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CHAPTER I

Introduction

The conceptual basis of this monograph is centered in a long-term programme
in computability theory, seeking to understand the relationship between dynamic
properties of sets and functions and their algorithmic complexity. In this paper,
along with the companion papers [17] and [15], we introduce a new hierarchy of
computably enumerable (c.e.) Turing degrees based on the complexity of approxi-
mations of functions in these degrees. Since all such functions are �0

2, by the Limit
Lemma they have approximations g “ lim

s

g
s

with xg
s

y uniformly computable.
The idea is to classify the degrees according to the complexity of a bound on the
“mind change” function #ts : g

s`1pxq ‰ g
s

pxqu. We will use a classification of �0
2

functions defined by Ershov in [28, 29, 30].
The reader might well ask why we need yet another hierarchy in computability

theory. Below we discuss three aspects of this work.

(i) New natural definability results in the c.e. degrees. These definability
results are in the low2 degrees and hence are not covered by the current
metatheorems of Nies, Shore and Slaman [52]. Moreover they are amongst
the very few natural definability results in the theory of the c.e. Turing
degrees.

(ii) A new methodology for classifying and unifying the combinatorics of a
number of constructions from the literature.

(iii) The introduction of a number of construction techniques which are injury-
free and highly non-uniform. These would seem to have wider applica-
tions.

Unifying constructions. It is not common, in computability theory, to find
a class of degrees which captures the underlying dynamics of a number of appar-
ently similar constructions. A good example is the class of high degrees, which arise
from dense simple, maximal, hyperhypersimple, and other similar kinds of c.e. set
constructions (Martin [48]). Another example would be the class of the promptly
simple degrees (Ambos-Spies, Jockusch, Shore and Soare [2]). A more recent exam-
ple of current interest is the class ofK-trivial degrees (see for example [22, 50, 51]),
which have several characterisations arising from lowness constructions.

The example most relevant to the current work is the class of array computable
degrees, defined by Downey, Jockusch and Stob [23, 24]. A c.e. Turing degree a is
array computable if every function g P a has a computable approximation xg

s

y such
that for all n there are at most n many stages s such that g

s`1pnq ‰ g
s

pnq (in other
words, the mind-change function is bounded by the identity function). The array
computable degrees capture the combinatorics of a wide class of constructions. To
wit, we observe that a c.e. degree is array noncomputable if and only if. . .
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6 CHAPTER I. INTRODUCTION

(1) it is the degree of a perfect thin ⇧0
1 class (Cholak, Coles, Downey and

Herrmann [7]);
(2) it bounds a disjoint pair of c.e. sets which have no separator computing

H1 (Downey, Jockusch, Stob [23]);
(3) it contains a c.e. set with maximal Kolmogorov complexity (Kum-

mer [41]);
(4) it does not have a strong minimal cover in the Turing degrees (Ish-

mukhametov [37]);
(5) it has e↵ective packing dimension 1 (Downey and Greenberg [16]);
(6) it contains two left-c.e. reals with no common upper bound in the cl-

degrees of left-c.e. reals (Barmpalias, Downey and Greenberg [5]);
(7) it contains a set which is not reducible to the halting problem with tiny

use (Franklin, Greenberg, Stephan and Wu [32]).

The dynamics captured by classes of degrees are often phrased in terms of per-
mitting. The relative strength of each class is reflected, roughly, in the amount of
permitting that can be expected of its members, and sometimes its timing. In sim-
ple permitting (given by any noncomputable c.e. degree) each requirement ought
to be satisfied by a single permission. Prompt permission is similar, except that
permission has to be given essentially immediately when asked. High permitting
allows a requirement to ask for infinitely many permissions, and all but finitely
many requests are granted — this is “co-finite permitting”. Array noncomputable
permitting, originally called “multiple permitting”, is an intermediate version, in
which for each attempt at meeting a requirement, a number of required permis-
sions is stated in advance. The connection with the complexity of approximations
of functions in the degree is direct: mind-changes essentially correspond to instances
of permission; the computable bound on the number of mind-changes is the same
bound on the number of permissions required to meet a requirement. The remark-
able fact is that in many cases it is shown that the level of permitting is not only
su�cient but also necessary for the construction to succeed.

In 2005, J. Miller (unpublished) defined a non-uniform version of the class of
array computable degrees. We call a function !-computably approximable (!-c.a.)
if it has a computable approximation whose mind-change function is bounded by
some computable function. This is equivalent to the function being weak truth-
table reducible to H1. The notion is widely use in computability, with applications
in algorithmic randomness as well (for example in [33, 36, 35, 31]).

Definition 0.1. A c.e. degree is totally !-c.a. if every function in it is !-c.a.

Array computability is in some sense a uniform version of this notion: it re-
quires the same bound for all functions in the degree. The associated permission
notion is stronger than array noncomputable permitting in that the number of
permissions required for the each attempt to meet a requirement is stated during
the construction, not necessarily in advance (and thus can, for example, take into
consideration the stage number at which the attempt is started).

In [17], the authors, with R. Weber, showed that the class of totally !-c.a.
degrees indeed captures the dynamics of some constructions. In this work we extend
this by showing another equivalence, characterising the dynamics of an existing
construction. In [25], Downey and LaForte constructed a noncomputable left-c.e.
real ↵, all of whose c.e. presentations are computable.
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Theorem 0.2.

(1) If a c.e. degree d is not totally !-c.a. then there is a left-c.e. real ↵ §T d
and a c.e. set B †T ↵ such that every presentation of ↵ is B-computable.

(2) If a left-c.e. real ↵ has a totally !-c.a. degree then there is a presentation
of ↵ which is Turing equivalent to ↵.

For the definitions and more details see Chapter V.

After our results were announced, Barmpalias, Downey and Greenberg [5] ob-
tained yet another constructions whose dynamics are captured by this class. Their
results concern the interaction of Turing and weak truth-table reducibility. They
showed that a c.e. degree is totally !-c.a. if and only if every set in that degree is
weak truth-table reducible to a ranked set (equivalently, to a hyperimmune set, or
to a proper initial segment of a computable, scattered linear ordering.) In further
work, Brodhead, Downey and Ng [6] showed that the totally !-c.a. degrees capture
a finite form of randomness.

Natural definability and lattice embeddings. Shore [56] articulated the
di↵erence between naturally defined classes of degrees, definitions which are struc-
tural in nature; and classes defined by external means, usually by coding models
of arithmetic. Natural definitions in degree theory are few. In contrast, there has
been significant success in obtaining general, abstract definability results in the c.e.
degrees, culminating in the work of Nies, Shore and Slaman.

Theorem 0.3 (Nies, Shore, Slaman [52]). Any relation on the c.e. degrees
which is invariant under the double jump is definable in the c.e. degrees if and only
if it is definable in first order arithmetic.

The proof of Theorem 0.3 involves interpreting the standard model of arithmetic
in the structure of the c.e. degrees without parameters, and obtaining a definable
map from degrees to indices (in the model) which preserves the double jump. The
result gives a definition of a large collection of classes of degrees (for example all
jump classes High

n

and Low
n

, the latter for n • 2).
Theorem 0.3 has two shortcomings. One is the reliance on the invariance of the

relation under the double jump. It follows that no collection of c.e. degrees that
contains some, but not all, low2 degrees, can be defined using the theorem; these
are the kinds of collections that we investigate here.

Another issue, as mentioned, is that the definitions provided by the theorem
are not natural. Examples of natural definitions are:

‚ A c.e. degree is promptly simple if and only if it is not cappable (Ambos-
Spies, Jockusch, Shore, and Soare [2]).

‚ A c.e. degree is contiguous if and only if it is locally distributive (Downey
and Lempp [26]) if and only if it is not the tope of the pentagon (the
non-modular, 5 element lattice N5) (Ambos-Spies and Fejer [1]).

‚ A c.e. truth table degree is low2 if and only if it has no minimal cover in
the c.e. truth table degrees (Downey and Shore [18]).

Natural definitions are closely related to embeddings of finite lattices into the
c.e. degrees; see for example [44, 45, 47]. Central to lattice embeddings is the
notion of a critical triple (see [14, 62]): incomparable elements a0,a1,b of an
upper semi-lattice such that a0 _ b “ a1 _ b but a0 ^ a1 § b (in the sense that
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any element below both a0 and a1 is also below b). The authors, with R. Weber,
showed:

Theorem 0.4 ([17]). A c.e. degree bounds a critical triple in the c.e. Turing
degrees if and only if it is not totally !-c.a.

All distributive lattices can be embedded into the c.e. degrees. The basic non-
distributive lattices are the pentagon, and the 1-3-1 lattice (Figure 1), also known
as M5. The three middle elements of the 1-3-1 lattice form a critical triple.

a0 a1 a2

Figure 1. The 1-3-1 lattice

For a while it appeared that the critical triple precisely captures the need for
“continuous tracing” which is used in an embedding of the 1-3-1 lattice into the
c.e. degrees (Lachlan [42]). The first nonembeddability result was by Lachlan and
Soare ([43], suggested by Lerman) who demonstrated that an “infimum into a 1-3-1”
could not be embedded in the c.e. degrees (namely the lattice S8, which consists of
a diamond above a 1-3-1, cannot be embedded into the c.e. degrees). The necessity
of continuous tracing was further demonstrated by Downey [14] and Weinstein
[62] who showed that there are initial segments of the c.e. degrees where no lattice
with a (weak) critical triple can be embedded. It was also noted in [14] that the
embedding of critical triples seemed to be tied up with multiple permitting in a way
that was similar to non-low2-ness. Indeed this intuition was to some extent verified
by Downey and Shore [19], who showed that every non-low2 c.e. degree bounds a
copy of the 1-3-1 lattice in the c.e. degrees.

The notion of non-low2-ness seemed too strong to capture the class of degrees
which bound a copy of the 1-3-1 lattice, but it was felt that something like that
should su�ce. On the other hand, Walk [61] constructed an array noncomputable
c.e. degree bounding no weak critical triple, and hence it was already known that
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array noncomputability was not enough for such embeddings. Theorem 0.4 com-
pletely determines what it takes to embed a critical triple into the c.e. degrees,
and gives a natural definition of the class of totally !-c.a. degrees. We remark
that a definition of array computability is still not known. We also remark that
in this work (Chapter IV) we show that there are maximal totally !-c.a. degrees.
These maximal degrees form a naturally definable antichain in the c.e. degrees. The
only other known naturally definable antichain consists of the maximal contiguous
degrees (Cholak, Downey and Walk [9]).

It turns out though that embedding the 1-3-1 lattice requires more strength
than embedding a critical triple. Informally, a critical triple embedding can be done
on a tree. The basic idea is the following. We are trying to meet a requirement
toward showing that the middle degree b is not above say a0. While we wait for
a follower to be realised, an “entourage” of traces (alternating between a0 and a1)
keeps getting extended. When the follower is realised, a final trace targeted for b
is appended at the end of the entourage. Henceforth, at every stage at which the
strategy is accessible (all resraints are dropped simultaneously) we can enumerate
the two last traces in the entourage into a

i

and b (and appoint a new b-trace
at the end). The main point is that stronger negative requirement do not allow
enumerations into both a0 and a1 at the same stage; but they have no problems
with enumerations into both some a

i

and b. We see that when the follower is
realised we know how many times the strategy needs to act until it reaches the
follower at the head of the entourage and meets the positive requirement. This is
precisely the level of non-total !-c.a. permitting (whereas as we mentioned above,
array noncomputable is insu�cient because we need to wait until the follower is
realised in order to state how many permissions we need; there is no uniform bound
that would work for all requirements).

The dynamics of the 1-3-1 embedding are more complicated. There we build
a0, a1 and a2; restraining a positive requirement are several negative requirements,
and for each pair a

i

and a
j

there will be a negative requirement which does not
allow enumerations into both sets at the same stage. To overcome this serious
restriction, we work with a pinball machine. The idea is to recreate the tracing
phenomenon at each gate, locally retargeting the rest of the entourage to a pair a

i

and a
j

which is not restrained by that gate. When the gate opens this last segment
of the entourage drops to the next unoccupied gate below. This new gate may very
well restrain the pair a

i

and a
j

. One by one we peel the end of this segment of
the entourage, retarget, build a new end for the entourage, and repeat. Even with
two gates below a positive requirement, we see that even when we see the follower
realised, we cannot tell how many times the requirement needs attention: we know
how many times we will need to drop an entourage segment from the top gate; each
time that happens, and not earlier, we will find out how many times the segment
now at the lower gate will need to drop below (and get enumerated into sets).

What is needed, roughly, to pass two gates, is permission at the level of !2

approximations. Below we define and study the hierarchy of totally ↵-c.a. degrees
for many computable ordinals ↵. This is based on Ershov’s generalisation of !-
computable approximability using other ordinals (but we need to restrict ourselves
to particularly nice computable copies of these ordinals). However to state our
main result here we can give an equivalent, inductive definition of the first ! layers:
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Definition 0.5. Let n † !. A function is !n`1-computable approximable if it
has a computable approximation whose associated mind-change function is bounded
by an !n-c.a. function.

A definition analogous to being weak truth-table reducible to H1 is also available
and discussed in Chapter II below. Equipped with this hierarchy, we define:

Definition 0.6. A c.e. degree is totally † !!-c.a. if every function in it is
!n-c.a. for some n.

The location of this level of the hierarchy (with respect to levels such as totally
!n-c.a. degrees) is discussed in Chapter III. But it is definitely the case that there
are degrees which are totally † !!-c.a. but not totally !-c.a. Our main result is:

Theorem 0.7. A c.e. degree bounds a copy of the 1-3-1 lattice if and only if it
is not totally † !!-c.a.

Thus our hierarchy pinpoints and separates between the complexity of embed-
ding a critical triple and embedding the 1-3-1 lattice. And conversely, Theorem 0.7
gives a natural definition of another level of our hierarchy.

We remark that just like the totally !-c.a. degrees, this new class of totally
† !!-c.a. degrees serves to unify constructions which all share similar dynamics.
In Chapter VI we show that an m-topped degree cannot be totally † !!-c.a. (a
sketch appeared in [15]). This is sharp as m-topped degrees appear in the next
level of our hierarchy, the class of totally !!-c.a. degrees [15]. (This cannot give
a complete classification since m-topped degrees cannot be low, but each level of
our hierarchy contained both low and non-low degrees.) More recently Day [11]
related this level of the hierarchy to computing indi↵erent sets for 1-genericity. We
are convinced that other constructions are related, for example the construction
of a set of c.e. Turing degree computable from a set of minimal weak truth-table
degree (Downey, Ng and Solomon, in preparation). However the complexity of this
level of permitting is also reflected in the complexity of the arguments involved, so
it may be di�cult to flesh out the details.

We also remark that the negative direction of Theorem 0.7 (as well as the m-
topped result) uses an “anti-permitting” technique which we believe is quite novel.
It is an injury-free construction, however it is highly non-uniform. We believe that
this technique may be of use elsewhere as well.

Promptness. One can ask, regarding the embedding of the 1-3-1 lattice, what
it would take to get an embedding whose bottom degree is 0 (as is obtained in Lach-
lan’s original construction). We discuss this in Chapter VIII, where we introduce
prompt versions of all levels in our hierarchy. This generalises the already famil-
iar notion of prompt permitting, which is the prompt version of simple permitting.
Prompt array noncomputable permission, for example, allows us to construct a pair
of separating classes whose elements form minimal pairs (Theorem 2.1); whereas
traditional (non-prompt) array noncomputable permission only gives Turing incom-
parability [23]. Similalry, a degree which is promtply not totally † !!-c.a. bounds
a copy of the 1-3-1 lattice with bottom 0.

This however cannot be reversed: every high degree bounds a copy of the 1-3-1
lattice with bottom 0, and there are high degrees which are not promtply simple (let
alone promptly non totally † !!-c.a.) Informally what this says is that there are
at least two ways to get such an embedding: either by quickly getting the precise
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number of permissions required; or by getting many permissions (cofinitely), in
which case we can wait for the permissions and don’t need them promptly.

It would be interesting to find a common generalisation.

An application to admissible computability. Combined with results of
the second author, our work has an application to admissible computability. This
is a generalisation of traditional computability to ordinals beyond !. In [34] it is
shown that for any admissible ordinal ↵, the ↵-c.e. degrees are not elementarily
equivalent to the c.e. degrees. This was done in cases, depending on the proximity
of ↵ to !. In one case the separation between the theories is not natural but relies
on coding models of arithmetic. However one result is:

Theorem 0.8 ([34]). Let ↵ ° ! be an admissible ordinal, and let a be an
incomplete ↵-c.e. degree. The following are equivalent:

(1) a computes a cofinal !-sequence in ↵.
(2) a bounds a copy of the 1-3-1 lattice.
(3) a bounds a critical triple.

Again, it is the analysis of continuous tracing that underlies this result. The
basic idea is the following. Consider again the embedding of a critical triple: as time
goes by, a longer and longer entourage is build for a follower. When the follower is
realised, the entourage is peeled back (from the end to the beginning), one member
at a time. Trying to do this when time goes beyond ! presents a completely new
problem: after ! many stages, we will have an entourage of order-type !, that is,
one without a last element. We cannot then peel it back, each step removing only
the last element. It turns out that this blockage is fundamental. The only case it
might be possible for a degree a to bound a copy of the 1-3-1 lattice is if it itself can
see that ↵ is far from being a regular cardinal — if it can essentially re-order time
and space to order-type !, so that the construction can be (at least after the fact)
seen to have taken ! steps, avoiding infinite entourages. In one direction, e↵ective
closed and unbounded sets are used to show that this is necessary. In the other
direction, a fine-structural result of Shore’s [55] says that an incomplete degree
of computable cofinality ! must be high, and can compute a bijection between ↵
and !. Working below such a degree, we can translate back to !-computability,
and use non-low2 permitting to embed the 1-3-1 lattice (for a technical reason, we
cannot quite use high permitting).

To sum, what this says is that once we go beyond !, the fine distinctions
between totally !-c.a. degrees and totally † !!-c.a. degrees completely disappear.
Combined with the current work, this gives us a single, natural sentence which
separates the elemntary theory of the c.e. degrees from the theory of the ↵-c.a.
degrees for any admissible ↵ ° !.

Theorem 0.9. Let ↵ • ! be admissible. The following are equivalent:

(1) There is an incomplete ↵-c.e. degree which bounds a critical triple but not
the 1-3-1 lattice.

(2) ↵ “ !.
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1. Notation and general definitions

1.1. Computable approximations and enumerations. A computable ap-
proximation for a function f : ! Ñ ! is a uniformly computable sequence xf

s

y
s†!

of functions such that for all x, for almost all s, f
s

pxq “ fpxq. In other words,
f “ lim

s

f
s

when we equip ! with the discrete topology. Shoenfield’s limit lemma
[54] states that a function f is �0

2-definable if and only it is computable from
the halting set H1 if and only if it has a computable approximation. If A is a
set (a subset of !, identified with an element of Cantor space) then a computable
approximation of A is a sequence of sets.

A computable enumeration of a c.e. set A is a computable, Ñ-increasing se-
quence of finite sets xA

s

y such that A “ î
s

A
s

. We can also think of a computable
enumeration as a computable approximation of A, again by taking characteristic
functions. We say that a number x is enumerated into A

s

if x P A
s

zA
s´1.

1.2. Turing functionals. A (Turing) functional is a c.e. set of triples x�, x, yy
consisting of a finite sequence � of natural numbers and a pair of natural numbers x
and y. We consider such triples as axioms, and sometimes write them as � fiÑ px, yq.
If f : ! Ñ ! and � is a functional, then we define the multi-valued function (i.e.,
relation) �pfq Ñ !ˆ! by letting �pf, xq “ y if there is some finite � † f such that
the axiom � fiÑ px, yq is in �. We write �pf, xqÓ for x P dom�pfq and �pf, xqÒ for
x R dom�pfq.

In general we allow functionals, especially the ones that we build, to be incon-
sistent. That is, we allow them to contain contradictory axioms: a pair of axioms
� fiÑ px, yq and ⌧ fiÑ pz, wq such that � and ⌧ are comparable (that means that
� § ⌧ or ⌧ § �), x “ z but y ‰ w. A functional � is called consistent relative to
an oracle f if �pfq is a partial function, i.e., is not multi-valued. A functional is
consistent if and only if it is consistent relative to every oracle.

The following are equivalent for f, g : ! Ñ !:

(1) there is a consistent functional � such that �pfq “ g;
(2) there is a functional �, consistent relative to f , such that �pfq “ g;
(3) g §T f .

If x�
s

y is a computable enumeration of a functional �, then each �
s

is also a
functional. If xf

s

y is a computable approximation of a function f : ! Ñ !, then the
finite multi-valued function �

s

pf
s

q can be e↵ectively obtained from s. If for all s,
�

s

is consistent relative to f
s

, then � is consistent relative to f . Note that if further,

�pfq is a total function, then we can extend x�
s

pf
s

qy to a computable approximation of �pfq, since

xdom�
s

pf
s

qy is uniformly computable. When the notation �
s

pf
s

q becomes unwieldy, we
sometimes write �pfqrss, and in general may use Lachlan’s square bracket notation.

Suppose that � is a functional which is consistent relative to an oracle f . If
x P dom�pfq, we also refer to �pf, xq “ y as a “computation”. Let � be the
shortest initial segment of f for which � fiÑ px, yq is an axiom in �. Often in fact
there will be a unique such initial segment. The string � determines the use of the
computation, denoted by 'pf, xq (and when f is clear from the context, by 'pxq).
We will use two conflicting notions:

‚ If either f or � are given, then the use is the length of �.
‚ If both f and � are built by us then we let the use be |�|´1, the “greatest
number queried during the computation”. In this case f is usually a
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c.e. set A. The idea is that we may want to void the computation by
enumerating the use 'pxq into A.

If x�
s

y is a computable enumeration of a Turing functional �, and xf
s

y is a
computable approximation of a function f (and again we assume that for all s,
�

s

is consistent relative to f
s

), s † ! and x P dom�
s

pf
s

q, then we say that the
computation �

s

pf
s

, xq is destroyed (or injured) at stage s ` 1 if � ¢ f
s`1, where �

as above is the shortest axiom applying to f giving the computation at stage s.
That is, if f

s`1 æ
u

‰ f
s

æ
u

where u “ '
s

pf
s

, xq is the use of the computation, in the
case in which either f or � are given; if both are built by us, then the computation
is destroyed if f

s

æ
u`1‰ f

s`1 æ
u`1, and as described above, this will often happen

because we enumerate u into f
s`1.

In contrast, we say that a computation �
s

pf
s

, xq “ y is f -correct if � † f .
The fundamental fact about Turing computations, used without mention through-
out computability theory, is that x P dom�pfq if and only if there is a stage s
(equivalently, for almost all stages s) such that x P dom�

s

pf
s

q by an f -correct
computation. When working with c.e. sets we often use the fact that correct com-
putations never go away: if xA

s

y is a computable enumeration of a c.e. set A, and
�

s

pA
s

, xq is an A-correct computation, then for all t • s, x P dom�
t

pA
t

q by the
same computation.

The following lemma is used when we build functionals which apply to c.e. sets
that we enumerate.

Lemma 1.1. Let x�
s

y be a computable enumeration of a functional �, and let
xA

s

y be a computable enumeration of a c.e. set A. Suppose that for all s,

(1) if an axiom � fiÑ px, yq is enumerated into �
s

, then � † A
s

;
(2) for each x, at most one axiom � fiÑ px, yq is enumerated into �

s

.

Let s † !, and suppose that �
s

is consistent for A
s

. Suppose that for all x † !,

(3) If an axiom � fiÑ px, yq is enumerated into �
s`1, and x P dom�

s

pA
s

q,
then some number u § '

s

pA
s

, xq is enumerated into A
s`1.

Then �
s`1 is consistent for A

s`1.

Hence if conditions (1)–(3) hold at every stage s, then � is consistent for A.
Note that usually � will not be consistent for all oracles: we could void a compu-
tation �

s

pA
s

, xq by enumerating u “ '
s

pA
s

, xq into A
s`1, and then define a new

computation �
s`1pA

s`1, xq with smaller use, so �
s`1 may be inconsistent for A

s

.

Convention 1.2. We often assume that for a given consistent functional �,
for any oracle f , dom�pfq is an initial segment of !. That is, we require that if
� fiÑ px, yq is in �, then for all x1 † x there is some �1 § � and some y1 such that
�1 fiÑ px1, y1q is also in �. We simply prevent � fiÑ px, yq from entering � until we
see the other necessary axioms.

In this situation we also assume that if x�
s

y is a computable enumeration of a
Turing functional �, then for all s and f , dom�

s

pfq is an initial segment of !.
The point is that if we are only interested in total functions computable from

an oracle f , then we can restrict ourselves to functionals of the type described.

We let x�
e

y be some enumeration of all consistent functionals; associated with
which we are given uniformly computable enumerations x�

e,s

y of �
e

.

Convention 1.3. We sometimes identify natural numbers with the von-
Neumann ordinals isomorphic to them; that is, we identify the natural number
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n with the set t0, 1, 2, . . . , n ´ 1u. In particular, if for some functional � and
oracle f , dom�pfq is an initial segment of ! (per Convention 1.2), then we write
x † dom�pfq for x P dom�pfq, and x § dom�pfq for t0, 1, . . . , x´1u Ñ dom�pfq.

Functionals which take more than one oracle are treated in a similar fashion.
For example, when taking two oracles, axioms will be of the form p�, ⌧q fiÑ px, yq.
Usually, for a pair of oracles f, g in which we are interested, for each x there will
be at most one pair of strings � † f and ⌧ † g such that p�, ⌧q fiÑ px, yq is in the
functional � we are building or examining. These determine the f -use and the g-
use of the computation �pf, g, xq, according to the notational convention discussed
above. When � is not built by us we often assume that the f -use and the g-use are
the same, and that common value is referred to simply as the use 'pf, g, xq of the
computation.

1.3. Priority arguments and tree constructions. In our constructions we
keep the convention of small numbers.

Convention 1.4. At stage s of a construction, all numbers played by the
“opponent” are bounded by s. These are the values of functions that are not
defined by us during the construction.

On the other hand, the constructions would often call on us to define new
values for functions that are large. This means that the new values are picked to
be numbers that are larger than any other number previously used or observed in
the construction, including the stage number.

Tree constructions, namely priority constructions done with the aid of a tree of
strategies, are now standard; a reference is Chapter XIV of [57]. Elements of the
tree are called strategies, agents or nodes; these are finite sequences of symbols. To
describe the tree of strategies, we give two pieces of information:

(a) An association of requirements for nodes; we say that a node works for
the requirement associated with it. Often, but not always, all nodes of a
given level of the tree work for the same requirement.

(b) For nodes working for some requirement, the list of outcomes of these
nodes.

The tree is then defined recursively. The empty node is always on the tree of
strategies; if a node � has already been determined to lie on the tree of strategies,
and a requirement R has been associated with it, then the immediate successors of
� on the tree are the nodes of the form � ô, where o is a possible outcome for nodes
working for R.

The collection of possible outcomes of any node will be linearly ordered; we say
that an outcome o is stronger than an outcome o1 if o † o1. This ordering induces
a linear ordering of the tree of strategies, by taking a lexicographic amalgamation
of the orderings of outcomes: � † ⌧ if � † ⌧ , or if there are ⌘, o and o1 such that
� • ⌘ ô, ⌧ • ⌘ ô1, and o † o1. We say that a node � is stronger than a node ⌧
if � † ⌧ , and that a node � lies to the left of a node ⌧ if � † ⌧ but � ¢ ⌧ . We
sometimes write � †

L

⌧ ; this has nothing to do with the constructible hierarchy.
At any stage s, the construction describes the (finite) collection �

s

of nodes
that are accessible at stage s. This will always be linearly ordered by extension of
nodes, and usually also be an initial segment of the tree of strategies; the exception
is when the construction equips the tree with links which are travelled, skipping
some nodes between two accessible nodes. Usually, the empty node xy is accessible.
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We then say that a node � lies on the true path �
!

if there are infinitely many
stages s of the construction such that � P �

s

(that is, such that � is accessible at
stage s), but the same is not true for any node ⌧ that lies to the left of �. The
true path �

!

will be linearly ordered by node extension §. In practice, if every �
s

is an initial segment of the tree, then so is �
!

. We will need to prove that the true
path is infinite, and contains, for every requirement R, a node working for R; the
latter part will be immediate if �

!

is an infinite initial segment of the tree, that is,
an infinite path of strategies.

Most constructions will employ a notion of initialisation of nodes on the tree of
strategies. This would usually mean that when a node is initialised, all parameters
associated with the node (such as followers) are removed (or cancelled), and new
ones will have to be defined, either immediately, or more often, at the next stage
at which the node is accessible. When a stage ends, every node which lies to the
right of an accessible node (a node in �

s

) is initialised. Often, but not always, nodes
extending the longest node in �

s

are also initialised at the end of stage s. We ensure
that whenever a node � is initialised, and ⌧ is a node weaker than �, then ⌧ is also
initialised at the same time.

We say that the construction is fair to a node � if � is initialised only finitely
many times (i.e., at only finitely many stages of the construction). The main
fairness lemma for each construction will state that the construction is fair to every
node on the true path �

!

. If � is a node on the true path and the construction is
not fair to � then there will be some node ⌧ † � on the true path which initialises �
at infinitely many stages. This is because initialisation has to respect the priority
ordering; no node weaker than � can initialise �.

Other standard conventions of priority constructions are employed without
mention. For example, we use “stickiness” or “persistence” of parameters: if, for
example, a requirement R or strategy � has a “follower” (a witness with which to
meet the requirement) at some stage s, and the requirement or node is not tam-
pered with (e.g., initialised) at stage s`1, say, then that follower is still considered
to be a follower for the requirement or strategy at stage s ` 1.





CHAPTER II

↵-c.a. functions

Ershov [29] extended the hierarchy of di↵erences of c.e. sets into the transfinite,
based on Kleene’s notations for computable ordinals. Unfortunately, the levels
of this hierarchy depend heavily on the choice of notation. To get around this
problem, based on ideas from [10], we focus on lower levels of the hierarchy, using
canonical well-orderings. We then, extending [3], relate these lower, canonical
levels, to iterations of a jump in the weak truth-table degrees.

1. R-c.a. functions

Let R “ pR,†Rq be a computable well-ordering of a computable set R. An
R-computable approximation of a function f is a computable approximation xf

s

y
of f , equipped with a uniformly computable sequence xo

s

y
s†! of functions from !

to R such that for all x and s:

‚ o
s`1pxq §R o

s

pxq; and
‚ if f

s`1pxq ‰ f
s

pxq, then o
s`1pxq †R o

s

pxq.
The sequence xo

s

y
s†!, together with the well-foundedness of R, witnesses the fact

that the approximation xf
s

y indeed reaches a limit.

Definition 1.1. A function f : ! Ñ ! is R-computably approximable (or R-
c.a.) if it has an R-computable approximation.

The following equivalent formulation is sometimes taken as a definition:

Proposition 1.2. A function f : ! Ñ ! is R-c.a. if and only if there is a
partial computable function  such that for all x, fpxq “  px, zq for the R-least z
such that px, zq P dom .

(In particular, the totality of f implies that for all x † ! there is some z P R
such that px, zq P dom .)

Proof. Let xf
s

, o
s

y be an R-computable approximation of f . For x † ! and
z P R, let  px, zq “ f

s

pxq for any s † ! such that o
s

pxq “ z; if there is no
such s, we let  px, zqÒ. The fact that f

s

pxq-changes have to be accompanied by an
o
s

pxq-change implies that  is well-defined. Then  witnesses that f is R-c.a.
Suppose that  is a partial computable function as in the proposition. Define

a unifomly computable sequence xo
s

y as follows. Let A “ dom . Since A is c.e.,
let xA

s

y be some e↵ective enumeration of A. Since f is total, for all x † ! there is
some t

x

† ! such that px, zq P A
t

x

for some z P R. For any x † ! and s † ! we
let o

s

pxq be the R-least z such that px, zq P Amaxts,t
x

u.
Since A

t

Ñ A
s

whenever t § s, we have o
s`1pxq § o

s

pxq for all x and s. Let
f
s

pxq “  px, o
s

pxqq. Then xf
s

, o
s

y is an R-computable approximation of f . ⇤

17
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1.1. R-c.e. sets. For sets, Ershov refined the hierarchy of R-c.a. functions to
levels resembling the arithmetic hierarchy. For z P R, let Ræ

z

“ tw P R : w †R zu,
which is a computable R-initial segment of R; and let R æ

z

be the restriction of
†R to R æ

z

. Recall that an ordinal is even if it is of the form ↵ ` 2n for some
limit ordinal ↵ (or ↵ “ 0), where n † !; and odd otherwise. We say that R
is even if the order-type otppRq is even, and odd otherwise; and we say that an
element z P R is R-even if R æ

z

is even, and R-odd otherwise. If R is even, we
write paritypRq “ 0; otherwise we write paritypRq “ 1. Similarly, we write
parityRpzq “ paritypRæ

z

q.
Definition 1.3. Suppose that the collection of R-even elements of R is com-

putable. A set A Ñ ! is R-c.e. if there is a uniformly c.e. sequence xA
z

y
zPR such

that:

‚ If z †R w then A
z

Ñ A
w

; and
‚ for all x † !, x P A if and only if x P î

zPR A
z

, and for the R-least z such
that x P A

z

we have parityRpzq ‰ paritypRq.
We let ⌃´1

R denote the collection of all R-c.e. sets.

The definition should be understood dynamically. Indexed by some late ele-
ment z of R we see a number x enter the “playground”

î
w

A
w

. We then move
backwards in R, so to speak, and at each step we change our mind about whether
x is in the target set or not. Thus, this notion extends the finite di↵erence hierar-
chy. For n • 1, let n also denote a computable linear ordering which has exactly n
elements. Then a set is 1-c.e. if it is c.e., is 2-c.e. if it is the (set theoretic) di↵erence
of two c.e. sets (also known as d.c.e.), and in general, is n`1-c.e. if it is of the form
AzB, where A is c.e. and B is n-c.e.

Ershov lets ⇧´1
R be the collection of complements of R-c.e. sets, and lets

�´1
R “ ⌃´1

R X⇧´1
R be the collection of sets which are both R-c.e. and co-R-c.e.

Proposition 1.4. Suppose again that the parity function parityR is com-
putable. Then every set in �´1

R is R-c.a. If further the order-type of R is a limit
ordinal, then �´1

R coincides with the collection of R-c.a. sets.

Proof. Suppose that A P �´1
R . Suppose, for simplicity of notation, that R is

even; the odd case is identical. Let xA
z

y
zPR witness that A P ⌃´1

R , and xB
z

y
zPR

witness that A P ⇧´1
R . Define a partial computable function  as follows. Let x † !

and z P R. If x R A
z

Y B
z

, we let  px, zqÒ. Otherwise, x shows up first in either
A

z

or B
z

.

‚ If x shows up first in A
z

, then we let  px, zq “ parityRpzq.
‚ If x shows up first in B

z

, then we let  px, zq “ 1 ´ parityRpzq.
Fix x † !. Then x P î

zPRpA
z

Y B
z

q because A Ñ î
z

A
z

and !zA Ñ î
z

B
z

.
Hence there is some z P R such that px, zq P dom . Let z be the R-least element
of R such that px, zq P dom . If x P A

z

, then z is the R-least such that x P A
z

; so
x P A if and only if parityRpzq ‰ paritypRq “ 0. So if x shows up first in A

z

, then
we let  px, zq “ 1 if and only if parityRpzq “ 1 if and only if Apxq “ 1. If x P B

z

,
then z is the R-least such that x P B

z

, and so x R A if and only if parityRpzq “ 1;
so if x shows up first in B

z

, then we let  px, zq “ 0 if and only if parityRpzq “ 1 if
and only if Apxq “ 0. Overall, we see that for all x, Apxq “  px, zq for the R-least
z such that px, zq P dom . By Proposition 1.2, A is R-c.a.
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For the other direction, it is su�cient to show that everyR-c.a. set is in ⌃´1
R ; the

result would follow from the fact that the complement of an R-c.a. set is also R-c.a.
Let A be an R-c.a. set; by Proposition 1.2, let  be a partial computable function
such that for all x, Apxq “  px, zq for the R-least z such that px, zq P dom . We
assume now that R has no greatest element. In particular, R is even.

