
Bounded Fixed-Parameter Tractability and Reducibility

Rod Downey Jörg Flum Martin Grohe Mark Weyer

August 14, 2006

Abstract

We study a refined framwork of parameterized complexity theory where the parameter dependen-
dence of fixed-parameter tractable algorithms is not arbitrary, but restricted by a function in some family
F . For every family F of functions, this yields a notion of F -fixed parameter tractability. If F is the
class of all polynomially bounded functions, then F -fixed parameter tractability coincides with polyno-
mial time decidability and if F is the class of all computable functions, F -fixed parameter tractability
coincides with the standard notion of fixed-parameter tractability. There are interesting choices of F
between these two extremes, for example the class of all singly exponential functions.

In this article, we study the general theory of F -fixed parameter tractability. We introduce a generic
notion of reduction and two classes F -W[P] and F -XP, which may be viewed as analogues of NP and
EXPTIME, respectively, in the world of F -fixed parameter tractability.

1 Introduction
Parameterized complexity theory provides a framework for a refined complexity analysis of hard algorith-
mic problems. Instead of measuring the complexity solely as a function of the input length, as it is common
in “classical” complexity theory, an additional parameter of the input is taken into account as well. The
theory is mainly intended for addressing complexity issues in situation where the parameter is known to
be small. In such situations, an algorithm whose running time is exponential, but only exponential in the
(small) parameter, may still be considered tractable. Formally, a parameterized problem is fixed-parameter
tractable if it can be solved in time

f (k) ·nO(1), (1.1)

where f is an arbitrary computable function. Here n denotes the input size and k the parameter.

However, even for small values of the parameter k, a running time such as 222k
· n is prohibitive. Fur-

thermore, there are natural problems that are fixed-parameter tractable, but require a parameter dependence
f that is nonelementary [11]. This led us to studying restrictions on the parameter dependence f [10]. For
every class F , there is a class F -FPT of all problems that can be solved in time f (k) · nO(1) for some
f ∈F . Thus every class F of functions yields its own parameterized complexity theory. For classes F
that do not comprise the class of all computable functions, we call these theories bounded parameterized
complexity theories. The usual (“unbounded”) class of all fixed-parameter tractable problems is C -FPT for
the class C of all computable functions. It is worth noting that the class PTIME is (essentially) P-FPT
for the class P of all polynomially bounded functions. Thus, in some sense, bounded parameterized com-
plexity theories fill the gap between classical complexity theory and the usual unbounded parameterized
complexity theory. The most natural restriction of the parameter dependence seems to be singly exponen-
tial, either by letting F = 2O(k) or by letting F = 2poly(k); another interesting choice is F = 2o(k). The
corresponding theories have been studied in [6, 9, 10, 13]. This paper is not devoted to particular classes
F -FPT, but to a general theory.

The basis of every complexity theory is a suitable notion of reduction. We introduce generic reductions
for the bounded parameterized complexity theories. The mathematical structure of the bounded theories
starts to get interesting with these reductions. While for F ⊆F ′ we have F -FPT ⊆F ′-FPT, the corre-
sponding reductions are incomparable. We study the reductions for a number of examples. For 2O(k)-FPT,
they coincide with the reductions introduced in [10], and for P-FPT, they coincide with polynomial time
reductions. As an unpleasant surprise, we find that for the usual notion of fixed-parameter tractability,

1

C -FPT, our generic reductions do not coincide with the usual fpt reductions. Technically, this is our most
difficult result, its proof requires a nontrivial priority argument (see Lemma 25).

We then introduce nondeterministic classes F -W[P] that generalize the class W[P], which may be
viewed as a parameterized analogue of the class NP. This view is confirmed by our observation that
P-W[P] coincides with NP in the same way P-FPT coincides with PTIME. We prove that a fundamen-
tal W[P]-completeness result due to Abrahamson et al. [1] generalizes to all F -W[P], where F satisfies
certain regularity and effectivity conditions. We also establish a general connection between the classes
F -W[P] and limited nondeterminism.

Finally, we introduce classes F -XP that generalize the class XP, which may be viewed as a param-
eterized analogue of the class EXPTIME. Again, this view is confirmed by the observation that P-XP
coincides with EXPTIME. For all regular F , we prove that F -FPT is strictly contained in F -XP. We also
prove a general completeness result for the classes F -XP.

2 Preliminaries
N denotes the natural numbers (positive integers), and for m≤ n ∈ N we let [m,n] = {m,m+1, . . . ,n} and
[n] = [1,n]. For tuples m̄ = (m1, . . . ,mk), n̄ = (n1, . . . ,nk) ∈ Nk we write m̄≤ n̄ if mi ≤ ni for all i ∈ [k], and
we write m̄ < n̄ if m̄≤ n̄ and m̄ 6= n̄.

2.1 Properties of functions

A function f : Nk → N is nondecreasing if f (m̄) ≤ f (n̄) for all m̄, n̄ ∈ Nk with m̄ ≤ n̄. The function f is
increasing if for all m̄, n̄ ∈ Nk with m̄ < n̄ it holds that f (m̄) < f (n̄). The function f is unbounded if for
every m ∈ N there exists a tuple n̄ ∈ Nk such that f (n̄) ≥ m. For two functions f ,g : Nk → N we write
f ≤ g if for all n̄ ∈ Nk it holds that f (n̄) ≤ g(n̄). We assume that the reader is familiar with the big-Oh
and little-oh notation. Just to be clear, for a k-ary function f : Nk→ N, by O(f) we denote the class of all
functions g : Nk → N for which there exists a constant c ≥ 0 and an n0 ∈ N such that g(n̄) ≤ c · f (n̄) for
all n̄ = (n1, . . . ,nk) ∈ Nk with max{n1, . . . ,nk} ≥ n0. Instead of O(f), we also write O(f (n̄)), and we shall
also use notations like g(O(f)) or g(O(f (n̄))). For example, 2O(n) is the class of all functions f : N→ N
such that there is a constant c ∈ N and an n0 ∈ N such that f (n)≤ 2c·n for all n≥ n0. We need an effective
version of little-oh: For a computable function f : N→ N we let oeff(f) be the class of all computable
functions g for which there exists a computable function h such that for all `≥ 1 and all n≥ h(`) we have
g(n) ≤ f (n)/`. It is easy to see that g ∈ oeff(f) if and only if there is a nondecreasing and unbounded
computable function h : N→ N and an n0 ∈ N such that g(n)≤ f (n)/h(n) for all n≥ n0. We often denote
the class nO(1) of all polynomially bounded functions by poly(n) and also use notation like 2poly(n).

Addition and multiplication of a functions are defined pointwise.

Definition 1. A class F of unary functions is regular if it is nonempty and satisfies the following condi-
tions:

(1) For every f ∈F there is a nondecreasing g ∈F such that f ≤ g.

(2) F is closed under addition and multiplication.

(3) F is closed under linear transformations of the arguments, that is, for every f ∈F and c ∈ N the
function g defined by g(x) = f (c · x) belongs to F .

Example 2. The classes O(1), (logn)O(1), P := poly(n), 2oeff(n), 2o(n), 2O(n), 2poly(n), the class C of all
unary computable functions, and the class A of all unary functions are regular. The class O(logn) is not
regular.

A function f : N→ N is time-constructible if there is a deterministic Turing machine that, given n
in unary, halts in exactly f (n) steps. Observe that for every computable function f : N→ N there is a
time-constructible increasing function g : N→ N such that f ≤ g.

Definition 3. A class F of unary functions is effectively regular if it is regular and if for every f ∈F there
is a time-constructible nondecreasing function g ∈F such that f ≤ g.

2

2.2 Parameterized complexity

We view decision problems as languages over some finite alphabet, which we usually denote by Σ. A
parameterized problem (over the alphabet Σ) is a pair (Q,κ), where Q ⊆ Σ∗ is a decision problem and
κ : Σ∗→ N, the parameterization, is a polynomial time computable function, where the result is encoded
in unary. This implies that κ(x) is polynomially bounded by |x|. A parameterized problem (Q,κ) is fixed-
parameter tractable if there is an algorithm and a computable function f such that for every instance x the
algorithm decides if x ∈ Q in time

f (κ(x)) · |x|O(1).

