not elements of ML-null sets (in fact, there
is a greatest ML-null set, a “universal ML-test”).

In [17], Brodhead, Downey and Ng introduce a finite version of this notion:
instead of the sets Un being effectively open, they are required to be clopen (here
we discuss randomness in Cantor space). It is important that despite being clopen,
these sets are presented as open sets: as time passes we see more strings enumerated
into Un; there will be finitely many, but we never know for sure that the enumeration
has stopped. (In the language of computability, we say that Un is given by a c.e.
index rather than a canonical index for a finite set.) If we further require that there
is a computable bound on the number of strings in each Un then we obtain the
notion of computably bounded finite randomness, CB-randomness for short. (Here
and below we willfully identify a set of strings and the open set that it generates.)

Theorem 4.3 (Brodhead, Downey, Ng [17]). The following are equivalent for a
c.e. degree d:

(1) d contains a CB-random sequence.
(2) d bounds a left-c.e., CB-random real.
(3) d is not totally ω-c.a.

Sketch of proof. We first sketch the permitting direction (3) Ñ (2). We are given
g P d which is not ω-c.a. We enumerate a left-c.e. real r ďT d. To make r CB-
random, a typical requirement will try to move r to the right as to avoid a given
CB test xUny: whenever we see some σ P Un,s and rs P rσs, we want to move
rs`1 sufficiently much to the right so as to avoid being in rσs. Note that since
λpUnq ď 2´n, the total increase in r required to avoid Un is bounded by roughly
2´n.

To make r ďT d we need to seek permission from g before we move r. The
rough plan is to stipulate that if gspnq is correct and will never change again, then
r ´ rs ď 2´n. Since d is a c.e. degree, we can approximate g so that its modulus
is computable from d, and so r will be reducible to d. (In fact, by standard
manipulations, we may assume that g is lower semicomputable, essentially its own
modulus.)

Therefore, if a randomness requirement wants to move rs`1 away from some
σ P Un,s, it needs to await permission, in the form of a change in our approximation
for gspnq. Since the CB-test xUny comes equipped with a computable function f
bounding the number of strings in each Un, we know how many permissions we
need to avoid each Un. More formally, we carry out the construction; during the
verification, we show that if the requirement is not met then we can give an ω-
computable approximation to g: we belive a value gspnq each time we make a
request to move away from a string in Un. The computable bound on the number
of changes is given by f .

The direction (2) Ñ (3) tries to reverse the argument above, but there is a small
trick. Suppose that r is left-c.e. and has totally ω-c.a. degree. We define a function f
as follows: to calculate fpnq, first find the least s such that rs is correct on the
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first n digits. If ϕn,spnq converges then we let fpnq “ ræϕnpnq; otherwise, we let
fpnq “ ræn.

Let xfty be an ω-computable approximation of f , say with bound h on the
number of mind-changes. Let I be an infinite computable set of indices for h. We
now capture r by a CB-test. For a typical component U of this test, choose some
large n P I. Find some t0 such that ϕn,t0pnqÓ. We let U consist of rt0æn, and all
strings of the form ftpnq, provided that they have length hpnq.

The number of strings in U is bounded by hpnq ` 1; and the measure of U is
bounded by 2´n ` hpnq2´hpnq, which can be made small by increasing n and hpnq
as necessary. It remains to show that r P U . There are two cases. If rt0æn“ ræn
then we are done. Otherwise, we know that fpnq “ ræhpnq, and so ræhpnqP U . �

As an aside, we remark that one can look at variations of CB-randomness as
follows. If one removes the requirement of the computable bound on the number
of strings in Un, then we obtain a stronger notion of randomness which is less
well-understood; it coincides with ML-randomness on the ∆0

2 sequences. If one
requires that Un be given as a finite set, rather than enumerated, we get Kurtz
randomness [53, 74]. If one requires that not only the number of strings in Un is
computably bounded, but their length is too, then we get the notion of granular
randomness [13]. Indeed, the proof above gives a granular test, so in the c.e.
degrees, bounding CB-randoms and granular randoms are equivalent, even though
these notions of randomness do not coincide.

4.1.3. DNC and cL reducibility. A variant of Theorem 4.1(6) was proved by Ambos-
Spies, Fang, Losert, Merkle and Monath [7, 3]. A sequence A is complex (see [51])
if CpAænq ě hpnq for some order function h. There are several equivalent formalisa-
tions, including computing a diagonally noncomputable function with computable
use on the bound (wtt). Every ML-random sequence is complex.

Theorem 4.4 (Ambos-Spies, Fang, Losert, Merkle and Monath). A c.e. degree d
is totally ω-c.a. if and only if every left-c.e. real r P d is cL-reducible to a complex
left-c.e. real.

4.2. Ranked sets. Barmpalias, Downey and Greenberg showed that the totally
ω-c.a. degrees are related to strong reducibilities and the Cantor-Bendixson rank
of reals in Π0

1 classes. A set is ranked if it is an element of some countable Π0
1

class (and so it has a Cantor-Bendixson rank). A linear ordering is scattered if it
doesn’t contain a copy of the rationals (and so repeating the Hausdorff derivative
leaves an empty kernel at the end). A set A Ă ω is hyperimmune if it is infinite,
and whenever xFny is a computable sequence of pairwise disjoint finite sets, there
is some n such that Fn X A is empty. Equivalently, the function which maps n to
the nth element of A (by magnitude) is not dominated by any computable function.
Finally, a c.e. set is hypersimple if its complement is hyperimmune.

These concepts are related: any initial segment of a scattered, computable linear
ordering is ranked [18]; If A is c.e. and non-computable, and is the ω-part of a
computable linear ordering of order-type ω`ω˚, then A is hypersimple. The linear
ordering ω ` ω˚ is the simplest example of a computable scattered linear ordering
which may have non-computable proper initial segments.
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Theorem 4.5 (Barmpalias, Downey and Greenberg [14]). The following are equiv-
alent for a c.e. degree d:

(1) Every set in d is wtt-reducible to a ranked set.
(2) Every set in d is wtt-reducible to a hypersimple set.
(3) Every set in d is wtt-reducible to a proper initial segment of a computable,

scattered linear ordering.
(4) d is totally ω-c.a.

Moreover, the equivalence still holds if in any of (1), (2) or (3), “set” is replaced
by “c.e. set”.

This work extends work of Chisholm, Chubb, Harizanov, Hirschfeldt, Jockusch,
McNicholl and Pingrey [18], who showed that every c.e. degree which is not totally
ω-c.a. contains a c.e. set which is not wtt-reducible to any ranked set. Indepen-
dently, Afshari, Barmpalias, Cooper and Stephan [1] showed that if d is totally
ω-c.a. then every A ďT d is wtt-reducible to a hypersimple set; but Barmpalias
[11] showed that not every c.e. set is wtt-reducible to a hypersimple set.

We remark that weak truth-table reducibility is exactly the right kind of re-
ducibility which gives non-trivial results in this context. This is because every
non-zero c.e. Turing degree contains a hypersimple set and every c.e. set is Turing
reducible to a ranked set; but if A ďtt B and B is ranked then so is A.

4.3. Higher up. At present there are few examples of theorems whose combina-
torics involve ordinals above ω. An important example involving lattice embeddings
into the c.e. degrees will be discussed in Section Section 5. Here we discuss three
others.

4.3.1. Indifference for Cohen genericity. Let P be a property of sets like e.g. gener-
icity or randomness. For sequences A,B and a set I Ď ω of positions, we will write
A “I B to mean that for all x R I, Apxq “ Bpxq. Following Figueira, Miller and
Nies, [45], a set I is called indifferent for a sequence A relative to P , if for all
B “I A, B has property P . When P is clear from the context, we say that I is
indifferent for A.