We define the sequence xA
z

y
zPR which will show that A P ⌃´1

R . Let
px, zq P dom .

‚ If  px, zq “ parityRpzq then we let x P A
w

for all w •R z.
‚ If  px, zq ‰ parityRpzq then we let x P A

w

for all w °R z.

It is clear that if z †R w then A
z

Ñ A
w

. Let x † !. We know that there is
some z P R such that px, zq P dom . Since R has no greatest element, no matter
what the parity of z is, we enumerate x into some A

w

; so x P î
w

A
w

. Let w be the
R-least element of R such that x P A

w

. We want to show that x P A if and only if
w is odd in R, in other words, that Apxq “ parityRpwq.

Let z be the R-least element of R such that px, zq P dom . Either
 px, zq “ parityRpzq, in which case z “ w; or  px, zq ‰ parityRpzq, in which
case w is the R-successor of z. In the first case,

Apxq “  px, zq “ parityRpzq “ parityRpwq
as required. In the second case,

Apxq “  px, zq “ 1 ´ parityRpzq “ parityRpwq,
again as required. ⇤

Ash and Knight [4] refer to the sets in �´1
R as “R-computable”. However, in

common yet misleading terminology, many authors refer to R-c.a. sets as “R-c.e.”
We prefer to be careful and not confuse the two notions.

1.2. Listing R-c.a. functions. For any computable well-ordering R, we can
e↵ectively list all R-c.a. functions. To do this we need to consider a nice class of
pR ` 1q-computable approximations. We of course let R ` 1 denote a computable
well-ordering extending R by one element at the end.

Definition 1.5. Let R be a computable well-ordering. An pR`1q-computable
approximation xf

s

, o
s

y is tidy if:

‚ For all n, f0pnq “ 0; and
‚ For all n and s, if o

s

pn ` 1q P R then o
s

pnq P R.

The idea is that we have a “partial” R-computable approximation, in that xf
s

y
is total but we may wait a while to declare the elements of R that we use; while
we wait we let o

s

pnq be the new element beyond R. And further, at every stage
we will have declared our “true ordinals” (elements of R) for an initial segment of
inputs.

Lemma 1.6. If f has a tidy pR`1q-computable approximation then f is R-c.a.

Proof. Let xg
s

,m
s

y
s†! be a tidy pR ` 1q-computable approximation of f .

There are two cases. In the first, for all x there is some s such that m
s

pxq P R. We

say that the approximation is eventually R-computable. We then modify the approximation
xg

s

,m
s

y by waiting until we see this happen. Formally, for each x we let tpxq be
the least t such that m

t

pxq P R; we then let, for all x and s, o
s

pxq “ mmaxts,tpxqupxq
and f

s

pxq “ gmaxts,tpxqupxq; xf
s

, o
s

y is an R-computable approximation of f .
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In the second case, for all but finitely many x, o
s

pxq is constant and equals the
extra element of R`1. In that case fpxq “ 0 for all such x, so f is computable. ⇤

It is clear from the proof of Lemma 1.6 that passing from a tidy pR ` 1q-
computable approximation for a function f to an R-computable approximation
for f cannot be done uniformly. Indeed a diagonalisation argument shows that
there cannot be an e↵ective list of R-computable approximations listing all R-c.a.
functions. However we can make a list of tidy pR ` 1q-computable approximations
that yields all R-c.a. functions.

Proposition 1.7. There is a computable list xxfe

s

, oe
s

y
s†!y

e†! of tidy pR` 1q-
computable approximations such that letting fe “ lim

s

fe

s

, the sequence xfey
e†!

lists the R-c.a. functions.

Proof. There is an e↵ective list of all pairs xh
s

,m
s

y of uniformly computable
sequences of partial functions. We show how to convert any such pair, uniformly,
to a tidy R ` 1-computable approximation xf

s

, o
s

y, such that if xh
s

,m
s

y is an
R-computable approximation, then limh

s

“ lim f
s

.
Fix such xh

s

y and xm
s

y. The idea is to define xf
s

y by copying xh
s

y with delays,
until we see evidence that a change is allowed. Let 8 denote the extra element
of R` 1. Let x † !. We start with f0pxq “ 0 and o0pxq “ 8. Let s ° 0. To define
f
s

pxq and o
s

pxq, we enumerate the graphs of xh
s

y and xm
s

y for s many steps. We
let t

s

pxq be the greatest t § s such that for all r § t and all y § x,

‚ at stage s we see that h
r

pyqÓ and m
r

pyqÓ;
‚ m

r

pyq P R, and if r ° 0, m
r

pyq §R m
r´1pyq;

‚ if r ° 0 and h
r

pyq ‰ h
r´1pyq then m

r

pyq †R m
r´1pyq.

If there is no such t, then we leave t
s

pxq undefined. If t
s

pxq is defined then we
let f

s

pxq “ h
t

s

pxqpxq and o
s

pxq “ m
t

s

pxqpxq. If t
s

pxq is not defined then we let
f
s

pxq “ 0 and o
s

pxq “ 8. ⇤

Note that restricting our approximations to sets, we also get a listing of all
R-c.a. sets.

Corollary 1.8. The collection of R-c.a. functions is uniformly computable
from 01. That is, there is a uniformly 01-computable sequence xfey

e†! of all R-c.a.
functions.

Remark 1.9. The reader may wonder why, in the case that otppRq is a suc-
cessor ordinal, we cannot list all R-c.a. functions, each with an R-computable
approximation. After all, now we do not need to guess which ordinal to start with,
we always start with maxR. However we still need to guess what the initial value
of our approximation is; we allowed f0 to be any computable function. If we require
that f0 is the constant function 0 then we know the initial value but when attempt-
ing to diagonalise are restricted to keep our initial value 0 as well, and so may
never be allowed to diagonalise. Note that a function has an pR ` 1q-computable
approximation xf

s

, o
s

y with f0 “ 0 if and only if it is R-c.a.

1.3. E↵ective embeddings and isomorphisms.

Proposition 1.10. Let R and S be computable well-orderings. If there is a
computable embedding of R into S, then every R-c.a. function is S-c.a.
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Proof. Let j : R Ñ S be an embedding of R into S. Let xf
s

, o
s

y be an R-
computable approximation. Then xf

s

, j ˝ o
s

y is an S-computable approximation.
⇤

Corollary 1.11. Let R and S be computable well-orderings. If there is a
computable isomorphism between R and S, then a function is R-c.a. if and only if
it is S-c.a.

1.4. Bounds on mind-change functions. Let xf
s

y
s†! be a computable ap-

proximation of a function f . The associated mind-change function is

mxf
s

ypxq “ # ts : f
s`1pxq ‰ f

s

pxqu .
For any function g : ! Ñ !, we say that the approximation xf

s

y is a g-bounded
approximation if for all x, mxf

s

ypxq § gpxq, that is, if g majorizes mxf
s

y.
Recall that if A “ pA,†Aq and B “ pB,†Bq are linear orderings, then the

product linear ordering A ¨ B is the right-lexicographic ordering on A ˆ B. Its
order-type is obtained by replacing every point in B by a copy of A.

Proposition 1.12. Let R be a computable well-ordering. A function is ! ¨ R-
c.a. if and only it has a computable approximation which is g-bounded for some
R-c.a. function g.

Proof. Let xf
s

y be a computable approximation of a function f .
Suppose that xf

s

, o
s

y is an ! ¨ R-computable approximation. For any x and s,
let o

s

pxq “ pn
s

pxq, l
s

pxqq P ! ˆ R. For any x and s, we let t
s

pxq be the least stage
t § s such that l

s

pxq “ l
t

pxq. We then let

g
s

pxq “ n
t

s

pxqpxq ` # tr † t
s

pxq : f
r`1pxq ‰ f

r

pxqu .
Then xg

s

, l
s

y is an R-computable approximation of a bound on mxf
s

y.
Suppose that we are given an R-computable approximation xg

s

, l
s

y for a bound
g on mxf

s

y. We may assume that for all x and s,

g
s

pxq • # tr † s : f
r`1pxq ‰ f

r

pxqu ,
since otherwise we can just wait until g

t

pxq changes at some t ° s. We can therefore
let

n
s

pxq “ g
s

pxq ´ # tr † s : f
r`1pxq ‰ f

r

pxqu ,
and o

s

pxq “ pn
s

pxq, l
s

pxqq. If t † s and l
s

pxq “ l
t

pxq then g
s

pxq “ g
t

pxq which
shows that if f

s`1pxq ‰ f
s

pxq then o
s`1pxq †

!¨R o
s

pxq, so xf
s

, o
s

y is an ! ¨ R-
computable approximation. ⇤

Since the computable functions are characterised as those functions which are
R-c.a. for R of order-type 1, and since for any such R, ! ¨ R is computably iso-
morphic to !, we see that Proposition 1.12 generalises the well-known fact that a
function is !-c.a. if and only if it has a computable approximation whose mind-
change function is bounded by a computable function.

2. Canonical well-orderings and strong notations

Ershov proved the following:

Theorem 2.1. Every �0
2 function is R-c.a. for some computable well-ordering

R of order-type !.
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Proof. Let f be a �0
2 function. By Shoenfield’s limit lemma, let xf

s

y be a
computable approximation for f . Let

R “ tpx, sq P ! ˆ ! : s “ 0 or f
s

pxq ‰ f
s´1pxqu .

For px, sq and py, tq P R, let px, sq †R py, tq if x † y or if x “ y and s ° t. For any
x † ! let R

x

be the collection of pairs px, sq in R; so R is the disjoint union of the
R

x

’s, each R
x

is finite (as xf
s

pxqy reaches a limit), and the ordering R “ pR,†Rq
orders R0 † R1 † R2 † ¨ ¨ ¨ So otppRq “ !.

For x, s † !, let tpx, sq be the least t § s such that for all u P rt, ss,
f
u

pxq “ f
s

pxq. For all x and s, px, tpx, sqq P R
x

, and so we can let o
s

pxq “ px, tpx, sqq.
It is clear that xf

s

, o
s

y is an R-computable approximation for f . ⇤

Ershov’s theorem is displeasing as we try to define a hierarchy of complexity
inside the �0

2 functions. Its meaning is that calibrating the complexity of a func-
tion f by the length of a computable well-ordering R such that f is R-c.a. is not
very informative: the hierarchy collapses at level !. The reason for this collapse
is not that all �0

2 functions have simple approximations, but that the complexity
of these approximations can be coded into the isomorphism between R and !. In
other words, if R is complicated then R-c.a. functions may be complicated as well,
even if R is short. In terms of the algebraic complexity of R itself, we notice that
key functions associated with R, such as the predecessor and successor function,
may be far from computable.

One possible solution is to restrict the computable well-orderings to those given
by notations on some ⇧1

1 path through Kleene’s O. This is less than satisfying on
two accounts. The first is that even though the path may be cofinal in O (so have
notations for every computable ordinal), this does not exhaust all�0

2 functions [30].
The other is that there is no canonical way to choose a path through Kleene’s O,
and so any such choice is arbitrary, and di↵erent choices give di↵erent hierarchies
of functions.

Another way forward is to give up any claim to exhausting all �0
2 functions,

but restrict our attention to a particularly well-behaved class of computable well-
orderings. We will require that all orderings in the class that have the same length
are computably isomorphic, so Corollary 1.11 will ensure that we will have a good
notion of ↵-c.a. functions for some class of computable ordinals ↵. The criterion
for canonicity of these orderings is the computability of all reasonable associated
functions, such as the predecessor, succesor and so on. It turns out that up to "0,
the function which encapsulates all the required information is Cantor’s normal
form.

2.1. Cantor normal form. Recall that every ordinal ↵ has a unique expres-
sion as the sum

!↵1n1 ` !↵2n2 ` ¨ ¨ ¨ ` !↵kn
k

where n
i

† ! are nonzero and ↵1 ° ↵2 ° ¨ ¨ ¨ ° ↵
k

are ordinals. Recall also that

"0 “ sup
!
!,!!,!!

!

,!!
!

!

, . . .
)

is the least ordinal � such that !� “ �, so for all ↵ † "0, every ordinal appearing
in the Cantor normal form of ↵ is strictly smaller than ↵.

Let R “ pR,†Rq be a computable well-ordering, and let | ¨ | : R Ñ otppRq be
the unique isomorphism between R and its order-type. The pullback to R of the
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Cantor normal form function is the function nfR whose domain is R and is defined
by letting

nfRpzq “ xpz1, n1q, pz2, n2q, . . . , pz
k

, n
k

qy
where n

i

† ! are nonzero, z
i

P R, z1 °R z2 °R ¨ ¨ ¨ °R z
k

, and

|z| “ !|z1|n1 ` !|z2|n2 ` ¨ ¨ ¨ ` !|z
k

|n
k

.

Definition 2.2. A computable well-ordering R is canonical if its associated
Cantor normal form function nfR is also computable.

Note that if the relations of ordinal addition and exponentiation by ! in R are
computable, then R is canonical.

Proposition 2.3. Let R and S be canonical computable well-orderings, with
otppRq § otppSq § "0. Then the unique embedding of R as an initial segment of
S is computable.

Proof. Given z P R, recursively construct a tree TRpzq by placing z at the
root of TRpzq, and if w is placed in TRpzq and |w| ‰ 0 (that is, w is not the
least element of R), then we let the children of w on TRpzq be the elements of R
which appear as first coordinates in nfRpwq. The chains of TRpzq are descending
sequences in R, and so all are finite. Also, every node in TRpzq has but finitely
many children on TRpzq, and so by König’s Lemma, TRpzq is finite. Since nfR
is computable, the map z fiÑ TRpzq is computable. We similarly define TSpwq for
w P S.

Let j : R Ñ S be the embedding of R into S as an initial segment. Then
jpzq “ w if and only if there is an isomorphism i between TRpzq and TSpwq which
preserves Cantor normal form, namely for all x P TRpzq, if

nfRpxq “ xpx1, n1q, px2, n2q, . . . , px
k

, n
k

qy
then

nfSpipxqq “ xpipx1q, n1q, pipx2q, n2q, . . . , pipx
k

q, n
k

qy.
Hence j is computable. ⇤

Beyond "0, we need to strengthen canonicity to obtain an extension of Propo-
sition 2.3. We do not develop this further here, as "0 is well beyond the ordinals
that come up in the constructions we examine.

2.2. Existence of canonical well-orderings. For a computable well-
ordering R, The computable well-ordering !R, whose order-type is !otppRq,
is defined using Cantor normal form. The field of !R is the collection of all
sequences of pairs xpz1, n1q, pz2, n2q, . . . , pz

k

, n
k

qy from R ˆ p!zt0uq such that
z1 °R z2 °R ¨ ¨ ¨ °R z

k

. We let

xpz1, n1q, pz2, n2q, . . . , pz
k

, n
k

qy †
!

R xpw1,m1q, pw2,m2q, . . . , pw
l

,m
l

qy
if k † l and for all i § k, pz

i

, n
i

q “ pw
i

,m
i

q; or if for the least i § k such
that pz

i

, n
i

q ‰ pw
i

,m
i

q we have w
i

†R z
i

or w
i

“ z
i

and n
i

† m
i

(that is, if
pn

i

, z
i

q †
!¨R pm

i

, w
i

q).
Lemma 2.4. Let R be a canonical computable well-ordering. Then the embed-

ding of R into !R as an initial segment is computable.

Proof. In fact, this embedding is exactly nfR. ⇤
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Lemma 2.5. If R is a canonical computable well-ordering, then so is !R.

Indeed, a computable index for nf
!

R can be e↵ectively obtained from a com-
putable index for nfR.

Proof. Let j “ nfR be the canonical embedding of R into !R. For any
xpz1, n1q, pz2, n2q, . . . , pz

k

, n
k

qy in the field of !R, we have

nf

!

R pxpz1, n1q, pz2, n2q, . . . , pz
k

, n
k

qyq “ xpjpz1q, n1q, pjpz2q, n2q, . . . , pjpz
k

q, n
k

qy.
⇤

Lemma 2.6. Let xR
n

y be a sequence of uniformly computable, uniformly canon-
ical well-orderings (that is, the functions nfR

n

are uniformly computable). Suppose
that for all n, otppR

n

q § otppR
n`1q; let i

n

: R
n

Ñ R
n`1 be the embedding of R

n

into R
n`1 as an initial segment, and suppose that the sequence xi

n

y is uniformly
computable.

Then the direct limit of the system xR
n

, i
n

y
n†! has a canonical copy.

Proof. For m § n, let in
m

“ i
n´1 ˝ i

n´2 ˝ ¨ ¨ ¨ ˝ i
m

be the initial segment
embedding of R

m

into R
n

(and in
n

“ id
R

n

).
Let

� “
§

n

R
n

ˆ tnu.

For pw,mq, pz, nq P � where m § n, we let pw,mq „ pz, nq if in
m

pwq “ z. Then „ is
an equivalence relation on �, and the universe of the direct limit of xR

n

, i
n

y is �{ „,
the collection of „-equivalence classes. To get a computable copy, we pick out repre-
sentatives to be the ones that appear earliest in an e↵ective enumeration x�

s

y of �,
using the fact that x„æ�

s

y is uniformly computable. We let R be this computable
set of representatives. The ordering †R is defined by letting, for pw,mq, pz, nq P R
such that m § n, pw,mq †R pz, nq if in

m

pwq †R
n

z. Certainly R “ pR,†Rq is
computable, and isomorphic to the direct limit of the system xR

n

, i
n

y. Note also
that the representation function c : � Ñ R defined by requiring that cpz, nq „ pz, nq
is also computable.

Let pz, nq P R, and let nfR
n

pzq “ xpz1,m1q, . . . , pz
k

,m
k

qy. Then
nfRpz, nq “ xpcpz1, nq,m1q, pcpz2, nq,m2q, . . . , pcpz

k

, nq,m
k

qy
and so nfR is computable. ⇤

Corollary 2.7. There is a canonical computable well-ordering of order-
type "0.

Proof. LetR0 “ p!,†q andR
n`1 “ !R

n , and apply Lemmas 2.4, 2.5 and 2.6.
⇤

If R is a canonical computable well-ordering, then for all z P R, the restric-
tion of R to the initial segment of R defined by z is also a canonical computable
well-ordering. Hence the collection of ordinals ↵ for which there is a canonical com-
putable well-ordering of length ↵ forms an initial segment of the ordinals. Corol-
lary 2.7 implies the following:

Proposition 2.8. For every ↵ § "0, there is a canonical computable well-
ordering of order-type ↵.
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In view of Propositions 2.3 and 2.8, we identify ordinals ↵ § "0 with canonical
well-orderings of order-type ↵.

Definition 2.9. Let ↵ § "0. A function f is ↵-c.a. if it is R-c.a. for some
(all) canonical well-ordering R of order-type ↵.

This notion is well-defined by Corollary 1.11 and Propositions 2.3 and 2.8. By
Propositions 1.10 and 2.3, if ↵ † � § "0, every ↵-c.a. function is �-c.a.

We go further and fix a canonical well-ordering R
"0 of order-type "0. We

identify ↵ † "0 with the element z P R
"0 such that |z|R

"0
“ ↵. As from z we can

e↵ectively obtain the initial segment R
"0 æ

z

of R
"0 determined by z, we say that

e↵ectively from ↵ † "0 we can get a canonical well-ordering R
↵

of order-type ↵.
The identification of ↵ with both R

↵

and with R
↵

’s least upper bound in R
"0 is

true to von Neumann’s definition of ordinals: an ordinal here is identified with the
collection of its predecessors.

Note that the listing of tidy R`1-computable approximations provided by the
proof of Proposition 1.7 is uniform in an index for R. Hence, uniformly in ↵ † "0,
we can fix an e↵ective list xfe,↵

s

, oe,↵
s

y of tidy p↵ ` 1q-computable approximations,
where, letting fe,↵ “ lim

s

fe,↵

s

, the sequence xfe,↵y
e†! is a listing of all ↵-c.a.

functions.
Proposition 1.12 allows us to define some levels of the hierarchy of ↵-c.a. func-

tions:

Proposition 2.10.

(1) Let n † !. A function is !n`1-c.a. if and only if it has a computable
approximation which is bounded by an !n-c.a. function.

(2) Let ↵ • !, ↵ § "0. A function is !↵-c.a. if and only if it has a computable
approximation which is bounded by an !↵-c.a. function.

2.3. On ordinal notations. One of the main uses of Kleene’s system of or-
dinal notations [40] is to define e↵ective transfinite iterations of the Turing jump,
giving rise to the hyperarithmetic hierarchy. Roughly speaking, a notation for an
ordinal corresponds to a computable well-ordering on which the successor function
is computable, and which associates with every limit element a computable cofinal
sequence. Formally, for a notation o P O, the set of predecessors Ipoq of o according
to †O is c.e., uniformly in o, but not necessarily computable; however, the unifor-
mity allows us to pull back †Oæ

Ipoq by an e↵ective enumeration of Ipoq to give a
computable well-ordering R

o

(with computable domain) isomorphic to †Oæ
Ipoq.

Spector’s theorem [58] is in some sense a version of Proposition 2.3: if a, b P O
and |a|O § |b|O then H

a

, the iteration of the jump along R
a

, is Turing reducible
to H

b

, the iteration of the jump along R
b

. This su�ces to give a precise definition
of an increasing sequence of degrees 0p↵q for all computable ordinals ↵.

For the purposes of defining ↵-c.a. functions and later, totally ↵-c.a. degrees,
general notations are not su�cient, as the well-orderings R

o

are not necessarily
canonical. For example, Ershov [29], and later, Epstein, Haas and Kramer [27],
define a function to be ↵-c.a. if it is R

o

-c.a. for any notation o P O for ↵. Under
this definition, every �0

2 function is !2-c.a., and as we shall see below, every �0
2,

low2 degree is totally !2-c.a. For the small ordinals we are interested in, there
is a natural choice for a system of notations: we say that a notation o P O is a
strong notation if R

o

is canonical. This method was also chosen by Coles, Downey
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and LaForte [10] in unpublished work looking at hierarchies based on truth table
reductions below 01, and by Diamondstone, Hirschfeldt and Nies (unpublished) for
variations on Demuth randomness. Note that every notation for an ordinal below
!2 is strong, but as we shall see, there are notations for !2 which are not strong.

Let us say that a computable well-ordering R of successor order-type is
notation-like if:

‚ the successor function on R is computable; and
‚ the collection LpRq of limit points of R is computable.

Lemma 2.11. Let R be notation-like. Then there is an e↵ective map giving, for
every z P LpRq, an index for a computable †R-increasing sequence (of order-type !)
cofinal in Ræ

z

.

Proof. For each n consider in turn theR-greatest element of Ræ
z

Xt0, . . . , nu.
⇤

The reason that we only consider successor order-types is that if otppRq is
a limit then we would need to add the requirement that there is a computable
increasing sequence cofinal in R. It is not fundamnetal.

Lemma 2.12. A computable well-ordering of successor order-type is computably
isomorphic to R

o

for some o P O if and only if R is notation-like.

Proof. Of course, R is computably isomorphic to R
o

if and only if the order-
preserving bijection between R and pIpoq,†Oæ

Ipoqq is computable.
If j : R Ñ Ipoq is order-preserving, then for all z P R except for the top element

of R, the successor of z in R is w where jpwq “ 2jpzq; collection LpRq of limit
points of R is the collection of z P R such that jpzq “ 3 ¨ 5e for some e. This shows
that if R is isomorphic to R

o

for some o P O then R is notation-like.
Suppose now that R is notation-like. By Lemma 2.11, let f be a computable

function such that for z P LpRq, '
fpzq is an †R-increasing and cofinal sequence in

Ræ
z

.
By e↵ective transfinite recursion (as in [53]) we define a computable injection

j : R Ñ O by letting:

(1) jpzq “ 1, where z is the R-least element of R;
(2) If z is the successor of w in R, then we let jpzq “ 2jpwq;
(3) If z P LpRq then jpzq “ 3 ¨ 5e where '

e

“ j ˝ '
fpzq.

Specifically, we define a partial computable function F : ! ˆ R Ñ ! as follows:

‚ If z is the R-least element of R, then for all e we let F pe, zq “ 1.
‚ If z is the R-successor of w, then we let F pe, zq “ 2'e

pwq.
‚ Let g be a computable function such that for all a and b, '

gpa,bq “ '
a

˝'
b

.

If z P LpRq, then we let F pe, zq “ 3 ¨ 5gpe,fpzqq.
By the recursion theorem, there is an index e such that for all z P R, F pe, zq “ '

e

pzq.
Then j “ '

e

æ
R

satisfies the conditions (1)–(3) above. The main point is that
R Ñ dom'

e

: otherwise, since R is well-founded, there is an R-least z P R for
which '

e

pzqÒ, which by definition of F , must be an R-successor element of some
w P R; but then '

e

pwqÓ implies that F pe, zqÓ for a contradiction.
Now the fact that R Ñ dom'

e

implies that for all z P LpRq, '
e

pzq “ 3 ¨ 5d
where '

d

is indeed an increasing and cofinal sequence in Ip'
e

pzqq, so by transfinite
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induction on the elements of R we can show that j is an order-preserving bijection
between R and Ipoq, where o “ 2jpzq for z being the R-maximal element of R. ⇤

Lemma 2.13. Every canonical well-ordering of successor order-type � † "0 is
notation-like.

Proof. Let ↵ § "0, and let ↵ “ !↵1n1`¨ ¨ ¨`!↵kn
k

be the Cantor normal form
of ↵. Then ↵ is a limit ordinal if and only if ↵

k

‰ 0. If ↵ is a limit, then the successor
of ↵ is the ordinal � whose Cantor normal form is !↵1n1 ` ¨ ¨ ¨ ` !↵kn

k

` !01;
otherwise, it is the ordinal � whose Cantor normal form is !↵1n1`¨ ¨ ¨`!↵kpn

k

`1q.
⇤

Corollary 2.14 (Coles, Downey, LaForte). For every ↵ † "0, there is a strong
notation o P O for ↵.

Proof. This is immediate for successor ↵; for limit ↵, if o is a strong notation
for ↵ ` 1, then log2 o is a strong notation for ↵. ⇤

We show that some notations are not strong.

Lemma 2.15. Let R be a computable well-ordering of order-type !. Then
! ¨ R ` 1 is notation-like.

Proof. The successor of pn, zq P !ˆR in ! ¨R is pn` 1, zq. Let z0 be the R-
least element of R. Then the collection of limit points of ! ¨R is p!zt0uqˆtz0u. ⇤

Let R be a computable well-ordering of order-type !. Certainly z fiÑ p0, zq is a
computable embedding of R into ! ¨R. By Proposition 1.10, every R-c.a. function
is ! ¨ R-c.a. By Lemmas 2.12 and 2.15, every R-c.a. function is R

o

-c.a. for some
notation o P O for !2. Ershov’s Theorem 2.1 now implies:

Corollary 2.16 (Ershov). For every �0
2 function f there is a notation o P O

for !2 such that f is R
o

-c.a.

Most �0
2 function are not !2-c.a., and so there are many notations for !2 which

are not strong.

3. Weak truth-table jumps and !↵-c.a. sets and functions

Coles, Downey and LaForte [10], and independently Anderson and Csima [3],
examined the analogue of the Turing jump in the weak truth-table degrees. An-
derson and Csima went on to tie levels of sets in the Ershov hierarchy to finite
iterations of this bounded jump, generalising the well-known fact that a set is !-
c.a. if and only if it is weak-truth table reducible to H1. If Hxny is the result of
iterating the bounded jump operation n times, starting with H (we give a precise
definition below), then Anderson and Csima showed that a set A P 2! is !n-c.a. if
and only if it is weak truth-table reducible to Hxny.

Coles, Downey and LaForte defined strong notations in order to define an ana-
logue of the H-sets in the �0

2 weak truth-table degrees, namely to find a way
to define transfinite iterations of the bounded jump operator which are invariant
in the weak truth-table degrees. We carry out their programme for ordinals be-
low "0, and extend Anderson’s and Csima’s result to all such ordinals (Theorem
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3.11(1)). We further discuss what happens when we pass from sets to functions
(Theorem 3.11(2)).

3.1. bounded g-c.e. sets and the bounded jump. Recall that a function f
is weak truth-table reducible to a function g if there is a Turing functional � such
that �pgq “ f , and the use function of this reduction is bounded by a computable
function. We can extend this to partial functions: for any function g : ! Ñ !, we
say that a partial function  : ! Ñ ! is bounded g-computable if there is a Turing
functional � and a partial computable function ' such that for all x and y,  pxq “ y
if and only if 'pxqÓ and �pg æ

'pxq, xq “ y; and x R dom if 'pxqÒ or if there is no
such y. A total function f is bounded g-computable if and only if f §wtt g. Note
that in this section, we abandon the convention that for a Turing functional � and
an oracle X, dom�pXq is an initial segment of !.

A weak truth-table functional is a pair p�,'q consisting of a Turing functional
and a partial computable function. If p�,'q is a weak truth-table functional, x † !

and g : ! Ñ !, then we write �̂pg, xq “ y if 'pxq Ó and �pg æ
'pxq, xq “ y. We

write �̂pg, xqÓ if �̂pg, xq “ y for some y. The notation �̂ assumes that the partial
function ' is clear from context.

We say that a set A P 2! is bounded g-c.e. if it is the domain of a partial
bounded g-computable function.

We can enumerate all partial bounded X-computable functions, and all
bounded X-c.e. sets, by giving an e↵ective enumeration x�

e

,'
e

y
e†! of all weak

truth-table functionals. We fix such an enumeration which is moreover acceptable:
if x 

e

, 
e

y
e†! is any e↵ective list of weak truth-table functionals, then there is an

(injective) computable function g such that for all e, p�
gpeq,'gpeqq “ p 

e

, 
e

q. For
all g : ! Ñ !,

A
�̂

e

pgq
E

e†!
is a g-e↵ective list of all partial bounded g-computable

functions, and letting Ŵ g

e

“ dom �̂
e

pgq,
A
Ŵ g

e

E

e†!
is a list of all bounded g-c.e.

sets.

Some of the basic properties of partial computable functions and c.e. sets do
not carry over to the bounded realm. The following proposition is meant as a
cautionary tale.

Proposition 3.1. Let g : ! Ñ !.

(1) Every nonempty bounded g-c.e. set is the range of some function f §wtt g;
but there is a function f §wtt H1 whose range is not bounded H1-c.e.

(2) The graph of any partial bounded g-computable function is bounded g-c.e.;
but there is a (total) function f which is not bounded H1-computable, but
whose graph is bounded H1-c.e.

(3) If A §wtt g, then A is bounded g-c.e. (and so is its complement). How-
ever, there is a c.e. set C and a set A such that both A and its complement
!zA are bounded C-c.e., but A ¶wtt C. For the set C we cannot choose
H1: if both A and !zA are bounded H1-c.e., then A §wtt H1.

Note, however, that with a computable oracle the distinctions disappear: a
partial function is bounded H-computable if and only if it is partial computable,
and a set is c.e. if and only if it is bounded H-c.e.
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Sketch of proof. For (1), we note that for any g, if A is g-c.e. and nonempty,
then there is some f §wtt g such that A “ range g. In fact, the use function for
reducing f to g can grow as slowly as we like; we simply wait with enumerating
some x P A into the range of f until the input of f is large enough for A to see
that x is in A. Hence, every nonempty ⌃0

2 set is the range of some !-c.a. function.
On the other hand, below we see that every bounded H1-c.e. set is �0

2 (in fact,
the Anderson-Csima result implies that a set is bounded H1-c.e. if and only if it is
!2-c.a.) The result follows from the fact that there are ⌃0

2 sets that are not �0
2.

For (2), note that if f is a �0
2 function which has an increasing approximation,

that is , a computable approximation xf
s

y such that for all x and s, f
s

pxq § f
s`1pxq,

then the graph of f is d.c.e., and so !-c.a., and so weak truth-table reducible to H1,
and so certainly bounded H1-c.e. For any ↵ § "0 it is easy to define an increasing
approximation for a function f which is not ↵-c.a. by diagonalising against all
partial ↵-computable approximations (Proposition 1.7), always increasing the value
of f if we want to change it. If we choose ↵ “ !, then we get a function which is
not !-c.a., and so not weak truth-table reducible to H1, and so, since it is total,
not bounded H1-computable.

We sketch the proofs of (3). First, we enumerate a c.e. set C and define a set A
such that both A and !zA are bounded C-c.e. For e † !, the requirement R

e

seeks
a witness x such that Apxq ‰ �̂

e

pC, xq if the latter converges. After picking a new
witness x, we state that x R A with fresh C-use  

no

pxq, and freeze C æ
 

no

pxq. If later
�̂

e

pC
s

, xqÓ“ 0 (i.e. “no”), then we enumerate  
no

pxq ´ 1 into C and declare that
x P A with A use  

yes

pxq ° '
e

pxq, 
no

pxq. Of course this enumeration into C may

free the opponent to change their mind and later still let �̂
e

pC
s

, xq “ 1 (i.e. “yes”).
In that case we enumerate  

yes

pxq ´ 1 into C but freeze C below that number, and
declare that x R A with the old use  

no

pxq. The point is that  
yes

pxq ° '
e

pxq,
so us freezing C means that the opponent cannot change their mind again and is
stuck with declaring that x P A, whereas we leave x R A for ever after that. Each
time a requirement acts, all weaker requirements are initialised and are forced to
pick new witnesses; so this is a finite injury construction.

The di↵erence between C and H1, is that unlike an arbitrary c.e. set C, the
opponent in the previous construction, that is us in the current construction, con-
trols a portion of H1. That is, we enumerate an auxiliary c.e. set E, and by the
recursion theorem we know an index e such that E “ W

e

which is the eth column of
H1. Suppose that we are given that A “ dom �̂1pH1q and !zA “ dom �̂0pH1q. To
reduce A to H1, given x, we wait for some i and s such that �̂

i

pH1
s

, xqÓ, i.e., '
i

pxqÓ
at stage s and �

i

pH1
s

, xq converges with use below '
i

pxq. We then set  pxq to be
some number large enough so that the agent which is responsible for computing
Apxq can control '

i

pxq many elements of H1 (via E) with no interference from other
agents which have already staked their claims for portions of E. We show that this
control is su�cient to compute Apxq from H1 æ

 pxq. As long as �̂
i

pH1
s

, xqÓ, we keep
stating that Apxq “ i, with use H1

s

æ
 pxq. If H1 changes below '

i

pxq, and we then

see that �̂1´i

pH1
s

, xqÓ, then we declare that Apxq “ 1 ´ i with use the new version
of H1 æ

 pxq (as  pxq ° '
i

pxq). If the computation �̂1´i

pH1, xq fizzles, we wait to

see if we next get a new computation �̂
i

pH1
s

, xqÓ. If not, then we will later get a
new �̂1´i

pH1, xqÓ computation, and we didn’t need to do anything. Otherwise, we
enumerate one of our agitators into E so that we can redefine Apxq “ i with the
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new version of H1 æ
 pxq. The point is that no matter how large '1´i

pxq (it may be
much larger than  pxq), every enumeration into E on behalf of computing Apxq is
tied to a failed �̂

i

pH1
s

, xq computation, and so to some historic version of H1 æ
'

i

pxq.
Thus we never run out of agitators and we can keep up with the changes in A and
record them into H1 æ

 pxq correctly. ⇤

With the dangers of bounded oracle computations in mind, we turn to define
the bounded jump and a universal “jump function”. For an oracle g : ! Ñ !, we
let

g: “ à

e†!
Ŵ g

e

“
!

pe, xq : x P Ŵ g

e

)
.

In analogy with the jump function J , we define a function Ig as follows:

Igpe, xq “
#
0, if x R Ŵ g

e

;

�̂
e

pg, xq ` 1, otherwise.

Elementary properties of these jump operations are analogous to those of the
Turing jump.

Lemma 3.2. Let g : ! Ñ !.

(1) g: is 1-complete for the class of bounded g-c.e. sets.

(2) g: is computably isomorphic to the set
!
e : e P Ŵ g

e

)
.

Proof. (1) – the fact that g: is bounded g-c.e. – follows from the fact that the
enumeration x�

e

,'
e

y
e†! is e↵ective: x�

e

y is uniformly c.e., and x'
e

y are uniformly
partial computable.