FPT denotes the class of all fixed-parameter tractable problems.
A (many-one) fpt reduction from a parameterized problem (Q,κ) over Σ to a parameterized problem

(Q′,κ ′) over Σ′ is a mapping R : Σ∗→ (Σ′)∗ such that:

(R1) For all x ∈ Σ∗ we have
(
x ∈ Q ⇐⇒ R(x) ∈ Q′

)
.

(R2) For all x ∈ Σ∗, the value R(x) is computable in time

f (κ(x)) · |x|O(1)

for a computable f : N→ N.

(R3) There is a computable function g : N→ N such that κ ′(R(x))≤ g(κ(x)) for all x ∈ Σ∗.

We write (Q,κ) ≤fpt (Q′,κ ′) if there is an fpt reduction from (Q,κ) to (Q′,κ ′), and we write (Q,κ) ≡fpt

(Q′,κ ′) if (Q,κ)≤fpt (Q′,κ ′) and (Q′,κ ′)≤fpt (Q,κ).
Besides FPT, we are interested in two further parameterized complexity classes: Let (Q,κ) be a pa-

rameterized problem over Σ. Then (Q,κ) belongs to the class XP if there is a computable function f and
an algorithm that, given x ∈ Σ∗, decides if x ∈ Q in time

O
(
|x| f (κ(x))

)
.

(Q,κ) belongs to the class W[P] if there are computable functions f ,g : N→ N and a nondeterministic
Turing machine M deciding Q such that on every run with input x ∈ Σ∗ the machine M performs f (κ(x)) ·
|x|O(1) steps, at most g(κ(x)) · log |x| of them being nondeterministic. Observe that

FPT⊆W[P]⊆ XP.

We close our short introduction into parameterized complexity theory with an example of a W[P]-complete
problem. An input for a Boolean circuit C is an assignment of Boolean values to its input gates; the input is
satisfying if the output of C on this input is 1. The circuit C is k-satisfiable if there is a satisfying assignment
that sets exactly k input gates to ’1’. The parameterized weighted satisfiability problem for Boolean circuits
is defined as follows:

p-WSAT(CIRC)
Instance: A Boolean circuit C and a k ∈ N.

Parameter: k.
Problem: Decide if C is k-satisfiable.

The problem p-WSAT(CIRC) is complete for W[P] under fpt-reductions [1]. As a matter of fact, W[P] has
originally been defined as the closure of p-WSAT(CIRC) under fpt-reductions.

For further background on parameterized complexity theory, we refer the reader to [8, 9].

3

3 The Bounded Framework
Definition 4. Let F be a class of unary functions. A parameterized problem (Q,κ) over the alphabet Σ

is F -fixed-parameter tractable, if there is an algorithm and a function f ∈F such that for every instance
x ∈ Σ∗ the algorithm decides if x ∈ Q in time

f (κ(x)) · |x|O(1).

F -FPT denotes the class of all F -fixed-parameter tractable problems.

For technical reasons, we usually take the classes F defining F -FPT to be regular.
Let F be a class of unary functions, Σ∗ an alphabet and κ : Σ∗→ N a parameterization. We say that

an algorithm with inputs x from Σ∗ is F -fpt (with respect to κ), if its running time is f (κ(x)) · |x|O(1) for
some f ∈F .

Example 5. We obtain the standard notion of fixed-parameter tractability if we take as F the class C of
all computable functions, that is,

FPT = C -FPT.

Downey and Fellows [8] distinguish between our version of fixed-parameter tractability, which they call
strongly uniform fixed-parameter tractability, and the weaker uniform fixed-parameter tractability. The
class of all uniformly fixed-parameter tractable problems is A -FPT for the class A of all unary functions.

In the following, we refer to the standard parameterized complexity theory as unbounded parameter-
ized complexity theory and to the F -theories for proper subclasses F of C , as bounded parameterized
complexity theories.

Example 6. We let P := poly(k) denote the class of all polynomially bounded unary functions. P-FPT
is essentially PTIME. More precisely, P-FPT is the class of all parameterized problems (Q,κ), where
Q ∈ PTIME.

Observe that P-FPT = F -FPT for all nonempty classes F ⊆P . In particular, O(1)-FPT = P-FPT.

Example 7. The following notions of bounded fixed-parameter tractability have been studied in [9, 10, 13]:

2poly(k)-FPT, 2O(k)-FPT, and 2oeff(k)-FPT.

These classes are denoted by EXPT, EPT, and SUBEPT, respectively, in [9, 10].

Example 8. Recall that a function f : Nn→N is elementary if it can be formed from the successor function,
addition, subtraction, and multiplication using composition, projections, bounded addition and bounded
multiplication (of the form ∑`≤m g(n1, . . . ,nk, `) and ∏`≤m g(n1, . . . ,nk, `)). Let E denote the class of all
unary elementary functions. E -FPT is another interesting notion of bounded fixed-parameter tractability.

It is well known that a function f is bounded by an elementary function if, and only if, it is bounded by
a d-fold exponential function for some fixed d (see, for example, [7]). We use the following notation for
iterated logarithms and exponentiations: For all n ∈ N, we let log(0) n := 1, exp(0) n := 1, and for d ≥ 1,

log(d) n := log log(d−1) n, exp(d) n := 2exp(d−1) n.

Then exp(O(1)) denotes the class of all functions f for which there exists a constant d and an n0 such that
f (n)≤ exp(d) n for all n≥ n0. Then

E -FPT = exp(O(1)) -FPT.

3.1 The classes G (F) of functions

Before we continue our theory with the introduction of suitable reductions, we need to introduce an impor-
tant class of functions derived from F .

4

Definition 9. Let F be a class of unary functions. Then G (F) is the class of all binary functions g :
N×N→ N such that for all f ∈F there is a function f ′ ∈F such that

f (g(k,n))≤ f ′(k) ·nO(1)

for all k,n ∈ N.

The next lemma establishes a few basic properties of G (F) for regular F .

Lemma 10. Let F be a regular class of unary functions and G = G (F).

(1) For every g ∈ G there exists a nondecreasing g′ ∈ G such that g≤ g′.

(2) G is closed under addition.

(3) For all g,g′ ∈ G , all f ∈F , and all c ∈ N, the function h : N→ N defined by

h(k,n) = g(g′(k,n), f (k) ·nc)

belongs to G .

(4) There is a g ∈ G such that g(k,n)≥ k for all k,n ∈ N.

Proof. To prove (1), let g ∈ G and define g′ : N2 → N by g′(k,n) = max{g(k′,n′) | k′ ≤ k,n′ ≤ n}. Then
g≤ g′, and g′ is nondecreasing. We claim that g′ ∈ G . To see this, let f ∈F . Let f ′ ∈F and c ∈ N such
that f (g(k,n))≤ f ′(k) ·nc for all k,n ∈N. By Definition 1(1) we may assume that f ′ is nondecreasing. Let
k′ ≤ k and n′ ≤ n such that g′(k,n) = g(k′,n′). Then

f (g′(k,n)) = f (g(k′,n′))≤ f ′(k′) · (n′)c ≤ f ′(k) ·nc.

Hence g′ ∈ G , which completes the proof of (1).

To prove (2), let g1,g2 ∈ G and f ∈ F . Let f ′ be defined by f ′(k) = f (2 · k). Then f ′ ∈ F by
Definition 1(3). We may assume that f and hence f ′ is nondecreasing. Furthermore, let f1, f2 ∈ F be
such, that for all k,n ∈ N we have f ′(g1(k,n))≤ f1(k) ·nO(1) and f ′(g2(k,n))≤ f2(k) ·nO(1). Then

f ((g1 +g2)(k,n))≤max{ f ′(g1(k,n)), f ′(g2(k,n))} ≤ (f1 + f2)(k) ·nO(1)

By Definition 1(2), this shows, that g1 +g2 ∈ G .

To prove (3), let f ′ ∈ F be given and let f ′′, f ′′′ ∈ F be such that for all k,n ∈ N it holds that
f ′(g(k,n))≤ f ′′(k) ·nO(1) and f ′′(g′(k,n))≤ f ′′′(k) ·nO(1). Then

f ′(h(k,n))≤ f ′′(g′(k,n)) · (f (k) ·nO(1))O(1) ≤ f ′′′(k) · f (k)O(1) ·nO(1).