This notion has been mainly investigated in the context of ML-randomness. For
every ML-random sequence Z there is a set indifferent for Z (with respect to ML-
randomness) [45]. Barmpalias, Lewis and Ng [15] used indifferent sets to allow
coding in their proof that every PA degrees is the join of two random degrees.

On the category side, recall the notion of Cohen 1-generic sequences: these are
the sequences that are sufficiently generic (with respect to Cohen forcing) to decide
all Σ0

1 statements. In terms of computability, these are the sequences which either
meet or avoid any Σ0

1 set of strings. Jockusch and Posner [50] proved that some 1-
generic has an indifferent set (with respect to 1-genericity); in fact, every 1-generic
set has one (Figueira, Miller and Nies (unpublished); Day [24]).

Perhaps surprisingly, some 1-generic sets can actually compute indifferent sets
for themselves.

Theorem 4.6 (Day [24]). Let d be a c.e. degree.

(1) If d is not totally ωω-c.a. then d computes a 1-generic sequence which can
compute an indifferent set for itself.

(2) If d is totally ω-c.a. then d cannot compute a 1-generic sequence which can
compute an indifferent set for itself.
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The reader might notice the rather large gap in the theorem above.

Question 4.7. What is the correct level for constructing c.e. degrees which compute
a 1-generic G which can compute an indifferent set for itself?

Whilst we are mentioning indifferent sets, we mention the following which seems
very hard.

Question 4.8. Can any ML-random sequence compute an indifferent set for itself?

Unlike indifferent sets for 1-generics, indifferent sets for ML-randoms have to
compute H1 [45].

4.3.2. Variations on genericity. Michael McInerney [61] has demonstrated other
connections between genericity and our hierarchy of c.e. degrees. He studied notions
of multiple genericity related to pb-genericity of Downey, Jockusch and Stob [35].
In particular, he defines a notion of ω-change genericity, a strengthening of pb-
genericity. Now a Turing degree bounds a pb-generic sequence if and only if it is
array noncomputable.

Theorem 4.9 (McInerney [61]). A c.e. degree bounds an ω-change generic sequence
if and only if it is not totally ω-c.a.

Note though that the characterisation mentioned above of bounding pb-generics
holds for all Turing degrees, not only the c.e. ones. Here we have a partial result,
using the domination properties mentioned above in Section 3.2.

Theorem 4.10 (McInerney [61]). Let d be a Turing degree.

(1) If d is not uniformly ω2-c.a. dominated then d computes an ω-change
generic sequence.

(2) If d is ω-c.a. dominated then it does not compute an ω-change generic
sequence.

Whether (1) can be improved to ω-c.a. domination remains open.

4.3.3. m-topped degrees. A c.e. degree a is called m-topped if a contains a c.e. set
A such that for all c.e. sets W ďT A, W ďm A. That is, a contains a greatest
c.e. m-degree (among all c.e. m-degrees in a). Clearly H1 is an example of such a
degree. Downey and Jockusch [33] showed that incomplete m-topped degrees exist,
they are all low2, and cannot be low. Later Downey and Shore [38] showed that
every low2 c.e. degree is bounded by an incomplete m-topped degree.

Theorem 4.11 ([28, 27]).

(1) No totally ă ωω-c.a. c.e. degree is m-topped.
(2) There is an m-topped, totally ωω-c.a. degree.

The proofs of these results are rather complex and are therefore omitted. Note
that the extra restriction regarding lowness means that characterising bounding
m-topped degrees is not possible purely in terms of our hierarchy.

Problem 4.12. Classify the m-topped degrees, or the c.e. degrees bounding m-
topped degrees.

Being nonlow and not totally ă ωω-c.a. seems a long shot.
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5. Natural definability

Some of the constructions captured by two levels of our hierarchy yield objects,
namely embedded lattices, that can be described in the c.e. degrees using the lan-
guage of ordering. This shows that these two levels, the totally ω-c.a. degrees and
the totally ă ωω-c.a. degrees, are naturally definable in the structure of the c.e.
degrees.

Natural definability results in degree theory are few. In terms of abstract, general
results on definability, there has been significant success in recent years, culminating
in the work of Nies, Shore and Slaman [65], where the following is proved.

Theorem 5.1 (Nies, Shore, Slaman [65]). Any relation on the c.e. degrees, in-
variant under the double jump, is definable in the c.e. degrees if and only if it is
definable in first order arithmetic.

The proof of Theorem 5.1 involves interpreting the standard model of arithmetic
in the structure of the c.e. degrees without parameters, and a definable map from
degrees to indices (in the model) which preserves the double jump. The beauty of
this result is that it gives at one time a definition of a large class of relations on
the c.e. degrees. For example, it is used to show that the classes lown for n ě 2 are
definable (so are the highn for all n ě 1; the case n “ 1 needs an extra argument).

Theorem 5.1 has two shortcomings. One is the reliance on the invariance of the
relation under the double jump. It follows that no set of c.e. degrees that contains
some but not all low2 degrees can be defined using the theorem; these are the kinds
of sets we investigate here.

Another issue is that the definitions provided by the theorem are not natural
definitions of objects in computability theory, as outlined by Shore [68]. Here we
are thinking of results such as the following.

‚ A c.e. degree is promptly simple if and only if it is not cappable (Ambos-
Spies, Jockusch, Shore, and Soare [5]).

‚ A c.e. degree is contiguous if and only if it is locally distributive (Downey
and Lempp [36]) if and only if it is not the top of the pentagon (the non-
modular, 5 element lattice N5) (Ambos-Spies and Fejer [4]).

‚ A c.e. truth table degree is low2 if and only if it has a minimal cover in the
c.e. truth table degrees (Downey and Shore [38]).

5.1. Lattice embeddings and critical triples. These natural definitions are
closely related to embeddings of finite lattices into the c.e. degrees; see for example
Lempp and Lerman [57], Lempp, Lerman and Solomon [58], and Lerman [59]. The
question of which finite lattices can be embedded into the c.e. degrees remains
open. All distributive lattices can be embedded. The non-distributive lattices fall
into two classes. Each non-distributive lattice contains either the pentagon, N5; or
the 1-3-1 lattice (also known as M5 or M3); see Fig. 1. The key difference between
the two kinds of non-distributive lattices is the existence of a critical triple. In a
lattice, a critical triple consists of three incomparable elements a0,a1 and b such
that a0 _ b “ a1 _ b but a0 ^ a1 ď b. We call b the centre of the critical
triple. The middle three elements of the 1-3-1 lattice form a critical triple (with
any of the elements serving as centre). The lattices which do not contain a critical
triple are the join-semidistributive ones. It is known that critical triples present
a serious impediment to embedding lattices into the c.e. degrees; for example, the
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lattice S8 (Fig. 2) cannot be embedded (Lachlan and Soare [56]). However, the
1-3-1 itself can be embedded (Lachlan [54]). In particular, in the c.e. degrees we
can find critical triples. Note that the c.e. degrees do not always have meets; in
an uppersemilattice, the definition of a critical triple does not require the meet to
exist, rather we stipulate that any c ď a0,a1 must also be below the centre b.
A related concept is that of a weak critical triple, in which the meet condition is
weakened to requiring the non-existence of any c ď a0,a1 such that a0,a1 ď b_ c.
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Figure 1. The 1-3-1 lattice
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Figure 2. The lattice S8

Bounding critical triples requires some computational power; Downey [26]
showed that some nonzero c.e. degrees bound no critical triples; Weinstein [75] did
the same for weak critical triples. On the other hand, some amount of permitting
suffices. Downey noted that the embedding of critical triples seemed to be tied up
with multiple permitting in a way that was similar to non-low2-ness. Indeed this
intuition was to some extent verified by Downey and Shore [39], who showed that
any non-low2 c.e. degree bounds a critical triple, indeed a copy of 1-3-1. The notion
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of non-low2-ness seemed too strong to capture the class of degrees which bound the
1-3-1, but it was felt that something like that should suffice. On the other hand,
Walk [73] showed that Weinstein’s degree can be made array noncomputable, and
hence it was already known that array non-computability was not enough for such
embeddings.