Let g˚ “
!
e : e P Ŵ g

e

)
. Since g˚ is bounded g-c.e., to show (2) it is su�cient

to show that g˚ is also 1-complete for the class of bounded g-c.e. sets. Let p�,'q
be a weak truth-table functional. To reduce �̂pgq to g˚, given any x † ! we
define a partial computable function  

x

such that for all w,  
x

pwqÓ if and only if
'pxqÓ, in which case,  

x

pwq “ 'pxq for all w; and also define a Turing functional
 

x

such that if 'pxq Ò, then  
x

ph,wq Ò for all w † ! and all oracles h, and if
'pxqÓ, then  

x

ph,wq “ �ph,wq for all oracles h and all w † !, with the same
use. Since the numbering x�

e

,'
e

y is acceptable, there is an injective computable
function f such that for all x † !, p 

x

, 
x

q “ p�
fpxq,'fpxqq. Then f witnesses

that dom �̂pgq §1 g˚. ⇤

For functions f, g : ! Ñ !, we say that f §m g if there is a computable function
h such that f “ g ˝h. Note that this definition extends the familiar one for sets. If
f §m g then f §wtt g.

Lemma 3.3. Let g : ! Ñ !. A set A is bounded g-c.e. if and only if A §m g:.

Proof. Let A §m g:; so there is a computable function h such that A “ h´1g:.
Let x † !; let pe, yq “ hpxq. Then we let  pxq “ '

e

pyq and  ph, xq “ �
e

ph, yq for
every oracle h, with the same use. Then A “ dom  ̂pgq. ⇤

Lemma 3.4. For all g : ! Ñ !,

(1) g: §wtt I
g.

(2) Ig is many-one equivalent to the “diagonal function” e fiÑ Igpe, eq.
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Proof. For (1), we have pe, xq P g: if and only if Igpe, xq ‰ 0. For (2), the
reduction f of the proof of Lemma 3.2 satisfies Igpe, xq “ Igpfpe, xq, fpe, xqq for all
e and x. ⇤

Lemma 3.5. Let g : ! Ñ !.

(1) g †wtt I
g.

(2) For any set A, A †wtt A
:.

Proof. Let  “ id be the identity function, and let  be a Turing functional
which maps any sequence � to itself. So for all g : ! Ñ !,  ̂pgq “ g. Hence there
is some e such that gpxq “ Igpe, xq, so g §wtt I

g.
Every set A is bounded A-c.e., and so by Lemma 3.3, A §m A:. It follows that

A §wtt A
:.

The proof of (1) and (2) will be complete with the aid of Lemma 3.4(1), once
we show that for any function g, g: ¶wtt g. This is Cantor’s argument, as the set

!
e : e R Ŵ g

e

)

is weak truth-table reducible to g:, and is not bounded g-c.e., so cannot be weak
truth-table reducible to g (Proposition 3.1(3)). ⇤

Lemma 3.6. Let f, g : ! Ñ !.

(1) f §wtt g if and only if If §m Ig.
(2) If f §wtt g then f : §m g:. The converse fails, even when restricting to

sets rather than functions.

If f, g : ! Ñ ! and f §wtt g, then from an index e such that �̂
e

pgq “ f we can
e↵ectively obtain indices c and d such that �̂

c

pIgq “ If and �̂
d

pg:q “ f :.

It follows that the operations g fiÑ Ig and g fiÑ g: induce well-defined, strictly
increasing functions on the partial ordering of the weak truth-table degrees.

Proof. It is easy to show that if f §wtt g, then If §m Ig and f : §m g:. One
simply composes the reduction of f to g with any weak truth-table functional; this
composition is uniform in an index for a reduction of f to g.

Let f, g : ! Ñ !, and suppose that h is computable and If “ Ig ˝f . Fox e such
that f “ �̂

e

pfq. Let x † !, and let pd, yq “ hpe, xq. Since
Igpd, yq “ If pe, xq “ fpxq ` 1 ° 0,

we have �̂
d

pg, yqÓ“ fpxq, which shows that f §wtt g.
The failure of the converse to (2) is exhibited by an argument similar to the one

proving the first part of Proposition 3.1(3), and so we only sketch it. We enumerate
a c.e. set B and approximate a d.c.e. set B such that A ¶wtt B but A: §m B:.
Instances R

e,x

of a global requirement for coding A: into B: define the value at
pe, xq of a partial computable function  and enumerate axioms with use B

s

æ
 pe,xq

into a functional  ; we then can find a computable function h such that for all
e and x, phpe, xq, hpe, xqq P B: if and only if  ̂pB, e, xqÓ; we need to ensure that
this happens if and only if pe, xq P A:. Requirements P

i

diagonalise Apzq against
�̂

i

pB, zq for some appointed follower z. The priorities of the R
e,x

requirements
are interspersed between the P

i

requirements. In a typical scenario, R
e,x

observes

that �̂
e

pA
s

, xqÓ for the first time; it sets  pe, xq to be some large number, and lets
 ̂pB

s

, e, xqÓ. The size of  pe, xq allows the requirement R
e,x

to enumerate a number



32 CHAPTER II. ↵-C.A. FUNCTIONS

into B once for each follower z † '
e

pxq for a requirement P
i

stronger than R
e,x

. Of
course followers for weaker requirements are cancelled and new ones are chosen to
be larger than '

e

pxq. Whenever a strong P
i

enumerates its follower z into A, the
opponent may change whether  ̂

e

pA
s

, xq converges or not. If the change is from
convergence to divergence, then we need to enumerate some number below  pe, xq
into B. This, in turn, may cause �̂

i

pB, zq to change, making P
i

want to extract z
from A. It does so, this time freezing B æ

'

i

pzq. The fact that '
i

pzq may be larger
than  pe, xq does not disturb us: the extraction of z from A gives our opponent
an opportunity to make �̂

e

pA, xq converge again, but we can then make  ̂pB, e, xq
converge without changing B æ

 pe,xq, simply by enumerating a new axiom into  . If
later an even stronger requirement P

j

acts, the process repeats, injuring P
i

, but any
new P

i

follower will be greater than '
e

pxq, and so never disturb R
e,x

again. Hence
we can fix  pe, xq based on the priority of R

e,x

whenever we see '
e

pxq converge. ⇤

Lemma 3.7. For all �0
2 functions g, Ig is also �0

2.

And so g: is also �0
2.

Proof. Let xg
s

y be a computable approximation for g. For e, x, s † !, let
h
s

pe, xq “ 0 if '
e,s

pxqÒ, or if �
e,s

pg
s

æ
'

e

pxqqÒ. Otherwise let h
s

pe, xq “ �
e,s

pg
s

æ
'

e

pxqq.
Then xh

s

y is a computable approximation of Ig. The point, of course, is that if
'
e

pxqÓ, then g
s

æ
'

e

pxq eventually stabilizes. ⇤

Since bounded H-c.e. sets are simply c.e. sets, H: and H1 are computably
isomorphic. Both sets are weak truth-table equivalent to IH, since if we know that
�̂

e

pH, xqÓ, then finding the value �̂
e

pH, xq can be done e↵ectively. Hence, for any
�0

2 function g we have g: ”T Ig ”T H1.

3.2. Transfinite iterations of the bounded jump. Let g : ! Ñ !. We
define, for a computable well-ordering R “ pR,†Rq, the iteration of the bounded
jump set and function along R, by induction on the order-type of R.

‚ If R is empty, then we let gxRy “ IgR “ g.

Suppose that R is nonempty, and that by recursion, for all z P R, both gxRæ
z

y and
IgRæ

z

have already been defined.

‚ If the order-type ofR is a successor ordinal, let z be theR-greatest element

of R; we then let gxRy “ `
gxRæ

z

y˘:
and IgR “ II

g

Ræ

z .

‚ If the order-type of R is a limit ordinal, we let gxRy “ À
zPR gxRæ

z

y and
IgR “ À

zPR IgRæ
z

. By this we mean that for all z and x, pz, xq P gxRy if

and only if z P R and x P gxRæ
z

y (so we consider gxRy as an element of 2!);
and if z P R, then IgRpz, xq “ IgRæ

z

pxq, whereas if z R R then IgRpz, xq “ 0;
so we can consider IgR as a function from ! to !.

Proposition 3.8. Let R and S be computable well-orderings. Suppose that
otppRq § otppSq. Also suppose that the embedding of R as an initial segment of
S is computable. Suppose further that R is notation-like. Then for all g : ! Ñ !,
gxRy §wtt g

xSy and IgR §wtt I
g

S .

Proof. Let j : R Ñ S be the initial segment embedding of R into S. We
show that there are computable functions f and h such that for all z P R, for all
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g : ! Ñ !

gxRæ
z

y “ �̂
fpzqpgxSæ

jpzq

yq
and

IgRæ
z

“ �̂
hpzqpIgSæ

jpzq

q.
Replacing R and S by one element extensions R ` 1 and S ` 1 then yields the
desired conclusion.

The definitions of f and h is done by e↵ective transfinite recursion along R.
Directly, we define:

(1) If z is the R-least element of R, then we let fpzq “ hpzq “ e where
�̂

e

pgq “ g for all g : ! Ñ !.
(2) If z is the R-successor of w, then by Lemma 3.6, from fpwq we can e↵ec-

tively find a number fpzq such that for all g,

�̂
fpzq

´
gxSæ

jpzq

y¯
“ �̂

fpzq
ˆ´

gxSæ
jpwq

y¯:˙
“

´
gxRæ

w

y
¯: “ gxRæ

z

y,

and from hpwq we can e↵ectively find a number hpzq such that for all g,

�̂
hpzq

´
IgSæ

jpzq

¯
“ �̂

hpzq
´
I
I

g

Sæ

jpwq

¯
“ II

g

Ræ

w “ IgRæ
z

.

(3) If z is a limit point of R, then from gxSæ
jpzq

y and IgSæ
jpzq

we can obtain,

uniformly in g and in w †R z, gxSæ
jpwq

y and IgSæ
jpwq

, respectively, in a weak

truth-table fashion. Thus from f æ
Ræ

z

and hæ
Ræ

z

we can compute indices
fpzq and hpzq such that for all w †R z, for all x † !, for all g,

�̂
fpzq

´
gxSæ

jpzq

y, pw, xq
¯

“ �̂
fpwq

´
gxSæ

jpwq

y, x
¯

“ gxRæ
w

ypxq “ gxRæ
z

ypw, xq
and

�̂
hpzq

´
IgSæ

j

pzq, pw, xq
¯

“ �̂
hpwq

´
IgSæ

jpwq

, x
¯

“ IgRæ
w

pxq “ IgRæ
z

pw, xq,

and so �̂
fpzq

´
gxSæ

jpzq

y¯
“ gxRæ

z

y and �̂
hpzq

´
IgSæ

jpzq

¯
“ IgRæ

z

as required.

The details of the e↵ective transfinite recursion, using the recursion theorem, are
as in the proof of Lemma 2.12. ⇤

It follows that if R and S are computably isomorphic, then for all g,
gxRy ”wtt g

xSy and IgR ”wtt I
g

S . Hence, using canonical well-orderings, for ↵ § "0,
we can unambiguously define gx↵y and Ig

↵

for all g – these are unique up to weak
truth-table degree, and in fact many-one degree if ↵ ° 0, and induce well-defined
operations on the weak truth-table degrees. If ↵ † � then gx↵y †wtt gx�y and
Ig
↵

†wtt I
g

�

.

Proposition 3.9. Let g : ! Ñ ! and let ↵ § "0. Then gx↵y §wtt I
g

↵

.

Proof. By e↵ective transfinite recursion on "0 ` 1 we build a computable
function R such that for all ↵ § "0 and all g, �̂

Rp↵q pIg
↵

q “ gx↵y. This is done by
cases:

(1) Since Ig
↵

“ gx0y “ g, we let Rp0q be a number such that for all g,
�̂

Rp0qpgq “ g.
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(2) The proofs of Lemma 3.4(1) and Lemma 3.6(2) show that there is a com-
putable function S such that for all ↵ † "0 and all a † !, if �̂

a

pgq “ f

then �̂
Sp↵,aq pIgq “ f :. We then let, for all ↵ † "0, Rp↵`1q “ Sp↵, Rp↵qq.

(3) For limit ↵, we string together the reductions for � † ↵. The construction
for part (3) of the proof of Proposition 3.8 shows that there is a computable
function T such that for all limit ordinals ↵ § "0 and all a † !, for all
sequences xg

�

y
�†↵ of functions,

�̂
T p↵,aq

˜
à

�†↵
g
�

¸
“ à

�†↵
�̂

a

pg
�

q .

We then let Rp↵q “ T p↵, aq, where a is an index such that '
a

æ
↵

“ Ræ
↵

.

Again to make things concrete, we show how to perform this recursion: we
define a function F . For all a † !, we let F p0, aq “ Rp0q, F p↵ ` 1, aq “ Sp↵, aq
and for limit ↵, F p↵, aq “ T p↵, aq. By the recursion theorem, there is an index a
such that F p´, aq “ 'paq. Since F pa, 0q is defined for all a, and since S and T are
total, we have "0 ` 1 Ñ dom'

a

. The function R “ '
a

æ
"0`1 is as required. ⇤

Proposition 3.10. For any �0
2 function g and any ↵ § "0, Ig

↵

is �0
2.

Proof. Fix a �0
2 function g. By e↵ective transfinite recursion we build a

computable function R such that for all ↵ § "0, '
Rp↵q “ xg↵

s

y is a computable
approximation of Ig

↵

.

(1) We let Rp0q be an index for a computable approximation of g.
(2) The proof of Lemma 3.7 shows that there is a computable function S such

that for all a † !, if '
a

is a computable approximation of a function h,
then '

Spaq is a computable approximation of Ih. For any ↵ † "0, we let
Rp↵ ` 1q “ SpRp↵qq.

(3) An argument similar to previous ones shows that there is a computable
function T such that for all a † ! and all limit ↵ § "0, if for all � † ↵,
'
'

a

p�q is a computable approximation of a function h
�

, then '
T p↵,aq is a

computable approximation of
À

�†↵ h� . Then we let, for limit ordinals
↵, Rp↵q “ T p↵, aq, where a is an index for Ræ

↵

. ⇤
The following theorem, a refinement of Proposition 3.10, is the goal of this

section:

Theorem 3.11. Let ↵ § "0.

(1) A set A is !↵-c.a. if and only if A §wtt Hx↵y.
(2) A function g is !↵-c.a. if and only if g §wtt I

H
↵

.

This theorem generalises the fact that a function or a set is !-c.a. if and only
if it is weak truth-table reducible to H1. Anderson and Csima [3] proved part (1)
of the theorem for ↵ † !.

We note that for ↵ • 2, we really do need to use the function jump Ig rather
than the set jump g::

Proposition 3.12. There is an p! ` 1q-c.a. function which is not weak truth-
table reducible to any set.

Proof. We define an p!`1q-computable approximation xf
s

, o
s

y for a function
f . For each e † !, we want to ensure that for any set A, fpeq ‰ �̂

e

pA, eq. Let e † !.
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We let V
e

be the collection of all values �̂
e

p�, eq, as � ranges over all binary strings
of length '

e

peq. For any set A, if �̂
e

pA, eqÓ, then �̂
e

pA, eq P V
e

. The sequence xV
e

y
is c.e., uniformly in e; if '

e

peqÒ, then |V
e

| “ 0, and otherwise |V
e

| § 2'e

peq. Let
xV

e,s

y be a uniformly computable enumeration of the sets V
e

.
For all s † !, if '

e,s

peqÒ, then we let f
s

peq “ 0 and o
s

peq “ !. Otherwise,
we let f

s

peq be the least element of !zV
e,s

, and let o
s

peq “ 2'e

peq ´ |V
e,s

|. Then
fpeq R V

e

, which gives the desired diagonalisation. ⇤
3.3. Commutative addition and powers of !. We focus on ordinal powers

of ! because these consist precisely of the ordinals which are closed under addition.

Proposition 3.13. An ordinal ↵ ° 0 is closed under addition if and only if
↵ “ !� for some �.

Proof. Let � be any ordinal, and let �, � † !� . Let � “ !�1n1`. . .!�kn
k

and
� “ !�1m1`¨ ¨ ¨`!�lm

l

be the Cantor normal forms of � and �. Since !�1 § � † !� ,
we have �1 † �; similarly, �1 † �. Hence

� ` � § !�1pn1 ` 1q ` !�1pm1 ` 1q § !maxt�1,�1upn1 ` m1q † !� ,

so !� is closed under addition.
Let ↵ be an ordinal which is not a power of !. Let ↵ “ !↵1n1 ` ¨ ¨ ¨ ` !

↵

k

n
k

be the Cantor normal form of ↵. Since ↵ ‰ !↵1 , we have !↵1 † ↵ † !↵1pn1 ` 1q.
This shows that ↵ is not closed under addition. ⇤

While addition of ordinals is a natural and useful operation, it has a few short-
comings, in particular its lack of commutativity. Less well-used is the operation of
“commutative addition” (as termed for instance in [4]), based on Cantor normal
form.

Let ↵1 ° ↵2 ° ¨ ¨ ¨ ° ↵
k

. Let � “ !↵1n1 ` !↵2n2 ` ¨ ¨ ¨ ` !↵kn
k

, and
� “ !↵1m1 ` !↵2m2 ` ¨ ¨ ¨ ` !↵km

k

, where of course n
i

,m
i

† !, but we allow
some n

i

,m
i

“ 0. We let

� ‘ � “ !↵1pn1 ` m1q ` !↵2pn2 ` m2q ` ¨ ¨ ¨ ` !↵kpn
k

` m
k

q.
Cantor normal form allows us to define � ‘ � for all ordinals � and �: we extend
their Cantor normal form to a presentation as above with a common sequence of
decreasing exponents by adding zero coe�cients; for any sequence of exponents,
this presentation is unique.

Moreover, canonicity of our fixed computable well-orderings implies that the
operation ‘ for pairs of ordinals below "0 is computable.

Lemma 3.14. Let ↵, � and � be ordinals.

(1) � ‘ � “ � ‘ �.
(2) ↵ ‘ p� ‘ �q “ p↵ ‘ �q ‘ �.

Proof. Quite straightforward, based on the commutativity and associa-
tivity of addition of natural numbers. For associativity, the point is that if
↵1 ° ↵2 ° . . .↵

k

mentions all exponents of ! in the Cantor normal forms of ↵, �
and �, and

↵ “ !↵1n1 ` ¨ ¨ ¨ ` !↵kn
k

,

� “ !↵1m1 ` ¨ ¨ ¨ ` !↵km
k

,

� “ !↵1 l1 ` ¨ ¨ ¨ ` !↵k l
k

,
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then

p↵ ‘ �q ‘ � “ ↵ ‘ p� ‘ �q “ !↵1pn1 ` m1 ` l1q ` ¨ ¨ ¨ ` !↵kpn
k

` m
k

` l
k

q. ⇤

The associativity and commutativity of ‘ allows us to unambiguously defineÀ
A for finite multisets of ordinals A.

Lemma 3.15. Any power of ! is closed under ‘.

Proof. Let � “ !↵1n1 `¨ ¨ ¨`!↵kn
k

and � “ !↵1m1 `¨ ¨ ¨`!↵km
k

be smaller
than !�. Then for all i § k, !↵in

i

,!↵im
i

† !�. Since !� is closed under addition,
it follows that � ‘ � † !�. ⇤

Lemma 3.16. Let �1,�2, . . . ,�n and �1, �2, . . . , �n be two n-tuples of ordi-
nals. Suppose that for all i § n, �

i

§ �
i

. Then
À

i§n

�
i

§ À
i§n

�
i

, andÀ
i§n

�
i

† À
i§n

�
i

if and only if there is some i § n such that �
i

† �
i

.

Proof. Again, this is known and quite straightforward, but we give details
for completeness of our presentation. Let ↵1 ° ↵2 ° ¨ ¨ ¨ ° ↵

k

be the expo-
nents of ! appearing in the Cantor normal form of any of the �

i

’s and �
i

’s; let
�
i

“ ∞
j§k

!↵jn
i,j

and �
i

“ ∞
j§k

!↵jm
i,j

. So
À

i§n

�
i

“ ∞
j§k

`
!↵j

∞
i§n

n
i,j

˘
,

and
À

i§n

�
i

“ ∞
j§k

`
!↵j

∞
i§n

m
i,j

˘
.

If
À

i§n

�
i

“ À
i§n

�
i

then by the uniqueness of Cantor normal form, for all
j § k,

∞
i§n

n
i,j

“ ∞
i§n

m
i,j

. By induction on j § k, we show that for all i,
n
i,j

“ m
i,j

; it would follow that for all i, �
i

“ �
i

. Fix j, and suppose that for all
j1 † j, for all i § n, n

i,j

1 “ m
i,j

1 . Since �
i

§ �
i

, the induction assumption implies
that n

i,j

§ m
i,j

. Now
∞

i§n

n
i,j

“ ∞
i§n

m
i,j

implies that for all i § n, n
i,j

“ m
i,j

.
Suppose that

À
i§n

�
i

‰ À
i§n

�
i

. Let j be the least index such that∞
i§n

n
i,j

‰ ∞
i§n

m
i,j

. An induction as in the previous paragraph shows that for
all j1 † j, for all i § n, n

i,j

1 “ m
i,j

1 . This information, together with the fact that
�
i

§ �
i

for all i, shows that for all i, n
i,j

§ m
i,j

, and so that
∞

i§n

n
i,j

§ ∞
i§n

m
i,j

.
Since

∞
i§n

n
i,j

‰ ∞
i§n

m
i,j

, we must have
∞

i§n

n
i,j

† ∞
i§n

m
i,j

. The choice of
j now shows that

À
i§n

�
i

† À
i§n

�
i

⇤

The operation of commutative addition allows us to show that if ↵ § "0 is
closed under addition, then the ↵-c.a. functions induce an initial segment of the
weak truth-table degrees.

Proposition 3.17. Let ↵ § "0. If f : ! Ñ ! is !↵-c.a. and g §wtt f , then g
is !↵-c.a.

Proof. Let xf
s

, o
s

y
s†! be an !↵-computable approximation of f , and let

p�,'q be a weak Truth-table functional such that �̂pfq “ g. For any x, s † !,
we recursively define a strictly increasing sequence xt

s

pxqy
s†! of stages such that

for all s, �̂pf
t

s

pxq, xqÓ. Let g
s

pxq “ �̂pf
t

s

pxq, xq, and let m
s

pxq “ À
y†'pxq otspxqpyq.

Then xg
s

,m
s

y is an !↵-computable approximation of g: by Lemma 3.15, for all x
and s, m

s

pxq † !↵, and by Lemma 3.16, for all x and s, m
s`1pxq § m

s

pxq and if
g
s`1pxq ‰ g

s

pxq then m
s`1pxq † m

s

pxq, because f
t

s`1pxq æ
'pxq‰ f

t

s

pxq æ
'pxq. ⇤

3.4. The complexity of the iterated bounded jump. We wish to estab-
lish the following:

Proposition 3.18. For all ↵ § "0, IH
↵

is !↵-c.a.
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As a result, by Proposition 3.9 and Proposition 3.17, Hx↵y is also !↵-c.a.

Proposition 3.18 is proved by e↵ective transfinite recursion, which means that
the !↵-computable approximation for I

↵

pHq will be given uniformly in ↵. That is,
by e↵ective transfinite recursion on "0, we will show that there is a computable func-

tion R : "0 Ñ ! such that for all ↵ † "0,
A
f
Rp↵q,!↵

s

, o
Rp↵q,!↵

s

E
is a !↵-computable

approximation of IH
↵

; recall that xxfe,↵

s

, oe,↵
s

y
s†!y

e†! is an e↵ective list, uniform in
↵, of all tidy p↵ ` 1q-computable approximations (Proposition 1.7).

The following two lemmas correspond to two of the three cases in the definition
of R.

Lemma 3.19. Let ↵ † "0. If g is an !↵-c.a. function, then Ig is an p!↵`1q-c.a.
function. From ↵, and an index of an !↵-computable approximation of a function
g, we can e↵ectively obtain an index of an p!↵ ` 1q-computable approximation of
Ig.

Proof. Let xg
s

, o
s

y be an !↵-computable approximation of g. For e, x, s † !,
if �̂

e

pg
s

, xq converges in s many steps, we let h
s

pe, xq “ 1` �̂
e

pg
s

, xq; otherwise, we
let h

s

pe, xq “ 0. Then xh
s

y is a computable approximation of Ig. We may assume
that for all e and x, h0pe, xq “ 0.

Fix e, x † !. For all s † !, let r
s

pe, xq be the least r § s such that for all
t P rr, ss, h

t

pe, xq “ h
s

pxq. We define a function m
s

pe, xq:
‚ If r

s

pe, xq “ 0, let m
s

pe, xq “ !↵.
‚ If r

s

pe, xq ° 0 then we know that '
e

pxqÓ. There are two sub-cases:
– If h

s

pe, xq ° 0, then we let

m
s

pe, xq “ à

y†'
e

pxq
po

s

pyq ‘ o
s

pyqq .

– If h
s

pe, xq “ 0, then we let

m
s

pe, xq “ à

y†'
e

pxq

`
o
s

pyq ‘ o
r

s

pe,xq´1pyq˘
.

By Lemma 3.15, for all e, x and s, m
s

pe, xq § !↵. We show that xh
s

,m
s

y is an
p!↵ ` 1q-computable approximation. Fix e, x, s † !.

If h
s`1pe, xq “ h

s

pe, xq, then r
s

pe, xq “ r
s`1pe, xq. In the three cases for defin-

ing m
s

pe, xq and m
s`1pe, xq, Lemma 3.16, and the fact that o

s`1pyq § o
s

pyq for
all y, implies that m

s`1pe, xq § m
s

pe, xq.
Now suppose that h

s`1pe, xq ‰ h
s

pe, xq; we want to show thatm
s`1pe, xq † m

s

pe, xq.
Note that r

s`1pe, xq “ s ` 1; let r “ r
s

pe, xq. There are four cases.

(1) If r “ 0, then m
s

pe, xq “ !↵ and m
s`1pe, xq † !↵.

(2) Suppose that r ° 0 and that h
s`1pe, xq “ 0. Then h

s

pe, xq ° 0. This
means that �̂

e

pg
s

, xq converges in s steps, but that �̂
e

pg
s`1, xq does not

converge in s ` 1 steps; so necessarily g
s`1 æ

'

e

pxq‰ g
s

æ
'

e

pxq. So there is
some y † '

e

pxq such that o
s`1pyq † o

s

pyq. We have

m
s

pe, xq “ à

y†'
e

pxq
po

s

pyq ‘ o
s

pyqq ,

and
m

s`1pe, xq “ à

y†'
e

pxq
po

s`1pyq ‘ o
s

pyqq .
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The desired inequality then follows from Lemma 3.16.
(3) Suppose that r ° 0, that h

s`1pe, xq ° 0, and that h
s

pe, xq ° 0. Then
h
s`1pe, xq ‰ h

s

pe, xq implies that g
s`1 æ

'

e

pxq‰ g
s

æ
'

e

pxq, so again, there is
some y † '

e

pxq such that o
s`1pyq † o

s

pyq. We have

m
s

pe, xq “ à

y†'
e

pxq
po

s

pyq ‘ o
s

pyqq ,

and

m
s`1pe, xq “ à

y†'
e

pxq
po

s`1pyq ‘ o
s`1pyqq ,

so again m
s`1pe, xq † m

s

pe, xq.
(4) The last case is that r ° 0, h

s`1pe, xq ° 0 and h
s

pe, xq “ 0. Now the
point is that h

r´1pe, xq ° 0, so the argument in case (2) show that there
is some y † '

e

pxq such that o
r

pyq † o
r´1pyq, whence o

s`1pyq † o
r´1pyq.

We have

m
s`1pe, xq “ à

y†'
e

pxq
po

s`1pyq ‘ o
s`1pyqq

and

m
s

pe, xq “ à

y†'
e

pxq
po

s

pyq ‘ o
r´1pyqq ,

so we get the required inequality in this case too. ⇤

Lemma 3.20. There is a computable function T such that for any limit ordinal

↵ § "0 and a † !, if for some g, for all � † ↵,
A
f
'

a

p�q,!�

s

, o
'

a

p�q,!�

s

E

s†!
is

a total !�-computable approximation of Ig
�

, then
A
f
!

↵

,T p↵,aq
s

, o
!

�

,T p↵,aq
s

E

s†!
is an

!↵-computable approximation of Ig
↵

.

Proof. Given ↵ and a, define xh
s

,m
s

y by letting h
s

p�, xq “ f
'

a

p�q,!�

s

pxq and

m
s

p�, xq “ o
'

a

p�q,!�

s

pxq, if '
a

p�qÓ and o
'

a

p�q,!�

s

pxqÓ, otherwise we let h
s

p�, xq and
m

s

p�, xq diverge. For z ‰ � for any � † ↵, we of course let h
s

pz, xq “ m
s

pz, xq “ 0.
By the acceptability of the list of tidy p!↵`1q-computable approximations, we can

define T p↵, aq such that if '
a

is total, and for all � † ↵,
A
o
'

a

p�q,!�

s

E
is total, then

A
o
!

↵

,T p↵,aq
s

E
is total, and lim

s

f
!

↵

,T p↵,aq
s

“ lim
s

h
s

. ⇤

Proposition 3.18 now follows by e↵ective transfinite recursion.

3.5. Reducing !↵-c.a. sets and functions to iterations of the wtt-
jump. Let ↵ † "0. An instance of an !↵-computable approximation is a pair
pf, oq of computable functions f : ! Ñ ! and o : ! Ñ !↵ such that for all s † !,
ops ` 1q § opsq and if fps ` 1q ‰ fpsq then ops ` 1q † opsq.

As is done in the proof of Proposition 1.7, we can list, uniformly in ↵, tidy
instances of p!↵ ` 1q-computable approximations. In other words, there is an
e↵ective list xf↵

e

, o↵
e

y of pairs of computable functions with the following properties:

(1) For every ↵ † "0 and every e † !, pf↵
e

, o↵
e

q is an instance of an p!↵ ` 1q-
computable approximation with f↵

e

p0q “ 0 and o↵
e

p0q “ !↵;
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(2) The listing is acceptable: there is a (total) computable function cp↵, d, eq
such that for all ↵ § "0 and d, e † !, if p'

d

,'
e

q is an instance of an
!↵-computable approximation, then lim

s

'
d

psq “ lim
s

f↵
cp↵,d,eq.

Again the idea is to convert any pair pg,mq of partial computable functions into a
pair functions pf, oq as in (1). We enumerate the graphs of m and g until we see
that both mp0q and gp0q converge. As long as we don’t see convergence, both f
and o are constant; otherwise we slowly copy the values that we see.

Given the lists xf↵
e

, o↵
e

y, we define the following for ↵ § "0:

(1) C
↵

“ te : Ds po↵
e

psq † !↵qu. The sets C
↵

are c.e., uniformly in ↵.
(2) Partial functions F

↵

: C
↵

Ñ ! by letting, for e P C
↵

, F
↵

peq “ lim
s

f↵
e

psq.
Lemma 3.21. For every ↵ § "0, F↵ is partial bounded IH

↵

-computable.

Lemma 3.21 is proved by e↵ective transfinite recursion on "0 ` 1, so again it
has to be uniform: we construct a computable function R such that for all ↵ § "0,

�̂
Rp↵q

`
IH
↵

˘ “ F
↵

.

The following three lemmas explain how to define Rp↵q for the three kinds of
ordinals ↵: ↵ “ 0, successor ↵, and limit ↵.

Lemma 3.22. F0 is a partial computable function, and so is partial bounded
H-computable.

Proof. For each e P C0, F0peq “ f0
e

pnq for n such that o0
e

pnq “ 0. ⇤
Lemma 3.23. There is a computable function S such that for all ↵ † "0 and

all a † !, for any function g : ! Ñ !, if �̂
a

pgq “ F
↵

, then �̂
Sp↵,aqpIgq “ F

↵`1.

Proof. We show how to define, e↵ectively from ↵ and a, a weak truth-table
functional p , q such that for any function g, if �̂

a

pgq “ F
↵

then  ̂pIgq “ F
↵`1.

The acceptability of the enumeration of weak truth-table functionals then allows
us to e↵ectively find an index Sp↵, aq such that p , q “ p�

Sp↵,aq,'↵,aq.
Let e † !. If e R C

↵`1, then we leave  peqÒ, and for any oracle g,  pg, eqÒ.
Suppose that e P C

↵`1. For abbreviation, let pf, oq “ pf↵`1
e

, o↵`1
e

q. The idea
now is to break up the instance pf, oq into a finite sequence of instances, each within
a copy of !↵ sitting inside !↵`1. Let s˚ witness that e P C

↵`1: ops˚q † !↵`1.
Since !↵`1 “ !↵ ¨ !, we can write, for s • s˚, opsq “ !↵npsq ` �psq for unique
npsq † ! and �psq † ↵.

Let M “ nps˚q. For m § M we define an instance pfm, omq of an !↵-
computable approximation by copying �psq on stages on which npsq “ m. Namely
let J

m

“ ts • s˚ : npsq “ mu. Then J
M

† J
M´1 † ¨ ¨ ¨ † J

k

is a partition of
rs˚,!q for some k § M ; let us assume that J

m

for m • k is nonempty (i.e. the
approximation pf, oq does not skip over the mth copy of !↵); this is easily arranged.
Form • k we define fmpsq “ fpsq and ompsq “ �psq for s P J

m

, and extend in acon-
stant way otherwise (i.e., for s † J

m

, fmpsq “ fpmin J
m

q and ompsq “ �pmin J
m

q;
and if m ° k and s ° J

m

, we define similarly but with max J
m

replacing min J
m

).
For m † k we leave fmpsq and ompsq undefined for all s. The point is of course
that lim

s

fkpsq “ F
↵`1peq.

By the acceptability of the list xf↵
d

, o↵
d

y, we can e↵ectively get numbers d
m

for
m § M such that for all m § M ,

‚ d
m

P C
↵

i↵ m • k; and
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‚ If m • k, then F
↵

pd
m

q “ lim
s

fmpsq.
Now the procedure  queries the oracle on each pair pa, d

m

q. The use is
bounded by maxtpa, d

m

q : m † Mu; this is revealed to us once we see that
e P C

↵`1, so this use is partial computable (uniformly in a, ↵ and e). If indeed
�̂

a

pgq “ F
↵

then Igpa, d
m

q “ 0 i↵ m † k and Igpa, d
k

q “ 1 ` F
↵`1peq, so this is

what  outputs. ⇤

Lemma 3.24. There is a recursive function T such that for any limit ordinal
↵, a † ! and sequence xg

�

y
�†↵ of functions, if for all � † ↵, �̂

'

a

p�qpg
�

q “ F
�

,

then �̂
T p↵,aq

´À
�†↵ g�

¯
“ F

↵

.

Proof. Of course now the point is that !↵ is the limit of the ordinals !� for
� † ↵. So given e P C

↵

we can e↵ectively find some � † ↵ and some s˚ such that
o↵
e

ps˚q † !� , and so can translate pf↵
e

, o↵
e

q to an instance of an !�-computable
approximation; so we can find some d P C

�

such that lim
s

f↵
e

psq “ lim
s

f�
d

psq.
We can then find some number  peq, e↵ectively computed from e, such that from´À

�†↵ g�
¯

æ
 peq we can compute g

�

æ
'

a

pdq, and so using �
a

can output

�̂
a

pg
�

, dq “ F
�

pdq “ F
↵

peq
as required. Again, all this can be coded by a functional  , and by acceptability
we can e↵ectively find an index T p↵, aq such that p�

T p↵,aq,'T p↵,aqq “ p , q. ⇤

Now e↵ective transfinite recursion on "0`1, using Lemmas 3.22, 3.23, and 3.24,
builds a computable function R such that for all ↵ § "0, �̂

Rp↵qpIH
↵

q “ F
↵

, and so
proves Lemma 3.21.