By Definition 1(2), this shows that h ∈ G .

(4) follows immediately from the defintion of G .

3.2 Reductions

Let us fix a regular class F of unary functions. As in the unbounded theory, to compare the complexi-
ties of parameterized problems that are not F -fixed-parameter tractable, we need a notion of (many-one)
reduction.1

Let (Q,κ) and (Q′,κ ′) be parameterized problems over the alphabets Σ and Σ′, respectively. Clearly, a
(many-one) reduction from (Q,κ) to (Q′,κ ′) is a mapping R : Σ∗→ (Σ′)∗ such that:

(1) For all x ∈ Σ∗ we have (x ∈ Q ⇐⇒ R(x) ∈ Q′).

1It is straightforward to define a “Turing version” of all notions of (many-one) reduction considered in this paper, but this would
not convey any new insights into the issues studied here.

5

The crucial property we expect R to have is:
If A is an F -fpt algorithm solving (Q′,κ ′), then the algorithm B that on input x ∈ Σ∗

first computes R(x) and then decides if R(x) ∈ Q′ with A (3.1)

is an F -fpt algorithm, too.
In particular, this implies that

(2) R is computable by an F -fpt algorithm.

So, assume that R(x) is computable in time f (κ(x)) · |x|O(1) and A solves x′ ∈Q′ in time f ′(κ ′(x′)) · |x′|O(1)

for some f , f ′ ∈F . Then the decision algorithm B according to (3.1) has running time

f (κ(x)) · |x|O(1) + f ′(κ ′(R(x)))·|R(x)|O(1)

≤ f (κ(x)) · |x|O(1) + f ′(κ ′(R(x))) · f (κ(x))O(1) · |x|O(1). (3.2)

Since F is regular, the running time (3.2) can be bounded by h(κ(x)) · |x|O(1) for some h ∈F if:

(3) κ ′(R(x))≤ g(κ(x),x) for some g ∈ G (F).

Altogether, we define:

Definition 11. Let F be a regular class of functions. Let (Q,κ) and (Q′,κ ′) be parameterized problems
over the alphabets Σ and Σ′, respectively. A mapping R : Σ∗→ (Σ′)∗ is an F -fpt reduction from (Q,κ) to
(Q′,κ ′) if

(1) For all x ∈ Σ∗ we have (x ∈ Q ⇐⇒ R(x) ∈ Q′).

(2) R is computable by an F -fpt algorithm.

(3) There is a g ∈ G (F) such that κ ′(R(x))≤ g(κ(x), |x|) for all x ∈ Σ∗.

We write (Q,κ)≤F (Q′,κ ′) if there is an F -fpt reduction from (Q,κ) to (Q′,κ ′).

The remarks preceding this definition show:

Proposition 12. If (Q,κ)≤F (Q′,κ ′) and (Q′,κ ′) ∈F -FPT, then (Q,κ) ∈F -FPT.

To study and construct F -fpt reductions it is crucial to determine the class G (F). Even for simple F ,
the class of G (F) can be surprisingly complicated. In the following, we study G (F) for the examples
considered earlier.

Example 13. G (O(1)) is the class of all binary functions. Thus an O(1)-fpt reduction from (Q,κ) to
(Q′,κ ′) is just a polynomial time reduction from Q to Q′. To see this, note that condition (3) in Definition 11
can be satisfied by letting

g(k,n) = max{κ ′(R(x)) | |x| ≤ n}.
Example 14. G (P) is the class of all binary funtions, which are polynomially bounded in terms of their
arguments. While this is different from G (O(1)), P-fpt reductions coincide with O(1)-fpt reductions.

With the single technical exception of G (·), througout this paper it will always be the case, that O(1)
and P lead to the same concepts. Also recall Example 6 in this light.

Example 15. G (2O(k)) is the class of all functions g : N2→ N such that g(k,n) ≤ c · (k + logn) for some
constant c, or more concisely,

G (2O(k)) = O(k + logn).

To see the inclusion from left to right, let g ∈ G (2O(k)). Then there exist constants d1,d2 > 0 such that for
all sufficiently large n,k it holds that

2g(k,n) ≤ 2d1·k ·nd2 .

Taking logarithms, we obtain g(k,n)≤ (d1 +d2) · (k + logn).
For the converse, let g∈O(k+ logn) and f ∈ 2O(k) be given, say g(k,n)≤ c ·(k+ logn) and f (k)≤ 2d·k.

Then,
f (g(k,n))≤ 2d·c·(k+logn) = 2d·c·k ·nd·c = 2O(k) ·nO(1).

Thus 2O(k)-ftp reductions are precisely the ept reductions introduced in [10].

6

Before we continue with more examples, let us point out that in general for classes F ⊂F ′ of func-
tions, F -ftp reductions and F ′-fpt reductions are incomparable. That is, neither the implication (Q,κ)≤F

(Q′,κ) =⇒ (Q,κ) ≤F ′ (Q′,κ) nor the reverse implication (Q,κ) ≤F ′ (Q′,κ) =⇒ (Q,κ) ≤F (Q′,κ)
holds for all parameterized problems (Q,κ) and (Q′,κ ′). For example, it is observed in [9, 10] that ≤O(1),
≤2O(k)

, and ≤C are incomparable.

Example 16. Maybe surprisingly,

G (2o(k)) = G (2O(k)) = O(k + logn). (3.3)

To see that O(k+ logn)⊆G (2o(k)), note that 2o(k+logn)⊆ 2o(k)+O(logn) = 2o(k) ·nO(1). To see that G (2o(k))⊆
O(k + logn), let g ∈ G (2o(k)) and suppose for contradiction that for all c ∈ N there are k(c),n(c) ∈ N such
that g(k(c),n(c)) > c · (k(c)+ log(n(c))). Let h : N→N be defined by h(i) = g(k(i),n(i)). Without loss of
generality we may assume that h is increasing. Let f : N→ N be defined by{

f (j) = 1 for all j ≤ h(1),
f (j) = i for all i > 1,h((i−1)2) < j ≤ h(i2).

Then f is a nondecreasing unbounded function, and for all i ∈ N,

f (h(i2)) = i.

By the definition of G (2o(k)), there exists a nondecreasing unbounded f ′ : N→ N and a c ∈ N such that

2g(k,n)/ f (g(k,n)) ≤ 2k/ f ′(k) ·nc for all k,n ∈ N.

Taking logarithms, we get

g(k,n)
f (g(k,n))

≤ k
f ′(k)

+ c · logn≤ c · (k + logn).

For k = k(c2),n = n(c2), this leads to a contradiction:

g(k(c2),n(c2))
f (g(k(c2),n(c2)))

=
h(c2)

f (h(c2))
=

h(c2)
c

>
c2(k + logn)

c
= c · (k + logn).

This completes the proof of (3.3).
It follows that for all parameterized problems (Q,κ) and (Q′,κ ′) we have

(Q,κ)≤2o(k)
(Q′,κ ′) =⇒ (Q,κ)≤2O(k)

(Q′,κ ′).

Lemma 17. Let F , Σ, Σ′, (Q,κ), and (Q′,κ ′) be as in Definition 11. Then a mapping R : Σ∗→ (Σ′)∗ is an
F -fpt reduction from (Q,κ) to (Q′,κ ′) if and only if it satisfies conditions (1) and (2) of Definition 11 and
the following, more restrictive, version of condition (3):

(3’) There is a nondecreasing computable g ∈ G (F) such that κ ′(R(x))≤ g(κ(x), |x|) for all x ∈ Σ∗.

Proof. We define g : N2→ N by

g(k,n) = max{κ ′(R(x)) | x ∈ Σ
∗ with |x| ≤ n and κ(x)≤ k}.

Clearly, g is nondecreasing and computable. It is in G (F), because for a regular F , for every g1 ∈ G (F)
there is a nondecreasing g2 ∈ G (F) such that g1 ≤ g2, and furthermore, G (F) is downwards closed with
respect to ≤.