The authors, together with Weber, showed the following.

Theorem 5.2 ([30]). A c.e. degree bounds a critical triple if and only if it bounds
a weak critical triple if and only if it is not totally ω-c.a.

Thus, the totally ω-c.a. degrees are naturally definable in the c.e. degrees. Before
we discuss the dynamics of this result, we observe that these results yield an answer
to a question of Nies. Every superlow degree is array computable, but some low
degrees are not totally ω-c.a. Hence:

Corollary 5.3 ([30]). The partial orderings of the low degrees and the superlow
degrees are not elementarily equivalent.

5.1.1. Embedding critical triples: tracing and permitting. Let us consider how to
construct critical triples in the c.e. degrees. We wish to enumerate c.e. sets A0, A1

and B whose degrees will form the required triple. For the join requirements, we
need to ensure that A0 ďT A1 ‘ B and A1 ďT A0 ‘ B. To make the embedding
non-trivial, we need to ensure that A0, A1 ęT B.

The latter is done by usual Friedberg requirements. Say we want to ensure that
ΦpBq ‰ A0 for some Turing reduction Φ. We pick a witness (a follower) x and wait
for ΦpB, xqÓ. While we wait, we need to maintain a reduction of A0 to A1‘B. This
means that we promise that if we ever enumerate x into A0, we will put another
number x1, called a trace for x, into either A1 or B. But since we do not yet know
the use ϕpB, xq of the potential computation ΦpB, xq, it would be a bad idea to
target x1 for B. Now in turn, to maintain A1 ďT A0 ‘ B, we need to appoint an
even larger number x2, a trace for x1, and promise to put it into A0 if x1 goes
into A1. And so we get a sequence of traces x, x1, x2, . . . which keeps growing until
we see ΦpB, xqÓ. When we finally see the use, the next trace can be targeted for B,
and then we can stop.

Now we would like to put all these numbers x, x1, x2, . . . , xk into the sets for
which they are targeted. But we cannot do this all at once. For we also have
minimal-pair-like requirements for the pseudo-meet: if Ψ0pA0q “ Ψ1pA1q equals
some set C, then C ďT B. Lachlan’s strategy for meeting such a requirement is
to allow, during an “expansionary” stage, enumerating numbers into A0 or A1,
but not both. This means that the computation giving one side of the observed
agreement is fixed; we then wait for new agreement (the next expansionary stage;
using the mechanism of pinball machines, we wait for a gate to open), and then
again allow only one side of the computation to be destroyed.

We thus take our entourage of traces x, x1, . . . , xk and “peel it back”. Rename the
last trace xk to be b, to indicate that it is targeted for B. At an expansionary stage
(for Ψ0,Ψ1, a minimality requirement stronger than ΦpBq ‰ A0), we enumerate
xk´1 into the set it is targeted for (Ai for i “ pk´1q mod 2) and b into B. We then
appoint a new trace b1 for xk´2, this time targeted for B. At the next expansionary
stage we enumerate xk´2 and b1 into their target sets, and appoint a new B-trace
for xk´3. After k many such steps, we get to enumerate the original follower x “ x0

into A0 and meet the requirement.
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That is the sketch of the construction; of course in the general construction we
need to deal with several requirements, and so we coordinate their action on a tree,
or a pinball machine.

Now let us consider what happens when we want to build A0, A1 and B all below
a given c.e. degree d. The extra condition now is that whenever we enumerate any
number into any of these sets, we need to obtain permission from d to do so. As
in the proof of Theorem 4.3, this permission comes in the form of a change in the
approximation of some function g P d on an associated input, essentially the use
of reducing A0, A1, B to g. And in the context of multiple permitting, we need to
analyse how many times does a single positive requirement (of the kind ΦpBq ‰ A0)
need to receive permission in order for it to be met. If we can tell in advance, for
each requirement, how many permissions we need, then this can be done below any
array noncomputable degree. But here we see that the number of enumerations the
requirement needed (the number k above) could not be computed in advance: we
know it once we see ΦpB, xq converge but not before. Giving such permissions is
the extra strength of non totally ω-c.a. degrees.

5.1.2. Non-embedding of critical triples: certification. The flip-side of this argument
is adapting the construction of a degree which does not bound a critical triple and
showing that it can be applied to any totally ω-c.a. degree.6

Here we are given three incomparable sets A0, A1 and B, all below some c.e.
set D whose degree is totally ω-c.a.; We assume that Ai ďT B ‘ A1´i for i “ 0, 1;
our aim is to build some set Q ďT A0, A1 but Q ęT B. To meet the latter, a
typical requirement ΨpBq ‰ Q appoints a follower x, waits for realisation, namely
ΨpB, xqÓ“ 0, and then, remembering that we keep Q ďT A0, A1, hopes for a double
change, in A0 and in A1, that allows us to enumerate x into Q. Now there are two
questions:

‚ Why would we get such a double change?
‚ If we do, how do we keep the computation ΨpB, xq “ 0 valid?

The overall idea is for us to define a function g “ ΛpDq, and non-uniformly guess
an ω-computable approximation xgsy for g. The use of computing gpnq “ ΛpD,nq
from D will bound the use of reducing a certain amount of A0, A1 and B to D.
If the configuration of sets changes, this necessitates a change in D below that
use; this allows us to redefine ΛpD,nq with a new value. We then wait for the
approximation xgspnqy to catch up and correctly guess the new value. This gives us
a certification of sorts that D, up to the use, is correct. Since we know a bound on
the number of changes on xgspnqy, we know a bound on how many times a desirable
configuration will be destroyed.

In the current situation, a basic idea is that of setting up layers to protect a
computation. We know that Ai ďT B‘A1´i. This allows us, for any number x, to
calculate an increasing sequence of numbers xp1q, xp2q, . . . such that any change in
some Ai below xpmq necessitates a change in either B or A1´i below xpm`1q. See
Fig. 3.

We now act as follows. Fixing n, we calculate a bound m on the number of
changes in gspnq. We set up m ` 1 many layers. The use for reducing Qpxq to

6In this sketch we discuss critical triples rather than weak critical triple. The ideas are similar,
but the argument sketched here is better suited as an introduction to the nonembeddability of the

1-3-1 lattice.
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A0

A1

B

x xp1q xp2q xp3q

Figure 3. Three layers.

A0, A1 is xpm`1q. After x is realised, two things can happen. If we get a double
change (a change in both A0 and A1), we can enumerate x into Q and then meet
the requirement. Otherwise, we claim that provided Bæxpm`1q never changes, A0æx

is correct too. The point is that if Bæxpm`1q is correct, then the next change in
some Ai must happen above xpmq: otherwise either a B-change or an A1´i-change
is guaranteed. After this happens, we will have lost a layer; but since we set the use
of ΛpD,nq to be sufficiently large, this peeling of the last layer allows us to change
ΛpD,nq. The next change will happen above xpm´1q, and so on. Overall, we see
that if the requirement is never met (over infinitely many independent attempts to
meet it), then A0 ďT B, which we assumed is not the case.