Proof of part (2) of Theorem 3.11. Let ↵ § "0. Proposition 3.18 states
that IH

↵

is !↵-c.a. By Proposition 3.17, every function g §wtt I
H
↵

is also !↵-c.a.
For the converse, let g be an !↵-c.a. function; let xg

s

,m
s

y be an !↵-computable
approximation for g. For every x † !, the sequence xg

s

pxq,m
s

pxqy
s†! is an instance

of an !↵-computable approximation, and so by acceptability of the numbering of
the partial instances of such approximations, there is a computable function h such
that for all x, hpxq P C

↵

and gpxq “ F
↵

phpxqq. By Lemma 3.21, there is a weak-
truth table functional p�,'q such that F

↵

“ �̂pIH
↵

q. Let  pxq “ 'phpxqq, and
for any oracle f , let  pf, xq “ �pf, hpxqq with the same use. Then  is total (as
rangeh Ñ C

↵

), and  ̂pIH
↵

q “ g, so g §wtt I
H
↵

. ⇤

Proof of part (1) of Theorem 3.11. The proof of the backward direction
is identical to the corresponding proof of part (2), because as mentioned after the
statement of Proposition 3.18, Proposition 3.9 implies that Hx↵y is !↵-c.a.

For ↵ § "0, define D
↵

: C
↵

Ñ t0, 1u by letting D
↵

peq “ F
↵

peq mod 2. If A
is an !↵-c.a. set, then there is a computable function h : ! Ñ C

↵

such that for
all x, Apxq “ D

↵

phpxqq. Hence to show that every !↵-c.a. set is weak truth-table
reducible to Hx↵y, we show thatD

↵

is a partial bounded Hx↵y-computable function.
The proof follows the line of argument for Lemma 3.21. A computable function

R such that for all ↵, �̂
Rp↵q

`Hx↵y˘ “ D
↵

is constructed by e↵ective transfinite
recursion on "0 ` 1, once analogues of Lemmas 3.22, 3.23, and 3.24 are proved:

(1) D0 is a partial computable function;
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(2) There is a computable function S such that for all ↵ † "0 and all a † !,
for any set A P 2!, if �̂

a

pAq “ D
↵

, then �̂
Sp↵,aqpA:q “ D

↵`1.
(3) There is a recursive function T such that for any limit ordinal ↵, a † !

and sequence xA
�

y
�†↵ of sets, if for all � † ↵, �̂

'

a

p�qpA
�

q “ D
�

, then

�̂
T p↵,aq

´À
�†↵A�

¯
“ D

↵

.

(1) follows immediately from the definition of D0 and Lemma 3.22. For (3)
we can simply take the function given by the proof of Lemma 3.24. The only
new ingredient is in the proof of (2). Again, given ↵, a and e P C

↵`1, we let
pf, oq “ pf↵`1

e

, o↵`1
e

q, and define the functions � and n, the number M , the pairs
pfm, omq for m § M and the numbers k and d

m

exactly as was done in the proof
of Lemma 3.23. So m • k if and only if d

m

P C
↵

, and D
↵`1peq “ D

↵

pd
k

q.
The di�culty of course is thatA: does not tell us the value of �̂

a

pA, d
m

q “ D
↵

pd
m

q,
only whether �̂

a

pA, d
m

q converges or not. But since the value is either 0 or 1, we
can convert it to convergence or divergence of an auxiliary functional. That is, we
can e↵ectively calculate and index b and numbers c

m

for m § M such that for any
oracle X, �̂

b

pX, c
m

qÓ if and only if d
m

P C
↵

and �̂
a

pX, d
m

qÓ“ 1; for the use we
can let '

b

pc
m

q “ '
a

pd
m

q. We then let

 peq “ 1 ` max tpa, d
m

q, pb, c
m

q : m § Mu ,
which is again partial computable; and for any oracle Y P 2!, we calculate, for
e P C

↵`1,  ̂pY, eq by first finding the least m such that pa, d
m

q P Y (we diverge if
there is none), and then output Y pb, c

m

q. If �̂
a

pAq “ D
↵

and e P C
↵`1 then the

least m such that pa, d
m

q P A: is k, and

 pA:, eq “ A:pb, c
k

q “ �̂
a

pA, d
k

q “ D
↵

pd
k

q “ D
↵`1peq

as required. ⇤





CHAPTER III

The hierarchy of totally ↵-c.a. degrees

The following is the central definition of this work. For ↵ “ !, this definition
was originally made by J.S. Miller (unpublished), and first investigated in detail
in [17].

Definition. Let ↵ § "0. A Turing degree d is totally ↵-c.a. if every function
f P d is ↵-c.a.

1. Totally R-c.a. degrees

Basic properties of totally ↵-c.a. degrees are shared among totally R-c.a. de-
grees, even when R is not canonical. For any computable well-ordering R, we say
that a Turing degree d is totally R-c.a. if every function f P d is R-c.a.

We note the following:

Lemma 1.1. Let R be a computable well-ordering. A degree d is totally R-c.a.
if and only if every f §T d is R-c.a.

Proof. Suppose that d is a totally R-c.a. degree. Let g P d be any function.
Let f §T d. Then f ‘ g P d, so f ‘ g has an R-computable approximation, from
which we can get an R-computable approximation for f . ⇤

1.1. Totally R-c.a. degrees and low2 degrees. The following theorem
shows that total R-c.a.-ness is indeed a notion of lowness.

Theorem 1.2. For any computable well-ordering R, every totally R-c.a. degree
is low2.

Proof. Let R be a computable well-ordering. By Corollary 1.8, there is a 01-
computable sequence xfey

e†! consisting of allR-c.a. functions. Using this sequence,
it is easy to construct a 01-computable function f which dominates every R-c.a.
function. Hence if d is a totally R-c.a. degree, then f dominates all functions in d.
By a classic result of Martin’s [48], d is low2. ⇤

Ershov’s Theorem 2.1 can be extended to low2 degrees.

Proposition 1.3. Every �0
2, low2 degree is totally R-c.a. for some computable

well-ordering R of order-type !.

Proof. Let d be a �0
2, low2 degree. The proof of Theorem 2.1 can be adapted

once we give a uniform 01-enumeration of all the functions reducible to d.
Let D P d, and let xD

s

y be a computable approximation of D.

43
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Since d is low2, the collection of e such that �
e

pDq is total is ⌃0
3; say �e

pDq is
total i↵ Dx@yDz Rpe, x, y, zq where R is computable. For e, x and s † !, let y

s

pe, xq
be the greatest y such that for all y1 § y there is some z † s such that Rpe, x, y1, zq
holds. Now for all such e, x and s, for n † !, let fe,x

s

pnq “ �
e

pD,nqry
s

pe, xqs if
n † dom�

e

pDqry
s

pe, xqs, and fe,x

s

pnq “ 0 for other n (recall that we write �
e

pDqrss
for �

e,s

pD
s

q).
If x witnesses that �

e

pDq is total, then lim
s

fe,x

s

“ �
e

pDq; if not, then the
sequence xfe,x

s

y
s†! is eventually constant. Hence, renumbering, we get a uniformly

computable sequence
@@

fd

s

D
s†!

D
d†! of computable approximations, with the col-

lection of limits tfd : d † !u (where fd “ lim
s

fd

s

) consisting precisely of all the
functions computable from d.

Now we let R be the interspersed union of the well-orderings built in the proof
of Theorem 2.1 for the approximations

@
fd

s

D
. We let

R “  pd, x, sq P ! ˆ ! ˆ ! : s “ 0 or fd

s

pxq ‰ fd

s´1pxq(
,

and for pd, x, sq, pe, y, tq P R, let pd, x, sq †R pe, y, tq if xd, xy † xe, yy or if
pd, xq “ pe, yq and t † s. The argument of the proof of Theorem 2.1 shows that
R “ pR,†Rq has order-type ! and that for every d † !,

@
fd

s

D
s†! can be extended

to an R-computable approximation. Hence d is totally R-c.a. ⇤

The argument for Corollary 2.16 now shows:

Corollary 1.4. Every �0
2, low2 degree is totally R

o

-c.a. for some notation
o P O for !2.

1.2. C.e. degrees. In this work we focus on totally ↵-c.a. c.e. degrees, namely
those totally ↵-c.a. Turing degrees which contain a c.e. set.

The following result shows that the for c.e. degrees, the class of sets captures
everything expressed by functions as far as approximations are concerned. Tech-
nically, this is the first application in this monograph of the permitting method,
calibrated at the level of total R-c.a.-ness.

Proposition 1.5. Let R be a computable well-ordering. A c.e. degree d is
totally R-c.a. if and only if every set Z §T d is R-c.a.

The argument of Lemma 1.1 shows now that a c.e. degree is totally R-c.a. if
and only if every set Z P d is R-c.a.

Proof. Let d be a c.e. degree, and suppose that some g §T d is not R-c.a.
Since d is c.e., there is some computable approximation xg

s

y of g such that d
computes the modulus of this approximation.

We construct Z by giving a computable approximation xZ
s

y for Z. Let
xxZe

s

, oe
s

y
s†!y

e†! be an e↵ective enumeration of tidy pR ` 1q-computable approxi-
mations such that letting Ze “ lim

s

Ze

s

, the sequence xZey enumerates the R-c.a.
sets. Further, as is clear from the construction in Proposition II.1.7, every R-c.a.
set appears as Ze for some e such that the approximation xZe

s

, oe
s

y is eventually
R-computable: for all n there is some s such that oe

s

pnq P R.
To defeat the threat that Z “ Ze, we pick potential witnesses x for this eth

requirement, and try to ensure that Zpxq ‰ Zepxq. Naturally, we examine the
sequence xZe

s

pxqy
s†!, and if there is equality between Z

s

pxq and Ze

s`1pxq, we will
want to change the value of Zpxq. To keep Z being computable from D, each such
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change must be permitted by g. We prompt g to give us such a permission by
making a threat of our own, of giving an R-computable approximation for g.

Since permission will only be granted eventually, we need to appoint infinitely
many followers for each requirement; to avoid unnecessary interaction between re-
quirements, these all have to be distinct. Recall that

@
!resD

e†! is a partition of !
into uniformly computable sets (which we often refer to as “columns”).

We start by defining Z0 “ H. At stage s we wish to flip x P !res if oe
s

pxq P R
and Ze

s

pxq “ Z
s`1pxq. We are allowed to flip x at stage s if g

s`1 æ
x

‰ g
s

æ
x

.
If we both wish to flip and are allowed to flip some x, then we flip it: we set
Z
s`1pxq “ 1´Z

s

pxq. Otherwise, we set Z
s`1pxq “ Z

s

pxq. This defines the sequence
xZ

s

y.
Let x † !. If g

s

æ
x

“ g
t

æ
x

for all s • t then Z
s

pxq “ Z
t

pxq for all s • t.
Hence xZ

s

y is a computable approximation of a set Z. In fact, since d computes
the moduus for xg

s

y, Z §T d.

To show that Z is not R-c.a. we show that if the approximation xZe

s

, oe
s

y is
eventually R-computable then Z ‰ Ze. Fix such e and suppose for a contradiction
that Ze “ Z. We define a sequence xh

s

,m
s

y by recursion. For y † ! let x be
the least element of !res greater than y. For all s let m

s

pyq “ oe
s

pxq. Start with
h
s

pyq “ 0 for all s † y. Now ifm
s

pyq “ m
s´1pyq then let h

s

pyq “ h
s´1pyq; otherwise

let h
s

pyq “ g
s

pyq. Then xh
s

,m
s

y is an eventually R-computable approximation
for h “ lim

s

h
s

(which is therefore h-c.a.); we show that h “ g.
Suppose not. Again let y † ! and let x be the least element of !res

greater than y. Let t be the stage at which the sequence xm
s

pyqy stabilizes. So
hpyq “ h

t

pyq “ g
t

pyq (by minimality of t) and for all s • t, Ze

s

pxq “ Ze

t

pxq “ Zepxq.
Suppose that gpyq ‰ g

t

pyq. Let s be the least stage s ° t at which we see that
g
s`1 æ

x

‰ g
s

æ
x

. We are permitted to flip Zpxq at stage s, so Z
s`1pxq ‰ Ze

s`1pxq
(either because we flipped it at stage s, or we did not need to). By induction, at
no later stage will we want to flip x, so Zpxq ‰ Ze

s`1pxq “ Zpxq, contradicting the
assumption that Z “ Ze. ⇤

The fact that d is a c.e. degree is heavily used in the proof of Proposition 1.5.
Barmpalias (unpublished) constructed a degree d such that every set Z P d is !-c.a.
(in fact, d is superlow), but some function f P d is not !-c.a.

2. The first hierarchy theorem: totally !↵-c.a. degrees

Let � † ↵ § "0. Since every �-c.a. function is also ↵-c.a. (see Section II.2),
every totally �-c.a. degree is also totally ↵-c.a. The question is when does this
hierarchy collapse.

Theorem 2.1. Let ↵ § "0. There is a totally ↵-c.a. degree which is not totally
�-c.a. for any � † ↵ if and only if ↵ is a power of !. If ↵ is a power of !, then
in fact there is a c.e. degree which is totally ↵-c.a. but not totally �-c.a. for any
� † ↵.

The first ! ¨2 many levels of the hierarchy of totally ↵-c.a. degrees are depicted
in Figure 1.

For the forward direction of the first hierarchy theorem, we prove the following
lemma. It is proved in generality greater than is currently necessary, but which will
be useful later.
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!

!2

!3

...

!!

!!`1

...

Figure 1. The first hierarchy theorem. “!↵” denotes the collec-
tion of totally !↵-c.a. degrees.

Lemma 2.2. Let � † "0, and let d be a Turing degree such that every g P d is
�m-c.a. for some m † !. Then d is totally �-c.a.

Proof. Let f P d. Define gpxq “ f æ
x

; then g P d. By assumption, there is
some m † ! such that g is �m-c.a. Let xg

s

, o
s

y be a �m-computable approximation
for g. By speeding up this approximation, we may assume that for all x and s, g

s

pxq
is a string of length x.

For every x and s there is some unique k † m such that o
s

pxq P r� ¨k, � ¨pk`1qq;
we denote this k by k

s

pxq. We have o
s

pxq “ � ¨ k
s

pxq ` �
s

pxq for some �
s

pxq † �.
For every x and s, k

s`1pxq § k
s

pxq, and so k
!

pxq “ lim
s

k
s

pxq is well-defined. We
let k˚ “ lim inf

x

k
!

pxq.
We can now give a �-computable approximation xf

s

,m
s

y for f . Fix x˚ such
that for all x • x˚, k

!

pxq • k˚; so for all s and all x • x˚, k
s

pxq • k˚. For any
y † ! we can e↵ectively find some x “ hpyq ° y such that k

!

pxq “ k˚, by insisting
that x • x˚ and waiting until we see some stage s such that k

s

pxq “ k˚. We let
tpyq be some stage t such that k

t

phpyqq “ k˚. Fix y, and let x “ hpyq; we then let

m
s

pyq “ �maxts,tpyqupxq
and

f
s

pyq “ `
gmaxts,tpyqupxq˘ pyq.

If f
s`1pyq ‰ f

s

pyq then s • tpyq and g
s`1pxqq ‰ g

s

pxq, and so o
s`1pxq † o

s

pxq.
Since s • tpyq, we have o

s

pxq “ � ¨ k˚ ` �
s

pxq and o
s`1pxq “ � ¨ k˚ ` �

s`1pxq, and
so m

s`1pyq “ �
s`1pxq † �

s

pxq “ m
s

pyq. Hence xf
s

,m
s

y is indeed a �-computable
approximation. If g

s

pxq “ gpxq then f
s

pyq “ pgpxqqpyq “ fpyq, so lim
s

f
s

“ f . ⇤
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The forward direction of Theorem 2.1 follows: if ↵ is not a power of !, then
there is some � † ↵ and some m such that ↵ § �m, and so every totally ↵-c.a.
degree is totally �m-c.a., and so by Lemma 2.2 is actually totally �-c.a.

The rest of this section is devoted to the proof of the backward direction of
Theorem 2.1: given some ↵ § "0 which is a power of !, the construction of a c.e.
degree which is totally ↵-c.a. but not totally �-c.a. for any � † ↵. Fix such ↵. The
key property of ↵, which makes the construction work, is that ↵ is closed under
addition (Proposition II.3.13). We define a computable enumeration xD

s

y of a c.e.
set D, and ensure that degTpDq is totally ↵-c.a. but not totally �-c.a. for any � † ↵.

To witness the properness, we enumerate a Turing functional ⇤ and ensure
that ⇤pDq is not �-c.e. for any � † ↵. We fix, for each � † ↵, an enumera-
tion xxfe,�

s

, oe,�
s

y
s†!y

e†! of tidy p� ` 1q-computable approximations whose limits
fe,� “ lim

s

fe,�

s

consist of all �-c.a. functions (Proposition II.1.7). To show that
⇤pDq is not �-c.a. for any � † ↵, it is su�cient to meet, for all � † ↵ and e † !,
the requirement

P e,�: There is some p such that ⇤pD, pq ‰ fe,�ppq.
Of course, we also need to ensure that ⇤pDq is total. To show that degTpDq is
totally ↵-c.a., we need to meet, for all e † !, the requirement

Q
e

: If �
e

pDq is total, then it is ↵-c.a.

Discussion. Perhaps surprisingly, the simplest construction one would hope
work, does work. We give full details because several other constructions we present
later are elaborations on this one.

First, independently consider the strategies for meeting each requirement. To
meet P e,� , we pick a witness p (also called a follower), and whenever we observe
that fe,�

s

ppq “ ⇤
s

pD
s

, pq, we change the value of ⇤pD, pq by enumerating the use
�
s

ppq “ �
s

pD
s

, pq into D
s`1. Recall our convention that since both D and � are defined by us,

the use �ppq is the largest number actually queried during the computation. If this is performed
without interruption, success is guaranteed, because our opponent can change the
value of fe,�ppq only finitely many times.

To meet Q
e

, the only thing we can do is observe, for each input x, the
value of �

e,s

pD
s

, xq, and at various stages s declare that we believe that
�

e

pD,xq “ �
e,s

pD
s

, xq. If �
e

pDq is total then we will eventually be right; we
need to ensure, informally speaking, that the “number of times” we change our
mind about the value of �

e

pD,xq is bounded by ↵. (Of course, technically we
mean that we need to define a decreasing sequence of ordinals below ↵ which is
associated with the mind-changes. However, it is useful to think of ↵ as bounding
the number of mind-changes, in an analogy with the situation ↵ “ !.) There is
one possible action Q

e

can take, and that is to impose restraint: if we freeze D
below the use '

d,s

pD
s

, xq, then our guess is correct.
The conflict between di↵erent requirements is now clear: when a requirement

P e,� enumerates �
s

ppq into D, this may destroy a computation �
d,s

pD,xq for some
d § e say, which Q

d

earlier declared it believed. The requirement Q
d

can tolerate
some injury; after all, it is not trying to make �

d

pDq computable. It needs to limit
the “amount of injury” to be below ↵. This is possible because once a follower p
is chosen, we can tell “how many times” the requirement P e,� will act: the bound
is oe,�0 ppq. Before starting to make guesses about �

d

pD,xq, the requirement Q
d

will observe which requirements will bother it and take their bounds oe,�0 ppq into
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consideration. The fact that ↵ is closed under addition means it can deal with
injury from more than one other requirement.

This plan will not succeed if we allow requirements P e,� to “gang up” on Q
d

.
Suppose that at some stage s, Q

d

starts making guesses about �
d

pD,xq, and de-
clares an ordinal � † ↵ bounding the “number of times” it will change its mind
about this value. This bound � is calculated on the basis of which followers p for
requirements P e,� it is observing at stage s. It would be bad if we allow a di↵erent
requirement P e,� (say for some e ° s) also destroy �

d

pD,xq: the bound on the
action of such a requirement cannot be comprehended by Q

d

at stage s. Such re-
quirements need to be restrained by Q

d

: the numbers �
t

ppq which they enumerate
into D must be greater than the use '

d,s

pxq.
On the face of it, this can be arranged using only finite injury: when Q

d

observes a new �
d

pD,xq computation, it initialises all requirements P e,� which are
not allowed to injure this computation. The use �

t

ppq for followers picked by these
requirements later will be greater than '

d,s

pxq as required. The reason that the
injury will be finite is that it is guaranteed that the finitely many requirements which
do have the right to injure �

d

pD,xq only act at finitely many stages. Thus, it would
seem, we would eventually either see a final computation �

d

pD,xq and injury to
weaker P e,� on behalf of this computation will cease; or the computation �

d

pD,xq
never recovers, in which case also, eventually initialisation of weaker requirements
will stop.

However, a complication arises from the combined influence of several nega-
tive requirements on some positive requirement. To see this, we first note that the
permission to injure a computation that some Q

d

is monitoring is follower-based
rather than requirement-based. Say that a positive requirement P e,� picks a fol-
lower p. Then we see a computation �

d

pD,xq. Since p is already chosen, Q
d

can
observe oe,�0 ppq and allow P e,� to injure the computation. However, if for some
reason later, P e,� abandons the follower p and replaces it by a new follower p1, the
requirement Q

d

can no longer tolerate any action by P e,� : the ordinal oe,�
s

pp1q may
be much larger than oe,�0 ppq, and could not have been observed by Q

d

at the stage
it first started copying �

d

pD,xq. In a sense, the requirement P e,� is demoted (it
loses priority) relative to the pair pd, xq.

Now consider such a positive requirement P “ P e,� and two negative require-
ments Q

c

and Q
d

. Suppose that, by an action of a positive requirement stronger
than P , P is no longer allowed to destroy �

c

pD, 0q, but that currently, �
c

pD, 0qÒ.
Meanwhile, P has a follower p0, and we observe �

d

pD, 0q for the first time. The
follower p0 is allowed to injure that computation, and that computation is indeed
destroyed (by P or by some weaker positive requirement). Then, we see that
�

c

pD, 0qÓ with large use; this forces P to cancel p0 and appoint a new follower p1.
In turn, this means that �

d

pD, 0q no longer tolerates P -action. While �
d

pD, 0qÒ,
we see that �

c

pD, 1qÓ, and it observes p1; some action destroys the computation.
We then see that �

d

pD, 0qÓ, and p1 is abandoned and replaced by a new follower p2,
and so �

c

pD, 1q can no longer tolerate P . The see-saw between Q
c

and Q
d

even-
tually causes infinitely much injury to P . Note that one negative requirement is
not su�cient for this argument, as we assume that dom�

d

pDq is an initial segment
of !.

The source of this problem is P ’s haste in appointing a replacement follower.
If it waited until �

c

pD, 0q converged before it appointed p0, no injury would be
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necessary. For this to be possible, P needs to guess whether �
c

pD, 0q will indeed
converge in the future; if not, it will not wait. This necessitates the use of a tree of
strategies in the construction.

The tree of strategies. As mentioned above (Section I.1), to define the tree,
we specify recursively the association of nodes to requirements, and specify the
outcomes of nodes working for particular requirements. To specify the priority
ordering of nodes, we specify the ordering between outcomes of any node.

We order all the requirements, Q
e

and P e,� , in order-type !; all nodes of length
k work for the kth requirement on the list. The outcomes of a node working for Q

e

are 8 and fin, with 8 † fin; a node working for P e,� has only one outcome.

Construction. At stage s, we let the collection of accessible nodes �
s

be an
initial segment of the tree of strategies.

Let � be a node which is accessible at stage s. We describe the action that �
takes, and if it does not end the stage, then we specify which immediate successor
of � is also accessible at stage s. Both of these depend, of course, on the requirement
for which � works.

Suppose first that � works for Q
e

. Then � takes no action beyond determining
which successor is accessible. If s is the least stage at which � is accessible, we let
�ˆ8 P �

s

. If not, let t be the last stage before stage s at which �ˆ8 was accessible.
If t † dom�

e,s

pD
s

q (again recall that we assume that dom�
e,s

pD
s

q is an initial segment of !

(Convention I.1.2), and that we use von-Neumann natural number notation, Convention I.1.3), let
�ˆ8 P �

s

. Otherwise, we let � f̂in P �
s

.
Now suppose that � works for P e,� . As � has but one outcome, the determi-

nation of the next element of �
s

is immediate, unless � acts and ends the stage, in
which case � is the last element of �

s

. We let � act as follows:

(1) If � has no follower, then � appoints a new, large follower p for itself.
(2) If � has a follower p, and ⇤

s

pD
s

, pq “ fe,�

s

ppq, then � enumerates �
s

ppq
into D

s`1. We will later verify that �
s

ppq R D

s

.

In either case, we set ⇤
s`1pD

s`1, pq “ s ` 1 with large use. Technically, this means

that we pick a large number u, and enumerate the axiom D

s`1 æ
u

fiÑ pp, sq into ⇤
s`1. The point of the

value s ` 1 is that ⇤
s`1pD

s`1, pq ‰ f

e,�

s`1ppq, since by convention, for all t, fe,�

t

ppq † t.

Also, in either case, we end the stage. If neither case (1) nor case (2) hold,
then � does not act, and the unique immediate successor of � on the tree of strate-
gies is accessible at stage s.

If � ended the stage, then all nodes that are weaker than � are initialised. For
positive requirements P e,� , being initialised means that their followers are cancelled,
and so at the next time they are visited, they have no follower and need to appoint
a new one.

At the end of the stage, for each p † s which is not at that moment a follower
for some node on the tree, if ⇤

s

pD
s

, pqÒ then we set ⇤
s`1pD

s`1, pq “ 0 with use ´1.
That is, we enumerate the axiom xy fiÑ pp, 0q into ⇤

s`1.

Verification. The following lemma will be familiar to experts in e↵ective con-
structions, indeed, it is usually taken for granted and not mentioned explicitly. We
give a careful and detailed presentation here, but will subsequently only sketch such
proofs. For the following lemma, we first note that if p is a follower for some node �
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at the beginning of stages t † s, and p P dom⇤
t

pD
t

q and p P dom⇤
s

pD
s

q (as we
shall soon verify), then p † �

t

ppq § �
s

ppq, since �
r

ppq is always chosen to be large.

Lemma 2.3. The functional ⇤ is consistent for D. Further, at every stage s:

(a) ⇤
s

is consistent for D
s

.

Let � be a node which works for a positive requirement, and suppose that at the
beginning of stage s, � has a follower p.

(b) ⇤
s

pD
s

, pqÓ and �
s

ppq R D
s

.
(c) If p1 is, at the beginning of stage s, a follower for a node �1 weaker than �,

then �
s

ppq † p1. And so �

s

ppq † �

s

pp1q.
(d) Let t † s, and suppose that p was a follower for � at the beginning of

stage t. So � was not initialised at any stage r P rt, sq. Then D
t

æ
�

t

ppq“ D
s

æ
�

t

ppq.
If, further, � does not act at any stage r P rt, sq, then D

t

æ
�

t

ppq`1“ D
s

æ
�

t

ppq`1

(this implies that �

s

ppq “ �

t

ppq).

Proof. We prove (a), (b), (c) and (d) simultaneously by induction on s. As-
sume the lemma holds for s ´ 1; we consider the action taken at stage s ´ 1.

For (a) at stage s, we invoke Lemma I.1.1. Condition (1) of that lemma certainly
holds at every stage of the construction. Condition (2) also holds: at stage s´1, at
most one node � enumerates a new axiom into ⇤

s

which pertains to its follower p; at
the end of the stage we may enumerate further axioms, but only for numbers which
are no longer followers, and so for numbers other than p. For condition (3), suppose
that a new axiom pertaining to some number p is added to ⇤

s

during stage s ´ 1,
but that p P dom⇤

s´1pD
s´1q; we need to show that �

s´1ppq is enumerated into D
s

.
The assumption on p implies that p is not chosen as a new follower at stage s ´ 1.
At the end of the stage we add axioms only for numbers p R dom⇤

s´1pD
s´1q; so it

must be that p is a follower for some node � at the beginning of stage s´1. Thus, �
acts at stage s´ 1 and enumerates �

s´1ppq into D
s

(we use (b) at stage s´ 1); this
shows condition (3) of Lemma I.1.1 holds. This shows that (a) holds at stage s as
well.

We next prove (d). Let t, � and p be as described. Suppose that a number
y enters D

r`1 for some r P rt, sq. Then y “ �
r

pp1q for some follower p1 for some
node �1. Since � is not initialised at stage r, either �1 is weaker than �, in which
case by (c) at stage r we have y ° �

r

ppq • �
t

ppq; or �1 “ �, in which case of course
y “ �

r

ppq • �
t

ppq. In either case, D
t

æ
�

t

ppq“ D
s

æ
�

t

ppq. If � does not act at any
stage r P rt, sq then we always have y ° �

t

ppq and so D
t

æ
�

t

ppq`1“ D
s

æ
�

t

ppq`1.

To show (b) at stage s, let p be a follower for a node � at the beginning
of stage s. If � acts at stage s ´ 1, then at that stage we define ⇤

s

pD
s

, pq Ó
with large use �

s

ppq; since it is large, we have �
s

ppq R D
s

. Otherwise, p is a
follower for � at the beginning of stage s ´ 1, and p is not cancelled at that
stage. By (b) at stage s ´ 1, ⇤

s´1pD
s´1, pqÓ. By (d) at stage s, with t “ s ´ 1,

we have D
s

æ
�

s´1ppq`1“ D
s´1 æ

�

s´1ppq`1. This implies that the axiom making
⇤
s´1pD

s´1, pqÓ applies at stage s as well, and in fact �
s

ppq “ �
s´1ppq. By (b) at

stage s ´ 1 we have �
s´1ppq R D

s´1, and the agreement between D
s´1 and D

s

just
observed shows that �

s

ppq “ �
s´1ppq R D

s

as well.

For (c), let p1 and �1 be as described. Let t § s ´ 1 be the stage at which p1
was chosen as a follower for �1. The fact that the follower p1 is kept from stage t`1
up to stage s shows that �1 was not initialised at any stage r P rt, sq. Since � is



III.2. THE FIRST HIERARCHY THEOREM: TOTALLY !

↵-C.A. DEGREES 51

stronger than �1, this shows that � was not initialised and did not act at any such
stage. Thus, p must have been appointed by � at a stage prior to stage t, and so p
is a follower for � at the beginning of stage t. At stage t, p1 is chosen to be large,
and so p1 ° �

t

ppq (the latter exists by (b) at stage t). By (d) (at stage s, applied
to stage t), we see that D

s

æ
�

t

ppq`1“ D
t

æ
�

t

ppq`1, whence �sppq “ �
t

ppq. ⇤

We start by working toward showing that the construction is fair.

Lemma 2.4. Let � be a node which works for requirement P e,� . Let s † t
be stages, and suppose that � acts at both stages s and t, and is not initialised
at any stage r P ps, tq. Let p be the follower for � at the end of stage s. Then
oe,�
t

ppq † oe,�
s

ppq.
Proof. The follower p is not cancelled at any stage r P ps, ts. In particular, �’s

action at stage t is not appointing a new follower, and so this action is prompted
by the equality fe,�

t

ppq “ ⇤
t

pD
t

, pq.
We observe that ⇤

t

pD
t

, pq ° s. This follows from the fact that at stage s, we
set ⇤

s`1pD
s`1, pq “ s ` 1, and that at no later stage do we decrease the value of

⇤
r

pD
r

, pq.
Now we have fe,�

t

ppq “ ⇤
t

pD
t

, pq ° s and by convention, fe,�

s

ppq † s. So
fe,�

s

ppq ‰ fe,�

t

ppq. Since xfe,�

s

, oe,�
s

y
s†! is a p�`1q-computable approximation, and

fe,�

r

ppq is not constant on r P rs, ts, we must have oe,�
t

ppq † oe,�
s

ppq. ⇤

Since for all s, �
s

is an initial segment of the tree of strategies, the true path �
!

is an initial segment of the tree. Since every node on the tree of strategies has but
finitely many outcomes, the only thing that could stop the true path from being
infinite is that some node on the true path acts and ends the stage at almost every
stage it is accessible.

Lemma 2.5. Suppose that � is a node on the true path working for some positive
requirement P e,� , and that the construction is fair to �. Then � acts only finitely
many times.

Proof. Let s0 be the last stage at which � is initialised. Let s1 be the least
stage beyond s0 at which � is accessible. At stage s1, � appoints a follower p.
Since s1 ° s0, this follower is never cancelled.

The fact that � acts only finitely many times beyond stage s1 now follows from
Lemma 2.4. Since xfe,�

s

, oe,�
s

y is a p�` 1q-computable approximation, there is some
stage t • s1 after which oe,�

u

ppq is constant. Then � can act at most once after
stage t. ⇤

By induction on the length of nodes, we see that the construction is fair to
every node on the true path, and so that no node can be the last node on the true
path.

Corollary 2.6. The true path �
!

is infinite, and the construction is fair to
every node on the true path.

Next, we show that the positive requirements are met, and so that ⇤pDq wit-
nesses that degTpDq is not totally �-c.a. for any � † ↵.

Lemma 2.7. ⇤pDq is total.
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Proof. Let p † !. Suppose that there is some stage s0 ° p at which p is not
a follower for any node. After stage s0, we enumerate an axiom into ⇤ regarding p
at most once, because such an axiom has use ´1 and so defines a computation that
cannot be destroyed. So overall, only finitely many axioms in ⇤ are made for p.
Thus, if p R dom⇤pDq, then at almost every stage s we have p R dom⇤

s

pD
s

q. But
then at some such stage s ° s0 we would define ⇤

s`1pD
s`1, pqÓ with use ´1, which

would imply that p P dom⇤pDq after all – contradiction.

Now suppose that p is picked as a follower for some node �, and that p is never
cancelled. The construction is fair to �, and so either � lies to the left of the true
path, or lies on the true path. In either case, � acts at most finitely many times
(Lemma 2.5). Let s´1 be the last stage at which � acts. Lemma 2.3(d) now shows
that Dæ

�

s

ppq`1“ D
s

æ
�

s

ppq`1 and so p P dom⇤pDq. ⇤
Lemma 2.8. Every positive requirement is met.

Proof. Let P e,� be a positive requirement. Let � be a node on the true
path which works for P e,� . As in the proof of Lemma 2.7 there is a last
stage s ´ 1 at which � acts, and at that stage we define a D-correct compu-
tation ⇤

s

pD
s

, pq. If ⇤pD, pq “ fe,�ppq, then for almost all stages t ° s we would
have ⇤

t

pD
t

, pq “ fe,�

t

ppq. There is such a stage t ° s at which � is accessible. At
such a stage, � would act – contradiction. ⇤

We now need to show that degTpDq is totally ↵-c.a., that is, that every re-
quirement Q

e

is met. Fix e † !, and suppose that �
e

pDq is total; we give �
e

pDq
an ↵-computable approximation.

Since the true path �
!

is infinite, there is some node ⌧ P �
!

that works for the
requirement Q

e

. Let s˚ be the last stage at which the node ⌧ is initialised (this is
the same as the last stage at which the node ⌧ˆ8 is initialised). We let

S “ ts ° s˚ : ⌧ˆ8 P �
s

u .
Since �

e

pDq is total, S is infinite (so ⌧ˆ8 is on the true path) – a greatest stage in
S would yield a contradiction. Let s0, s1, . . . be the increasing enumeration of the
(computable) set S.

For x † !, we let ipxq be the least index i such that x † dom�
e

pDqrs
i

s. For
j • ipxq, we let a

j

pxq be the collection of nodes � • ⌧ˆ8 which at the beginning of
stage s

j

have a follower p “ pp�, xq which was chosen before stage s
ipxq. Note that

for all j • ipxq, a
j`1pxq Ñ a

j

pxq. The next lemma says that only nodes in a
j

pxq
can injure the computation �

e

pD,xqrs
j

s.
Lemma 2.9. Let j • ipxq. Suppose that �

e

pD,xqrs
j`1s ‰ �

e

pD,xqrs
j

s. Then
the weakest node in a

j`1pxq acts at stage s
j

.

Proof. There is some stage r P rs
j

, s
j`1q at which some node � enumerates a

number smaller than '
e,s

j

pxq into D
r`1, destroying the computation �

e

pD,xqrs
j

s.
Recall that since �

e

is not enumerated by us, our convention is that '
e

pxq is not the largest number

queried but one greater, the length of the string in the axiom defining the computation. We show
that r “ s

j

and that � is the weakest node in a
j`1pxq.