7

Example 18. It is not hard to see that the class G (2oeff(k)) contains functions that are not in G (2o(k)). The
interesting fact, however, is that this does not affect the corresponding notion of reduction. That is, for all
parameterized problems (Q,κ) and (Q′,κ ′) we have

(Q,κ)≤2oeff(k)
(Q′,κ ′) =⇒ (Q,κ)≤2o(k)

(Q′,κ ′). (3.4)

To see this, recall the proof that G (2o(k))⊆O(k+ logn) from Example 16. Observe that if g∈ G (2oeff(k)) is
nondecreasing and computable with g 6∈ O(k + logn), then the functions k,n : N→ N with g(k(c),n(c)) >
c · (k + logn) can be chosen to be computable. Then the functions h, f defined in the proof of Example 16
are computable, and therefore

2g(k,n)/ f (g(k,n)) ∈ 2oeff(k) ·nc.

This leads to a contradiction. Therefore, all nondecreasing and computable g ∈ G (2oeff(k)) are contained in
O(k + logn). Now (3.4) follows from Lemma 17.

Example 19. We have
G (2poly(k)) =

⋂
d∈N

(poly(k) · (logn)
1
d). (3.5)

To understand this notation, remember that poly(k) ·(logn)
1
d denotes a class of functions. Hence G (2poly(k))

is the class of all functions g : N2→ N, such that for all d ∈ N there is some polynomial pd(X) such that
for all k,n ∈ N we have g(k,n)≤ pd(k) · (logn)

1
d .

Let us prove (3.5): For the inclusion from left to right, let g ∈ G (2poly(k)) and d ∈ N be given. Then,
for suitable constants c1,c2 ∈N and all k,n ∈N, we have 2(g(k,n))d ≤ 2kc1 ·nc2 . Takings logarithms and 1

d th

powers, we even obtain g(k,n)≤ k
c1
d +(c2 · logn)

1
d .

For the converse, let g∈ poly(k) ·(logn)
1
d , say, g≤ (c+kc) ·(logn)1/d for constants c,d. Let f ∈ 2poly(k)

be given, say f (k)≤ 2kd
. Then, for all k,n ∈ N, we have

f (g(k,n))≤ 2(c(2·d)+kc(2·d)·(logn)
1

2·d)d
= 2O(k2·c(2·d)·d+(logn)

2·d
2·d) = 2poly(k) ·nO(1).

This completes the proof of (3.5).
Let us remark that the class poly(k) · (logn)o(1), which might have been a first guess for G (2poly(k)), is

strictly contained in G (2poly(k)). It is not hard to prove that the function g : N2→ N defined by g(k,n) =
min
d∈N
dkd +(logn)

1
d e is in G (2poly(k))\

(
poly(k) · (logn)o(1)).

Example 20. G (E) =
⋂

d∈N
((exp(O(1)) k) · log(d) n). We leave the straightforward proof to the reader.

Example 21. For the class A of all unary functions, G (A) is the class of all functions g : N2→ N which
are bounded in terms of their first argument, that is, for which there exists a function h : N→ N such that

g(k,n)≤ h(k) for all k,n ∈ N.

Clearly, all binary functions g bounded in their first argument are contained in G (A). To see the converse,
suppose for contradiction, that g ∈ G (A) and that for k0 ∈ N the function h1 : N→ N defined by h1(n) =
g(k0,n) is unbounded. Let h2 : N→ N be nondecreasing, such that for all m ∈ N we have h1(h2(m))≥ m.
Now define f : N→ N by f (m) = 2h2(m). By Definition 9, the term f (g(k0,n)) is polynomially bounded
by n. But for n of the form n = h2(m) we have

f (g(k0,n)) = f (h1(h2(m)))≥ f (m) = 2n.

For a nondecreasing unbounded function f : N→ N, we define its “inverse” ι f : N→ N by

ι f (n) = max
(
{1}∪{m | f (m)≤ n}

)
. (3.6)

Then for all n ∈N we have ι f (f (n))≥ n and f (ι f (n)) = max{ f (1),n}. Furthermore, ι f is unbounded, and
if f is computable then so is ι f .

8

Example 22. For the class C of all computable unary functions, G (C) contains functions g that are not
bounded in terms of their first argument.

To see this, let (fi)i∈N be an enumeration of C . Define h : N→ N by h(m) = max{ fi(m) | i≤ m}, and
g : N2→ N by g(k,n) = ιh(n). Clearly, g is not bounded in terms of its first argument. To show g ∈ G (C),
let f ∈ C be arbitrary, say, f = fi. Then h(m)≥ f (m) for all m≥ i. Hence, for sufficiently large n and all
k we have

f (g(k,n))≤ h(ιh(n))≤ n+h(1).

Then, of course, there is a suitable constant function f ′, such that f (g(k,n))≤ f ′(k) ·n for all k,n.

On the other hand, the next lemma states that the example depends on the non-computability of g. One
might further hope that all computable functions in G (C) are even computably bounded in terms of their
first argument. By Lemma 17, this would prove that C -fpt reducibility coincides with fpt reducibility.
However, in the following subsection we shall see that this is not that case, that is, there are computable
functions in G (C) that are not computably bounded in terms of their first argument, and C -fpt reducibility
does not coincide with fpt reducibility. In this light it is not immediate, that every C -fpt reduction also is
an A -fpt reduction. However, this follows from the next lemma.

Lemma 23. Every computable function in G (C) is bounded in terms of its first argument.

Proof. For contradiction, let g ∈ G (C) be computable and let k ∈ N be such, that the function gk : N→ N
defined by gk(n) = g(k,n) is unbounded. Without loss of generality, g is nondecreasing. Then let f ∈ C

be unbounded and nondecreasing, such that ι f = go(1)
k . For example, we could set f (m) = min{n ∈N|m≤

gk(logn)}.
Now, let f ′ ∈ C be such, that f (g(k,n))≤ f ′(k) ·nO(1). Then for sufficiently large n we have

gk(n) = g(k,n)≤ ι f (f (g(k,n)))≤ ι f (f ′(k) ·nO(1)) < gk(n),

yielding the contradiction.

Corollary 24. For all parameterized problems (Q,κ) and (Q′,κ ′):

(Q,κ)≤C (Q′,κ ′) =⇒ (Q,κ)≤A (Q′,κ ′).

3.3 C -fpt reductions vs fpt reductions

Lemma 25. There is a computable function g∈ G (C) that is not computably bounded in its first argument,
that is, for all computable functions f ∈ C there are k,n ∈ N with

g(k,n) > f (k).

Proof. Let both di and ai denote the ith computable partial function in some effective enumeration. Let
T = {i | ai total} be the set of indices of the total computable functions.

Requirements: Our goal is to construct a computable function g : N2 → N and, for all i ∈ N, numbers
ki,ni ∈ N and computable total functions hi : N→ N, such that

I. g(ki,ni) > di(ki) for all i such that di is total, and

II. for all j, such that a j is total, there is some c ∈ N, such that a j(g(k,n)) ≤ max(h j(k),n,c) for all
k,n ∈ N.

We describe an infinite computation which will construct all neccessary witnesses. This means that the
computation is only guaranteed to provide ki and ni if di is total and h j if a j is total.

Along with ki and ni, the computation will also construct a number vi, which will be a lower bound on
g(ki,ni). Indeed, we define g by

g(k,n) = max({1}∪{vi | ki,ni are defined and k = ki,n = ni}). (3.7)

9

The computation will be carried out in stages, and each stage will require only finite computation time.
We will make sure, that ki,ni, if defined at all, are defined not later than at stage ni. This implies that g is
computable, because to compute g(k,n) we only have to simulate the first n stages of the construction.

The computation has to make some assumptions about totality of the a j. That is, at stage s it will
“guess” how T ∩{1, . . . i} looks for i ≤ s and act accordingly. Alternatively, we may think of the com-
putation as being organized as an infinite binary tree, where different branches of the tree correspond to
different assumptions. We denote the branches, or guesses for T ∩ {1, . . . i}, by B. To find appropriate
values for ki, vi, and ni, the computation will repeatedly introduce candidates ki,B and vi,B for branches
B⊆ {1, . . . , i}.

The last pieces of data constructed by the computation are numbers ` j ∈ N for j ∈ N. The number ` j
is a convergence requirement for a j: Only if a j is witnessed to be total at least on {1, . . . , ` j}, something
happens for a j. One particular thing that happens is that ` j is increased. Accordingly, each non-total a j
will eventually be recognized as such and no longer disturb the computation.