This sketch is necessarily rough, as there are several other delicate points to the
argument. For details see [27].

5.2. The 1-3-1. What about embeddings of the 1-3-1 lattice itself? We note that
previously, it was not known that there is a difference between bounding a copy
of 1-3-1 in the c.e. degrees and bounding a critical triple. Our hierarchy results,
together with Theorem 5.2 and the following result, show these are not equivalent.

Theorem 5.4 ([27]). A c.e. degree bounds a copy of the 1-3-1 lattice if and only if
it is not totally ă ωω-c.a.

Again, this shows that the totally ă ωω-c.a. degrees are naturally definable.

5.2.1. Embedding the 1-3-1 lattice. We now wish to embed the 1-3-1 lattice into the
c.e. degrees. How is the construction different from that of a critical triple? We now
build A0, A1, A2 and need to ensure that Ai ďT Aj‘Ak for ti, j, ku “ t0, 1, 2u. This
means that every number targeted for some Ai needs a trace targeted for either Aj
or Ak. So even though the non-triviality requirements are just Ai ‰ ϕ for a partial
computable function ϕ, without an oracle B this time, we still need the continuous
tracing: at each stage we add another trace to the end of the entourage.

Something interesting starts happening when we consider two minimal-pair re-
quirements, occupying two gates in a pinball machine used in this construction.
An entourage consisting of numbers x0

0, x
1
1, x

0
2, x

1
3, x

0
4, x

1
5, . . . , x

0
m (with xik targeted

for Ai) arrives at a gate which works toward showing that A0 and A1 form a min-
imal pair. For a while the entourage waits for the gate to open. The gate will
not allow numbers targeted for A0 and numbers targeted for A1 to pass at the
same time. While the entourage waits for the gate to open, new traces must con-
tinually be added. We have a choice, though: a trace for x0

k can be targeted for
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either A1 or A2. So the rest of the entourage from x0
m onwards is targeted for

A0, A2, A0, A2, . . . .
The gate opens, allowing the rest of the entourage: x0

m, x
2
m`1, x

0
m`2, . . . , x

2
k to

pass. This second part of the entourage now arrives at a closed gate (of stronger
priority), working for a minimal-pair requirement for A0 and A2. Again we redirect
our targeting and target new traces to A1 and A2. When the gate opens, x2

k and
the third part of the entourage pass and get enumerated into their sets. We then
are left with x0

k´1, to which we add a pA0, A1q-entourage, and repeat. After pk´mq
many such steps, all of the traces waiting at the lower (stronger) gate have been
dealt with, and the entourage now consists of x0

0, x
1
1, . . . , x

1
m´1. After appointing

more traces, x1
m´1 and the rest of the entourage passes the upper gate, lodges at

the lower gate, and the process repeats.
How many permissions do we need? We see that the answer, in the case of two

gates, is “roughly ω2 many”. When x0
0, the original follower, is realised, we find out

the number m. And then, for each l ă m, when xl passes the top gate, we know the
length of the entourage at that time (roughly, the stage number). We will update
the number of required permissions m times. And in general, to pass n gates we
need ωn-permission. If the function giving permissions to the entire construction
is not ωn-c.a. for any n, then the construction will work.

Again, we skip many important details; for example, why the bottom of the
embedding cannot actually be 0, and a more careful analysis, involving more than
one follower, which shows that actually we need ω2n to deal with n gates; all is
explained in [27].

5.2.2. Non-embedding the 1-3-1. How do we show, for example, that a totally ω2-
c.a. degree d does not bound a copy of the 1-3-1 lattice? After all, it may bound a
critical triple. As pointed out above, any of the middle elements of the 1-3-1 lattice
can serve as the centre of a critical triple, together with the other two elements. The
plan is now, given B0, B1 and A below d, to show that either B0 is not the centre
of a critical triple, flanked by B1 and A; or B1 is not the centre of a critical triple,
flanked by B0 and A. This adds a level of non-uniformity to the construction. We
build Q ďT A,B0, and try to ensure that Q ęT B1. We might fail. For each e ă ω
(representing a potential failure, i.e. ΦepB1q “ Q), we build another c.e. set Qe,
this time reducible to A and B1, and try to ensure that Qe ęT B0. Somewhere
we must succeed, or we will have shown that B0 ďT B1. Each instance will now
consider two followers (for Q and for Qe), and will set up two levels of layers, inner
layers for Qe and outer layers for Q. The inner layers reflect the coefficient of ω in
an ordinal below ω2 which bounds the number of changes in gspnq; when one inner
layer is peeled (the number of changes left drops below a limit ordinal), we get a
new constant coefficient, which tells us how many new outer layers we need to set
up. If we guess that g “ ΛpDq is ωm-c.a., then we need m steps of non-uniformity,
constructing Q, Qe1 , Qe1,e2 , . . . , Qe1,e2,...,em´1 ; at each step we alternate between
treating B0 or B1 as the centre.

5.3. The L7 lattice. Recently, Ambos-Spies and Losert have shown that there is a
lattice embedding (rather than a configuration like a critical triple) which captures
being totally ω-c.a.

Theorem 5.5 (Ambos-Spies and Losert [6]). A c.e. degree is not totally ω-c.a. if
and only if it bounds a copy of the lattice L7 (see Fig. 4).
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Figure 4. The lattice L7

5.4. A Question.

Question 5.6. Is there an n ą 1 such that being totally ωn-c.a. is (naturally)
definable?

We remark that if the methods we have used can also be used to answer this,
what would be needed would be a lattice or partial ordering whose embedding
needed “n-gates”. For example, something that might define totally ω2-c.a. could
be a structure whose embedding needed two gates and could not be done with
one. In spite of concerted efforts on our part, we have not been able to find such a
structure. On the other hand if natural is left off definability then perhaps there is
some more delicate way to use the methods of Nies, Shore and Slaman [65], which
may involve strong reducibilities. The reader should treat this last paragraph as
speculation on our part.

6. Weak truth table triples

Downey and Stob [41] observed that there seemed to be a connection between
lattice embeddings and the structure of the c.e. weak truth table degrees within a
c.e. Turing degree. To wit, they showed that if a c.e. Turing degree a is the top
of a 1-4-1 lattice with bottom degree 0 then a contains a pair of c.e. sets A1 and
A2 such that degwttpA1q and degwttpA2q form a minimal pair. In fact, the original
proof of the construction of a pair of noncomputable c.e. sets A1 ”T A2 forming a
wtt-minimal pair was a direct one, and it was only when the authors noticed that
the combinatorics of the construction were similar to the embedding of 1-3-1 that
the proof using 1-4-1 was found.

Mimicking critical triples, in [30] we gave the following definition.
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Definition 6.1. Three c.e. sets A0, A1 and B form a wtt triple if A0 ”T A1,
Ai ęT B, and for all C ďwtt A0, A1 we have C ďwtt B.

An analogue of weak critical triples was also discussed.

Theorem 6.2 ([30]). A c.e. degree d is not totally ω-c.a. if and only if there are
A0, A1, B ďT d which form a wtt-triple.

In fact, this theorem can be improved. Going back to the original idea of wtt
minimal pairs inside a Turing degree, we strengthen the notion of a wtt triple.