Let p be �’s follower at stage r. Let t be the stage at which p was appointed.
We have �

r

ppq † '
e,s

j

pxq, and so t † s
j

.
Certainly, � cannot be stronger than ⌧ˆ8, since r ° s˚. On the other hand,

⌧ˆ8 is accessible at stage s
j

, and � is not initialised at stage s
j

(this would cancel
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p), whence � must extend ⌧ˆ8. From this we already conclude that r “ s
j

, as � is
not accessible at any stage in the interval ps

j

, s
j`1q.

Since � acts at stage s
j

, all nodes weaker than � are initialised at stage s
j

, and
so no node weaker than � can have, at stage s

j`1, a follower chosen prior to stage
s
ipxq. I.e., no node weaker than � can be an element of a

j`1pxq. To finish the proof
of the lemma, it remains to show that � P a

j`1pxq, i.e., to show that t † s
ipxq,

and that � is not initialised at some stage r P rs
j

, s
j`1q. The latter is immediate:

at stage s
j

, � acts and so is not initialised; and at stage r P ps
j

, s
j`1q, ⌧ˆ8 is not

accessible, and so the fact that ⌧ˆ8 is not initialised at stage r implies that neither
is �.

Suppose, for a contradiction, that t • s
ipxq. Since � extends ⌧ˆ8, we see

that t P S and so that x † dom�
e

pDqrts. This is the crucial point for the entire
construction: in this case every time we define �ppq we observe �

e

pD,xq, and so
the former is larger than the use of the latter.

Let u “ '
e,t

pxq. At stage t we pick �
t

ppq ° u. Since � is not initialised at any
stage r P rt, s

j

q, Lemma 2.3(d) shows that D
t

æ
u

“ D
s

j

æ
u

, which in turn implies
that '

e,s

j

pxq “ u. This contradicts �
s

j

ppq † '
e,s

j

pxq. ⇤
Fix x † !. For j • ipxq and � P a

j

pxq we let t
j

p�q be the greatest stage t † s
j

at which � acts. Such a stage t exists, because � acts when it appoints the follower
pp�, xq. We note for later that � is not initialised between stage t

j

p�q and stage s
j

.
In fact, t

j

p�q “ s
i

for some i † j, but this is not material.

For j • ipxq and � P a
j

pxq we let �
j

p�q “ oi,�
t

j

p�qppp�, xqq, where � works for

the requirement P i,� . We order the set a
j

pxq by descending priority to obtain a
sequence, and let

m
j

pxq “
ÿ

�Pa
j

pxq
�
j

p�q,

with the addition performed along the order of a
j

pxq: if a
j

pxq “ x�1,�2, . . . ,�ky
then m

j

pxq “ �
j

p�1q`�
j

p�2q`¨ ¨ ¨`�
j

p�
k

q. We let g
j

pxq “ �
e

pD,xqrs
j

s. Certainly
lim

jÑ8 g
j

pxq “ �
e

pD,xq.
Lemma 2.10. Let j • ipxq. Then m

j`1pxq § m
j

pxq † ↵, and if g
j`1pxq ‰ g

j

pxq
then m

j`1pxq † m
j

pxq.
We then let m

j

pxq “ m
ipxqpxq and g

j

pxq “ g
ipxqpxq for all j † ipxq, and see

that xg
j

,m
j

y is an ↵-computable approximation for �
e

pDq.
Proof. First note that for each j • ipxq, for each � P a

j

pxq, if � works for
P i,� then �

j

p�q § � † ↵; as ↵ is closed under addition (here is where we use the
assumption), m

j

pxq † ↵ for all j.
Next, we observe that thought of as sequences, a

j`1pxq is an initial segment
of a

j

pxq. This is because if � P a
j

pxqza
j`1pxq, then � is initialised at some stage

r P rs
j

, s
j`1q; at that stage r, every node weaker than � is also initialised and

extracted from a
j`1pxq.

Now for each � P a
j`1pxq, t

j`1p�q • t
j

p�q and so �
j`1p�q § �

j

p�q. Altogether,
we see that m

j`1pxq § m
j

pxq.
Suppose that g

j`1pxq ‰ g
j

pxq. Let � be the weakest node in a
j`1pxq. We

know (Lemma 2.9) that � acts at stage s
j

. Thus, t
j

p�q † s
j

“ t
j`1p�q. Since

� acts at both stage t
j

p�q and stage t
j`1p�q, and is not initialised between these

stages, Lemma 2.4 says that �
j`1p�q † �

j

p�q. Together with �
j`1p⌧q § �

j

p⌧q for
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all other ⌧ P a
j`1pxq, and since �

j`1p�q is the last summand in m
j`1pxq, we see

that m
j`1pxq † m

j

pxq. ⇤

3. A refinement of the hierarchy: uniformly totally !↵-c.a. degrees

Downey, Jockusch and Stob [24] have shown that the following are equivalent
for a c.e. degree d:

(1) d is array computable;
(2) for every increasing computable function h, every function f P d has

an h-bounded computable approximation;
(3) there is some increasing computable function h such that every function

f P d has an h-bounded computable approximation.

By Proposition II.1.12, every c.e., array computable degree is totally !-c.a.
Note that the computable enumerablility of d is necessary here, as there are un-
countably many array computable degrees.

The converse does not hold: there is a c.e. degree which is totally !-c.a. but
not array computable. An indirect argument for the existence of such a degree is
given by a conjunction of work by Walk [61] and Downey, Greenberg and Weber
[17]. Walk constructed a c.e. degree which is not array computable, but does not
bound a critical triple. Downey, Greenberg and Weber showed that such a degree
must be totally !-c.a.

Theorem 3.5 gives a direct construction of a c.e. degree which is totally !-
c.a. and not array computable, by finding a generalisation of the notion of array
computability to all levels of the hierarchy of totally !↵-c.a. degrees. We call this
generalisation the uniform version of total !↵-computable approximability. The
key idea is the observation, mentioned above, that for ordinals ↵ ° !, the first
value o0pxq of an ↵-computable approximation xf

s

, o
s

y is the correct measure of
“how many times” the approximation xf

s

pxqy
s†! changes, rather than the natural

number mxf
s

ypxq, the value of the mind-change function.

Definition 3.1. Let ↵ § "0.
An ↵-order function is a non-decreasing computable function h : ! Ñ ↵ whose

range is unbounded in ↵.
Let h be an ↵-order function. An ↵-computable approximation xf

s

, o
s

y is an
h-computable approximation if for all x, o0pxq † hpxq. In the language of Section II.3, for

each x the seqience xf
s

pxq, o
s

pxqy is an instance of an hpxq-computable approximation.

We say that a function f : ! Ñ ! is h-computably approximable (or h-c.a.) if
there is an h-computable approximation xf

s

, o
s

y such that lim
s

f
s

“ f .

Note that for all ↵ § "0, ↵-order functions exist; in fact, there is a computable,
strictly increasing and unbounded function from ! to ↵ (see Lemma II.2.11). This
shows that a function is ↵-c.a. if and only if it is h-c.a. for some ↵-order function h.

The following uses an argument used by Terwijn and Zambella [60] in the
context of computable traceability, and earlier by Downey, Jockusch and Stob [24].

Lemma 3.2. The following are equivalent for a Turing degree d and ↵ § "0.

(1) There is some ↵-order function h such that every f P d is h-c.a.
(2) For every ↵-order function h, every f P d is h-c.a.

Proof. Let h and h̄ be ↵-order functions. We show that for all f : ! Ñ !
there is some g ”T f such that if g is h̄-c.a., then f is h-c.a.
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The function g is obtained by “stretching” f along the composition of the “dis-
crete inverse” of h with h̄. Namely, we (computably) partition ! into an increasing
sequence of finite intervals I˚ † I0 † I1 † I2 † . . . so that for all n, for all x P I

n

,
hpxq • h̄pnq. Some intervals I

n

are allowed to be empty (this is used when h̄ is not
injective). We simply let I˚ be the set of x such that hpxq † h̄p0q; and if

h̄pn ´ 1q † h̄pnq “ ¨ ¨ ¨ “ h̄pmq † h̄pm ` 1q
(possibly m “ n) then we let I

n

be the set of x such that h̄pnq § hpxq † h̄pm ` 1q;
this is finite since h is unbounded in ↵. For k between n and m ` 1 we let I

k

be
empty.

We then define gpnq “ f æ
I

n

. Let xg
s

, o
s

y be an h̄-computable approximation
for g. By speeding up this approximation we may assume that for all s and n, g

s

pnq
is a function from I

n

to !. We can then define f
s

pxq “ pg
s

pnqqpxq for x P I
n

(and
let m

s

pxq “ o
s

pnq); for x P I˚ we let f
s

pxq “ fpxq and m
s

pxq “ 0. Then xf
s

,m
s

y
is an h-computable approximation for f . ⇤

Definition 3.3. A Turing degree d is uniformly totally ↵-c.a. if for some (all)
↵-order function(s) h, every f P d is h-c.a.

The Downey, Jockusch and Stob characterisation shows that a c.e. degree is
array computable if and only if it is uniformly totally !-c.a.

Lemma 3.4. A Turing degree d is uniformly totally ↵-c.a. if and only if for
some (all) ↵-order function h, every f §T d is h-c.a.

Proof. Suppose that d is uniformly totally ↵-c.a., and let h be an ↵-order
function. Let f §T d and let g P d; so f ‘ g P d. Then f ‘ g is h‘h-c.a.; it follows
that f is h-c.a. ⇤

The argument of Proposition 1.5 shows that a c.e. degree is uniformly totally
↵-c.a. if and only if for some (all) ↵-order function h, every set in d is h-c.a.

We turn to investigate the distribution of uniformly totally ↵-c.a. degrees in the
hierarchy of totally ↵-c.a. degrees. An immediate fact, using the constant function
with value ↵, is that for all ↵ † "0, every totally ↵-c.a. degree is uniformly totally
p↵ ` 1q-c.a.

It follows from the easy direction of Theorem 2.1 that if � P p!↵,!↵`1q (that
is, if � is not a power of !), then every uniformly totally �-c.a. degree is totally
!↵-c.a. Hence, if � is not a power of !, then there is an ordinal ↵ which is a power
of ! such that the collection of uniformly totally �-c.a. degrees is the same as the
collection of totally ↵-c.a. degrees.

Thus, the only ordinals ↵ for which the class of uniformly totally ↵-c.a. degrees
does not necessarily coincide with the class of totally �-c.a. degrees for some ordi-
nal � are the powers of !. Theorem 3.5 shows that for ordinals ↵ § "0 which are
powers of !, the uniformly totally ↵-c.a. degrees indeed form a distinct level of the
hierarchy.

Theorem 3.5. Let ↵ § "0 be a power of !.

(1) There is a uniformly totally ↵-c.a. c.e. degree which is not totally �-c.a.
for any � † ↵.

(2) There is a totally ↵-c.a. c.e. degree which is not uniformly totally ↵-c.a.



56 CHAPTER III. THE HIERARCHY OF TOTALLY ↵-C.A. DEGREES

The first ! ¨2 many levels of the hierarchy of totally and uniformly totally ↵-c.a.
degrees are depicted in Figure 2.

unif. !

!

unif. !2

!2

unif. !3

!3

...

unif. !!

!!

unif. !!`1

!!`1

...

Figure 2. The first refinement of the hierarchy. “!↵” denotes the
collection of totally !↵-c.a. degrees. “unif. !↵” denotes the class
of uniformly totally !↵-c.a. degrees.

3.1. Proof of Theorem 3.5(1). We show that the first part of Theorem 3.5
is actually already proved using the construction used for proving Theorem 2.1.
Given ↵ § "0 which is a power of !, that construction produces a c.e. set D whose
Turing degree is totally ↵-c.a., but such that there is some f §T D that is not
�-c.a. for any � † ↵. We show that degTpDq is actually uniformly totally ↵-c.a.
The reason for this is the long delay between expansionary stages that was already
incorporated into the construction.

For concreteness, let P e0,�0 , P e1,�1 , . . . e↵ectively enumerate all the positive
requirements P e,� , and suppose that for all k † !, all nodes of length 2k work
for the requirement P e

k

,�

k . In particular, all nodes of even length work for some
positive requirement.
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Lemma 3.6. For all stages s, for all � P �
s

, |�| § 2s.

Proof. By induction on s. If this holds for all stages t † s, and if at stage s,
some node � of length 2s is accessible, then since it works for a positive requirement,
and was not accessible at any stage before s, at stage s, the nodes � acts by
appointing a follower, and ends the stage. ⇤

For all n † !, let

hpnq “
ˆ
max
k§n

�
k

˙
¨ 22n.

Since every ordinal below ↵ appears as some �
k

, the function h is an ↵-order
function. The combinatorial point is that if �1, . . . ,�l is a sequence of distinct
nodes on the tree, each of length at most 2n, with �

i

working for P e

k

i

,�

k

i (so
k
i

§ n), then as the tree of strategies is (at most) binary branching, we have
l § 22n, and so ÿ

i§l

�
k

i

§ hpnq.

We show that every f §T D is ph`1q-c.a. To this end, fix some e † ! such that
�

e

pDq is total, and let ⌧ be a node on the true path which works for requirement
Q

e

. Recall the construction, during the proof of Theorem 3.5, of an ↵-computable
approximation xg

j

,m
j

y for �
e

pDq. We let s˚ be the last stage at which ⌧ was
initialised, and

S “ ts ° s˚ : ⌧ˆ8 P �
s

u “ ts0, s1, . . . u.
For all x † !, ipxq was the least index i such that x † dom�

e

pDqrs
i

s. For
j • ipxq we observed the set a

j

pxq of nodes � • ⌧ˆ8 that have followers at the
beginning of stage s

ipxq, and are not initialised between stages s
ipxq and s

j

; we focus
on apxq “ a

ipxqpxq. The ordinal m0pxq “ m
ipxqpxq was defined to be the sum of

ordinals of the form oi,�
t

ppq, where t † s
ipxq is some stage, and p is a follower at

stage s
ipxq for � P apxq, working for P i,� . Certainly oi,�

t

ppq § �. And so, if 2n is
a bound on the lengths of nodes in apxq, then m0pxq § hpnq. The proof will be
complete when we show that for almost all x, 2x is a bound on the lengths of nodes
in apxq, and so m0pxq § hpxq; so a modification of the approximation xg

j

,m
j

y on
finitely many inputs yields an h-computable approximation for �

e

pDq.
Lemma 3.7. For all x • dom�

e

pDqrs1s, for all � P apxq, |�| § 2x.

Proof. Let x • dom�
e

pDqrs1s. So ipxq • 2; for brevity, we let u0 “ s
ipxq´2

and u1 “ s
ipxq´1. By the instructions for ⌧ , u0 † dom�

e

pDqru1s; by minimality
of ipxq, dom�

e

pDqru1s § x; so x ° u0. By Lemma 3.6, all nodes accessible at any
stage t § u0 have length at most 2u0.

Let � P �
u1 be a node working for some positive requirement P i,� which has

not been accessible at any stage s § u0 (if there is such a node). Since ⌧ and all
of its predecessors are accessible at stage u0, we have � • ⌧ˆ8. But since u1 is the
immediate successor of u0 in S, � was not accessible at any stage s P pu0, u1q; so
u1 is the least stage at which � is accessible, and so � ends the stage u1. It follows
that for such � we must have |�| § 2u0 ` 2.

In total, if � • ⌧ˆ8 is accessible at any stage s § u1, then |�| § 2pu0 `1q § 2x.
Let � P apxq. The node � extends ⌧ˆ8, and was accessible at some stage t P S,

smaller than s
ipxq; so t § u1. Hence |�| § 2x as required. ⇤
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3.2. Proof of Theorem 3.5(2). A minor modification of the construction for
Theorem 2.1 gives the proof of the second part of Theorem 3.5. Again, we are given
an ordinal ↵ which is a power of !, so is closed under addition; and we enumerate
a c.e. set D whose Turing degree will be totally ↵-c.a. but not uniformly so. By
Lemma 3.4, it is su�cient to fix an ↵-order function h and enumerate a functional
⇤ such that ⇤pDq is total and is not h-c.a. What makes this construction work
is that we can enumerate tidy ph ` 1q-computable approximations. The definition
is the expected modification of Definition II.1.5. A simpler version of the proof of
Proposition II.1.7 yields:

Lemma 3.8. Let ↵ § "0 and let h be an ↵-order function. Then there is an
e↵ective enumeration xfe

s

, oe
s

y of tidy ph ` 1q-computable approximations such that
letting fe “ lim fe

s

, the sequence xfey
e†! contains all h-c.a. functions.

Fixing h, we get an enumeration of ph ` 1q-computable approximations
xxfe

s

, oe
s

y
s†!y

e†! as in Lemma 3.8, and repeat the construction for Theorem 2.1
where the positive requirements are now:

P e: There is some p such that ⇤pD, pq ‰ feppq.
The rest of the construction is identical, as are the verifications, and so we

omit them. The critical reader would ask, though: as was shown in the previous
subsection, the construction for Theorem 2.1 actually produces a uniformly totally
↵-c.a. degree. Why cannot we replicate the argument now to get a contradiction?

We recall the argument proving the first part of Theorem 3.5. Let e † !
such that �

e

pDq is total. A uniform bound for m0pxq, where xg
j

,m
j

y
j†! is the

↵-computable approximation for �
e

pDq, was given by seeing that for almost all
x, the nodes in apxq all had length at most 2x, a fact which is preserved in the
current, modified construction. In the previous construction, this was su�cient
to give the bound, since for any follower p for some node � P apxq, working for
some P i,� , we had oi,�0 pxq § �. In the current construction, of course, we just have
oi0ppq § hppq ` 1, so the size of p plays a role.

Cannot we use the argument showing that � P apxq has length at most 2x to
also bound the size of followers for such �? After all, these followers are chosen at
some ⌧ -expansionary stage t smaller than s

ipxq, and, roughly speaking, a follower
chosen at stage t has size “close to t”. As in the proof of Lemma 3.7, let u0 † u1 be
the immediate predecessors of s

ipxq in S. Then u0 is bounded by x, but u1 may be
much larger than x; and one element � of apxq may pick its follower at stage u1. So
even though the length of that � is bounded by 2x, the size of its follower cannot
be computably bounded in x, and it is this single late-choosing element of apxq
which prevents us from giving an approximation �

e

pD,xq with some ordinal bound
which depends on x but not on � and p (and so not on ⌧).

4. Another refinement of the hierarchy: totally † !↵-c.a. degrees

The hierarchy of totally ↵-c.a. degree is not, a priori, the finest one could devise.
For a limit ordinal ↵, one could conceive of a totally ↵-c.a. degree d such that every
f P d is �-c.a. for some � † ↵, but such that d is not totally �-c.a. for any � † ↵.

Definition 4.1. Let ↵ § "0. A Turing degree d is totally † ↵-c.a. if every
f P d is �-c.a. for some � † ↵.
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As is the case with totally ↵-c.a. degrees and with uniformly totally ↵-c.a.
degrees, a Turing degree d is totally † ↵-c.a. if and only if every f §T d is �-c.a.
for some � † ↵.

As was indicated in the introduction, the class of totally † !!-c.a. degrees is
the main class investigated in this work.

As we did for uniformly totally ↵-c.a. degrees, we now examine how the classes
of totally † ↵-c.a. degrees fit in the hierarchy of totally ↵-c.a. degrees. Of course, if
� † ↵, then every totally �-c.a. degree is totally † ↵-c.a., and every totally † ↵-c.a.
degree is totally ↵-c.a. In fact, slightly more holds: for any ordinal ↵, every totally
† ↵-c.a. degree is uniformly totally ↵-c.a., because for any ↵-order function h and
all � † ↵, hpxq • � for almost all x, so any �-computable approximation can easily
be converted into an h-computable approximation.

Lemma 2.2 shows that if � P p!↵,!↵`1s, then every totally † �-c.a. degree is
totally !↵-c.a.; in particular, note that this holds even if � “ !↵`1. Hence, if � is
not a limit of powers of !, then there is some ↵ † �, a power of !, such that the
class of totally † �-c.a. degrees coincides with the class of totally ↵-c.a. degrees.

Also note that the construction proving Theorem 2.1 and Theorem 3.5(1) pro-
duces a degree that is uniformly totally ↵-c.a. but not totally † ↵-c.a.; to show
that the degree constructed was not totally �-c.a. for any � † ↵, we constructed a
single function ⇤pDq which was not �-c.a. for any � † ↵.

The following theorem then completely determines the new levels of our hier-
archy, the first ! ¨ 2 levels of which are depicted in Figure 3.

Theorem 4.2. If ↵ § "0 is a limit of powers of !, then there is a c.e. degree
which is totally † ↵-c.a. but not totally �-c.a. for any � † ↵.

The rest of this section is devoted to the proof of Theorem 4.2. We are given
an ordinal ↵ § "0, a limit of powers of !, and give a computable enumeration xD

s

y
of a c.e. set D such that degTpDq is totally † ↵-c.a. but not totally �-c.a. for any
� † ↵.

For every � † ↵ and e † ! we must meet the requirements

P �: There is a function f §T D which is not �-c.a.

and

Q
e

: If �
e

pDq is total, then �
e

pDq is �-c.a. for some � † ↵.

Discussion. The first thing to notice is that we cannot, uniformly in �, compute
from D a function f which is not �-c.a.; for we could string these functions together
to get a single function which is not �-c.a. for any � † ↵, and so fail to make degTpDq
totally † ↵-c.a.

It is also fairly easy to see how the construction necessitates this non-uniformity.
For suppose we tried to copy the construction proving Theorem 2.1. A node ⌧ ,
working for Q

e

, is now trying to make �
e

pDq a �-c.a. function for some � † ↵. But
extending ⌧ˆ8 are nodes �, working for P � for ordinals � which are unbounded in
↵; their action would cause changes to ⌧ ’s approximation of �

e

pDq, and so force ⌧
to have its � larger than all of these �’s, i.e., to be at least ↵.

The solution concerns that basic staple of both comedy and computability
theory, namely timing. Remember that in a situation as above, a node � extending
⌧ˆ8 can injure a computation �

e

pD,xqrss only if the follower p for � at stage s was
appointed before the ⌧ -expansionary stage t “ s

ipxq at which we first observed and
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unif. !

!

unif. !2

!2

unif. !3

!3

...

† !!

unif. !!
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unif. !!`1

!!`1

...

Figure 3. The second refinement of the hierarchy. “!↵” denotes
the collection of totally !↵-c.a. degrees. “† !↵” denotes the col-
lection of totally † !↵-c.a. degrees. “unif. !↵” denotes the class
of uniformly totally !↵-c.a. degrees.

certified a computation �
e

pD,xqrts. On the other hand, regardless of when p was
appointed, upon enumerating �

s

ppq into D
s`1, we need to immediately appoint a

new use �
s`1ppq, without waiting for a new �

e

pD,xqrus computation to recover;
this, because we need to make ⇤pDq total. Even though � guesses that �

e

pDq
is total, it is participating in the construction of the global functional ⇤, and is
responsible for making p P dom⇤pDq, even if its guess is incorrect. Inevitably, the
new marker �

s`1ppq will be smaller than the use '
e,r

pxq at the next ⌧ -expansionary
stage, and so further action with p will injure �

e

pD,xq again.
In the previous construction this was fine, because � provided ⌧ with a bound

oi,�0 ppq on the “number of times” is will act for p, and the sum of these bounds was
smaller than ↵. As mentioned above, this is insu�cient when we want to show that
the function �

e

pDq is �-c.a. for some � † ↵. Once we determined �, what we need
to do is break the cycle of repeated injury by the same follower p, when the bound
for the follower is greater than �. This is possible if we delay defining ⇤pD, pq until
we see the computation �

e

pD,xq recover. To do this, we distribute in a tree of
strategies nodes ⌘, working for P � , which are responsible for a local version ⇤

⌘

pDq
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of ⇤pDq. Only nodes extending ⌘ contribute to the definition of ⇤
⌘

pDq, and the
function ⇤

⌘

pDq is required to be total only if ⌘ lies on the true path. If such ⌘
extends ⌧ˆ8, then indeed definitions of ⇤

⌘

pD, pq can wait until �
e

pD,xq recovers
at the next ⌧ -expansionary stage. We see how this gives the non-uniformity in
defining the function witnessing P � : we need the true path to find it.

How do we find �? The approach of waiting to define ⇤
⌘

cannot be employed
if ⌧ extends ⌘. If � is a “child” node of such ⌘ with ⌧ˆ8 § �, then we are back at
the situation of the original construction: repeated action for a follower p for � will
keep injuring a computation �

e

pD,xq. Again, � provides a bound for its action,
and that bound is itself bounded by �, where ⌘ works for P � . And � † ↵. Since
there are only finitely many “mother” nodes ⌘ † ⌧ , the bound � will be any ordinal,
closed under addition, which bounds the ordinals � for these nodes ⌘. That such
an ordinal � † ↵ can be found follows from the fact that ↵ is a limit of ordinals
closed under addition.

The tree of strategies. Let � † ↵. In order to meet the requirement P � , for
each e † !, we need to meet the subrequirements P e,� which diagonalise against
fe,� . We arrange all of the requirements and subrequirements – Q

e

, P � and P e,�

– e↵ectively, in a list of order-type !, but ensuring that for each � and e, P �

appears before P e,� . We let all strategies on the tree of length k work for the kth

requirement on the list.
Nodes working for requirements P � and P e,� have only one outcome. Nodes

working for Q
e

have two outcomes, 8 and fin, the former stronger than the latter.
Nodes ⌘ working for P � enumerate a functional ⇤

⌘

. For any node � working
for P �,e there is a unique node ⌘ † � working for P � . We denote this node, the
“mother” of �, by ⌘p�q.

Construction. At stage s, we let �
s

, the collection of nodes accessible at stage s,
be an initial segment of the tree of strategies.

Suppose that a node ⌧ that works for requirement Q
e

is accessible at stage s.
If s is the least stage at which ⌧ is accessible, then we let ⌧ˆ8 P �

s

. Otherwise, we
let t be the last stage before s at which ⌧ˆ8 was accessible. If t † dom�

e,s

pD
s

q,
then we let ⌧ˆ8 P �

s

. Otherwise, we let ⌧ f̂in P �
s

.
Suppose that a node ⌘ that works for requirement P � is accessible at stage s.

If there is some p which is a follower for some child � ° ⌘ of ⌘ (an extension of ⌘
working for some subrequirement P e,�) such that p R dom⇤

⌘,s

pD
s

q, then we define
⇤
⌘,s`1pD

s

, pq “ s ` 1 with large use, and end the stage (in this case, we do not
initialise all nodes weaker than ⌘; but as usual, we do initialise all nodes which lie
to the right of ⌘).

Otherwise, for all p † s which is not in dom⇤
⌘,s

pD
s

q, we define ⇤
⌘,s`1pD

s

, pq “ 0
with use ´1; the unique immediate successor of ⌘ on the tree of strategies is acces-
sible next.

Suppose that a node � that works for a subrequirement P e,� is accessible at
stage s.

(1) If � has no follower, then � appoints a new, large follower for itself.
(2) If � has a follower p, and ⇤

⌘p�q,spD
s

, pqÓ“ fe,�

s

ppq, then we enumerate
�
⌘p�q,sppq into D

s`1.
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Note that in either case, we do not define a new computation ⇤
⌘p�q,s`1pD

s`1, pq.
In either case, we end the stage and initialise all nodes weaker than �. If � does not
act, then the unique immediate successor of � on the tree of strategies is accessible
at stage s.

Verification. Let ⌘ be a node that works for P � . At stage s, we only define a
new ⇤

⌘,s`1pD
s

, pq computation if p R dom⇤
s

pD
s

q. Lemma I.1.1 ensures that each
⇤
⌘,s

is consistent for D
s

, and so that each ⇤
⌘

is consistent for D.

Lemma 4.3. Let s be a stage, and let � be a node working for P e,� which has
a follower p at the beginning of stage s.

(1) If p R dom⇤
⌘p�q,spD

s

q, then at the last stage t † s at which ⌘p�q was
accessible, so was �, and � acted at stage t.

(2) If �1 is a node weaker than �, working for P e

1

,�

1

, and has a follower p1 at
the beginning of stage s, then p † p1. If in addition p P dom⇤

⌘p�q,spD
s

q
then �

⌘p�q,sppq † p1. Consequently, if also p1 P dom⇤
⌘p�1q,spD

s

q then
�
⌘p�q,sppq † �

⌘p�1q,spp1q.
Proof. Both parts of the lemma are proved simultaneously, by induction on s.

Assume both parts hold at all stages before stage s. Let ⌘ “ ⌘p�q.
For (1), let t † s be the last stage before s at which ⌘p�q was accessible, and

suppose that � does not act at stage t. Then p is already a follower for � at
the beginning of stage t, and so � was not initialised at any stage r P rt, sq. If
p R dom⇤

⌘,t

pD
t

q, then at stage t, ⌘ defines a new computation ⇤
⌘,t`1pD

t

, pq, and
ends the stage. This means that D

t`1 “ D
t

, and so p P dom⇤
⌘,t`1pD

t`1q with
�
⌘,t

ppq “ �
⌘,t`1ppq. By (2) at all stages r P rt ` 1, sq, this computation cannot be

injured at stage r without initialising �, so p P dom⇤
⌘,s

pD
s

q. If, on the other hand,
p P dom⇤

⌘,t

pD
t

q, then by (2) at all stages r P rt, sq, this computation cannot be
injured without initialising �.

For (2), let �1 and p1 be as described. That p † p1 follows as usual from the
fact that the stage at which p1 was chosen is later than the stage at which p was
chosen.

For the second part, let t † s be the stage at which the computation ⇤
⌘,s

pD
s

, pq
was defined. To show that �

⌘,s

ppq † p1, we show that the follower p1 was chosen
after stage t. We know that ⇤

⌘

pD, pqrtsÒ. Let u be the last stage prior to stage
t at which ⌘ was accessible. By (1) at stage t, � acted at stage u, and so �1 was
initialised at stage u. Since ⌘ † �, ⌘ is stronger than �1. If �1 lies to the right of ⌘,
then it is initialised at stage t, and so p1 is chosen after stage t. Otherwise, �1 ° ⌘,
and so �1 is not accessible at any stage r P pu, tq and also not accessible at stage t
(as ⌘ ends the stage). Thus, again, p1 was chosen after stage t. ⇤

As a corollary we can conclude that for � and p as above, if p P dom⇤
⌘p�q,spD

s

q,
then �

⌘p�q,sppq R D
s

. An analogue of Lemma 2.3(d) also holds, with a similar
argument.

Lemma 4.4. Let t ° s be stages and let � be a node which works for some
positive subrequirement. Suppose that p is a follower for � at the beginning of
stage s. Suppose that � is not initialised at any stage r P rs, tq.

(1) D
s

æ
p

“ D
t

æ
p

.
(2) If in addition p P dom⇤

⌘p�q,spD
s

q, then D
s

æ
�

⌘p�q,s

ppq“ D
t

æ
�

⌘p�q,s

ppq.
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(3) If, further, � does not act at any stage r P rs, tq, then p P dom⇤
⌘p�q,tpDt

q
and �

⌘p�q,sppq “ �
⌘p�q,tppq.

Lemma 4.5. Suppose that � works for P e,� , and that p is a follower which
is appointed for � at some stage and is never cancelled. Suppose that � does not
act infinitely often. Suppose also that ⌘p�q is accessible infinitely often. Then
p P dom⇤

⌘p�qpDq.
Proof. Let s be the last stage at which � acts; since p is not cancelled after

stage s, � is not initialised after stage s. Let t be the least stage after stage s at
which ⌘ “ ⌘p�q is accessible. If p P dom⇤

⌘,s

pD
s

q then the action of � at stage s
removes p from dom⇤

⌘,s`1pD
s`1q; in any case, p R dom⇤

⌘,t

pD
t

q. At stage t, ⌘
defines a new computation ⇤

⌘,t`1pD
t`1, pq. By Lemma 4.4, this computation is

D-correct. ⇤
Lemma 2.4 holds for the current construction as well: if �, working for P e,� ,

acts at stages s † t and has the same follower p at the end of stage s and the end of
stage t, then oe,�

t

ppq † oe,�
s

ppq. The proof is similar; the computation ⇤
⌘p�q,tpDt

, pq
must have been defined by ⌘p�q at a stage u ° s, and so its value is u ` 1 which is
bigger than s, so fe,�

s

ppq † s † u ` 1 “ fe,�

t

ppq. Now an argument, identical to the
argument proving Lemma 2.5, shows that if �, working for P e,� is on the true path,
and the construction is fair to �, then � eventually appoints a follower p which is
never cancelled, eventually stops acting, and ⇤

⌘p�qpD, pq ‰ fe,�ppq. It follows that
the true path is infinite, that the construction is fair to every node on the true
path, and that if ⌘ on the true path works for P � , then ⇤

⌘

pDq is total, and is not
�-c.a. Since the true path has a node in every level, each P � is met, so degTpDq is
not totally �-c.a. for any � † ↵.

To conclude the proof of Theorem 4.2, we need to show that for all e † ! such
that �

e

pDq is total, �
e

pDq is �-c.a. for some � † ↵. Fix such e, and let ⌧ be the
node on the true path that works for requirement Q

e

. At first, we proceed as in
the proof of Theorem 2.1. Let s˚ be the last stage at which ⌧ is initialised, and let

S “ ts ° s˚ : ⌧ˆ8 P �
s

u “ ts0, s1, . . . u
as again, S is infinite. For x † ! we define ipxq as before, to be the least i such
that x † dom�

e

pDqrs
i

s. And again, for j • ipxq we let a
j

pxq be the set of nodes
� • ⌧ˆ8 which at the beginning of stage s

j

have a follower p “ pp�, xq which was
appointed before stage s

ipxq. Lemma 2.9 holds for the current construction, with
the same proof, except that now we use p ° u rather than �

⌘p�q,tppq ° u; so we use
part (1) of Lemma 4.4 instead of part (2).

We now find an ordinal bound below ↵ for the complexity of �
e

pDq. Fix x † !.
For � P apxq, since � • ⌧ˆ8, ⌘p�q is comparable with ⌧ˆ8.

Lemma 4.6. Let � P apxq, and suppose that ⌘p�q • ⌧ˆ8. Then there is at most
one j • ipxq such that � acts at stage s

j

and injures the computation �
e

pD,xqrs
j

s.
Proof. Let s

j

be a stage at which � acts, where j • ipxq. We show by induc-
tion that for all i ° j in S, if p is a follower for � at the beginning of stage s

i

, and
p P dom⇤

⌘p�qpDqrs
i

s, then �
⌘p�q,s

i

ppq ° '
e,s

i

pxq, so � cannot injure �
e

pD,xqrs
i

s
at stage s

i

. Let ⌘ “ ⌘p�q.
The base step is vacuous, and this is the main point of the proof. At stage s

j

, �’s
action extracts its follower p from dom⇤

⌘p�qpDq. The assumption ⌘ • ⌧ˆ8 means
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that ⌘ is not accessible at any stage r P ps
j

, s
j`1q, and so p R dom⇤

⌘

pDqrs
j`1s.

Note that p is still the follower for � at the beginning of stage s
j`1.

Let i ° j `1 and suppose the inductive claim holds for all i1 P pj, iq. Let p be a
follower for � at the beginning of stage s

i

, and suppose that p P dom⇤
⌘

pDqrs
i

s. The
proof follows the idea for Lemma 2.9. Let t be the stage at which the computation
⇤
⌘

pD, pqrs
i

s was defined. Since ⌘ • ⌧ˆ8, t P S; and t • s
j`1. Thus �

⌘,t

ppq is
chosen to be larger than u “ '

e,t

pxq. Lemma 4.4(2) now shows that D
s

i

æ
u

“ D
t

æ
u

and so '
e,s

i

pxq “ u † �
⌘,s

i

ppq as required. ⇤
Since ↵ is a limit of ordinals which are closed under addition, and ⌧ has only

finitely many predecessors on the tree of strategies, find some ordinal � † ↵, closed
under addition, such that for all ⌘ † ⌧ which work for some P � we have � † �.
We give a �-computable approximation for �

e

pDq, along the lines of the proof of
Theorem 2.1.

Again fixing x, for j • ipxq and � P a
j

pxq we again let t
j

p�q be the greatest
stage t † s

j

at which � acts. The main part is defining the ordinal �
j

p�q:
‚ If ⌘p�q † ⌧ , then we let �

j

p�q “ oi,�
t

j

p�qppp�, xqq, where � works for P i,� .