To summarize: The computation will construct numbers

ki,vi,ni,ki,B,vi,B, `i,

for i ∈ N and B⊆ {1, . . . , i}, and functions
h j

that will be total for all j ∈ T . As said before, the computation will be carried out in stages. For a number
x∈{ki,vi,ni,ki,B,vi,B, `i}we write x↘ s to denote that x is defined at the beginning of stage s. Occasionally,
we also use x↘ s to denote the value of x at beginning of stage s. For a computable function f and an
argument x, we write f (x)↘ s to denote that x < s, f (x) < s, and the computation of f on input x halts in
at most s steps.

A function a j is active at stage s of the construction if ` j↘ s and a j(m)↘ s for all m≤ (` j↘ s).

Construction: At stage s, the computation proceeds as follows:

(1) For all j ≤ s such that ` j↗ s, set ` j← 1.

(2) For all j ≤ s such that a j is active, set ` j← s.

(3) For all j ≤ s such that a j is active and all k ≤ ` j such that h j(k)↗ s, set h j(k)← s.

(4) For all i≤ s and all B⊆ {1, . . . , i} such that ki,B↗ s, set ki,B← s.

(5) For all i≤ s and all B⊆ {1, . . . , i} such that ki,B↘ s, vi,B↗ s, and di(ki,B)↘ s, set vi,B← s.

(6) For all j ≤ s such that a j is active, all i with j ≤ i ≤ s, and all B ⊆ {1, . . . , i} such that j 6∈ B, delete
ki,B and vi,B (if defined).

(7) For all i≤ s, if there is a B⊆ {1, . . . , i} such that vi,B↘ s, ni↗ s, and a j(vi,B)↘ s for all j ∈ B, then
take the lexicographically first such B and set ki← ki,B, vi← vi,B, and ni← s.

Correctness: Observe first that at each stage of the construction the computation is finite and that the
numbers ki,vi,ni, and hi(k) for i,k ∈N, are defined at most once during the construction. Only the ki,B, vi,B,
and `i can be deleted and redefined, possibly infinitely often.

Let us now proof that requirement I is satisfied. Let i ∈N such that di is total. We claim that eventually
ki, vi, and ni are defined. Let B := T ∩{1, . . . , i} be the correct “totality guess”. Then ki,B and vi,B can only
be deleted finitely many times in step 6. As di is total, after every deletion, vi,B will be redefined in step 5
at some later stage. As a j is total for all j ∈ B, the preconditions of step 7 will eventually be fulfilled, if not
earlier for some B′, then for B. Now let B′ be the guess which leads to the final values of ki, vi and ni. Let
s be the stage where vi,B obtains the value, which later is taken for vi. By the definition of g (see (3.7)), we
have

g(ki,ni)≥ vi = (vi,B↘ (s+1)) = s > di(ki,B↘ s) = di(ki),

as required.

10

To prove that requirement II is satisfied, let a j be total and k,n be given. If g(k,n) = 1, then it is
sufficient to have c ≥ a j(1). Otherwise there is some i ∈ N, such that k = ki, n = ni, and g(k,n) = vi. We
shall prove that for all i we have

a j(vi)≤max{h j(ki),ni,c}. (3.8)

Letting c ≥ max{a j(vi) | i < j}, we take care of the finitely many i < j. In the following, we assume that
j ≤ i. Let B be the totality assumption which led to the definition of ki,vi,ni in step 7, and let s be the stage
where this happened. If j ∈ B, then the precondition of 7 implies

a j(vi)≤ s = ni.

Otherwise, let s1 be minimal such that s1 ≥ ki and such that a j is active at stage s1. Then s < s1, because
ki,B will be deleted in step 6 at stage s1. Hence vi ≤ s < s1. In step 2 of stage s1, ` j will be set to s1; this is
the first time that ` j ≥ ki. Thus the stage s2 where h j(ki) will be defined comes after s1. As a j is active at
stage s2 and vi < s1 = (` j↘ s2), we have

a j(vi) < s2 = h j(ki).

This proves (3.8).

The next lemma shows that a function g as constructed in the previous lemma can even be chosen
polynomial time computable. In the following, it will be convenient (but inessential) to encode all integers
in unary.

Lemma 26. There is a polynomial time computable nondecreasing function g ∈ G (C) such that for all
computable functions f ∈ C there are k,n ∈ N with

g(k,n) > f (k).

Proof. Let g′ be as in Lemma 25. Without loss of generality, we may assume that g′ is nondecreasing.
Let f : N→ N be increasing and time-constructible, such that g′(k,n) can be computed in time at most
f (max(k,n)). Then ι f , as defined in (3.6), is computable in quadratic time. Now define g by g(k,n) =
g′(ι f (k), ι f (n)). As a composition of computable functions, g is computable itself. Moreover, the time
needed to compute g on input (k,n), is the quadratic time, quadratic in the arguments, to compute ι f (k)
and ι f (n), plus a time bounded by

f (max(ι f (k), ι f (n))) = f (ι f (max(k,n)))≤max(k,n, f (1)).

As ι f (n) ≤ n for all n, we have g ≤ g′ and hence g ∈ G (C). It remains to show, that g′(k,n) is not
computably bounded in terms of k. Assume otherwise that there is a computable h such that g(k,n)≤ h(k)
for all k,n. But then

g′(k,n)≤ g′(ι f (f (k)), ι f (f (n))) = g(f (k), f (n))≤ h(f (k)).

Hence g′ would be bounded in terms of its first argument by the computable function h ◦ f , which is a
contradiction.

Theorem 27. There are parameterized problems (Q,κ) and (Q′,κ ′) in XP such that (Q,κ) is C -fpt re-
ducible to (Q′,κ ′), but not fpt reducible.

Proof. Choose g according to Lemma 26. Without loss of generality we may assume that g is nondecreas-
ing and g(k,n)≥ k for all k ∈N; simply replace g(k,n) by max({k}∪{g(k′,n′) | k′ ≤ k,n′ ≤ n}) if not. Let
(Q,κ) and (Q′,κ ′) be the following parameterized problems:

Input: A Turing machine M and k ∈ N.
Parameter: k

Problem: Decide, whether M halts on empty input in at most |M|k steps.

11

Input: A Turing machine M and k ∈ N.
Parameter: g(k, |M|)

Problem: Decide, whether M halts on empty input in at most |M|k steps.

Note that actually we have Q = Q′; the two problems only differ in their parameterization. Let Σ be the
alphabet of Q.

Clearly, the identity function is a C -fpt reduction from (Q,κ) to (Q′,κ ′). Just simulating |M|k steps of
M suffices to have (Q,κ) ∈ XP, and, as g(k,n)≥ k, also to have (Q′,κ ′) ∈ XP.

Suppose for contradiction that R is an fpt reduction from (Q,κ) to (Q′,κ ′). Let f ,h : N→N and c ∈N
be such that R(x) is computable in time f (κ(x)) · |x|c and that κ ′(R(x)) ≤ h(κ(x)) for all x ∈ Σ∗. For a
Turing machine M and k ∈ N, let(

M′(M,k),k′(M,k)
)

= R((M,c · k +1)).

We now distinguish between two cases, both leading to a contradiction:

Case 1: There are k,n∈N such that for all Turing machines M it holds that |M′(M,k)| ≤ n or k′(M,k)≤ k.
Choose such k,n. We claim that there is an algorithm that decides in time

O(mc·k)

whether a given Turing machine M of size m halts on empty input in at most mc·k+1 steps. This contradicts
the time hierarchy theorem.

For convenience we use the shorthands M′= M′(M,k) and k′= k′(M′,k). The algorithm first computes
M′ and k′ in time O(mc). If |M′| ≤ n, then it simply uses a lookup table to decide whether M′ halts in at
most |M′|k′ steps. Note that, although there may be infinitely many k′ for each M′, a finite table suffices:
For each machine M′′ with |M′′| ≤ n it stores the smallest k′′ (if existent), such that M′′ halts in at most
|M′′|k′′ steps.

If otherwise m′ > n, we must have k′ ≤ k. Then the algorithm uses direct simulation to decide, whether
M′ halts in at most k′ steps. This needs time

O(|M′|k′)≤ O(mc·k′)≤ O(mc·k).