Definition 6.3. Three c.e. sets A0, A1 and B form a wtt infing triple if A0 ”T A1,
B ăT A0, A1, and

degwttpA0q ^ degwttpA1q “ degwttpBq.

The following appears here for the first time.

Theorem 6.4. Every c.e. degree which is not totally ω-c.a. bounds three c.e. sets
which form a wtt infing triple.

It follows of course that bounding wtt triple and bounding wtt infing triples are
both equivalent to being not totally ω-c.a.

Proof. The proof is a modification of the permitting direction of Theorem 6.2. We
give details here as this theorem is new.

We are given a c.e. degree which contains a function g which is not ω-c.a. We have
a computable approximation xgsy of g and we may assume that g itself is the initial-
segment modulus for this approximation, indeed every stage of its approximation
is: for all s and n, gspnq is the least t ď s such that græn is constant for r P rt, ss.

We enumerate three c.e. sets A0, A1 and B, and ensure that they are all com-
putable from g. The wtt infinig triple will consist of A0 ‘ B, A1 ‘ B and B.
Thus we need to ensure that Ai ęT B and Ai ďT B ‘ A1´i; and of course the inf
requirements:

N∆: If ∆pA0, Bq “ ∆pA1, Bq is total then it is wtt-reducible to B.

Here ∆ ranges over all wtt functionals; we denote by δ the (possibly partial) com-
putable bound on the use of ∆. To ensure that Ai ęT B we meet requirements

PΦ,i: ΦpBq ‰ Ai,

where now Φ ranges over the Turing functionals.
To meet the negative requirements we use a tree of strategies. Nodes working

for negative requirements Ne have two possible outcomes on the tree, 8 and fin,
with 8 stronger. Nodes working for positive requirements only have one outcome.

To keep track of our reduction of these sets to g, we define moving mark-
ers ax,s ă ω. The rules for the markers are that if gs`1 æax,s“ gs æax,s then we
must have ax,s`1 “ ax,s. Otherwise we are allowed to increase it. We increase it to
“take over space” from cancelled (weaker) followers for the same strategy.

Here x denotes a potential follower for a strategy (node) σ working for a positive
requirement PΦ,i. While a follower is waiting for realisation, namely ΦpB, xqÓ“ 0,
we keep appointing traces, gradually building an entourage of traces x0, x1, x2, . . .
with x “ x0 being the follower, and the targeting of followers alternating between Ai
and A1´i. When the follower is realised and then σ is visited, we stop this process,
and instead appoint a last trace bk, targeted for B. After that we are ready to
start enumerating traces into the sets for which they are targeted. When σ wants
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to enumerate traces, we say that we put them into a permitting bin. We then wait
for the follower x to be permitted, which means that gs`1æax,s‰ gsæax,s .

Construction.
At any stage of the construction there are two options, depending on whether

some traces in the permitting bin are permitted.

Option A: permission
If there is a pair xk, bk of traces of an entourage for some follower x “ x0 which

are currently waiting at the permitting bin and x is permitted, then we choose the
strongest such follower. We then:

(1) Enumerate the two traces into their target sets.
(2) If k “ 0 (the follower has just been enumerated) then we declare the node σ

which appointed the follower satisfied, and cancel all of its other followers.
(3) We also cancel all followers for σ which are weaker than x; we redefine

ax,s`1 “ s` 1.
(4) In any case, we initialise all nodes weaker than σ. This causes the cancel-

lation of the followers of all these nodes; and none of these nodes is now
satisfied.

We then end the stage.

Option B: no permission
We construct the path of nodes accessible at stage s.

First, suppose that a node τ which works for a negative requirement N∆ is
accessible at stage s. Let `p∆, sq be the length of agreement between ∆pA0, Bq and
∆pA1, Bq. Let t be the last τˆ8-stage (also known as a τ -expansionary stage); t “ 0
if there was no such stage. If `p∆e, sq ą t then we let τˆ8 be the next accessible
node. Otherwise, we let τ f̂in be the next accessible node.

Next, suppose that a node σ which works for a positive requirement PΦ,i is
accessible at stage s. If σ is satisfied, or if it has an unrealised follower, then σ does
nothing and its only child is accessible. Otherwise:

‚ If all followers for σ have some traces waiting in the permitting bin (this
includes the case that there are no followers appointed), then σ appoints a
new (large) follower x, and defines ax,s`1 “ s` 1.

‚ Suppose that there is a follower x that is realised, but no elements of x’s en-
tourage lie in the permitting bin (necessarily x will be σ’s weakest follower.)
Let the entourage be x “ x0, x1, . . . , xm.

– If this is the first time at which σ is accessible and x is realised, then
we reserve a set of potential traces b0, b1, . . . , bm (consisting of large
numbers).

We then drop the pair xm, bm into the permitting bin.

In either case, all weaker nodes are initialised and the stage is ended.

At the end of the stage, for any as yet uncancelled and unrealised follower x
with an entourage x “ x0, . . . , xm (so with no B-traces bk defined yet), we appoint
a new, large trace xm`1, targeted for the set Ai for which xm is not targeted.

Verification.
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First, let us observe that Ai ďT B ‘ A1´i. Let y ă ω. To see if y P Ai, we look
at stage y to see if y “ xk is currently an element of some entourage x0, . . . , and is
targeted for Ai. If not, then y P Ai ðñ y P Ai,y. If so, at stage y, y has a trace,
either xm`1 or bm. In the latter case, y P Ai ðñ bm P B. Suppose otherwise. If
xm`1 R A1´i then y R Ai. If xm`1 P A1´i then we can find the stage t at which z
is enumerated into A1´i. By that stage, the number bm has been defined and we
are back in the previous case.

Next, let us observe that all three sets A0, A1 and B are computable from g.
For let y be any number. To see if y will enter any of these sets, we first go to
stage y and see if y “ xm or y “ bm for some entourage which is already present at
stage y. Again, if not then at that stage we can see y’s fate. Otherwise, let x be the
follower, the first number in that entourage. We observe that the marker ax,s can
only be updated finitely many times: the number of times is bounded by the length
of the entourage when x is realised. The rules of the markers show that g can find a
stage t such that gtæax,t

will never change, or by which time x was cancelled. Then
y is enumerated into its target set if and only if this has happened by stage t.

Now let us consider positive requirements. By induction on the length of nodes,
we show that the true path is infinite and that nodes on the true path act only
finitely many times; and all positive requirements are met. Note first that option
A cannot be taken cofinally many times; eventually we would run out of pairs in
the permitting bin. So it remains to show that if a node σ, working for PΦ,i, is
accessible infinitely often, but is not initialised infinitely often, then σ acts only
finitely often.

It is a standard argument to show that if σ is satisfied (after the last stage at
which it is initialised) then the requirement is met. The point as always is that the
markers b0, . . . , bm are chosen late and so are greater than the use φpB, xq.

We may assume that every follower that σ appoints is later either realised or
cancelled. Every follower receives attention only finitely often. Suppose that σ is
never satisfied (after the last stage it is initialised). Then σ has infinitely many
followers that are never cancelled (for every stage, consider the strongest follower
ever to receive attention after that stage). These followers eventually have traces
stuck forever in the permitting bin.