‚ If ⌘p�q • ⌧ˆ8, then we let �
j

p�q “ 0 if there is some i P ripxq, jq for which
� acts at stage s

i

and destroys the computation �
e

pD,xqrs
i

s. If there is
no such i, then we let �

j

p�q “ 1.

We then mimic the rest of the proof of Theorem 2.1, ordering a
j

pxq by de-
scending priority, and defining m

j

pxq “ ∞
�Pa

j

pxq �jpxq. The proof of Theorem 4.2
is complete once we show that Lemma 2.10 holds for the current construction
(with � replacing ↵). The proof of this lemma is identical to the previous proof,
except for one case: showing that �

j`1p�q † �
j

p�q if g
j`1pxq ‰ g

j

pxq, where � is
the weakest node in a

j`1pxq, in the case that ⌘p�q • ⌧ˆ8. But in this case we
appeal to Lemma 4.6.

5. Domination properties

In [24], Donwey, Jockusch and Stob extend the notion of array computability
from the c.e. degrees to all the Turing degrees. This they do by using domination
properties of degrees. Such properties have been used early on, to characterise
classes such as the hyperimmune-free degrees, the high degrees and the non- low2

degrees. More recently [39], a combination of domination and measure characteri-
sations have yielded a characterisation of LR-hardness.

Recent work has indicated that the generalisations of array computability de-
fined in this chapter can also be extended to the non-c.e. degrees by considering
domination. We give the results for completeness.

Recall that if C is a class of functions from ! to !, then a Turing degree d is
C-dominated if every function g P d (equivalently g §T d) is dominated by some
function f P C. For example, the hyperimmune-free degrees are the degrees which
are C-dominated, where C is the collection of all computable functions.

Definition 5.1. A Turing degree is ↵-c.a. dominated if it is C-dominated,
where C is the class of all ↵-c.a. functions. I.e., if every d-computable function is
dominated by some ↵-c.a. function.

Theorem 5.2 (Diamondstone,Greenberg,Turetsky [12]). Let ↵ § ✏0. A c.e.
degree is totally ↵-c.a. if and only it is ↵-c.a. dominated.
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Proof. Let d be a c.e. degree and let D P d be a c.e. set.
In the non-trivial direction, suppose that d is ↵-c.a. dominated. Let g P d,

g “ �pDq for a functional �. Since D is c.e. it can compute the modulus m for the
approximation xg

s

y for g given by g
s

“ �
s

pD
s

q; here the modulus m is defined by
mpkq “ s if s is the least stage such that for all t • s, g

t

æ
k`1“ gæ

k`1.
Let h be an !-c.a. function which majorises m, and let xh

t

, o
t

y
t†! be an ↵-

computable approximation for h. Letting g̃
t

pkq “ g
h

t

pkqpkq we get that xg̃
t

, o
t

y
is an ↵-computable approximation for g. Essentially, this argument repeats the proof of

Proposition II.3.17, after noticing that g is weak-truth-table reducible to any function dominating the

modulus m. ⇤
The same argument yields an analogous result for the special limit classes.

Theorem 5.3. Let ↵ § ✏0 be a limit of powers of !. A c.e. degree d is totally
† ↵-c.a. if and only if it is † ↵-c.a. dominated, i.e., if for every d-computable
function g there is some � † ↵ and some �-c.a. function which dominates g.

For the uniform version, for a class of functions C, say that a Turing degree d
is uniformly C-dominated if there is some function f P C which dominates every
function in d. In other words, if d is tfu-dominated for some f P C. For example,
a �0

2 degree is low2 if and only if it is uniformly C-dominated, where C is the class
of �0

2 functions. A Turing degree is uniformly ↵-c.a. dominated if, as expected, it
is uniformly C-dominated, where C is the collection of all ↵-c.a. functions.

The following is a generalisation of the aforementioned result by Downey,
Jockusch and Stob: a c.e. degree is array computable if and only if it is uniformly
!-c.a. dominated.

Theorem 5.4 (with McInerney). Let ↵ § ✏0 be a power of !. A c.e. degree d
is uniformly totally ↵-c.a. if and only if it is uniformly ↵-c.a. dominated: some
↵-c.a. function dominates all functions in d.

Proof. In one direction the argument is similar to the argument for Theo-
rem 5.2, but noticing the uniformity. Assuming that d is uniformly ↵-c.a. domi-
nated, let g be an ↵-c.a. function which dominates every function in d; fix an ↵-c.a.
order function h such that g is h-c.a. Let f P d, and let µ be the modulus function
for f , by an approximation given by a c.e. set in d, so µ §T d. Then g dominates
µ, and the argument above shows that f is h-c.a.

In the other direction, we show that slightly stronger fact, that for any ↵-
order-function h, there is an ↵-c.a. function which dominates every h-c.a. function.
Fix an ↵-order-function h. Let xfey be an e↵ective listing of all h-c.a. functions,
each with a tidy ph ` 1q-computable approximation xfe

s

, oe
s

y (Lemma 3.8). Let
f̃pnq “ max

e§n

fepnq. Certainly f̃ dominates every h-c.a. function. For n † ! and
s † !, let f̃

s

pnq “ max
e§n

fe

s

pnq and let õ
s

pnq “ À
e§n

oe
s

pnq; see the discussion of
commutative addition of ordinals in Subsection II.3.3. Lemmas II.3.15 and II.3.16
show this is an ↵-computable approximation for f̃ . ⇤

Downey, Jockusch and Stob also showed that one can pick a single !-c.a. func-
tion dominating all array computable degrees. This holds for the higher uniform
levels as well.

Lemma 5.5. Let ↵ § ✏0. There is an ↵-c.a. function f such that for every
↵-c.a. function g there is a computable function ' such that g § ' ˝ f . I.e., for all n,

gpnq § fp'pnqq.
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Proof. Let xfe

s

, oe
s

y “ xfe,↵

s

, oe,↵
s

y be a computable list of tidy p↵ ` 1q-
computable approximations (given by Proposition II.1.7) approximating all ↵-c.a.
functions. For e, n and s † !, let fpe, n, sq “ fepnq if oe

s

pnq † ↵; otherwise, let
fpe, n, sq “ 0. An ↵-computable approximation xf

t

, o
t

y for f is easily devised by
first checking oe

s

pnq; if this is ↵ then our approximation is constant, otherwise we
follow the approximation fe

t

pnq for t • s.
If g is ↵-c.a. then there is some e such that g “ fe and the approximation

xfe

s

, oe
s

y is eventually ↵-computable (for all n there is some s such that oe
s

pnq † ↵).
Fixing such e, for n † ! let spnq be the least s such that oe

s

pnq † ↵; then, let
'pnq “ pe, n, spnqq. ⇤

Proposition 5.6. Let ↵ § ✏0 be a power of !. There is an ↵-c.a. function f
such that any Turing degree d is uniformly ↵-c.a. dominated if and only if it is tfu-
dominated.

Proof. Let f be the function given by Lemma 5.5. Since ↵ is closed under
addition, we may assume that f is (strictly) increasing.

Let d be a uniformly ↵-c.a. dominated degree; let g be an ↵-c.a. function
dominating d. Let ' be a computable function such that for all n, gpnq § fp'pnqq.
We may assume that ' is (strictly) increasing.

Let h P d; define h̃pnq “ max
k†'pn`1q hpkq. Then h̃ §T d and so g dominates h̃.

Suppose that gpnq • h̃pnq for all n • n˚. Let k ° 'pn˚q; find n • n˚ such that
'pnq § k † 'pn ` 1q. Then hpkq § h̃pnq § gpnq § fp'pnqq § fpkq. ⇤

In fact, for ↵ “ !, Downey, Jockusch and Stob showed that for the “uniformly
uniformly dominating” function f one can take mH1 , the modulus function for H1.
A similar argument can be made for ↵ “ !� ° ! by replacing H1 with IH

�

of
Section II.3, the iterated function wtt-jump.



CHAPTER IV

Maximal totally ↵-c.a. degrees

For a collection F of c.e. degrees, we say that a degree a P F is maximal in F
if it is maximal as an element of the partial ordering induced on F by the ordering
on the Turing degrees. In other words, if there is no degree b ° a in F .

Classes of c.e. degrees which contain maximal elements are rare; they are mostly
prevented by density considerations. For example, no jump classes contain maximal
elements, and there are no maximal cappable degrees. A notable exception is the
example of the contiguous degrees – those degrees all of whose c.e. elements have
the same weak truth-table degree. Cholak, Downey and Walk [9] showed that there
are maximal contiguous degrees. Since the contiguous degrees are definable in the
c.e. degrees (Downey and Lempp [26]), the maximal contiguous degrees form a
definable antichain of c.e. degrees.

The relevance of contiguous degrees to the study in hand is that contiguous
degrees are all array computable, that is, uniformly totally !-c.a. Like the contigu-
ous degrees, the maximality phenomenon occurs in various level of the hierarchy
discussed in Chapter III.

1. Existence of maximal totally !↵-c.a. degrees

Theorem 1.1. If ↵ § "0 is a power of !, then there is a maximal totally ↵-c.a.
c.e. degree.

To prove Theorem 1.1, fix an ordinal ↵ § "0 which is a power of !; we enumerate
a c.e. set D whose Turing degree will be maximal totally ↵-c.a. To ensure that
degTpDq is totally ↵-c.a., we meet, for each e † !, the requirements

Q
e

: If �
e

pDq is total, then �
e

pDq is ↵-c.a.

To ensure maximality, for each e † !, we want to ensure that either W
e

§T D,
or that there is some f §T D ‘ W

e

which is not ↵-c.a. We enumerate a Turing
functional ⇤

e

, with the aim of showing that either W
e

§T D or ⇤
e

pD,W
e

q is not
↵-c.a. By Proposition II.1.7 let

@@
f i

s

, oi
s

D
s†!

D
i†! be an e↵ective list of tidy p↵`1q-

computable approximations such that letting f i “ lim
s

f i

s

, the sequence
@
f i

D
lists

the ↵-c.a. functions; and as above, every↵-c.a. function appears as f i for some i
such that the approximation

@
f i

s

, oi
s

D
is eventually ↵-computable. For e, i † !, we

try to meet the requirement

P i

e

: If
@
f i

s

, oi
s

D
is eventually ↵-computable then either W

e

§T D or
⇤
e

pD,W
e

q ‰ f i.

Globally we need to ensure that for all e, ⇤
e

pD,W
e

q is total.

67
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Discussion. The construction is not di�cult. To meet a requirement Q
e

we
use the mechanism proving the theorems in Chapter III: a node ⌧ , working for Q

e

,
measures an approximation to the question “is �

e

pDq total?”; in the case of an
a�rmative answer, initialisation of weaker nodes that guess incorrectly allows ⌧ to
devise an ↵-computable approximation for �

e

pDq.
A node � working for a requirement P i

d

would like to appoint a follower p and
follow the strategy of nodes working for positive requirements in the constructions
of Chapter III: whenever f i

s

ppq “ ⇤
d,s

pD
s

,W
e,s

, pq, to enumerate �
d,s

ppq into D
s`1.

This action may interfere with the work done by a node ⌧ for some requirement Q
e

such that ⌧ˆ8 § �. However, unlike previous constructions, when � picks p we do
not know yet the ordinal bound on the “number of times” � may need to act for p;
the functions oi

s

are in some sense partial, since they allow the value ↵, which for
us is useless.

We isolate three principles which guide the interaction between ⌧ and � extend-
ing ⌧ˆ8. These have been followed in previous constructions as well, but sometimes
more easily since the approximations were “total”. Let p be a follower for �, a node
working for P i

d

.

(a) Suppose that ⌧ first certifies a computation �
e

pD,xqrss at stage s (in
previous notation, s “ s

ipxq). If oi
s

ppq † ↵, then ⌧ can incorporate this
ordinal to the bound on its mind-changes for �

e

pD,xq. It can thus allow
every future action for p to injure �

e

pD,xq.
(b) If the use �

d,t

ppq is chosen at a stage t at which we see �
e

pD,xq converge,
then the next action for p will not injure �

e

pD,xqrts.
(c) Since ⇤

d

is global, � needs to define �
d

ppq immediately when it appoints p,
that is, before it sees oippq † ↵.

We remark that we could have made the definition of each ⇤
d

local, tied to a
“mother node” ⌘ as in the proof of Theorem III.4.2. However, in this construction
this is not necessary and would not give any benefit. The e↵ect of the finitely many
mother nodes ⌘ † ⌧ would be the same as the e↵ect of having every ⇤

d

be global,
i.e. the root of the tree is the mother node for every ⇤

d

.
The principles outlined leave one potentially problematic sequence of events.

First � appoints p and defines �
d

ppq; then ⌧ certifies �
e

pD,xq; and only later do
we see oippq † ↵. In this case, the use is too small, so action for p would injure
the certified computation; but ⌧ did not know how many times � will act for p
when it certified the computation. Note that ⌧ could not wait for this later event,
since we may never see oippq † ↵. Of course, this is where we use the additional
computational power of W

d

. Before we see oippq † ↵, � does not need to act for
p. Once we see oippq † ↵, if W

d

¶T D, then W
d

will permit � to lift the use �
d

ppq
beyond the use of a computation �

e

pD,xq, in fact beyond the use of a D-correct
such computation. Only then is p cleared by ⌧ and � can attack with impunity.
We cannot expect that every follower we appoint is permitted, and so � will need
to appoint a sequence of followers p0, p1, . . . ; one of them will be permitted.

We note two issues. One is that while W
d

will permit some follower appointed
by �, the stage at which it gives this permission is not necessarily a stage at which �
is accessible, and this permission cannot “remain open” until � is next visited: �
may never be visited again, and we need to define �

d

ppq to keep ⇤
d

pD,W
d

q total.
So we act on permissions immediately, even if � is not accessible; this does no harm
to the rest of the construction.
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The other issue is that of totality. For each follower p, we note which com-
putations �

e

pD,xq it is not allowed to injure, and seek permission from W
d

at a
stage at which �

e

pD,xqÓ for all such computations. We are guaranteed eventual
permission only if these are D-correct computations. How do we know that such
a stage will occur? Of course �, since it extends ⌧ˆ8, guesses that �

e

pDq is total.
But there are constructions in which ⌧ˆ8 lies on the true path but the measured
function �

e

pDq is in fact not total. This is avoided in this construction because we
make D totally ↵-c.a. and so low2.

The tree of strategies. As usual, to define the tree, we specify recursively the
association of nodes to requirements, and specify the outcomes of nodes working
for particular requirements. To specify the priority ordering of nodes, we specify
the ordering between outcomes of any node.

We order all of the requirementsQ
d

and P i

e

in order-type !; all nodes of length k
work for the kth requirement on the list. The outcomes of a node working for Q

e

are 8 and fin, with 8 † fin. A node working for P i

e

has only one outcome.

Clearing followers. A follower p for a node � working for P i

e

can be in one of
three states.

(1) When p is first appointed, it is unready.
(2) At a later stage (at which � is accessible) we may see that oi

s

ppq † ↵;
then p becomes ready : we have determined which computations �

d

pD,xq
it is allowed to injure.

(3) At a later stage yet, W
e

may give permission to lift the use �
e

ppq and
begin an attack with p. We say that p is in the clear.

Let precp�q be the collection of nodes ⌧ such that ⌧ works for a requirement Q
d

and ⌧ˆ8 § �. This is the collection of nodes that may need to restrain �’s action to
protect computations they are monitoring. For each follower p for �, if p becomes
ready (by observing that oippq † ↵) then we define, for each ⌧ P precp�q, a value
m⌧ ppq, which serves as a watermark. If ⌧ works for Q

d

, then action by � for p
is allowed to injure computations �

d,s

pD
s

, xq for x • m⌧ ppq, but not for smaller
values of x.

Construction. At each stage we will do one of two things. Normally we will
build the path of accessible nodes and act accordingly. But at some stages we will
observe W

e

permissions that will allow us to clear a follower for some �. In that
case no node is accessible at that stage and no other action is taken by any node.
In both cases, though, after the main action, we maintain functionals (work toward
making them total).

Option A. At stage s we first ask: is there some node � working for a positive
requirement P i

e

which currently has a ready follower p such that:

‚ p R dom⇤
e,s

pD
s

,W
e,s`1q; and

‚ for all ⌧ P precp�q, working for Q
d

, we have m⌧ ppq § dom�
d,s

pD
s

q.
If so, then we let � be the strongest such node. We pick such a follower p

for �, and declare it to be in the clear. We cancel all other followers for �. We let
D

s`1 “ D
s

. We define ⇤
e,s`1pD

s`1,We,s`1, pq “ s ` 1 with large use (the D-use
and the W

e

-use will always be equal). We initialise all nodes weaker than �. For
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any pair pd, qq § s distinct from pe, pq we maintain �
d

pqq as follows, and then end
the stage.

Maintaining �
d

pqq: If q R dom⇤
d,s

pD
s`1,Wd,s`1q, then we define a new

computation ⇤
d,s`1pD

s`1,Wd,s`1, qq “ s ` 1 with use �
d,s`1pqq determined by

cases:

‚ If q is currently a follower for a node �1 working for P j

d

for some j (in
particular, q was not just cancelled), then we set �

d,s`1pqq “ �
d,s

pqq.
‚ Otherwise, �

d,s`1pqq “ ´1.

The instructions will ensure that in the first case, �
d,s

pqq is indeed defined, that is, q P dom⇤
d,s

pD
s

,W

d,s

q.
The point of the first clause is to keep ⇤

d

pD,W

d

q total when we have W

d

-changes which are not bene-

ficial, i.e. occur when the follower q is unready or dom�
c

pDqrss † m

⌧ pqq for some ⌧ P precp�1q.

Option B. If option A was not taken, then we let, by recursion, the collection
of accessible nodes �

s

be an initial segment of the tree of strategies. So the root of
the tree is accessible at stage s.

Suppose that a node ⌧ that works for requirement Q
e

is accessible at stage s.
If s is the least stage at which ⌧ is accessible then we let ⌧ˆ8 P �

s

. Otherwise we
let t be the last stage before s at which ⌧ˆ8 was accessible. If t † dom�

e,s

pD
s

q
then we let ⌧ˆ8 P �

s

. Otherwise we let ⌧ f̂in P �
s

.

Suppose that a node �, working for requirement P i

e

, is accessible at stage s.
There are two cases: either � has a unique follower which is in the clear; or no
follower for � is in the clear. In the latter case, � possibly has a number of ready
followers, and possibly one unready follower.

1. Suppose that � has follower p in the clear.
If ⇤

e,s

pD
s

,W
e,s

, pq “ f i

s

ppq then we enumerate �
e,s

ppq into D
s`1 and redefine

⇤
e,s`1pD

s`1,We,s`1, pq “ s`1 with large use. We initialise all nodes weaker than �
and halt the stage.

If ⇤
e,s

pD
s

,W
e,s

, pq ‰ f i

s

ppq then the unique immediate successor on the tree of
strategies is next accessible.

2. Suppose that � has no follower in the clear. There are two things we may do.

(a) If � has a currently unready follower p and oi
s

ppq † ↵, then we de-
clare p to be ready. For each ⌧ P precp�q, working for Q

d

, we define
m⌧ ppq “ dom�

d,s

pD
s

q.
(b) If either the action in part (a) has just been performed, or � currently

has no followers, then currently all followers for � are ready. We then
appoint a new, large follower p1 for � (which is unready) and define
⇤
e,s`1pD

s`1,We,s`1, p
1q “ s ` 1 with large use.

If neither (a) nor (b) are performed then � already has one unready follower p with
oi
s

ppq “ ↵, and we do nothing.
If |�| † s, then the unique immediate successor on the tree of strategies is next

accessible; otherwise we halt the stage. In case 2, we do not initialise weaker nodes even if we

appoint a new follower. This is because if W
e

§T D, it is possible that infinitely many followers will be

appointed.

At the end of the stage, we maintain �
d

pqq for pairs pd, qq § s (other than pairs
for which ⇤

d

pD,W
d

, qqrs ` 1s has just been defined) as above.
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Verification. For a while, we follow the verifications for Theorem III.2.1. We
have an analogue of Lemma III.2.3. In the verification, we say that a node � acts
at a stage s if either it is accessible at stage s and enumerates a number into D

s`1

on behalf of a follower in the clear; or if stage s option A is taken and a follower
for � is cleared.

As indicated in the construction, if a follower p for � is cleared at some stage s,
then all other followers for � are cancelled at that stage. Until possibly a later stage
at which � is initialised, p remains �’s unique follower.

Lemma 1.2. Let s be a stage.

(a) Every functional ⇤
e,s

is consistent for the pair D
s

,W
e,s

.

Suppose that at the beginning of stage s, p is a follower for a node � which works
for P i

e

.

(b) ⇤
e,s

pD
s

, pqÓ and �
e,s

ppq R D
s

.

(c) Suppose that p1 is a follower for a node �1, weaker than �, working for P i

1

e

1

.
Then �

e,s

ppq ‰ �
e

1

,s

pp1q. If p is in the clear at the beginning of stage s,
then �

e,s

ppq † p1. As usual p

1 † �

e

1

,s

pp1q.
Let t † s, and suppose that p was already a follower for � at the beginning of stage t.

(d) If p was in the clear at stage t, then D
t

æ
�

e,t

ppq“ D
s

æ
�

e,t

ppq; if, in addition,
� did not act at any stage r P rt, sq, then D

t

æ
�

e,t

ppq`1“ D
s

æ
�

e,t

ppq`1.
(e) If p is not in the clear at the beginning of stage s then �

e,t

ppq “ �
e,s

ppq.
Proof. Similar to the proof of Lemma III.2.3. We note the di↵erences.

For (b), that ⇤
e,s

pD
s

, pq Ó is here immediate, from the maintenance round we
do at the end of every stage. To show that �

e,s

ppq R D
s

, the new case is if at
stage s ´ 1, when performing maintenance, we saw that ⇤

e,s´1pD
s

,W
e,s

, pqÒ, and
defined a new computation with �

e,s

ppq “ �
e,s´1ppq. However, by induction,

y “ �
e,s´1ppq R D

s´1. The node � does not act at stage s ´ 1, and the first part
of (c) (at stage s ´ 1) shows that no other node can enumerate y into D

s

.
For (c), we note that as usual, new uses �

e,s

ppq are chosen to be large, and so
distinct from existing uses. The second part follows from the fact that at the stage
at which p is cleared, �1 is initialised. The proof of (d) is identical to the previous
proof. (e) is new, and follows immediately by induction, since � never acts for p
before p is cleared, and once the use �

e,t

ppq is picked (at the stage at which p is
appointed), the use is never lifted (see maintenance step). ⇤

The proof of Lemma III.2.4 gives its analogue, recalling, though, that we say
that � acts for p at stage s only if p is cleared at stage s, or if � enumerates �

e,s

ppq
into D

s`1 (when p is already in the clear); not when p is appointed or is declared
ready.

Lemma 1.3. Let � be a node that works for requirement P i

e

. Let p be a fol-
lower for � at stages s † t, and suppose that at both stages, � acts for p. Then
oi
t

ppq † oi
s

ppq.
It follows that for each p, � enumerates �

e

ppq into D at only finitely many
stages. If the construction is fair to �, then it follows that � halts the stage at
most finitely many times after it is last initialised: at most once when a follower p
becomes cleared, and then finitely many times when it enumerates �

e,s

ppq into D.
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Lemma 1.4. The true path �
!

is infinite, and the construction is fair to every
node on the true path.

Proof. The point is that there are infinitely many stages at which we do not
take option A and stop the stage: there are infinitely many stages at which �

s

is
nonempty. Suppose for a contradiction that there is a last stage s˚ at which we
take option B. There are only finitely many nodes � which have followers at the
end of stage s˚. But for each such node � there is at most one stage s ° s˚ at
which we act for �. At that stage, a follower for � is cleared. Either this follower
is never cancelled and � does not act again. Or � is initialised at some later stage
but never has the chance to appoint new followers. This is a contradiction. ⇤

Lemma 1.5. For all e, ⇤
e

pD,W
e

q is total.

Proof. The di↵erence from the proof of Lemma III.2.7 is that W
e

-changes
may make ⇤

e

-computations diverge. The maintenance step, and in particular
keeping the use fixed unless a follower becomes cleared, addresses this issue. For-
mally, the convergence of ⇤

e

pD,W
e

, pq for a permanent follower p for � follows from
Lemma 1.2(e) if p is never cleared, and from Lemma 1.3 if it is. ⇤

The argument of Lemma III.2.5 now shows that if a node � on the true path,
working for requirement P i

e

, has a follower which is eventually cleared but never
cancelled, then ⇤

e

pD,W
e

q ‰ f i.

As mentioned above, perhaps surprisingly, in order to show that each finitary
requirement P i

e

is met, we need to investigate the infinitary requirements first. The
verification for the finitary requirements will use the fact that degTpDq is low2.

Fix a node ⌧ , working for requirement Q
e

, such that ⌧ˆ8 lies on the true path.
By Lemma 1.4, let s˚ be the last stage at which ⌧ is initialised. Let S “ ts0, s1, . . . u
be the collection of stages s ° s˚ at which ⌧ˆ8 is accessible. For x † !, let ipxq be
the least i such that x † dom�

e

pDqrs
i

s. For x † !, we let apxq be the collection
of pairs p�, pq such that � • ⌧ˆ8 (in other words ⌧ P precp�q), and p is a follower
for � which became ready at some stage prior to stage s

ipxq, but is not cancelled
by stage s

ipxq. For j • ipxq we let a
j

pxq be the collection of pairs p�, pq P apxq such
that � is not initialised at any stage r P rs

ipxq, sjq, and p is still a follower for � at
the beginning of stage s

j

.
The set apxq plays the same role as it did in the proof of Theorem III.2.1: only

action by � for some p such that p�, pq P a
j

pxq can injure a computation �
e

pD,xq at
stage s

j

. This will show that �
e

pDq is ↵-c.a., as apxq is finite, e↵ectively obtained
from x, and at stage s

ipxq, we already know an ordinal bound ok
t

ppq on the “number
of times” � can attack with p. Note that for each � there is at most one p such
that p�, pq P apxq and � will attack with p at a later stage s

j

. However, the identity
of this p – the one follower for � that will be cleared, if there is one – is not yet
known at stage s

ipxq.

Lemma 1.6. Let � • ⌧ˆ8, working for P i

d

, and let p be a follower for � which
is already in the clear at the beginning of stage s • s

ipxq. Suppose that p�, pq R apxq.
Then:

(1) m⌧ ppq ° x.
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(2) Let t be the stage at which p is cleared. Then x P dom�
e

pDqrts and
D

t

æ
'

e,t

pxq“ D
s

æ
'

e,t

pxq. It follows of course that x P dom�
e

pDqrss and that

'

e,s

pxq “ '

e,t

pxq.
(3) �

d,s

ppq ° '
e,s

pxq.
Proof. For (1), let w be the stage at which p is declared ready. If w † s

ipxq
then p�, pq P apxq, so w • s

ipxq (and it follows that t ° s
ipxq). At stage w, � is

accessible, and so w “ s
j

for some j • ipxq, whence x † dom�
e,w

pD
w

q “ m⌧ ppq.
At stage t we have dom�

e

pDqrts • m⌧ ppq – this is one of the conditions for p to
be cleared. Hence x † dom�

e

pDqrts, so '
e,t

pxq is indeed defined. Let u “ '
e,t

pxq.
At stage t, we define �

d,t`1ppq to be large, and so larger than u.
At stage t no node is accessible, so D

t`1 “ D
t

. Lemma 1.2(d) applied to
t ` 1 § s says that D

s

æ
�

d,t`1ppq“ D
t`1 æ

�

d,t`1ppq, and (2) follows.
As �

d,r

ppq is non-decreasing with r, it follows that �
d,s

ppq ° u “ '
e,s

pxq. ⇤

We are now ready to prove an analogue of Lemma III.2.9.

Lemma 1.7. Let j • ipxq. Let u “ '
e,s

j

pxq. Suppose that D
s

j`1 æ
u

‰ D
s

j

æ
u

.
Then there is some p�, pq P a

j

pxq such that � acts for p at stage s
j

and enumerates
�
d,s

j

ppq † u into D
s

j

`1.

Proof. The argument follows the proof of Lemma III.2.9. Suppose that
at stage s P rs

j

, s
j`1q, a node � acts for some follower p and enumerates

�
d,s

ppq † '
e,s

j

pxq into D
s`1. The argument that � extends ⌧ˆ8, and so s “ s

j

, is
the same as above. Note that p is already in the clear at the beginning of stage s

j

.
Lemma 1.6(3) shows that p�, pq P apxq, and so p�, pq P a

j

pxq. ⇤

The next lemma shows that D is low2.

Lemma 1.8. Let ⌧ be a node on the true path that works for requirement Q
e

.
Then ⌧ˆ8 lies on the true path if and only if �

e

pDq is total.

Proof. The non-trivial direction is left-to-right. Let x † !. To show that
x P dom�

e

pDq, we observe that there are only finitely many j • ipxq such that
D

s

j`1 æ
'

e,s

j

pxq‰ D
s

j

æ
'

e,s

j

pxq. This follows from the fact that apxq is finite, and

that for each p�, pq P apxq, � acts for p at most finitely many times. ⇤

We can now show that the positive requirements are met.

Lemma 1.9. For all e and i, the requirement P i

e

is met.

Proof. Let � be a node on the true path, working for P i

e

. We observed
above that if there is a follower p for � which is at some point cleared and is
never cancelled, then P i

e

is met. Let r˚ be the last stage at which � is initialised,
and suppose that no follower for � is cleared after stage r˚. If

@
f i

s

, oi
s

D
is not

eventually ↵-computable, then P i

e

is met vacuously, so we assume that it is. Then
every follower that � appoints after stage r˚ eventually becomes ready (of course,
using the fact that � is accessible during infinitely many stages). Then � appoints
infinitely many followers. We show that W

e

§T D.
Let p be a follower for �, appointed after stage r˚; let s0 be the stage at which p

is appointed, and let u “ �
e,s0ppq. As u ° s0, the numbers u are unbounded, as p

ranges over the followers for �. To compute W
e

æ
u

from D, we first go to the
stage t at which p becomes ready. At that stage we observe the numbers m⌧ ppq for
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⌧ P precp�q. For all ⌧ P precp�q, ⌧ˆ8 lies on the true path. By Lemma 1.8, there
is a stage s at which for all ⌧ P precp�q, for all x † m⌧ ppq, x P dom�

e

pDqrss by a
D-correct computation. Certainly D can find such a stage s; and W

e,s

æ
u

“ W
e

æ
u

,
for otherwise p would be cleared at some stage s1 ° s. ⇤

We now rejoin the proof of Theorem III.2.1, using Lemma 1.7 to show that for
every e such that �

e

pDq is total, the node ⌧ on the true path working for Q
e

is
successful in devising an ↵-computable approximation for �

e

pDq. Fix such e and ⌧ ;
we again use the stages s

i

, the indices ipxq and the sets a
j

pxq discussed above. Fix
x † !. We note, and this is the main point, that for all p�, pq P apxq, if � works
for P i

d

then oi
s

ipxq

ppq † ↵.

Let j • ipxq and let � be a node, working for P i

d

, which appears in a
j

pxq (i.e.,
p�, pq P a

j

pxq for some p). If no follower for � is cleared by the beginning of stage s
j

,
we let

�
j

p�q “ max
!
oi
s

j

ppq : p�, pq P apxq
)
.

Otherwise, let p be the unique follower for � at stage s
j

; p�, pq P a
j

pxq. We let t
j

p�q
be the greatest stage t † s

j

at which � acts (for p); such a stage exists, since p
becomes cleared at some stage t † s

j

. We then let �
j

p�q “ oi
t

j

p�qppq. Finally, we

order the nodes appearing in a
j

pxq in descending priority as �0,�1, . . . ,�
kpjq, and

let m
j

pxq “ ∞
k§kpjq �jp�

k

q. We note that if �
k

acts at stage s
j

then kpj ` 1q § k.
Lemma III.2.10 holds for the current construction, with much the same proof. This
completes the proof of Theorem 1.1.

1.1. Maximal uniformly totally !↵-c.a. degrees. Not only are there max-
imal uniformly totally !↵-c.a. degrees, but there are such degrees which are also
maximal totally !↵-c.a.

Theorem 1.10. If ↵ is a power of !, then there is a uniformly totally ↵-c.a.
degree which is maximal totally ↵-c.a.

Proof. To prove Theorem 1.10, we run the construction for Theorem 1.1 with
but one modification: a follower p for a node � working for P i

e

becomes ready at a
stage t1 if � is accessible at stage t1, and at the previous stage t0 † t1 at which �
was accessible we saw that oi

t0
ppq † ↵. That is, we only let p become ready at the

second stage at which � is accessible and at which we see oi
t

ppq † ↵. It is easily
verified that this delay in declaring a follower to be ready does not a↵ect the success
of the construction, so the degree degTpDq produced under this new definition of
readiness is also maximal totally ↵-c.a.; we show though that the degree produced
is also uniformly totally ↵-c.a.

We follow the argument for proving part (1) of Theorem III.3.5. By design of
the current construction, a node � accessible at stage s has length at most s. We
fix some ⌧ , working for Q

e

, such that ⌧ˆ8 lies on the true path. Now we examine
the proof of Lemma III.3.7. For x • dom�

e

pDqrs1s, again let u0 † u1 † s
ipxq

be successive stages at which ⌧ˆ8 is accessible. Let p�, pq P apxq, with � working
for P i

d

. Then oi
u0

ppq † ↵, and u0 † x. Since |�| § u0, we may assume that
i † x. It follows that m

ipxqpxq is an ordinal which can be observed at stage x of the
construction, and this is independent of ⌧ . This gives an ↵-order function h such
that every f §T D is h-c.a. ⇤
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In Section III.3.2 we explained why we could not combine the proofs of the
two parts of Theorem III.4.2 and obtain a contradiction (a degree which both is
and is not uniformly totally ↵-c.a.). The explanation focussed on the last stage
u1 “ s

ipxq´1, the last stage in S before stage s
ipxq. A follower p appointed at

stage u1 would have bound oi
u1

ppq which can be arbitrarily large with relation
to p, but will be able to destroy computations �

e

pD,xqrs
j

s for j • ipxq. In the
previous chapter there is no way around this; we have to allow such a p to destroy
the computations, or � will not be able to meet its requirement. In the current
situation, using W

d

to lift the use �
e

ppq when p is cleared allows us to choose which
followers to restrain, and this enables the proof of Theorem 1.10.

For the case ↵ “ !, Theorem 1.10 says that there is an array computable
c.e. degree which is maximal totally !-c.a. In fact, we suspect that combining
the methods of this chapter together with the construction of a contiguous degree,
one can show that there is a contiguous degree which is maximal totally !-c.a.
Since every contiguous degree is array computable, such a degree is also maximal
contiguous.

The following theorem, for ↵ “ !, shows that not all maximal totally !-c.a.
degrees are maximal contiguous degrees.

Theorem 1.11. If ↵ is a power of !, then there is a maximal totally ↵-c.a.
degree which is not uniformly totally ↵-c.a.

Sketch of proof. We combine the construction for Theorem 1.1 with the
technique proving Theorem III.3.5(2). To the construction for Theorem 1.1 we
add the enumeration of a functional �, with the aim of making �pDq witness that
degTpDq is not uniformly totally ↵-c.a. Again we fix an ↵-order function h, and
enumerate h-c.a. functions xg

i

y along with tidy ph`1q-computable approximations
for these functions. We add a third kind of requirement, Ri, namely that �pDq ‰ g

i

.
The action for these requirements is identical to that of the previous chapter. There
is no interaction (other than mutual initialisations) between nodes working for Ri

and nodes working for P j

d

; and the interaction between nodes working for Ri and
nodes working for Q

e

is as in the previous chapter. That is, when showing that D
is low2, and then devising an ↵-computable approximation for �

e

pDq if it is total,
the sets apxq may contain pairs p�, pq where � works for either a requirement Ri or
for a requirement P j

d

. In either case, the ordinal bound on the number of times �
will act for p can be observed at stage s

ipxq, and if p�, pq is not in apxq, then action
by � for p cannot injure a computation �

e,s

pD
s

, xq observed at a ⌧ -expansionary
stage. ⇤

2. Limits on further maximality

One might wish for even stronger maximality properties than those provided by
Theorem 1.1. Could there be, for example, a totally !-c.a. degree which is maximal
totally !2-c.a. degree? In general, can a degree in one level of our crudest hierarchy
be maximal for a higher level? The following theorem says it cannot.