Case 2: For all k,n ∈ N there is a Turing machine M such that |M′(M,k)|> n and k′(M,k) > k.
Then for all k,n ∈ N,

g(k,n)≤ g(k′(M,k), |M′(M,k)|) = κ
′(R((M,c · k +1)))≤ h(c · k +1),

which gives a computable bound on g in terms of its first argument k. Again, this is a contradiction.

4 The classes F -W[P]
We can bound the running time of F -fpt algorithms by “fpt-clocks”, that is by functions, which itself are
computable by an F -fpt algorithm. In particular, a parameterized problem (Q,κ) is in F -fpt if there is a
Turing machine M and a function h : Σ∗→ N such that

• M decides Q.

• On input x ∈ Σ∗ the machine M performs at most h(x) steps.

• Using unary representation of the output, the function h is computable in F -FPT time.

Recall the definition of the parameterized complexity class W[P]. We generalize it to arbirary F thereby
requiring that the running time and the bound on the number of nondeterministic steps are controlled by
fpt-clocks.

12

Definition 28. Let F be a regular class of functions. A parameterized problem (Q,κ) over the alpabet Σ

belongs to the class F -W[P] if there is a nondeterministic Turing machine M and functions h1,h2 : Σ∗→N
with the following properties:

(1) M decides Q.

(2) On every run with input x ∈ Σ∗ the machine M performs at most h1(x) steps.

(3) On every run with input x ∈ Σ∗ the machine M performs at most h2(x) · logh1(x) nondeterministic
steps.

(4) Using unary representation of the output, the functions h1 and h2 are computable in F -FPT time.

(5) There is a function g ∈ G (F) such that h2(x)≤ g(κ(x), |x|) for all x ∈ Σ∗.

Due to (2) and (4), in particular the running time of the machine M is an F -FPT time.

A more intuitive definition of the class can be obtained if we use random access machines (RAMs)
instead of Turing machines. We work with a standard RAM model: Registers are indexed by nonnegative
integers; register 0 is the accumulator. Registers store nonnnegative integers. The arithmetic operations are
addition, subtraction (cut off at 0), and division by two (rounded off). We use a uniform cost measure. A
nondetermistic RAM (NRAM) has an additional GUESS instruction whose semantics is: Guess a natural
number less than or equal to the number stored in the accumulator and store it in the accumulator. (For
details on the model, we refer the reader to the appendix of [9].) As random access machines only operate
with nonnegative integers, we have to identify the letters of the input alphabet Σ of a decison problem with
nonnegative integers, which in the following we do without mentioning it explicitly.

Let h : Σ∗ → N. A deterministic or nondetermistic RAM-program P is h-bounded, if for every input
x ∈ Σ∗ the program P on every run

• performs at most h(x) steps;

• uses at most the first h(x) registers;

• stores numbers less than or equal to h(x) in any register at any time.

Let F be a class of unary functions and κ : Σ∗→ N a parameterization. A deterministic or nondetermistic
RAM-program P is F -fpt bounded, if it is h-bounded for some h, which is computable in F -FPT time
with respect to κ .

It is not hard to see that a parameterized problem is in W[P] if and only if it is decidable by a C -fpt
bounded program, which for some computable function g : N→ N, on any input in every run performs
at most g(k) nondeterministic steps [5]. Here we call a step nondetermistic if it carries out the guess
instruction. We obtain a corresponding characterization of F -W[P] for every regular class F of functions:

Proposition 29. Let F be a regular class of functions. A parameterized problem (Q,κ) over the alphabet
Σ is in F -W[P] if and only if there is an NRAM-program P and functions h1,h2 : Σ∗→N with the following
properties:

(1) P decides Q.

(2) P is h1-bounded.

(3) For every input x ∈ Σ∗, in every run the program performs at most h2(x) nondetermistic steps.

(4) Using unary representation of the output, the functions h1 and h2 are computable in F -FPT time.

(5) There is a function g ∈ G (F) such that h2(x)≤ g(κ(x), |x|) for all x ∈ Σ∗.

In particular, P is an F -fpt algorithm.

13

Proof. Observe that guessing h2(x) numbers in the range 0, . . . ,h1(x) amounts to guessing O
(
h2(x)·logh1(x)

)
bits. The proof of the proposition is a straightforward simulation of Turing machines by random access
machines and vice versa.

The characterization of F -W[P] given in Proposition 29 is “cleaner” than the definition in terms of
Turing machines because it clearly separates the running time bound in terms of F from the bound on the
number of nondeterministic steps in terms of G (F).

The following example gives a nice illustration of why W[P] is often viewed as the analogue of NP in
the world of parameterized complexity theory (cf. Chap. 3 of [9]).

Example 30. P-W[P] is essentially NP. More precisely, P-W[P] is the class of all parameterized prob-
lems (Q,κ), where Q ∈ NP. The same is true for all F -W[P] for regular F ⊆P .

Example 31. 2O(k)-W[P] is the class of all parameterized problems that can be solved by a 2O(k)-fpt
NRAM-program with at most O(k + logn) nondeterministic steps.

Example 32. 2o(k)-W[P] is the class of all parameterized problems that can be solved by a 2o(k)-fpt NRAM-
program with at most O(k + logn) nondeterministic steps. 2oeff(k)-W[P] the class of all parameterized
problems that can be solved by a 2oeff(k)-fpt NRAM-program with at most O(k + logn) nondeterministic
steps. Hence

2oeff(k)-W[P]⊆ 2o(k)-W[P]⊆ 2O(k)-W[P].

Example 33. A -W[P] is the class of all parameterized problems that can be solved by an NRAM-program,
which running time and number of nondeterministic steps both are computable in deterministic A -FPT
time, and the latter is also bounded in terms of the parameter.

Example 34. We have
W[P]⊆ C -W[P]⊆A -W[P].

The first inclusion is trivial, and the second follows from Lemma 23.

Lemma 35. For every regular class F of functions, F -W[P] is closed under F -fpt reductions.

Proof. Let (Q,κ) and (Q′,κ ′) be parameterized problems over the alphabets Σ,Σ′, respectively, such that
(Q,κ) ≤F (Q′,κ ′) and (Q′,κ ′) ∈F -W[P]. Let R be an F -fpt reduction from (Q,κ) to (Q′,κ ′), and let
f ∈ F ,g ∈ G (F) be witnesses for requirements (2) and (3) of Definition 11. Let the nondeterministic
Turing machine M′ and the functions h′1,h

′
2 : (Σ′)∗ → N be witnesses for (Q′,κ ′) being in F -W[P]. Let

f ′1, f ′2 be such, that h′1,h
′
2 can be computed in time f ′1(κ

′(x′)) · |x′|O(1), respectively f ′2(κ
′(x′)) · |x′|O(1), from

input x′, and let g′ be such, that h′2(x
′)≤ g′(κ ′(x′), |x′|) for all x′ ∈ (Σ′)∗. Without loss of generality we may

assume that the functions f ,g, f ′1, f ′2,g
′ are nondecreasing.

Let M be a deterministic Turing machine computing R and let h3(x) denote the running time of M given
input x. By composing M with M′ we obtain a nondeterministic Turing machine M′′ that decides (Q,κ) in
time

h′′1(x) := h3(x)+h′1(R(x)).

h′′1(x) can be computed from x in time

h3(x)+ f ′1(g(κ(x), |x|)) · (h3(x))O(1) ≤ f (κ(x)) · |x|O(1) + f ′1(g(κ(x), |x|)) · (f (κ(x)) · |x|O(1))O(1).

By the regularity of F and the definition of G (F) this is in F -FPT time. Furthermore, M′′ uses at most
h′′2(x) · logh′′1(x) nondeterministic bits, where

h′′2(x) := h′2(R(x)).

Similar to the above, h′′2 can be computed in F -FPT time. It remains to show condition (5) of the definition.
Here, we have

h′′2(x) = h′2(R(x))≤ g′(κ ′(R(x)), |R(x)|)≤ g′(g(κ(x), |x|), f (κ(x)) · |x|O(1)).

14

By Lemma 10(2) and the definition of G (F), this is bounded by

g′′(κ(x), |x|)

for some g′′ ∈ G (F).