Under these assumptions, we argue that g is ω-c.a.
Let n ă ω. To approximate gpnq we pick out stages during which we believe

gspnq. Let r˚ be the last stage at which σ is initialised. Find a stage s˚ “ s˚pnq ą r˚

at which σ is accessible and has a follower x˚ “ x˚pnq which is already realised
and has some traces waiting at the permitting bin. We then let Spnq be the set of
stages s ą s˚ at which σ is accessible. Suppose that s ă t are successive stages in
Spnq; suppose that gspnq ‰ gtpnq. Let x ď x˚ be the strongest follower for σ that
received attention since stage s˚ (x “ x˚ if there is no such x). Then at the end of
stage s, traces from x’s entourage are waiting at the permitting bin, and ax,s ą n.
Thus, between stages s and t, x, or a stronger follower for σ, is permitted, and
traces are enumerated into sets. The number of times this can happen is bounded
by the sum of the lengths of the entourages of all followers y ď x˚ at stage s˚

(essentially, bounded by ps˚q2). Thus, restricting to the stages in Spnq, we can
effectively put a bound on the number of changes in gspnq.
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It remains to show that every negative requirement Ne is met. It is here where
the construction diverges from that of a critical triple. Fix a wtt functional ∆,
and let τ be the node on the true path which works for N∆; we assume that
∆pA0, Bq “ ∆pA1, Bq “ Z is total. We know that τˆ8 also lies on the true path.
Let r˚ be a stage after which τ is never initialised.

Given n ă ω, let s˚ “ s˚pnq be the least τˆ8-stage s ą r˚ at which the length of
agreement `p∆, sq is greater than n. By convention, we assume that s˚ bounds the
size of all of the B-traces for all followers which have been appointed by stage s˚,
and of course also the use δpnq. Let t˚ “ t˚pnq ě s˚ be a τˆ8-stage at which
Bæs˚ is correct. We claim that Zpnq “ ∆pAi, B, nqrss. Note that n ÞÑ s˚pnq is
computable, so this is a wtt reduction.

The basis of the argument is of course Lachlan’s minimal pair argument of pre-
serving one side of the computation from one expansionary stage to the next. We
claim that if s ă t are successive τˆ8-stages, with s ě t˚, then it cannot be that
numbers y0 and y1, both smaller than δpnq, enter A0 and A1 respectively, both
between stages s and t. Suppose for a contradiction that this happens. When and
where do these traces originate? They have to have been appointed before stage s˚,
and so they belong to followers x0 and x1 which belong to nodes extending τˆ8.
On the other hand, they were not in the permitting bin at stage s˚, since then their
B-trace would be smaller than s˚, and as s ě t˚, that trace not being in B would
mean that they cannot be enumerated into the sets Ai. Also, x0 ‰ x1, as no two
traces for the same follower for a node extending τˆ8 can be in the permitting bin
between two successive τˆ8-stages.

Assume, without loss of generality, that x0 is stronger than x1. This means that
x1 was appointed after the τˆ8-stage t0 at which y0 was placed in the permitting
bin. But we just argued that t0 ě s˚, which in turn implies that y1 ą x1 ą δpnq, a
contradiction. �

Remark 6.5. Note that this proof used the special features of wtt reducibility. It is
not the case that if ∆ were a Turing functional, then we could argue that Z ďT B.
Once successive A0 and A1 changes occur, the use of a Turing computation goes
up, and then a B-change, too large to be previously comprehended even by B
itself, destroys both sides of the computation. This is why we cannot prove the
existence of a paradoxical critical triple: Turing degrees a0,a1 and b such that
a0 _ b “ a1 _ b, but b ă a0,a1 and b “ a0 ^ a1.

On the other hand, note that when we embed the 1-3-1 lattice, it seems that we
exactly do run this hypothetical, paradoxical construction using Turing reductions.
The difference, the reason it works, is the existence of the third set A2. This
third set allows us to retarget traces not to B but to A2. This means that B-
traces are now appointed only when traces already arrive in the permitting bin, not
immediately after the last trace of the entourage is enumerated (and we are still
waiting for the gate to open). This allows B to catch its own tail and correctly
certify computations.

7. Maximality in the new hierarchy

Remarkably, it turns out that the hierarchy we introduced gives new non-
continuity results. From now on, all degrees are c.e.

Definition 7.1. We say that a degree a is maximal totally α-c.a. if
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‚ a is totally α-c.a., and
‚ For all b ą a, b is not totally α-c.a.

Cholak, Downey and Walk [20] constructed maximal contiguous degrees. This
result hints at the following.

Theorem 7.2 ([27]). Let α ă ε0 be a power of ω. There exists a maximal totally
α-c.a. degree. Indeed, there is such a degree which is uniformly totally α-c.a.

On the other hand, maximality has its limits. No degree is maximal for the next
level:

Theorem 7.3 ([27]). Let β ă ε0. For any degree a which is totally ωβ-c.a. there
is a degree b ą a which is totally ωβ`1-c.a.

And the intermediate classes at limits of powers of ω have no maximal elements:

Theorem 7.4 ([27]). If α ă ε0 is a limit of powers of ω, then there is no maximal
ă α-c.a. degree.

Applying Theorem 7.2 to α “ ω, and Theorem 7.4 to α “ ωω (and also Theo-
rems 5.2 and 5.4), yields:

Corollary 7.5. There are degrees, maximal with respect to not bounding critical
triples; but there are no degrees which are maximal with respect to not bounding
copies of the 1-3-1 lattice.

Our definability results show:

Corollary 7.6. The maximal totally ω-c.a. degrees form a naturally definable an-
tichain in the c.e. degrees.

Combining standard lower-cone avoiding techniques with the proof of Theo-
rem 7.2 below show that this antichain is infinite.

Sketch of proof of Theorem 7.2. We enumerate a c.e. set D whose degree should
be maximal totally α-c.a. As stated, by a small modification we can in fact
make degTpDq uniformly totally α-c.a., but we do not discuss this here.

To understand the construction, first think of what goes wrong if we try to
make D both totally α-c.a. and not totally α-c.a. For the former, we meet negative
requirements QΦ which measure the length of convergence of ΦpDq and at various
stages “certify” observed computations ΦpD,xq. These requirements live on a tree
of strategies and have Σ2{Π2 outcomes.

For the latter, we build a functional Λ and try to diagonalise ΛpDq against
all possible α-c.a. functions, which we can list. If xfs, osy is an α-computable
approximation, then a requirement Pf,o appoints a follower p, and each time we
observe that ΛpD, pq “ fsppq, it enumerates the use λppq into D, redefines ΛpD, pq
to have large value, and repeats. (In the language of one of the authors, we “beat
fsppq to death”.) It will not need to do this more than o0ppq “many times”. (As
usual, “number of times” is in terms of ordinal counts; this term is literally correct
in the case α “ ω.)

So what indeed does go wrong? The issue is of uniformity and timing. We
cannot effectively enumerate all α-c.a. functions, each with a total α-computable
approximation (exactly as we cannot list all total computable functions). In the
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arguments above (Theorem 3.2), we used pα`1q-computable approximations. These
are essentially potentially partial approximations: we wait for o0ppqÓ. If it never
converges then we needn’t do a thing. When it does converge we can start the
diagonalisation process.

Now’s the timing problem: a Q-requirement stronger than the P -requirement
tries to certify some computation ΦpD,xq and give some bound on the number of
changes it will allow, i.e., the number of times it anticipates weaker requirements,
such as P , will injure a certified computation by their positive action. To do so,
we need to see the value o0ppq. But it is possible that P has appointed p but is
still waiting to see o0ppq converge (in other words, to see osppq ă α). On the other
hand, upon appointing p, P must declare a use λppq; regardless of anything, we
need to ensure that ΛpDq is total. Really, what we would like is to only define λppq
when o0ppqÓ, or at least to be able to change the use λppq to something large at that
stage — sufficiently large so that P -action will not affect any certified computations,
whose use would be smaller.