Theorem 2.1. Let � † ✏0. Every totally !�-c.a. c.e. degree is bounded by a
strictly greater totally !�`1-c.a. c.e. degree.
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To prove Theorem 2.1, fix an ordinal � † ✏0, and let ↵ “ !� . Let V be a c.e. set
whose Turing degree is totally ↵-c.a. We enumerate a set D such that degTpV ‘Dq
is strictly greater than degTpV q and is totally ↵ ¨ ! “ !�`1-c.a. The requirements
to meet are:

P
e

:  
e

pV q ‰ D;

and

Q
e

: If �
e

pV,Dq is total then it is ↵ ¨ !-c.a.

Discussion. The main idea for meeting the requirement P
e

is as follows. We
track �

e

pV,D, xq for some x. Changes to such a computation can come from two
sources: a V -change or a D-change. To keep track of the V -changes – the ones we
do not control ourselves – we build what we call a “shadow functional” �̂

e

, with
intended oracle V alone. We pick an input c and define �̂

e

pV, cq with the same
use as that of �

e

pD,V, xq (recall that we assume that the V -use and the D-use
are identical). The input c is called the tracker for x. We ensure that if �

e

pD,V q
is total, then �̂

e

pV q is total as well. Since degTpV q is totally ↵-c.a., �̂
e

pV q will
equal f i for some i, where

@
f i

D
lists ↵-c.a. functions. We guess the correct index i;

this will be done using the fact that V is low2. This is a �0
3-guessing process,

which is very similar to a ⇧0
2{⌃0

2 process, except that infinitely many outcomes
are required. The correct guess will observe oipcq and bound the V -changes in
�

e

pD,V, xq.
We have to think though what happens when we cause a D-change (for the sake

of meeting some P
d

). The computation �
e

pD,V, xq is gone, but it is possible that
the V -part of the computation was correct. In this case �̂

e

pV, cq is a correct compu-
tation, and we cannot use the tracker c to shadow new �

e

pD,V, xq computations.
We need to replace c by a new tracker and repeat the process. This is how we get
↵ ¨!: when we first certify �

e

pD,V, xq, we put a bound on the number of D-changes
that we allow to destroy such a computation; say it is n. We appoint a tracker c0
and observe �0 “ oi0pc0q. We then declare that �

e

pD,V, xq will not change more
than ↵ ¨n`�0 many “times”. While we only see V -changes, the associated ordinal
is still ↵ ¨ n ` oi

s

pc0q. Once we cause a D-change that destroys a �
e

pD,V, xq com-
putation, we appoint a new tracker c1, observe �1 “ oi

s

pc1q, decrease our ordinal to
↵ ¨ pn ´ 1q ` �1, and repeat the process.

We could be tempted to improve the bound. If we know in advance (i.e. when
�

e

pD,V, xq is first certified) a bound n on the number of D-injuries to the compu-
tation, we could immediately appoint n trackers c0, . . . , cn´1 and start our approx-
imation knowing �

k

“ oi0pc
k

q for all of these trackers. Then the bound would be
�
n´1 ` �

n´1 ` ¨ ¨ ¨ ` �0 which in fact is smaller than ↵. We would prove that there
is no maximal totally ↵-c.a. degree. The fallacy is easy to see: we do not know
whether we will actually see n-many D-injuries to the computation; n is just a
bound. While we are using the tracker c0 we cannot define computations �̂

e

pV, c
k

q
for the other trackers (k ° 0); we need to keep them open, because the use of these
computations is the use of �

e

pxq-computations we have not yet observed. This
would make �̂

e

pV q partial even if �
e

pD,V q is total, and so void the whole plan.

We now discuss how to meet P
e

, bearing in mind the severe restriction imposed
by the negative requirements: such requirements need to know in advance (relative
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to the input x) the number of times (in this instance without quotation marks) a
D-change could ruin a computation �

d

pD,V, xq.
We pick a follower p and wait for  

e

pV, pq to converge, with the intention of
ensuring that  

e

pV, pq ‰ Dppq. Of course the di�culty is that we do not know,
when presented with such a computation, whether the presented computation is V -
correct. If V were low we could apply R. Robinson’s guessing technique. However V
need not be low. But it is low2, and again we use this to guess the answer to the
question “is  

e

pV q total?”.
Independent of the restrictions imposed by the negative requirements, ensuring

that D ¶T V would now be easy. Define a D-computable function ⇤pDq. Each
outcome of P

e

which believes that  
e

pV q is total appoints a follower p. If such
an outcome is believed and we currently see that  

e

pV, pq “ ⇤pD, pq then we
diagonalise. If such an outcome lies on the true path then its guess is correct:
 

e

pV q is indeed total, and so the outcome would act only finitely many times.
Such action causes conflict with stronger negative requirements. To keep ⇤pDq

total, a new value for �pD, pq needs to be picked immediately when an outcome
of P

e

acts. This means that such an outcome will repeatedly injure a computation
�

d

pD,V, xq. We could try to use the fact that degTpV q is totally ↵-c.a., rather
than the weaker fact that it is low2. We guess that  

e

pV q “ f i for some ↵-c.a.
function f i on our list; the agent following �

d

pD,V, xq will observe how many
“times” the P

e

-child will act, and incorporate it into its bound. The bound though
is ↵ rather than !. In this way we could try to make D ‘ V totally ↵2-c.a., but
not totally ↵ ¨ !-c.a. Of course for ↵ “ ! this is su�cient.

To overcome this di�culty we modify the action of P
e

as follows. The problem
was that even though we have certification that  

e

pV q is total, many single com-
putations we see will be incorrect. To respect the main restriction, after a failed
attack with a follower we abandon that follower altogether. To ensure that this does
not go on indefinitely we build a shadow functional  ̂

e

, with intended oracle V .
We need to ensure that if  

e

pV q is total then so is  ̂
e

pV q. Each agent that guesses
totality appoints an anchor q which will serve many followers p. We ensure that
the uses of  

e

pV, pq and  ̂
e

pV, qq are the same. If the agent is correct then the fact
that  ̂

e

pV, qq stabilises ensures that only finitely many followers are ever appointed
by that agent.

We need to discuss in greater detail how a node ⌧ working for Q
e

can
tolerate the action of a node � working for P

d

. Assuming that the nodes �
guesses that lim sup

s

dom�
e

pV,Dqrss “ 8, it also needs to guess whether
lim inf

s

dom�
e

pV,Dqrss “ 8, that is, if �
e

pV,Dq is total or not. If � guesses
that �

e

pV,Dq is total then for each x we allow an enumeration of a follower for �
to injure �

e

pV,D, xq at most once. As in the construction of a maximal totally
↵-c.a. degree, we set a “watermark” m

s

p�q, di↵erentiating between large inputs
whose computations � is allowed to injure, and smaller inputs which need to be
protected. Each time � attacks, the watermark is updated. It is possible that due
to a V -change, a follower p is smaller than the use '

e,s

pxq for some protected input

x † m
s

p�q. In this case the V -change makes  ̂
d

pV, qqÒ, and we can discard the
follower and choose a new, large one. Note that when this is done we do not need
to update m

s

p�q: the node ⌧ only cares about the number of followers that will
injure a computation �

e

pD,V, xq, not about the identity of the follower that will
inflict the injury.
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What at first appears to be a trickier situation is when � guesses that �
e

pV,Dq
is partial. We still need to protect computations �

e

pV,D, xq for small x, because
we don’t know that �’s guess is correct. This means cancelling a follower p for �
when we see a V -change that causes '

e

pxq to increase. But if �
e

pV,D, xqÒ then
this can happen infinitely often. However, � can guess the exact place at which
�

e

pV,Dq becomes partial, that is, the value of lim inf
s

dom�
e

pV,Dqrss. Say that
value is y. Inputs x † y will eventually settle and stop causing the cancellation
of �’s follower. When we guess the value y we delay the definition of �̂

⌧

pV, cq
where c is the current tracker for x. Action by � at such a stage will not cause
problems for stronger “totality outcomes” of ⌧ : if �̂

⌧

pV, cqÒ rss then enumeration
of a number into D at stage s does not mean that we need to abandon the tracker.
On the other hand if �

e

pV,Dq is total then such y will be guessed only finitely often
and so �̂

⌧

pV, cq will eventually be defined and we can ensure that �̂
⌧

pV q is total as
well, which is necessary for ⌧ ’s strategy to work.

The tree of strategies and �0
3 guessing. We define the tree of strategies and

assign strategies to nodes on the tree by recursion. The definition of the tree could
be compacted a little but we believe that a more expansive description may aid the
clarity of presentation.

We start with the empty node, to which we assign the requirement Q0. Suppose
that ⌧ is a node on the tree which was assigned the requirement Q

e

. The node will
have a number of children on the tree which help ⌧ meet its goal. The outcomes of ⌧
are 8 † fin. These outcomes measure lim sup

s

dom�
e

pV,Dqrss. The node ⌧ f̂in

is assigned to the requirement P
e

.
The outcomes of ⌧ˆ8 on the tree are 8

n

and fin

n

for n † ! (ordered by
80 † fin0 † 81 † fin1 † 82 † ¨ ¨ ¨ ). These outcomes participate in the �0

3

guessing process of whether �̂
⌧

pV q is total or not. The nodes ⌧ˆ8 f̂in

n

are assigned
to the requirement P

e

. The outcomes of nodes of the form ⌧ˆ8ˆ8
n

are all i † !
(ordered naturally). A node ⌧ˆ8ˆ8

n

guesses that �̂
⌧

pV q is total. If it is right then
�̂
⌧

pV q must equal f i for some i, where
@
f i

D
as usual is a list of the ↵-c.a. functions

equipped uniformly with tidy p↵ ` 1q-computable approximations
@
f i

s

, oi
s

D
; this is

guessed by the node ⌧ˆ8ˆ8
n

î. We assign each such node the requirement P
e

.
Suppose that a node ⇡ is assigned the requirement P

e

. The node ⇡ has infinitely
many outcomes 8

n

and fin

n

, ordered as above. Again this is for guessing the
totality of  ̂

⇡

pV q, a shadow functional enumerated by the node ⇡. The children
of ⇡ — its immediate successors on the tree — combine forces to help ⇡ meets its
requirement. They each have a single immediate extension on the tree, which is
assigned to the requirement Q

e`1.

As discussed, nodes ⌧ working for Q
e

define a shadow functional �̂
⌧

and nodes ⇡
working for P

e

define a shadow functional  ̂
⇡

. Since V is low2, the set of indices
of functionals ⇥ such that ⇥pV q is total is ⌃0

3. Membership in a ⇧0
2 set can be

translated to the question whether a given non-decreasing computable sequence is
bounded or not. By the recursion theorem we know the indices of the functionals
enumerated by the nodes ⌧ and ⇡ on the tree. Thus we obtain for each such
node µ a computable list `

s

pµ, nq of sequences, nondecreasing in s, such that the
functional enumerated by µ is total if and only if for some n, the sequence x`

s

pµ, nqy
is unbounded.
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As mentioned above, a node ⌧ working for Q
e

appoints trackers tr
s

p⌧, xq for
inputs x † !. If � is a child of a node ⇡ working for P

e

which believes that  ̂
⇡

pV q
is total (i.e. � “ ⇡ˆ8

n

for some n † !) then � may appoint both an anchor ac
s

p�q
and a follower fl

s

p�q. All followers, anchors and trackers are cancelled when the
node which appointed them is initialised.

Suppose that ⇡ is a node which works for P
e

. We let precp⇡q be the set of
nodes ⌧ working for some Q

d

such that ⌧ˆ8 † ⇡. We split this set into two parts:
prec8p⇡q is the set of nodes ⌧ P precp⇡q such that ⌧ˆ8ˆ8

n

† ⇡ for some n;
prec

fin

p⇡q is the set of nodes ⌧ P precp⇡q such that ⌧ˆ8 f̂in

n

§ ⇡ for some n. If �
is a child of ⇡ which believes that  ̂

⇡

pV q is total then during the construction we
may define markers m

s

p�q. Let ⌧ P precp⇡q and let x † !. We say that � respects
the input x (for ⌧) at stage s if:

‚ ⌧ P prec8p⇡q and x † m
s

p�q; or
‚ ⌧ P prec

fin

p⇡q and x † y, where ⌧ˆ8 f̂in

y

§ ⇡.

Construction. Let s be a stage. We let, by recursion, the collection of accessible
nodes �

s

be an initial segment of the tree of strategies.

Suppose that a node ⌧ , working for requirement Q
e

, is accessible at stage s.
Let t † s be the last stage prior to stage s at which ⌧ˆ8 was accessible, t “ 0 if
there is no such stage. If dom�

e,s

pV
s

, D
s

q § t then we let ⌧ f̂in be next accessible;
otherwise we let ⌧ˆ8 be next accessible.

Suppose that ⌧ˆ8 is accessible at stage s. For each n † s let t
n

be the last
stage prior to stage s at which ⌧ˆ8ˆ8

n

was accessible, t
n

“ 0 if there was no such
stage. Also, let y be the least such that either �

e,t

pV
t

, D
t

, yqÒ or the computa-
tion �

e,t

pV
t

, D
t

, yq was destroyed since stage t, that is, either D
t

æ
u

‰ D
s

æ
u

or
V
t

æ
u

‰ V
s

æ
u

, where u “ '
e,t

pyq. Note that y § t. If there is some n § y such that
`
s

p⌧, nq • t
n

then we let ⌧ˆ8ˆ8
n

be next accessible for the least such n. Otherwise
we let ⌧ˆ8 f̂in

y

be next accessible.

Before we proceed we maintain the functional �̂
⌧

. Let x † ! such that
c “ tr

s

p⌧, xq is already defined. If either

‚ ⌧ˆ8 f̂in

y

is next accessible, and x † y; or
‚ ⌧ˆ8ˆ8

n

is next accessible, and x † t

and �̂
⌧,s

pV
s

, D
s

, cqÒ then we define �̂
⌧,s`1pV

s

, D
s

, cq “ s with use '
e,s

pV
s

, D
s

, xq.
Also, if c † s is not currently a tracker for any input for ⌧ and �̂

⌧,s

pV
s

, D
s

, cqÒ then

we define �̂
⌧,s`1pV

s

, D
s

, cq “ 0 with use 0 (recall that since V is not built by us, the use of �̂

is not the largest number queried; it is the length of the string appearing in an axiom applying to the

oracle). Finally for every x † s for which tr

s

p⌧, xq is undefined, we define a new,
large tracker tr

s`1p⌧, xq.
Suppose that ⌧ˆ8ˆ8

n

is accessible (for some n). For each i † s let r
i

be the
last stage at which ⌧ˆ8ˆ8

n

î was last accessible, r
i

“ 0 if there was no such stage.
We let ⌧ˆ8ˆ8

n

î be next accessible for the least i § s such that for all x † r
i

,
c “ tr

s

p⌧, xq is defined, oi
s

pcq † ↵ and �̂
e,s

pV
s

, cq “ f i

s

pcq. Note that r

s

“ 0 and so such i

does exist.

Suppose that a node ⇡, working for P
e

, is accessible at stage s. If |⇡| • s then we
end the stage. Suppose that |⇡| † s. We first maintain the shadow functional  ̂

⇡

.
For every q † s which is not currently an anchor for any child of ⇡, if  ̂

⇡,s

pV
s

, qqÒ
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then we define  ̂
⇡,s`1pV

s

, qq “ 0 with use 0. Now let q “ ac

s

p�q be an anchor for a

child � of ⇡, and suppose that  ̂
⇡,s

pV
s

, qqÒ. Let p “ fl

s

p�q be the current follower
of �.

‚ If either p P D
s

, or for some ⌧ P precp⇡q working for Q
d

and some x
which � currently respects (for ⌧) we have p † '

d,s

pxq, then we cancel p

and appoint a new, large follower fl
s`1p�q. We leave  ̂

⇡,s`1pV
s

, qq unde-
fined. In the first case we have already attacked with p, but now the computation against

which we diagonalised has disappeared. In the second case, as described earlier, we need to

protect the computation �
d

pD,V, xq from the action of �.

‚ Otherwise, if p P dom 
e,s

pV
s

q then we define  ̂
⇡,s`1pV

s

, qq “ s with use

 
e,s

ppq. If p R dom 
e,s

pV
s

q then we leave  ̂
⇡,s`1pV

s

, qq undefined.

For n † s let t
n

be the last stage at which ⇡ˆ8
n

was accessible, t
n

“ 0 if there
is no such stage. Also let y “ dom  ̂

⇡,s

pV
s

q. If there is some n § y such that
`
s

p⇡, nq • t
n

then we let ⇡ˆ8
n

be next accessible for the least such n. Otherwise
we let ⇡ f̂in

y

be next accessible.
Suppose that � “ ⇡ˆ8

n

is accessible.

‚ If � has no anchor then we appoint a new large anchor q “ ac

s`1p�q and
a new, large follower p “ fl

s`1p�q. We let m
s`1p�q “ s.

‚ If p “ fl

s

p�q is defined, p R D
s

,  
e,s

pV
s

, pq “ 0, and ac
s

p�q P dom  ̂
⇡,s

pV
s

q
then we enumerate p into D

s`1. Redefine m
s`1p�q “ s. For all

⌧ P prec8p⇡q and all inputs x which � does not currently respect
(for ⌧) that is, x • m

s

p�q, cancel the tracker trp⌧, xq.
If either of these happen, we stop the stage and initialise all nodes weaker than �.
If the stage was not ended, then the unique child of � is next accessible.

Verification. First we note that for the functionals ⌅ we define,  ̂
⇡

and �̂
⌧

,
we only define a new axiom ⌅

s`1pV
s

, xq if x R dom⌅
s

pV
s

q. This shows that these
functionals are consistent for V , indeed at every stage.

We will need to show that these shadow functionals behave properly. The
 -functionals are easy.

Lemma 2.2. Let ⇡ be a node working for a requirement P
e

. Let � be a child
of ⇡. Let s be a stage and suppose that q “ ac

s

p�q and p “ fl

s

p�q are defined. If
 ̂
⇡

pV, qqÓ rss then  
e

pV, pqÓ rss and  ̂
⇡,s

pqq “  
e,s

ppq.
Proof. Suppose that  ̂

⇡

pV, qqÓ rss; let u “  ̂
⇡,s

pqq. Let t † s be the stage
at which we defined this computation. So V

t

æ
u

“ V
s

æ
u

. At stage t we have
 

e

pV, pq Ó rss with use u. Hence this computation persists until stage s. We
may assume that while  

e

pV, pqÓ, no new computations (with di↵erent use) are
enumerated into  

e

. Thus  
e,s

ppq “ u. ⇤

Lemma 2.3. Suppose that a node ⇡ working for P
e

is accessible infinitely often
and is initialised only finitely often. There is a child � of ⇡ which is accessible
infinitely often. Let � be the strongest such child. Then:

(1) � ends the stage only finitely many times.
(2) � believes that  ̂

⇡

pV q is total if and only if  ̂
⇡

pV q is indeed total.
(3) If  ̂

⇡

pV q is total then the requirement P
e

is met.
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Proof. Suppose that  ̂
⇡

pV q is not total. Then for every n, ⇡ˆ8
n

is accessible
only finitely often (otherwise lim

s

`
s

p⇡, nq “ 8 and this implies that  ̂
⇡

pV q is total).
On the other hand, because  ̂

⇡

is defined only at stages at which ⇡ is accessible, we
know that y “ lim inf

s

dom  ̂
⇡

pV qrss is finite, and y “ dom  ̂
⇡

pV qrss at infinitely
many stages s at which ⇡ is accessible. Hence ⇡ f̂in

y

is accessible infinitely often,
and is the strongest child of ⇡ which is accessible infinitely often. This node never
ends the stage.

Suppose that  ̂
⇡

pV q is total. There is some n such that lim
s

`
s

p⇡, nq “ 8;
let n be the least such. For almost every stage s, dom  ̂

⇡

pV qrss ° n. Hence ⇡ˆ8
n

is accessible infinitely often, and is the strongest such child of ⇡.
At the first stage at which � “ ⇡ˆ8

n

is accessible after that last stage at which
it is initialised we define an anchor q “ acp�q; this anchor is never cancelled. Let t
be the stage at which the V -correct computation  ̂

⇡

pV, qq is defined (note that �
need not be accessible at that stage). The follower p “ fl

t

p�q is never cancelled.
After stage t, the node � ends the stage at most once, when p is enumerated into D.

We claim that  
e

pV, pq ‰ Dppq. We have p R D
t

(for otherwise p would be
cancelled at stage t). By Lemma 2.2,  

e

pV, pqÓ rts is a V -correct computation. If
 

e

pV, pq “ 0 then at the next stage s ° t at which � is accessible, p is enumerated
into D. If  

e

pV, pq “ 1 then at no stage do we enumerate p into D. ⇤

Lemma 2.4. Let ⇡ be a node which works for requirement P
d

. Let ⌧ P precp⇡q.
Let � be a child of ⇡ which guesses that  ̂

⇡

pV q is total. Let s be a stage at which ⇡
is accessible, and let x be an input for ⌧ which � respects at stage s. Suppose that
p “ fl

s

p�q and q “ fl

s

p�q are defined. Then �
e

pV,D, xqÓ rss and either (i) p P D
s

;
or (ii)  ̂

⇡

pV, qqÒ rss; or (iii) '
e,s

pxq § p.

Proof. Suppose that  ̂
⇡

pV, qqÓ rss and that p R D
s

. Let t † s be the stage
at which the computation  ̂

⇡

pV, qqrss is defined. When the anchor is chosen it is
large, and it is not large at stage t; hence q “ ac

t

p�q. The follower fl
t

p�q is not
enumerated into D at stage t since  ̂

⇡

pV, qqÒ rts. The follower is not cancelled at
stage t; otherwise  ̂

⇡

pV, qq is not defined at stage t. The follower is not cancelled
at any stage in the interval pr, sq since  ̂

⇡

pV, qqÓ at these stages. Hence p “ fl

t

p�q.
Since p R D

s

, m
s

p�q † t.
If ⌧ P prec8p⇡q then x † m

s

p�q. If ⌧ P prec

fin

p⇡q then x † y where
⌧ˆ8 f̂in

y

§ ⇡. Since ⇡ is accessible at stage m
s

p�q we have y † m
s

p�q so again
x † m

s

p�q. Hence �
e

pV,D, xq Ó rrs at every stage r ° m
s

p�q at which ⌧ˆ8 is
accessible. In particular this holds for r “ t. Since m

t

p�q “ m
s

p�q, x is respected
by � at stage t. If p † '

e,t

pxq then since  ̂
⇡

pV, qqÒ rts, p would be cancelled at
stage t. Hence p • '

e,t

pxq.
For brevity let u “ '

e,t

pxq. We may assume that  
d,t

ppq • p, and

 ̂
⇡,t

pqq “  
d,t

ppq. The fact that the computation  ̂
⇡

pV, qqrts survives until
stage s implies that V

t

æ
u

“ V
s

æ
u

. The lemma would be proved once we show that
D

t

æ
u

“ D
s

æ
u

; this would imply that the computation �
e

pV,D, xqrts survives until
stage s and so u “ '

e,s

pxq § p as required.
Suppose for a contradiction that at some stage r P rt, sq a number p1 † u is enu-

merated into D
r`1; let r be the least such stage. So the computation �

e

pV,D, xqrts
survives until stage r; '

e,r

pxq “ u. The number p1 is the follower fl
r

p�1q for some
node �1, a child of a node ⇡1 working for P

d

1 . The node ⇡1 must extend ⇡: it must
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be weaker than �, since it does not initialise � at stage r; and it is not initialised at
stage t, because the follower p1 is large when it is chosen, and so p1 is chosen prior
to stage t. The node �1 is initialised at stage m

s

p�q. Hence m
r

p�1q ° m
s

p�q. This
shows that x is respected (for ⌧) by �1 at stage r (if ⌧ P prec

fin

p⇡q then we use
the fact that both ⇡ and ⇡1 extend the same child of ⌧ˆ8). Applying the lemma
at stage r, since p1 R D

r

and  ̂
⇡

1 pV, ac
r

p�1qqÓ rrs (otherwise p1 is not enumerated
into D

r`1), it must be that p1 • '
e,r

pxq “ u, a contradiction. ⇤

Lemma 2.5. Let ⌧ be a node which works for requirement Q
e

. Let s be a stage;
let x be an input such that c “ tr

s

p⌧, xq is defined. Suppose that �̂
⌧

pV, cqÓ rss. Let
u “ '̂

⌧,s

pcq. Then:

(1) �
e

pV,D, xqÓ rss and u “ '
e,s

pxq.
(2) If D

s

æ
u

‰ D
s`1 æ

u

then the tracker c is cancelled at stage s.

Proof. Both parts of the lemma are proved by simultaneous induction on
the stage s. Suppose the lemma has been verified for all stages prior to stage s.
Assume the hypotheses of the lemma hold at stage s. Let t † s be the stage at
which the computation �̂

⌧

pV, cqrss was defined. So V
t

æ
u

“ V
s

æ
u

. At stage t we
have �

e

pV,D, xq Ó rts with use '
e,t

pxq “ u. Because trackers are chosen large,
c “ tr

t

p⌧, xq.
The conditions of the lemma hold at every stage in the interval rt, sq. Since

the tracker c is not cancelled at any stage in that interval, by induction on these
stages (using (2)) we see that D

s

æ
u

“ D
t

æ
u

. This shows that the computation
�

e

pV,D, xqrts is preserved up to stage s, and so establishes (1) at stage s.

Suppose that a number p † u is enumerated into D at stage s. Then p “ fl

s

p�q
for some node �, a child of a node ⇡. The follower p must be chosen prior to stage t.
If � is stronger than ⌧ then ⌧ is initialised at stage s, whence c is cancelled at stage s.
Assuming otherwise, it must be the case that � ° ⌧ˆ8, as � is not initialised at
stage t.

Lemma 2.4 ensures that � does not respect x (for ⌧) at stage s. Suppose that
⌧ˆ8 f̂in

y

§ ⇡ for some y. Let r be the last stage prior to stage s at which ⌧ˆ8
was accessible. Then r • t. It follows that �

e

pV,D, xqÓ rrs and the computation
is preserved until stage s. Hence y ° x. But then � respects x. So ⌧ P prec8p⇡q.
Then � is instructed to cancel c at stage s; (2) holds. ⇤

Lemma 2.6. Let ⌧ be a node which works for Q
e

. Suppose that ⌧ is initialised
only finitely often, and that ⌧ˆ8 is accessible infinitely often.

(1) For every x we eventually appoint a tracker trp⌧, xq which is never can-
celled.

(2) There is an outcome o P t8
n

, fin
n

u such that ⌧ˆ8 ô is accessible infinitely
often.

Let ⇢ “ ⌧ˆ8 ô be the strongest child of ⌧ˆ8 which is accessible infinitely often.

(3) If �
e

pV,Dq is total then so is �̂
⌧

pV q, and o “ 8
n

for some n. Further,
for some i, ⌧ˆ8ˆ8

n

î is accessible infinitely often.
(4) Otherwise o “ fin

y

where y “ dom�
e

pD,V q.
Proof. Let x † !. At any stage t ° x at which ⌧ˆ8 is accessible, if tr

t

p⌧, xq
is undefined then we appoint a new tracker tr

t`1p⌧, xq. Suppose that a tracker
tr

s

p⌧, xq is defined and is cancelled at stage s. The stage s is ended by a child �
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of a node ⇡ working for some P
d

; ⌧ P prec8p⇡q and the node � enumerates its
follower p “ fl

s

p�q into D
s`1. We have x • m

s

p�q. The marker m
s

p�q is chosen
at stage m

s

p�q, at which � is accessible. Thus there are only finitely many nodes �
which can ever cancel the tracker tr

s

px, ⌧q. Each such node does so at most once,
since when it does, it updates m

s`1p�q “ s ° x. This gives (1).
Suppose that �

e

pV,Dq is not total; let y “ dom�
e

pV,Dq. Let c be the eventual
tracker for y, which is never cancelled. Then y R dom �̂

⌧

pV q. This is ensured by
part (1) of Lemma 2.5; If �̂

⌧

pV, cqÓ with use u then at a late stage at which both V
and D are correct up to u we would get a V,D-correct computation of �

e

pyq.
Since �̂

⌧

pV q is partial, no totality outcome 8
n

is guessed infinitely often. Since
�

e

pV,D, xq is eventually fixed for all x † y, eventually, no outcome stronger than
fin

y

is ever guessed; but fin
y

is guessed infinitely often. This gives (4).
Suppose that �

e

pV,Dq is total. For every y, fin
y

is guessed only finitely many

times. We show that �̂
⌧

pV q is total. This will imply that some 8
n

is guessed
infinitely often. Let c † !. As usual, if c is never chosen as a follower or is chosen
and later cancelled, then �̂

⌧

pV, cqÓ. Suppose that c is chosen as a tracker for x at
stage r, and is never cancelled. Eventually no fin

y

for y § x is ever guessed; so

eventually, at every stage s at which ⌧ˆ8 is accessible, if �̂
⌧

pV, cqÒ rss then a new
computation �̂

⌧,s`1pV
s

, cq is defined. The use is '
e,s

pxq. This use stabilizes, and
eventually V stabilizes below that use, and so eventually a V -correct computation
must be made.

Since degTpV q is totally ↵-c.a., there is some i † ! such that �̂
⌧

pV q “ f i

and
@
f i

s

, oi
s

D
is eventually ↵-computable. Since every input eventually receives a

permanent tracker, the outcome i is guessed infinitely often for the least such i. ⇤

Lemmas 2.3 and 2.6 together show that the true path is infinite and that the
construction is fair to every node on the true path.

Lemma 2.7. Every positive requirement P
e

is met.

Proof. Let ⇡ be the node on the true path which works for P
e

. Suppose that
 

e

pV q is total. We show that  ̂
⇡

pV q is total (and then appeal to Lemma 2.3).
Let q † !. To show that  ̂

⇡

pV, qqÓ we may, as usual, assume that q is chosen
as an anchor of a child � of ⇡ at some stage r, and is never cancelled. We show that
followers for � are cancelled only finitely many times. This su�ces: if p is a follower
for � which is never cancelled, then eventually we see the V -correct computation
 

e

pV, xq. At any stage s at which ⇡ is accessible, if  ̂
⇡

pV, qq Ò rss then a new
computation is defined with use  

e,s

ppq, which eventually stabilizes.

The node � believes that  ̂
⇡

pV q is total. Hence if � is accessible infinitely often
then  ̂

⇡

pV q is total and we are done. We assume that � is accessible only finitely
many times. The marker m

s

p�q is updated only when � is accessible, so reaches a
final value mp�q at stage t • r.

Suppose that the follower p “ fl

s

p�q is cancelled at a stage after stage t. This
is done on behalf of a node ⌧ P precp⇡q (working for some Q

d

) and an input x.
There are two cases. If ⌧ P prec8p⇡q then a totality outcome for ⌧ˆ8 lies on the
true path. This implies that �

d

pV,Dq is total. Also, x † mp�q. If the follower for �
is cancelled after the correct computation �

d

pV,D, xq appears then a new follower
is chosen to be large, and so is greater than  

d,s

pxq for all later s. This implies that
this ⌧ can cause only finitely many cancellations of fl

s

p�q.
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The other case is ⌧ P prec

fin

p⇡q; say ⌧ˆ8 f̂in

y

§ ⇡; so x † y. By Lemma 2.6,
y “ dom�

d

pV,Dq, so again �
d

pV,D, xq eventually converges by a correct compu-
tation. The argument is now the same as in the first case. ⇤

To finish the verification we show that every requirement Q
e

is met. Let ⌧
be the node on the true path which works for Q

e

, and suppose that �
e

pV,Dq is
total. Then ⌧ˆ8 lies on the true path; and Lemma 2.6 says that for some n and i,
⇢ “ ⌧ˆ8ˆ8

n

î lies on the true path. Then
@
f i

s

, oi
s

D
is eventually ↵-computable and

�̂
⌧

pV q “ f i. As in previous proofs let s˚ be the last stage at which ⇢ is initialised,
and let s0 † s1 † s2 † ¨ ¨ ¨ be the stages after stage s˚ at which ⇢ is accessible.

Fix x † !. We let jpxq be the least j such that x † s
j´1. For all

j • jpxq, �
e

pV,D, xq Ó rs
j

s, c
j

“ c
j

pxq “ tr

s

j

p⌧, xq is defined, oi
s

j

pc
j

q † ↵

and �̂
⌧

pV, c
j

qÓ“ f ipc
j

q rs
j

s. For j • jpxq let a
j

“ a
j

pxq be the set of nodes �,
children of nodes ⇡ working for some P

d

such that ⇢ § ⇡, such that m
s

j

p�q § x.
Since m

s

p�q is non-decreasing, if j † j1 then a
j

1 Ñ a
j

.
The following lemma is an analogue of Lemmas III.2.9 and 1.7.

Lemma 2.8. Let x † ! and j • jpxq. Let u “ '
e,s

j

pxq.
(1) If a

j`1 “ a
j

then c
j`1 “ c

j

;
(2) If D

s

j`1 æ
u

‰ D
s

j

æ
u

then c
j`1 ‰ c

j

;
(3) If D

s

j`1 æ
u

“ D
s

j

æ
u

but V
s

j`1 æ
u

‰ V
s

j

æ
u

then oi
s

j`1
pc

j

q † oi
s

j

pc
j

q.
Proof. The instructions ensure that only a node � (with parent ⇡) such that

⌧ P prec8p⇡q and m
s

p�q § x can cancel tr

s

p⌧, xq. Say that a node ⇡ with
⌧ P prec8p⇡q is accessible at a stage r P ps

j

, s
j`1q; then ⇡ is initialised at stage s

j

and so m
s

p�q ° s
j

° x. So if c
j

is cancelled by stage s
j`1, then it is cancelled

by a node � P a
j

. But then we define m
s

j

`1p�q “ s
j

° x and so � R a
j`1. This

gives (1).
The same argument shows that if D

s

j`1 æ
u

‰ D
s

j

æ
u

then D
s

j

`1 æ
u

‰ D
s

j

æ
u

.
(2) is given by Lemma 2.5(2).

Suppose that a
j`1 “ a

j

but V
s

j`1 æ
u

‰ V
s

j

æ
u

. Let s • s
j

be the least stage
such that V

s`1 æ
u

‰ V
s

æ
u

.
By Lemma 2.5(1), u “ '̂

⌧,s

j

pc
j

q, and so �̂
⌧

pV, c
j

qÒ rs` 1s. When we redefine a

value for �̂
⌧

pV, c
j

q, it is the stage number, and so �̂
⌧

pV, c
j

qrs
j`1s ° s

j

. In particular

�̂
⌧

pV, c
j

qrs
j`1s ‰ �̂

⌧

pV, c
j

qrs
j

s. But then f i

s

j`1
pc

j

q ‰ f i

s

j

pc
j

q, and (3) follows. ⇤

Now let for all j • jpxq
�
j

“ �
j

pxq “ ↵ ¨ |a
j

| ` oi
s

j

pc
j

q.
Since ↵ is closed under addition, for all n and all � † ↵ we have ↵¨n`� † ↵¨pn`1q.
Thus if a

j`1 ‰ a
j

then (as a
j`1 à a

j

) �
j`1 † �

j

. Suppose that a
j`1 “ a

j

. Then
c
j`1 “ c

j

and so oi
s

j`1
pc

j`1q “ oi
s

j`1
pc

j

q “ oi
s

j

pc
j

q; so �
j`1 § �

j

. Suppose further
that �

e

pV,D, xqrs
j

s ‰ �
e

pV,Dqrs
j`1s. Since c

j`1 “ c
j

, D
s

j`1 æ
u

“ D
s

j

æ
u

. Then
Lemma 2.8(3) ensures that �

j`1 † �
j

. This concludes the verification.