Theorem 36. p-WSAT(CIRC) is F -W[P]-complete under F -reductions.

Proof. There is an NRAM-program P that decides whether a given circuit is k-satisfiable in polynomial
time with at most k nondeterministic steps. By Lemma 10(4) and Proposition 29, this yields p-WSAT(CIRC)∈
F -W[P].

To see that p-WSAT(CIRC) is F -W[P]-hard, let (Q,κ) ∈W[P] be arbitrary; we shall reduce (Q,κ) to
p-WSAT(CIRC) by an F -fpt reduction. Let M, h1, and h2 be as in Definition 28. For input x, the reduction
first computes m = h1(x) and ` = h2(x), using F -FPT time. By a standard simulation of M by circuits, we
obtain a circuit Cx with ` · logm input nodes such that

x ∈ Q ⇐⇒ Cx is satisfiable.

Moreover, Cx can be constructed from x in time polynomial in ` and m and hence still by an F -fpt al-
gorithm. By applying the k · logn-trick (see [1] or Section 3.2 of [9]) to Cx, we get a circuit Dx of size
poly(`+m) with O(` ·m) input nodes such that

Cx is satisfiable ⇐⇒ Dx is `-satisfiable.

Altogether, we have
x ∈ Q ⇐⇒ Dx is `-satisfiable.

As `≤ g(κ(x), |x|) for some g ∈ G (F), this yields an F -reduction from (Q,κ) to p-WSAT(CIRC).

Corollary 37. Let F ,F ′ be regular and F ⊆F ′. Then

F -W[P] = F -FPT =⇒ F ′-W[P] = F ′-FPT.

It follows that if PTIME = NP, then F ⊆F ′ implies F -W[P]⊆F ′-W[P] for all regular F ,F ′. On
the other hand, if PTIME 6= NP then P-W[P] 6⊆ A -W[P]. Also note that (unconditionally), A -W[P] 6⊆
P-W[P].

4.1 F -W[P] and Limited Nondeterminism

The concept of limited nondeterminism was introduced by Kintala and Fischer [12]. The connection be-
tween parameterized complexity theory and limited nondeterminism has first been observed by Cai and
Chen [2, 3]. Theorem 38 generalizes results of [4, 10].

Recall the definition of the “inverse” ι f of a nondecreasing and unbounded function f : N→ N. For a
class F of unary functions, we let

I (F) = {ι f | f ∈F nondecreasing and unbounded}.

For a function h : N→ N, we let
NP[h]

(often, we write NP[h(n)]) be the class of all (classical) problems that can be solved by a polynomially
bounded nondeterministic Turing machine with binary branching that on inputs of length n performs at
most h(n) nondeterministic steps.

Theorem 38. Let F 6⊆ O(1) be an effectively regular class of unary functions. Then the following are
equivalent:

(1) F -W[P] = F -FPT.

15

(2) There is a ι ∈I (F) such that
NP[ι(n) · logn] = PTIME.

Proof. For the direction from (1) to (2), assume that p-WSAT(CIRC) ∈ F -FPT. Then there is a func-
tion f ∈ F , a constant c ∈ N, and an algorithm A that, given a circuit C and k ∈ N decides if (C,k) ∈
p-WSAT(CIRC) in at most f (k) · |C|c steps. As F is regular, we can assume f to be time-constructible.
We show that NP[ι(n) · logn]⊆ PTIME for ι = ι f .

Let A′ be the algorithm that, on input (C,k), simulates A for at most |C|c+1 steps and accepts if A
accepts in at most |C|c+1 steps and rejects otherwise. Observe that for inputs (C,k) with k ≤ ι(|C|), the
algorithm A halts in at most

f (k) · |C|c ≤ f (ι(|C|)) · |C|c ≤ |C| · |C|c

steps and hence A′ correctly decides if C is k-satisfiable.
Consider an arbitrary problem Q∈NP[ι(n) · logn]. Let M be a nondeterministic Turing machine decid-

ing x ∈ Q in polynomial time with at most ι(|x|) · log |x| nondetermistic steps. As f is time-constructible,
we can compute ` := ι(|x|) in polynomial time from x. As in the proof of Theorem 36, for every instance
x of Q we can construct, in polynomial time, a circuit Cx with ` · log |x| input nodes such that

x ∈ Q ⇐⇒ Cx is satisfiable. (4.1)

Applying the k · logn-trick again, from Cx we can construct a circuit Dx with Θ(` · |x|) input nodes such that

Cx is satisfiable ⇐⇒ Dx is `-satisfiable. (4.2)

Then |x| ≤ |Dx|, and as ι is nondecreasing, we have `≤ ι(|Dx|). We can therefore use the algorithm A′ to
decide whether Dx is `-satisfiable in polynomial time. Thus Q ∈ PTIME.

For the converse direction assume that NP[ι(n) · logn] = PTIME holds for ι = ι f for some nondecreas-
ing and unbounded f ∈F . Since F is effectively regular, without loss of generality, we may assume that
f is time-constructible. Then ι is polynomial time computable. It follows that there is a polynomial time
algorithm A′ that accepts precisely those instances (C,k) of p-WSAT(CIRC) for which k≤ ι(|C|) and C is
k-satisfiable.

We show that p-WSAT(CIRC) ∈F -FPT. Let A be the following algorithm: Given an instance (C,k),
it first checks if k≤ ι(|C|). If so, it simulates A′ to decide if C is k-satisfiable. If k > ι(|C|), then algorithm
A first constructs a circuit C′ of size Ω(f (k) · |C|) that is equivalent to C. This can be achieved, for example,
by taking f (k) disjoint copies of C, identifying their input nodes, and connecting their output nodes to a new
output node. Now A simulates A′ on input (C′,k). This yields the correct answer, because k ≤ ι(f (k)) ≤
ι(|C′|). The running time of A can be bounded by

|C|O(1) +O(f (k) · |C|)+ |C′|O(1) ≤ |C|O(1) + f (k)O(1) · |C|O(1),

which by the regularity of F is bounded by f ′(k) · |C|O(1). This proves that p-WSAT(CIRC) ∈F -FPT
and hence that F -W[P] = F -FPT.

The assumption F 6⊆ O(1) in the theorem is only needed because the definition of ι f required f to be
unbounded, and hence I (O(1)) = /0. However, for F = O(1) we have the equivalence

O(1)-W[P] = O(1)-FPT ⇐⇒ NP = PTIME.

The effectivity condition on F is necessary, as the following example shows:

Example 39. For the class A of all unary functions, I (A) is the class of all nondecreasing and un-
bounded functions. Let ι be nondecreasing and unbounded such that for every nondecreasing and un-
bounded computable function h : N→N there exists an n0 such that for all n≥ n0 it holds that ι(n) < h(n).
Such a function ι can easily be constructed.

16

Note that for every polynomially bounded nondeterministic Turing machine M, the function h : N→N
defined by

h(n) = max
{
`
∣∣ there is an x with |x| ≤ n such that on input x, on some run the

machine M performs exactly ` nondeterministic steps
}

is computable. So, if M witnesses membership in NP[ι(n) · logn], then h(n)
logn must be bounded. Hence

NP[ι(n) · logn] = PTIME, while it is generally believed that A -W[P] 6= A -FPT.

5 The classes F -XP
Definition 40. Let F be a regular class of functions. A parameterized Problem (Q,κ) over the alphabet
Σ belongs to the class F -XP, if there are a Turing machine M and functions h1,h2 : Σ∗ → N with the
following properties:

(1) M decides Q.

(2) On input x ∈ Σ∗ the machine M performs at most h1(x)
h2(x) steps.

(3) Using unary representation of the output, the functions h1 and h2 are computable in F -FPT time.

(4) There is a function g ∈ G (F) such that h2(x)≤ g(κ(x), |x|) for all x ∈ Σ∗.

Compare this to the definition of F -W[P].
The following example illustrates why XP is often viewed as a parameterized analogue of exponential

time.

Example 41. O(1)-XP = P-XP is the class of all parameterized problems (Q,κ), where Q belongs to
EXPTIME.

Example 42. 2O(k)-XP is the class of all parameterized problems, which can be solved in time 2O(k2) ·
nO(logn), where n is the length of the input and k its parameter.