Well, we can’t, and therefore mathematics is still apparently consistent. But
essentially, we do get our wish when we construct a maximal totally α-c.a. degree.

In this construction, for each c.e. set W we define a functional ΛW , and the aim
is to show one of the two: either ΛpD,W q is not ω-c.a. (and so D‘W is not totally
ω-c.a.); or W ďT D. A typical positive requirement PW,pf,oq appoints a follower
and tries to show that ΛW pD,W, pq ‰ fppq. What we do, once we see that o0ppqÓ,
is wait for a future change in W below the use λppq. This future change allows us
to lift the use λppq to something large; then we can start diagonalising against fppq
by enumerating uses into D. ΦpD,xq computations certified prior to the W -change
are protected from this diagonalisation action, because their uses are smaller than
the new λppq. Computations which are certified later, have already seen the value
of o0ppq and can take into account how many times P will act. If, on the other
hand, we keep appointing followers p but never get the W -change that we ask for,
then we show that W is computable from D.

There are some several other delicate issues, such as explaining why we need
D to compute W – it would appear that no changes would make W computable;
the problem is timing of permissions, compared to when nodes are accessible, and
which computations we see at such stages. It turns out that during verification,
this complication means that we first have to show that D is low2, and only after
can we show that positive requirements are met, and that D is totally α-c.a. �

Recent work of the authors together with Katherine Arthur [10, 9] has explored
the relationship of maximal α-c.a. degrees and the rest of the hierarchy. One basic
question is understanding what happens to our hierarchy when we restrict it to
upper cones. Say a degree is properly totally β-c.a. if it is totally β-c.a., but not
totally γ-c.a. for any γ ă β.

Question 7.7. Let α ă β ă ε0 be powers of ω. Let a be a totally α-c.a. c.e. degree.
Must there be a c.e. degree b ą a which is properly totally β-c.a.?

In light of Theorem 7.3, this question is related to the question of bounding
by maximal degrees. Namely, suppose that α, β and a witness the failure of an
instance of Question 7.7: say that no b ě a is properly totally β-c.a. Then a is
bounded by no maximal totally α-c.a. degree (and in fact, by no maximal totally
γ-c.a. degree for any γ P rα, βs). This motivates the following.
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Question 7.8. For which pairs α ď β ă ε0 of powers of ω is it the case that every
totally α-c.a. degree is bounded by a maximal totally β-c.a. degree?

Here we have partial answers.

Theorem 7.9 (Arthur, Downey and Greenberg [9, 10]). Let α ă ε0 be a power
of ω.

(1) There are totally α-c.a. degrees which are not bounded by any maximal
totally α-c.a. degrees.

(2) For any β ě αω which is a power of ω, every totally α-c.a. degree is bounded
by a maximal totally β-c.a. degree.

We note that there is quite a gap there. The following would be nice.

Conjecture 7.10. There is a totally ω-c.a. degree which is bounded by no maximal
totally ωn-c.a. degree, for any n ă ω.

Theorem 7.9(2) implies that if β ě αω is a power of ω, then every totally α-c.a.
degree is bounded by a properly totally β-c.a. degree. The question remains open
for lower levels; note that in Theorem 7.3, we cannot ensure that b ą a is properly
totally ωβ`1-c.a. Again we have a partial result:

Theorem 7.11 (Arthur, Downey and Greenberg [9, 10]). Every totally ω-c.a.
degree is bounded by a totally ω4-c.a. degree which is not totally ω-c.a.

We do not know whether the degree constructed for Theorem 7.11 is totally
ω2-c.a. or totally ω3 or neither. Note that this result shows that a naive plan for
resolving Conjecture 7.10 cannot work. That plan would construct a totally ω-c.a.
degree a such that for all n, every totally ωn-c.a. degree b ě a is totally ω-c.a.

Further results concern degrees which are maximal not only with respect to
themselves, but with respect to smaller degrees:

Theorem 7.12 ([9, 10]). There are degrees a ă b such that b is totally ω-c.a.,
and such that if c ě a is totally ω-c.a., then c ď b.

This is related to the proof of Theorem 7.9(1). Indeed, paradoxically, the proof
of Theorem 7.9(1) is made by adapting the construction proving Theorem 7.12
and creating a “maximal ideal”: a sequence a0 ă a1 ă a2 ă . . . of totally ω-c.a.
degrees, with the property that every b ě a0 which is totally ω-c.a. lies below an
for some n; so a0 is bounded by no maximal totally ω-c.a. degree.

Finally, we see that non-bounding by maximal degree requires at least some
complexity.

Theorem 7.13 ([9, 10]). Every superlow degree is bounded by a maximal totally
ω-c.a. degree.

We note that the proofs of some results in this section, for example Theorem 7.11,
are of technical interest, since they involve infinitary positive activity at nodes along
the true path; this does not occur in [27].
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8. Promptness

One fundamental characteristic of our results is that in our lattice embedding
results, the bottom degree cannot always be 0. For example, consider the bottom
degree in the embedding of the 1-3-1 lattice.

The classical proof of Lachlan [54] embeds 1-3-1 with bottom 0. The situation
is akin to the difference between minimal pairs and branching degrees. Lachlan
[55] proved that there are nonzero c.e. degrees that do not bound minimal pairs,
whereas Slaman [69] proved that the branching degrees are dense.

The two natural classes of c.e. degrees which bound minimal pairs are the high
degrees, as proven by Cooper [23], and the promptly simple degrees, as proven by
Ambos-Spies, Jockusch, Shore and Soare [5]. The situation here is similar. Every
high degree bounds a copy of the 1-3-1 lattice. But for an analogue of promptly
simple degrees, we need a notion of prompt multiple permitting, at the correct level.
Roughly speaking, what we need is that when we attempt to give an α-computable
approximation to a function in the degree, not only do we fail to do so, but this
failure is witnessed promptly; each time we make a guess, the opponent’s function
changes within a number of steps which is computably bounded. The details are a
wee bit messy, but relatively straightforward; and at the end we get a reasonably
robust definition of what it means for a degree to be promptly not totally α-c.a.,
and similar definitions for promptly not totally ă α-c.a. and so on. See [27].

Here are two representative results.

Theorem 8.1 ([27]). Every degree which is promptly array noncomputable com-
putes a pair of Π0

1 separating classes C1, C2 such that any X P C1 and Y P C2 form
a minimal pair.

(Compare with Theorem 4.1(2)).

Theorem 8.2 ([27]). Every degree which is promptly not ă ωω-c.a. bounds a copy
of the 1-3-1 lattice with bottom 0.

We remark that sometimes having the bottom not be 0 significantly simplifies
the dynamics of a construction. This is why we suspect the following (which should
be straightforward but has not been written down).

Conjecture 8.3. Every degree which is promptly not ă ωω-c.a. bounds a non-
computable left c.e. real, all of whose presentations are computable.

Compare with Theorem 4.2. The dynamics of the original construction [36] of a
non-computable left-c.e. real, all of whose presentations are computable, has similar
dynamics to the embedding of the 1-3-1, namelyă ωω-c.a. permitting; once we allow
a non-computable B ăT r bounding the presentations, the dynamics simplify to
the level of ω-c.a. permitting.

Similarly, the construction of a wtt minimal pair inside a Turing degree, as
mentioned above, strongly resembles the construction of a 1-4-1 lattice; hence we
surmise:

Conjecture 8.4. Every degree which is promptly not ă ωω-c.a. bounds two Turing
equivalent, non-computable c.e. sets whose wtt-degrees form a minimal pair.