To see this, recall that G (2O(k)) is O(k + logn). Then it is immediate to obtain 2O((k+logn)2) as a
characterization of the running time. The claim follows from the standard inequality (k + logn)2 ≤ 4 ·
(k2 +(logn)2).

Example 43. A -XP is the class of all parameterized problems (Q,κ), for which there are h1,h2 : Σ∗→N,
such that Q can be solved, given x, in time h1(x)

h2(x), h1 and h2 are computable in A -FPT time with respect
to κ , and h2(x) is bounded in terms of κ(x).

As h1(x) is implicitely bounded by f (κ(x))+ |x|c for some f ∈ A and c ∈ N, every problem (Q,κ)
in A -XP can be solved in particular in time O(n f ′(k)) for some function f ′ ∈ A . It is an open question
whether the converse holds, that is, whether all parameterized problems that can be solved in time O(n f ′(k))
for some function f ′ ∈A are in A -XP. We conjecture that this is not the case. However, observe that all
parameterized problems that can be solved in time O(n f ′′(k)) for some computable function f ′′ ∈ C are in
A -XP. Thus XP⊆A -XP.

It is easy to see, that F -W[P] ⊆F -XP. Indeed, simply simulating the nondeterminism allowed for
F -W[P] by a deterministic exhaustive search yields an F -XP running time.

Lemma 44. Let F be regular. Then F -XP is closed under F -fpt reductions.

Proof. The proof is very similar to that of Lemma 35
Let (Q,κ) and (Q′,κ ′) be parameterized problems over the alphabets Σ,Σ′, respectively, such that

(Q,κ) ≤F (Q′,κ ′) and (Q′,κ ′) ∈ F -XP. Let R be an F -fpt reduction from (Q,κ) to (Q′,κ ′), and let
f ∈ F ,g ∈ G (F) be witnesses for requirements (2) and (3) of Definition 11. Let the Turing machine
M′ and the functions h′1,h

′
2 : (Σ′)∗→ N be witnesses for (Q′,κ ′) being in F -XP. Let f ′1, f ′2 be such, that

h′1,h
′
2 can be computed in time f ′1(κ

′(x′)) · |x′|O(1), respectively f ′2(κ
′(x′)) · |x′|O(1) and let g′ be such, that

17

h′2(x
′) ≤ g′(κ ′(x′), |x′|) for all x′ ∈ (Σ′)∗. Without loss of generality we may assume that the functions

f ,g, f ′1, f ′2,g
′ are nondecreasing.

Let M be a Turing machine computing R and let h3(x) denote the running time of M given input
x. By composing M with M′ we obtain a Turing machine M′′ that decides (Q,κ). By letting h′′1(x) :=
h3(x)+ h′1(R(x)) and h′′2(x) := h′2(R(x)), we claim that M′′, h′′1 , and h′′2 are witnesses for (Q,κ) being in
F -XP. The running time of M′′ on input x ∈ Σ∗ is bounded by

h3(x)+(h′1(R(x)))h′2(R(x)) ≤ (h3(x)+h′1(R(x)))h′2(R(x)) = (h′′1(x))
h′′2(x).

Further note, that h′′1 and h′′2 are defined exactly as in the proof of Lemma 35. There it has already been
shown, that they fulfill requirements (4) and (5) of Definition 28, which are identical to requirements (3)
and (4) of Definition 40. All together prove the claim.

The technically most important problem in F -XP is the following:

p-EXP-DTM-HALT
Instance: A Turing machine M and k ∈ N.

Parameter: k.
Problem: Decide, whether M halts on empty input in at most |M|k steps.

Theorem 45. For all regular F , the problem p-EXP-DTM-HALT is complete for F -XP.

Proof. Using Lemma 10(4), we obtain p-EXP-DTM-HALT ∈F -XP by a direct simulation of the input
machine M for |M|k steps.

For hardness, let (Q,κ) be a problem in F -XP and let M, h1, and h2 be witnesses for this. The reduction
from (Q,κ) to p-EXP-DTM-HALT works as follows: On input x ∈ Σ∗ it first computes N := h1(x) and
K := h2(x). Then it rewrites M to Mx in the following way:

(1) Instead of accepting or rejecting, Mx halts or loops.

(2) Mx starts by writing x to the input tape before simulating M. This can be done using O(|x|) additional
steps at the beginning.

(3) Mx is padded so that |Mx| ≥ O(|x|)+N.

The reduction outputs (Mx,K).

Theorem 46. For each regular class F of functions, F -FPT 6= F -XP.

Proof. Otherwise, in particular p-EXP-DTM-HALT ∈ F -FPT. Then, let f ∈ F and c be such, that
p-EXP-DTM-HALT can be solved on input (M,k) in time f (k) ·(|M|+k)c. For fixed k > c this contradicts
the time hierarchy theorem.

The definition of F -XP is more complicated than that of XP. Except for its Requirement (3), this was
neccessary to make Lemma 44 true. Requirement (3) was neccessary, to have Theorem 45. One might
hope, that at least C -XP nevertheless conincides with XP. However, independent from Requirement (3),
this is not the case.

Proposition 47. XP is not closed under C -FPT-reductions. In particular, XP 6= C -XP.

Proof. Let g : N2→ N be as in Lemma 26. Consider the following parameterized problem:

p-EXP-DTM-HALT′

Instance: A Turing machine M and k ∈ N.
Parameter: k.

Problem: Decide, whether M halts on empty input in at most |M|g(k,|M|) steps.

18

p-EXP-DTM-HALT belongs to XP and by virtue of definition we have

p-EXP-DTM-HALT′ ≤C p-EXP-DTM-HALT.

Now, for contradiction, assume p-EXP-DTM-HALT′ ∈XP. Then there is a computable function f : N→N,
such that p-EXP-DTM-HALT′ can be decided, given (M,k), in time (|M|+ k) f (k). Now let k0,n0 be such,
that c := f (k0) < g(k0,n0). As g is nondecreasing, we also have c+1≤ g(k0,n) for all n≥ n0. Thus, using
the XP algorithm, we can simulate O(nc+1) time using O(nc) time, which contradicts the time hierarchy
theorem.

References
[1] K.A. Abrahamson, R.G. Downey, and M.R. Fellows. Fixed-parameter tractability and completeness

IV: On completeness for W[P] and PSPACE analogs. Annals of Pure and Applied Logic, 73:235–276,
1995.

[2] L. Cai and J. Chen. On fixed-parameter tractability and approximability of NP optimization problems.
Journal of Computer and System Sciences, 54:465–474, 1997.

[3] L. Cai and J. Chen. On the amount of nondeterminism and the power of verifying. SIAM Journal on
Computing, 26(3):733–750, 1997.

[4] L. Cai, J. Chen, R.G. Downey, and M.R. Fellows. On the structure of parameterized problems in NP.
Information and Computation, 123:38–49, 1995.

[5] Y. Chen, J. Flum, and M. Grohe. Machine-based methods in parameterized complexity theory. The-
oretical Computer Science, 339:167–199, 2005.

[6] Y. Chen and M. Grohe. An isomorphism between subexponential and parameterized complexity
theory. In Proceedings of the 21st Conference on Computational Complexity, 2006. To appear.

[7] N.J. Cutland. Computability. Cambridge University Press, 1980.

[8] R.G. Downey and M.R. Fellows. Parameterized Complexity. Springer-Verlag, 1999.

[9] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer-Verlag, 2006.

[10] J. Flum, M. Grohe, and M. Weyer. Bounded fixed-parameter tractability and log2n nondeterministic
bits. Journal of Computer and System Sciences, 72:34–71, 2006.

[11] M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic revisited.
Annals of Pure and Applied Logic, 130:3–31, 2004.

[12] C. Kintala and P. Fischer. Refining nondeterminism in relativised polynomial time bounded compu-
tations. SIAM Journal on Computing, 9:46–53, 1980.

[13] M. Weyer. Bounded fixed-parameter tractability: The case 2poly(k). In R.G. Downey, M. Fellows,
and F. Dehne, editors, Proceedings of the 1st International Workshop on Parameterized and Exact
Computation, volume 3162 of Lecture Notes in Computer Science, pages 49–60. Springer-Verlag,
2004.

19