Again, in contrast with Theorem 6.4, we suspect that being promptly not to-
tally ω-c.a. is insufficient.
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As with embeddings of 1-3-1, all of these constructions can be performed below
any high c.e. degree. It would be interesting to formulate a common generalization
of prompt non-low2-ness, and highness.

9. Joining totally α-c.a. degrees

The classes in our hierarchy, the totally α-c.a. degrees, are closed downward
under Turing reducibility, but they do not induce ideals in the c.e. degrees: they
are not closed under join. A natural question is, what kind of degrees can we get
when we join totally α-c.a. degrees?

Long ago, Bickford and Mills [16] showed that 01 is the join of two superlow c.e.
degrees. But not every c.e. degree is the join of two superlow c.e. degrees. Downey
and Ng [37] proved that there are superhigh c.e. degrees which are not the join of
two superlow c.e. degrees; they also showed the following result:

Theorem 9.1 (Downey and Ng [37]).

(1) Every high c.e. degree is the join of two array computable c.e. degrees.
(2) However, there are c.e. degrees which are not the join of two totally ω-c.a.

c.e. degrees.
(3) If A is c.e. and degTpAq is totally ω-c.a. then degwttpAq is not cuppable in

the c.e. wtt degrees.

Sacks’s Splitting Theorem is a fundamental result in computability theory. It
says that every c.e. set A can be split as A “ A1 \ A2, with A1, A2 low and
Turing incomparable c.e. sets. It is always given as a classic example of a finite
injury construction of unbounded type: there is no computable bound on the num-
ber of injuries to a given requirement, and so there is no computable bound on
approximating the answer to the question of how a given requirement was met.
Theorem 9.1(2) above improves this by saying that in fact, the sets A1 and A2

themselves cannot always have ω-computable approximations; and this holds not
only for set splits but even for degree splits.

However, somewhat counter-intuitively, the following result was recently proven.

Theorem 9.2 (Ambos-Spies, Downey and Monath [2]). Every c.e. set can be split
into a pair of c.e. sets of totally ω3-c.a. degrees.

We remark that it is unknown if ω3 can be replaced by ω2, even for degree
splittings.

10. An application to admissible computability

Combined with results of the second author, our work has an application to
admissible computability. This is a generalisation of traditional computability to
ordinals beyond ω. In [47] it is shown that for any admissible ordinal α, the α-
c.e. degrees are not elementarily equivalent to the c.e. degrees. This was done in
cases, depending on the proximity of α to ω. In one case the separation between
the theories is not natural but relies on coding models of arithmetic. However one
result is:

Theorem 10.1 ([47]). Let α ą ω be an admissible ordinal, and let a be an incom-
plete α-c.e. degree. The following are equivalent:

(1) a computes a cofinal ω-sequence in α.
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(2) a bounds a copy of the 1-3-1 lattice.
(3) a bounds a critical triple.

Again, it is the analysis of continuous tracing that underlies this result. The
basic idea is the following. Consider again the embedding of a critical triple: as
time goes by, a longer and longer entourage is built for a follower. When the
follower is realised, the entourage is peeled back (from the end to the beginning),
one member at a time. Trying to do this when time goes beyond ω presents a
completely new problem: after ω many stages, we will have an entourage of order-
type ω, that is, one without a last element. We cannot then peel it back, each step
removing only the last element. It turns out that this blockage is fundamental.
The only case it might be possible for a degree a to bound a copy of the 1-3-1
lattice is if it itself can see that α is far from being a regular cardinal — if it can
essentially re-order time and space to order-type ω, so that the construction can
be (at least after the fact) seen to have taken ω steps, avoiding infinite entourages.
In one direction, effective closed and unbounded sets are used to show that this is
necessary. In the other direction, a fine-structural result of Shore’s [67] says that
an incomplete degree of computable cofinality ω must be high, and can compute a
bijection between α and ω. Working below such a degree, we can translate back
to ω-computability, and use non-low2 permitting to embed the 1-3-1 lattice (for a
technical reason, we cannot quite use high permitting).

To sum up, what this says is that once we go beyond ω, the fine distinctions
between totally ω-c.a. degrees and totally ă ωω-c.a. degrees completely disappear.
Combined with the current work, this gives us a single, natural sentence which
separates the elementary theory of the c.e. degrees from the theory of the α-c.e.
degrees for any admissible α ą ω.

Theorem 10.2. Let α ě ω be admissible. The following are equivalent:

(1) There is an incomplete α-c.e. degree which bounds a critical triple but not
the 1-3-1 lattice.

(2) α “ ω.

In closing we wonder if the classes we have introduced will have interesting
connections with reverse recursion theory in the sense of understanding the proof
theoretical strength of constructions in computability theory in weak systems of
arithmetic.
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[65] André Nies, Richard A. Shore, and Theodore A. Slaman. Interpretability and definability in

the recursively enumerable degrees. Proc. London Math. Soc. (3), 77(2):241–291, 1998.
[66] Emil L. Post. Recursively enumerable sets of positive integers and their decision problems.

Bull. Amer. Math. Soc., 50:284–316, 1944.

[67] Richard A. Shore. The recursively enumerable α-degrees are dense. Ann. Math. Logic, 9(1-
2):123–155, 1976.

[68] Richard A. Shore. Natural definability in degree structures. In Computability theory and its
applications (Boulder, CO, 1999), volume 257 of Contemp. Math., pages 255–271. Amer.

Math. Soc., Providence, RI, 2000.

[69] Theodore A. Slaman. The density of infima in the recursively enumerable degrees. Ann. Pure
Appl. Logic, 52(1-2):155–179, 1991. International Symposium on Mathematical Logic and its

Applications (Nagoya, 1988).

[70] Robert I. Soare. Recursive theory and Dedekind cuts. Trans. Amer. Math. Soc., 140:271–294,
1969.

[71] Clifford Spector. Recursive well-orderings. J. Symb. Logic, 20:151–163, 1955.

[72] Frank Stephan and Guohua Wu. Presentations of k-trivial reals and kolmogorov complexity.
In Computability in Europe 2005: New Computational Paradigms, volume 3526 of Lecture

Notes in Comput. Sci., pages 461–469. Springer, 2005.

[73] Stephen M. Walk. Towards a definition of the array computable degrees. PhD thesis, Univer-
sity of Notre Dame, 1999.

[74] Yongge Wang. Randomness and Complexity. PhD thesis, University of Heidelberg, 1996.
[75] Barry Weinstein. On Embedding of the Lattice 1-3-1 into the Recursively Enumerable Degrees.

PhD thesis, University of California, Berkeley, 1988.

School of Mathematics and Statistics, Victoria University, P.O. Box 600, Welling-

ton, New Zealand
E-mail address: Rod.Downey@vuw.ac.nz

School of Mathematics and Statistics, Victoria University, P.O. Box 600, Welling-
ton, New Zealand

E-mail address: greenberg@msor.vuw.ac.nz


	1. Introduction
	2. -computably approximable functions
	2.1. Canonical ordinals

	3. A degree hierarchy
	3.1. Refinements of the hierarchy
	3.2. Domination
	3.3. Lowness

	4. Unifying classes
	4.1. Algorithmic randomness
	4.2. Ranked sets
	4.3. Higher up

	5. Natural definability
	5.1. Lattice embeddings and critical triples
	5.2. The 1-3-1
	5.3. The L7 lattice
	5.4. A Question

	6. Weak truth table triples
	7. Maximality in the new hierarchy
	8. Promptness
	9. Joining totally -c.a. degrees
	10. An application to admissible computability
	References