2.1. Uniformity again. Inspecting the construction we see that |a
jpxqpxq| † x.

This is because m
s

jpxq

p�q is distinct for distinct � P a
jpxqpxq (when m

s

p�q is set the
stage ends). This shows that in fact degTpV ‘ Dq is uniformly totally ↵ ¨ !-c.a., as
every �

e

pV,Dq is h-c.a. for hpnq “ ↵ ¨ pn ` 1q.
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2.2. Maximal † ↵-c.a. degrees. Suppose that ↵ is a limit of powers of !,
and that degTpV q is totally † ↵-c.a. We can modify the construction above by
letting the sequence

@
f i

D
range over all functions which are �-c.a. for some � † ↵.

Examining the proof above, we see that the ordinal bound on the number of changes
of �

e

pV,D, xq is given by a finite multiple of oipcq for a variety of c but for fixed i.
Thus, if f i is �-c.a., then �

e

pV,Dq is � ¨ !-c.a. We thus obtain:

Theorem 2.9. If ↵ § ✏0 is a limit of powers of !, then no c.e. degree is
maximal totally † ↵-c.a.





CHAPTER V

Presentations of left-c.e. reals

In this chapter we prove Theorem I.0.2:

(1) If a c.e. degree d is not totally !-c.a. then there is a left-c.e. real ↵ §T d
and a c.e. set B †T ↵ such that every presentation of ↵ is B-computable.

(2) If a left-c.e. real ↵ has a totally !-c.a. degree then there is a presentation
of ↵ which is Turing equivalent to ↵.

A motivation for the consideration of presentations of left-c.e. reals comes from
algorithmic randomness, where prefix-free c.e. sets of finite binary strings appear in
the definition of prefix-free Kolmogorov complexity and help characterise Martin-
Löf randomness. We recall some definitions.

Definition 0.10. A real number ↵ P R is left-c.e. if its left cut, the set of
rational numbers q † ↵, is c.e.

A set of strings C Ä 2†! is prefix-free if no two distinct strings in C are
comparable. The measure of such a set C, denoted by �pCq, is the Lebesgue
measure of the open subset of 2! generated by C. It equals

∞
�PC 2´|�|.

A presentation of a left-c.e. real ↵ P r0, 1s is a c.e. prefix-free set C Ä 2†! whose
measure is ↵.

A real is left-c.e. if and only if it is the limit of an increasing, computable
sequence of rational numbers. If A is a c.e. set then 0.A (the real whose binary
expansion is A) is a left-c.e. real. Unlike c.e. sets, left-c.e. reals may be random. A
well-known left-c.e. random real is Chaitin’s ⌦, which is defined to be the measure
of the domain of a universal prefix-free machine.

Since we are discussing presentations, from now all numbers we deal with are
in the unit interval r0, 1s. Implied in the definition of presentations is that the
measure of a c.e. prefix-free set of strings is left-c.e. Every left-c.e. real ↵ P r0, 1s
has presentations. Indeed with padding it is seen that every left-c.e. real has a
computable presentation. Every presentation of a left-c.e. real ↵ is computable
from ↵. But bizarre things can happen. In [25], Downey and LaForte constructed
a noncomputable left-c.e. real ↵, all of whose c.e. presentations are computable.
On the other hand they showed that any left-c.e. real with promptly simple degree
has a noncomputable presentation. Stephan and Wu [59] showed that the same
holds for all noncomputable K-trivial left-c.e. reals. Theorem I.0.2(2) extends their
result. See also [20, 63].

Computing with real numbers. In this chapter we view real numbers as ele-
ments both of the computable metric space r0, 1s and as infinite binary sequences

in 2N
`

(where N` “ t1, 2, 3, . . . u) by using their binary expansion: ↵ P r0, 1s equals∞
kPN`

2´k↵pkq. Thus reals in the unit interval are essentially elements of Can-
tor space. As the former, a real number ↵ P r0, 1s is given (in the language of

87
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Weihrauch, represented) by a nested sequence xI
n

y of closed intervals with dyadic
rational endpoints (with the length of I

n

being 2´n) such that t↵u “ ì
n

I
n

.
All numbers in r0, 1s have a Turing degree (rather than merely a continuous

degree, see [49]) which is the same as the Turing degree of their binary expansion.
However passing from a real to its expansion is nonuniform. For this reason there
are elements of the computable metric space r0, 1s! which do not have Turing
degree. The source of the problem are dyadic rational numbers, which have more
than one binary expansion and have more than one presentation xI

n

y. We will be
working with noncomputable numbers ↵, and so in particular with numbers that
are not dyadic rationals, so this problem is avoided.

We remark though that during constructions we may work with dyadic rational
numbers q P r0, 1q and their binary expansion. By that we mean the expansion
which ends with a string of zeros.

1. Presentations of c.e. reals and non-total !-c.a. permitting

In this section we prove part (1) of I.0.2.

1.1. A simplified construction. Before adding permitting we construct a
left-c.e. real ↵ and a c.e. set B such that B †T ↵ but every presentation of ↵ is
B-computable. As mentioned above, this has been done in [25] with B “ H. We
present the construction proving the weaker statement because it is simpler than
the original one. The simplification is compatible with non-total !-c.a. permitting.
The original construction is in some sense compatible with non-total † !!-c.a.
permitting. We discuss this later, in Subsection 1.3.

Let x 
e

y be an enumeration of functionals which output reals in the inter-
val r0, 1s. So for each k (and oracle X),  

e

pX, kq (if it converges) is a closed
interval I (with dyadic rational endpoints) of length 2´k; if  

e

pXq is total then
x 

e

pX, kqy is a representation of  
e

pXq. We need to meet the requirements:

P
e

:  
e

pBq ‰ ↵.

Let xC
e

y be an enumeration of all prefix-free c.e. sets of binary strings. We
need to meet the requirements

N
e

: If �pC
e

q “ ↵ then C
e

§T B.

Globally we also need to ensure that B §T ↵.

Discussion. Consider first a requirement N
e

. It monitors the quantities ↵
s

and �pC
e,s

q. We note that we may assume that for all s † !, �pC
e,s

q † ↵
s

. For
we will ensure that ↵ is not a dyadic rational. When we see that enumerating a
string � into C

e,s

will make �pC
e,s

q • ↵
s

we prevent the enumeration and wait
until ↵

t

grows beyond �pC
e,s´1 Y t�uq, and only then enumerate � into C

e

. If
�pC

e

q “ ↵ then such a stage will occur.
At some stage s we discover that ↵

s

´ �pC
e,s

q † 2´t for some t † !. At that
stage, the requirement would like to certify that strings of length smaller than t
would never enter C

e

again. It does so with some B-use ⌘
e

ptq. To ensure that
strings of length smaller than t cannot enter C

e

, the requirement imposes restraint
on weaker actors: until further notice we require that ↵

u

´↵
s

§ 2´t. The restraint
will be lifted at a later stage at which we again see that ↵

u

´ �pC
e,u

q † 2´t (an
“e-expansionary” stage). Alternatively, a weaker requirement that really wants to
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violate the restraint may enumerate the use ⌘
e

ptq into B. We need to ensure that
this does not happen to almost all t.

Now consider P
e

. Originally, some restraint is imposed on it: don’t increase ↵
by more than ✏ say. It chooses a “follower” k, large relative to ´ log ✏ and waits
until it sees  

e

pB, kq converge and give us a closed interval I of length 2´k which
must contain  

e

pBq (if total) — provided that B does not change below some
use b “  

e,s

pkq. While ↵
s

lies far away from I there is nothing to do, but once we
see that ↵

s

P I the requirement wants to add a quantity of more than 2´k to ↵ to
ensure that ↵ lies to the right of I. To ensure its action is useful the requirement
imposes B-restraint b. Actually we need to worry not only when we see that ↵

s

P I, but when the

distance between ↵
s

to I is smaller than some small fixed bound; if the non-computability requirements

are not met then it is actually possible that ↵
s

converges to the left endpoint of I.

Of course time passes between the stage at which k was determined and the
stage r at which we see the convergence of  

e

pB, kq. In the meantime, a require-
ment N

d

stronger than P
e

imposes stricter and stricter restraints on ↵. If t † r then
the marker ⌘

⌧

ptq is likely smaller than the use b of the computation  
e

pB, kqrrs,
so enumerating the marker into B by P

e

is self-defeating. However, for t • r the
markers are appointed later than r and so are larger than b, so P

e

has no com-
punction about enumerating them into B. With this in mind, the requirement P

e

goes through a cycle of length 2r´k ` 1 using a “drip-feed” strategy. It increases ↵
by 2´r, and then waits for the next N

d

-expansionary stage s ° r. At that stage it
enumerates markers ⌘

d

ptq into B for t • r; the fact that s is a new expansionary
stage means that P

e

is now allowed to add a new quantity of 2´r to ↵. If this
repeats 2r´k ` 1 many times we will have succeeded to add the required amount
(more than 2´k) to ↵ and drive ↵ to the right of the interval I and so meet P

e

.
This strategy has been likened to a cautious investor, slowly realising gains by repeatedly selling small

amounts of stock, ensuring that the market does not notice their actions: they only sell a further amount

once the stock price recovered to the original value.

Of course to be successful, the requirement P
e

needs to know if su�ciently
many expansionary stages will occur. It guesses the answer to this question, and
so as usual the construction is performed on a tree of strategies.

The tree of strategies. The requirements P
e

and N
e

are ordered in order-type !;
the kth level of the tree is devoted to meeting the kth requirement. If � is a node
which works for P

e

, then � has only one outcome. If ⌧ is a node which works for N
e

,
then the outcomes of ⌧ are 8 † fin.

A node � working for P
e

may define first a follower k
�,s

and then an interval
I
�,s

which it would like ↵ to avoid. It also defines r
�,s

, the amount by which it
is allowed to increase ↵ at a single step. When � is initialised, the follower k

�

,
the interval I

�

and restraint bound r
�

are cancelled. They will be cancelled only
when � is initialised.

Nodes ⌧ working for N
e

define markers ⌘
⌧

ptq. We note that it is not necessarily
the case that the set of t for which ⌘

⌧

ptq is defined is an initial segment of !. In
fact ⌘

⌧

ptq may be defined at most once (at a stage greater than t), and t will be
a stage at which ⌧ is accessible. For this reason ⌘

⌧

ptq is not indexed by the stage
number s.
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Construction. At stage s we define the path of accessible nodes �
s

to be an
initial segment of the tree of strategies, and at the end of the stage define ↵

s`1.
We start with ↵0 “ 0.

Suppose that a node ⌧ , working for N
e

, is accessible at stage s. Let t † s be
the previous stage at which ⌧ˆ8 was accessible; t “ 0 if there was no such stage.
If ↵

s

´ �pC
e,s

q † 2´t we let ⌧ˆ8 be next accessible and choose ⌘
⌧

ptq to be large.
Otherwise we let ⌧ f̂in be next accessible.

Suppose that a node �, working for P
e

, is accessible at stage s. The node may
either let its only immediate successor on the tree of strategies be next accessible
or decide to end the stage. In the latter case all nodes weaker than � are initialised.

First, suppose that a follower k
�,s

is not defined. Define k
�,s`1 to be large;

let ↵
s`1 “ ↵

s

and end the stage.

Next, suppose that k
�,s

is defined but an interval I
�,s

is not defined. If
 

e

pB, k
�

q Ó rss “ I (recall that I is a dyadic rational interval of length 2´k

�,s ) then we
let I

�,s`1 “ I and r
�,s`1 “ s. Let ↵

s`1 “ ↵
s

and end the stage.
If  

e

pB, k
�

qÒ rss then � does not end the stage (and as we said, the unique
immediate successor of � is next accessible).

Suppose that I
�,s

is defined. If dp↵
s

, I
�,s

q † 2´r

�,s then for all ⌧ working for
some N

e

1 such that ⌧ˆ8 § �, for all t • r
�,s

such that ⌘
⌧

ptq is defined, enumerate
⌘
⌧

ptq into B
s`1. Let ↵s`1 “ ↵

s

` 2´r

�,s and end the stage.
If the distance dp↵

s

, I
�,s

q is at least 2´r

�,s we do not end the stage.

Verification. The global requirement is satisfied:

Lemma 1.1. B §T ↵.

Proof. Suppose that x enters B at stage s. Then x “ ⌘
⌧

ptq for some t and ⌧ ,
and ↵

s`1 “ ↵
s

` 2´r where t • r. Since ⌘
⌧

ptq ° t, we see that once ↵ ´ ↵
s

† 2´r,
no numbers below r can enter B. ⇤

We observe that the construction is fair and that the true path �
!

is infinite.
This follows by induction on the length of nodes, using the following lemma.

Lemma 1.2. Suppose that a node �, working for a positive requirement, is
accessible infinitely often and is initialised only finitely often. Then � ends the
stage only finitely often.

Proof. Let t be the last stage at which � is initialised. At the next stage after t
at which � is accessible we appoint a new follower k

�

which is never cancelled. If
there is no later stage at which an interval I

�

is defined then � never stops the
stage again.

Otherwise, an interval I
�

is defined at some stage r
�

; the interval (and the
bound r

�

) are never cancelled again. If � is accessible at stage s ° r
�

then � ends
stage s only if dp↵

s

, I
�

q † 2´r

� , in which case it adds 2´r

� to ↵
s

. Since the length
of the interval I

�

is 2´k

� , this happens at most 2r�´k

� ` 2 many times. ⇤
To bound the value of ↵, for a positive node � (one working for some P

e

) and
a stage t let

�p�, tq “
ÿ

p↵
s`1 ´ ↵

s

q rrs • t & � ends stage sss.
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So ↵ ´ ↵
t

is the sum of �p�, tq for all positive nodes �.

Lemma 1.3. Suppose that a positive node � is initialised at stage t. Then
�p�, tq † 2´p3t`1q.

Proof. Suppose that � is initialised at stage t, that u ° t and � is not ini-
tialised at any stage in the interval pt, us. Let k

�

be the value of the follower for �
in the interval rt, us (if appointed). Since k

�

is chosen large relative to t we assume
that k

�

° 3t ` 3; and r
�

° k
�

. The proof of Lemma 1.2 shows that the sum
ÿ

p↵
s`1 ´ ↵

s

q rrs P rt, us & � ends stage sss
is bounded by 2´k

� ` 2 ¨ 2´r

� which is bounded by 2´p3t`2q. We now sum over all
the stages t1 • t at which � is initialised. ⇤

We conclude that ↵ “ lim
s

↵
s

exists and lies in the unit interval.

Lemma 1.4. ↵ † 1.

Proof. Every node of length s is initialised at every stage s1 § s. Thus for such
a node � we have �p�, 0q “ �p�, sq † 2´p3s`1q. There are at most 2s many nodes of
length s as the tree of strategies is binary branching. Hence level s contributes at
most 2´ps`1q to ↵. Some levels consists of negative nodes and so contribute nothing
to ↵. ⇤

We turn to showing that all requirements are met.

Lemma 1.5. Each positive requirement P
e

is met.

Proof. Let � be a node on the true path which works for P
e

. Let k
�

be the
value of the last follower chosen by �, the one which is never cancelled. We suppose
that  

e

pBq is total; so I
�

is eventually defined at a stage r
�

° k
�

. Since � acts
only finitely often, for almost all stages s, dp↵

s

, I
�

q • 2´r

� . Hence dp↵, I
�

q • 2´r

�

and so ↵ R I
�

.
It remains to show that  

e

pBq P I
�

, which would follow once we show that the
computation  

e

pB, k
�

qrr
�

s is B-correct. Let u “  
e

pB, k
�

qrr
�

s be the use of this
computation.

Suppose that a number x enters B at stage s • r
�

, enumerated by a node ⇢.
We show that x ° u. The number x equals ⌘

⌧

ptq for some ⌧ˆ8 § ⇢ and some t.
We know that x “ ⌘

⌧

ptq ° t • r
⇢,s

. The node ⇢ cannot be stronger than �, for
otherwise � is initialised at stage s • r

�

, contradicting the permanence of k
�

and I
�

.
Hence r

⇢,s

• r
�

: this is clear if ⇢ “ �; otherwise, ⇢ is initialised at stage r
�

, s ° r
�

and r
⇢,s

must be greater than r
�

. Finally the use u “  
e

pB, kqrr
�

s is bounded
by r

�

. ⇤

Toward showing that negative requirements are met, let ⌧ be a node, working
for N

e

, and suppose that ⌧ˆ8 lies on the true path. Let t˚ be the last stage at
which ⌧ is initialised. We let S be the set of stages t ° t˚ at which ⌧ˆ8 is accessible.
For t P S let t` be the next stage in S.

The markers defined by ⌧ are ⌘
⌧

ptq for t P S. The marker ⌘
⌧

ptq is defined at
stage t`.

Lemma 1.6. Let u † t be two stages in S. Assume that ⌘
⌧

puq R B
t`1. Then

↵
t

` ´ ↵
t

§ 2´u. It follows that no strings of length less than u lie in C
e,t

` zC
e,t

.
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Proof. We consider various contributions. All nodes that lie to the right of
⌧ˆ8 are initialised at stage t. The calculation in the proof of Lemma 1.4 shows
that ↵

t

` ´ ↵
t`1 § 2´t § 2´pu`1q.

Next consider nodes � • ⌧ˆ8. In the interval of stages rt, t`q, such nodes are
only accessible at stage t. At stage t at most one such node � increases ↵; the
amount of increase ↵

t`1 ´ ↵
t

equals 2´r

�,t . Since ⌘
⌧

puq is not enumerated into B
at stage t we have r

�,t

° u, and so ↵
t`1 ´ ↵

t

§ 2´pu`1q.
As discussed above, the last sentence follows: ↵

t

´ �pC
e,t

q † 2´t and
�pC

e,t

` q § ↵
t

` and so �pC
e,t

` q ´ �pC
e,t

q † 2´u ` 2´t † 2´pu´1q. ⇤
The verification ends with:

Lemma 1.7. Each negative requirement N
e

is met.

Proof. We assume that �pC
e

q “ ↵; we need to show that C
e

§T B. Let ⌧ on
the true path working for N

e

. The assumption implies that ⌧ˆ8 lies on the true
path.

We claim that infinitely many markers ⌘
⌧

puq are not enumerated into B.
Let w ° t˚ be a stage. Let � be the strongest extension of ⌧ˆ8 which acts (ends the
stage) after stage w. Since infinitely many nodes on the true path act, � cannot lie
to the right of the true path. It follows that � acts only finitely often. Let t be the
last stage at which � acts. The marker ⌘

⌧

ptq is appointed at stage t`. Let ⇢ • ⌧ˆ8
be a node which enumerates a marker ⌘

⌧

pvq into B at some stage s • t`. The
node ⇢ is initialised at stage t; after stage t it is first accessible not before stage t`,
and so v • r

⇢,s

• t``. Hence ⌘
⌧

ptq (and in fact ⌘
⌧

pt`q as well) are never enumer-
ated into B.

Now Lemma 1.6 shows that the following algorithm with oracle B correctly
computes C

e

: Given k † !, find a stage t ° k in S such that ⌘
⌧

ptq R B. Announce
that C

e

æ2†t“ C
e,t

` æ2†t . ⇤

1.2. Non totally !-c.a. permitting. We now add non-totally !-c.a. per-
mitting to prove part (1) of Theorem I.0.2: if d is not totally !-c.a. then there is
a left-c.e. real ↵ §T d and a c.e. set B †T ↵ such that every presentation of ↵ is
B-computable.

Fix some function g P d which is not !-c.a. Since d is c.e., we can replace g by
its modulus (see the proof of Theorem III.5.2). So we have a computable approxi-
mation xg

s

y of g such that:

‚ if s † t then g
s

pnq § g
t

pnq for all n;
‚ if g

s`1pnq ‰ g
s

pnq then g
s`1pmq ‰ g

s

pmq for all m ° n.

At first approximation, the idea for reducing ↵ to g (and hence to d) is to declare
that if g

s

pkq “ gpkq then ↵ ´ ↵
s

§ 2´k. Using the notation of the construction
above, when a node � is visited and wants to increase ↵ we must first wait for
a change in gpk

�

q. The number of permissions needed to meet �’s requirement is
bounded by 2r� . We note that it is the follower k

�

that needs to be permitted, even
though at each step we increase ↵ by 2´r

� , not 2´k

� . It is the eventual increase in ↵
which counts, because the promise is that if k is not permitted then ↵´↵

s

§ 2´k.
Of course it is possible that the number of permissions will be insu�cient.

While waiting for permissions the node � must appoint more followers k, with
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the expectation that at least one of them will receive the necessary number of
permissions. If the follower k does not receive enough permissions then we can
approximate gpkq with fewer than 2r� many mind-changes. If no follower receives
enough permissions then infinitely many of them will be appointed. This will give
an !-computable approximation of g.

The remaining issues are the timing of permissions and necessary cancellation
of followers. The follower k could be permitted at a stage s at which � is not
accessible. We cannot “leave the permission open” and wait to increase ↵ at the
next stage at which � is accessible, since we do not know whether such a stage will
occur. We need to act on permissions immediately.

When a follower k receives a permission we increase ↵ by the associated amount
2´r

�

pkq (determined by the stage r
�

pkq at which we see the computation  
e

pB, kq
converge) and we need to enumerate markers ⌘

⌧

ptq for t • r
�

pkq into B. This
means that the computations  

e

pB, k1q for followers k1 ° k for the same node
are destroyed. We cannot keep these followers: overall we want action for some
follower k to not increase ↵ by more than 2´k`1 say. So the larger followers k1 are
cancelled, and later, larger followers may be appointed.

But this creates a problem when arguing that eventually some follower will be
permitted. Suppose that a follower k is eventually cancelled. When approximat-
ing gpkq we do not know in advance that it will be cancelled, so we promise that our
guesses for gpkq will not change more than 2r�pkq many times. We observe many
changes, and then k is cancelled. Henceforth changes in gpkq do not seem to help
us to meet �’s requirement, which means that there is no mechanism which will
bound these changes. We need to ensure that every change in gpkq is useful.

The solution (as in [17]) is to allow stronger followers take over the respon-
sibility for approximating greater portions of g. When a follower k is permitted,
larger followers k1 ° k are cancelled. We declare that from now on, what would
have been permissions for k1 must count as permissions for k. Technically we define
moveable markers a

k,s

, and we declare that k is permitted if gpa
k

q changes (rather
than gpkq). When k is permitted then we raise a

k,s

to be greater than the previous
values of a

k

1 for the followers k1 which were cancelled.

Construction. The tree of strategies is the same as in the construction above.
Positive nodes � appoint followers. All followers are cancelled when � is initialised
or when smaller followers for � receive attention; otherwise they are retained. For
all followers k of � (except possibly for the largest one) we also define associated
intervals I

�

pkq (of length 2´k) and bounds r
�

pkq as above. Any number can be
chosen at most once as a follower for any requirement.

Negative nodes ⌧ define markers ⌘
⌧

ptq as in the previous construction. Globally
we define location markers a

k,s

for all k † s, useful for reducing ↵ to g.

We start with setting ↵0 “ 0. At stage s we either act on permissions or define
the path of accessible nodes �

s

and act for nodes on that path.
We say that a node � is already met by stage s if at stage s there is some

follower k for � such that I
�

pkq is defined and ↵
s

lies strictly to the right of I
�

pkq.
Option A: Acting on Permissions. We say that a follower k (for a positive

node �) requires attention at stage s if:

‚ The node � is not already met at stage s;
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‚ The interval I
�

pkq is defined;
‚ dp↵

s

, I
�

pkqq † 2´r

�

pkq;
‚ the follower k did not receive attention since the last stage at which � was
accessible; and

‚ g
s`1pa

k,s

q ‰ g
s

pa
k,s

q.
If no follower requires attention then we take option B. Otherwise let k be

the strongest follower which requires attention: the node � is the strongest, any
of whose followers requires attention at stage s; and k is the strongest (smallest)
follower for � that requires attention at stage s. We say that the follower k receives
attention.

We execute the following instructions. Let ↵
s`1 “ ↵

s

` 2´r

�

pkq. For all neg-
ative nodes ⌧ such that ⌧ˆ8 § �, for all t • r

�

pkq such that ⌘
⌧

ptq is defined,
enumerate ⌘

⌧

ptq into B
s`1. Initialise all nodes weaker than �; cancel all followers

for � greater than k and their associated intervals. Redefine a
m,s`1 to be large for

all m • k, and define a new marker a
s,s`1 to be large as well. End the stage.

Option B: Building the path of accessible nodes.
If option A was not taken then we define the path �

s

of accessible nodes. Since
no permissions were used, we set ↵

s`1 “ ↵
s

and a
m,s`1 “ a

m,s

for all m † s; we
define a

s,s`1 to be large.

Suppose that a node ⌧ working for N
e

is accessible at stage s. Let t † s be
the previous stage at which ⌧ˆ8 was accessible; t “ 0 if there was no such stage.
If ↵

s

´ �pC
e,s

q † 2´t we let ⌧ˆ8 be next accessible and choose ⌘
⌧

ptq to be large.
Otherwise we let ⌧ f̂in be next accessible.

Suppose that a node � working for P
e

is accessible at stage s. The node may
either let its only immediate successor on the tree of strategies be next accessible
or decide to end the stage. In the latter case all nodes weaker than � are initialised.
If the node � is already met by stage s then � takes no action and does not end
the stage.

Suppose that � is not already met. If � has no followers then a new, large one
is appointed, and the stage is ended. Otherwise, let k be the largest follower for �.

If I
�

pkq is defined and dp↵
s

, I
�

pkqq † 2´r

�

pkq then appoint a new, large follower
for � and end the stage. If dp↵

s

, I
�

pkqq • 2´r

�

pkq then the stage is not ended.
Suppose that I

�

pkq is not defined. If  
e

pB, kqÓ rss then set I
�

pkq “  
e

pB, kqrss
and r

�

pkq “ s; end the stage. If  
e

pB, kqÒ rss then no action is taken and the stage
is not ended.

Verification. Suppose that a positive node � is initialised only finitely many
times. Every follower for � is either eventually cancelled, or receives attention only
finitely many times. As above the point is that the follower k cannot receive at-
tention more than 2r�pkq´k ` 1 many times, as each time ↵ is increased by 2´r

�

pkq.
Indeed if a follower k receives attention the full number of times then the require-
ment is declared met and no follower for � receives attention, at least until a later
stage at which � is cancelled.

Since new followers are always chosen large we see that as promised, each k
is chosen at most once to be a follower (for any node). A location marker a

m,s

is
moved only when some follower k § m receives attention. We conclude that the
location markers a

m,s

reach limits a
m

. Thus, for all m † ! there is some stage s at



V.1. PRESENTATIONS OF C.E. REALS AND NON-TOTAL !-C.A. PERMITTING 95

which g
s

pa
m,s

q “ gpa
m,s

q. The following lemma then shows that ↵ is computable
from g, and so from d.

Lemma 1.8. Suppose that g
s

pa
m,s

q “ gpa
m,s

q. Then ↵ ´ ↵
s

§ 2´pm´1q.

Proof. Note that a
m,t`1 ‰ a

m,t

only if g
t`1pa

m,t

q ‰ g
t

pa
m,t

q. Hence a
m,s

“ a
m

is the final value of this marker. Let �pkq be the sum of ↵
t`1 ´↵

t

, as t ranges over
the stages at which the follower k receives attention. As discussed above, �pkq is
bounded by 2´k ` 2´r

�

pkq § 2 ¨ 2´k (where � is the node for which k is a follower),
since r

�

pkq ° k. Since no follower of size less than or equal to m receives attention
after stage s we know that

↵ ´ ↵
s

§
ÿ

k°m

�pkq § 2 ¨ 2´m. ⇤

The proof that B §T ↵ is identical to the one given earlier. The proof
that ↵ † 1 requires minor modifications but is essentially the same. If � is a
positive node which is initialised at stage t then the total contribution to ↵ ´ ↵

t

due to stages at which followers for � receive attention is bounded by 2
∞

2´k where
the sum ranges over follower k for � appointed after stage t. Since all of these fol-
lowers are chosen to be large we may assume that this sum is bounded by 2´3t´1

as above.
The following lemma ensures that the true path is infinite and that the con-

struction is fair to nodes on the true path. First note that there are infinitely many
stages at which option B is taken: if s is the last stage at which option B is taken,
then only finitely many followers are ever appointed and each one receives attention
at most once after stage s.

Lemma 1.9. Suppose that � is a node which works for requirement P
e

, is only
initialised finitely many times and is accessible infinitely often. Then the unique
immediate successor of � on the tree of strategies is initialised only finitely often
and so is accessible infinitely often. Further, the requirement P

e

is met.

Proof. Let t˚ be the last stage at which � is initialised.

Let s˚ ° t˚ and let k be a follower for � at stage s˚ which is never cancelled.
No follower stronger than k receives attention after stage s˚.

If the interval I
�

pkq is never defined then no larger followers for � are ever
appointed and � never later ends a stage at which it is accessible. Since all followers
receive attention only finitely many times we see that the successor of � is initialised
only finitely many times. Further, in this case  

e

pB, kqÒ and so the requirement P
e

is met.

Suppose then that at some stage r
�

the interval I
�

pkq is defined. The argument
in the previous construction shows that the computation  

e

pB, kqrr
�

pkqs is B-
correct and so if total,  

e

pBq P I
�

pkq.
If at all stages s • r

�

pkq, ↵
s

lies to the left of I
�

pkq and dp↵
s

, I
�

pkqq • 2´r

�

pkq
then no follower greater than k is ever appointed for �, so again the successor of �
is on the true path and the construction is fair to that successor. As before, in this
case dp↵, I

�

pkqq • 2´r

�

pkq so ↵ ‰  
e

pBq.
Similarly, if at some stage s • r

�

pkq we see that ↵
s

lies strictly to the right
of I

�

pkq then � is declared met and no action is taken for � after stage s. Since
↵ • ↵

s

again we see that ↵ R I
�

pkq and so P
e

is met.
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Further, in this last case we do not need to assume in advance that k is never
cancelled: once we see ↵

s

lying to the right of I
�

pkq, all action for � ceases and no
follower is cancelled.

We claim that there is some follower k for � which is never cancelled and for
which one of the cases described above holds. Assume, for a contradiction that this
is not the case. We show that g is !-c.a.

The assumption means that:

‚ For every follower k for � appointed after stage s, either k is cancelled
or I

�

pkq is eventually defined and for all but finitely many stages s • r
�

pkq.
‚ The node � is never declared met after stage t˚.

For a follower k of �, if there is such a stage, we let s
�

pkq be the least stage s • r
�

pkq
such that dp↵

s

, I
�

pkqq † 2´r

�

pkq and � is accessible at stage s. As observed above,
if k is a follower for � at a stage s and is not the largest follower for � at that stage,
then s ° s

�

pkq.
Let x † !. Let Spxq be the set of stages s ° t˚ satisfying:

‚ � is accessible at stage s; and
‚ there is some follower k of � at stage s such that s • s

�

pkq and x § a
k,s

.

For s P Spxq let k
s

pxq be the smallest follower for � witnessing that s P Spxq. We
first claim that if s P Spxq, t ° s and � is accessible at stage t then t P Spxq and
k
t

pxq § k
s

pxq. Let k “ k
s

pxq. If k is still a follower for � at stage t then k witnesses
that t P Spxq, because a

k,s

§ a
k,t

. Otherwise a follower stronger than k receives
attention at a stage between stages s and t. Let m be the strongest such follower.
Then m is still a follower for � at stage t. If m receives attention at stage u P ps, tq
then we define a

m,u`1 to be large, in particular greater than x, and so x † a
m,t

and m witnesses that t P Spxq.
Suppose that s † t are successive stages in Spxq and that g

t

px ‰ g
s

pxq. Let
k “ k

s

pxq. The fact that x § a
k,s

implies that g
t

pa
k,s

q ‰ g
s

pa
k,s

q. Let m be the
smallest follower for � such that g

t

pa
m,s

q ‰ g
s

pa
m,s

q; so m § k. Let u be the least
stage u P ps, tq at which g

u`1pa
m,s

q ‰ g
u

pa
m,s

q. Then m is not cancelled by stage u,
and as it did not receive attention at stages between s and u, it requires attention
at stage u, and receives it.

Above we calculated for any follower k for which I
�

pkq is ever appointed a bound
hpkq “ 2r�pkq´k ` 1 for the number of times k receives attention. It follows that
the number of stages s P Spxq such that g

t

pxq ‰ g
s

pxq (where t is the next stage in
Spxq) is bounded by

∞
hpmq, where m is a follower for � at stage s “ minSpxq and

s
�

pmq § s. From this we can construct an !-computable approximation for g. ⇤

It remains to show that every negative requirement is met. Let e † ! and let ⌧
on the true path work for N

e

; in the interesting case ⌧ˆ8 also lies on the true path.
The proof of Lemma 1.7, that infinitely many markers ⌘

⌧

ptq are not enumerated
into B goes through as above: say w is a late stage; let � be the strongest node which
ever acts (ends the stage) or a follower of whose receives attention after stage w.
Then � extends ⌧ˆ8 and does not lie to the right of the true path. Either � lies to
the left of the true path, in which case � appoints only finitely many followers; each
one receives attention infinitely often. If � lies on the true path then Lemma 1.9
shows that � acts only finitely often. Hence there is a last stage t at which � is
accessible and ends the stage, or a follower for � receives attention. Any node ⇢
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which acts after stage t is initialised at stage t. If t1 is the least stage t1 • t at which
⌧ˆ8 is accessible then ⌘

⌧

pt1q is not enumerated into B.
Thus we need to prove an analogue of Lemma 1.6. Again let u † t be two late

stages at which ⌧ˆ8 is accessible and suppose that ⌘
⌧

puq R B
t

` , where again t` is
the next stage after t at which ⌧ˆ8 is accessible. As above, the total contribution
to ↵

t

` ´ ↵
t

made by nodes that lie to the right of ⌧ˆ8 is bounded by 2´t, as
all such nodes are initialised at stage t. It is no longer true however that nodes
extending ⌧ˆ8 do not act at stages strictly between t and t`, nor that only one such
node acts between these stages. Nonetheless, every follower k for a node � • ⌧ˆ8
receives attention at most once between stages t and t`, and so the total increase
in ↵ attributed to such nodes is bounded by

∞
2´r

�

pkq where � • ⌧ˆ8, k is a
follower for � at stage t and r

�

pkq ° u (again as ⌘
⌧

puq R B
t

`). Since the numbers
r
�

pkq are distinct for distinct followers k we see that this sum is bounded by 2´u.
We conclude that ↵

t

` ´ ↵
t

is bounded by 2´pu´1q and so that strings of length
smaller than u ´ 1 do not enter C

e

between stages t and t`, completing the proof.

1.3. The complexity of the original construction. As mentioned above,
the original construction in [25] constructs a noncomputable left-c.e. real ↵, all of
whose presentations are computable. That is, B “ H. This construction is more
complicated than the one presented above. Since we are not allowed to enumerate
markers into B, promises that a node ⌧ makes at an expansionary stage are binding
to all. Considering one such node ⌧ and one positive node � extending ⌧ˆ8, ensuring
that � acts only finitely many times requires ⌧ to delay making stricter restraints.
Suppose that an interval I

�

is defined at some stage r
�

. Ignoring subtleties we
assume that at that stage the node ⌧ declares that from now on, any increase in ↵
between two successive ⌧ -expansionary stages must be bounded by 2´r

� .
↵´ ↵

r

�

§ 2´r

� , and that the node � wants to drive ↵ to be to the right of I
�

.
The node � issues a request from ⌧ : until �’s mission is accomplished, ⌧ should
refrain from imposing stronger bounds on the increase of ↵ between ⌧ -expansionary
stages. In turn, since ⌧ does not know if � will be accessible su�ciently many times
to complete its task, it cannot abide by �’s request indefinitely. Hence ⌧ takes upon
itself to act on �’s behalf: at the next few ⌧ -expansionary stages, the stage ends
when ⌧ is accessible and an amount of 2´r

� is added to ↵. This happens finitely
many times, until ↵

s

lies to the right of I
�

; after that, � never acts again and ⌧ is
free to make stricter promises about increases of ↵.

So far the number of actions required is similar to the previous construction,
but the story gets more complicated when more than one node ⌧ is considered.
Suppose now that ⌧1 and ⌧2 are two negative nodes with ⌧1ˆ8 § ⌧2 and ⌧2ˆ8 § �.
At stage r

�

both negative nodes promise that between ⌧
i

-expansionary stages, ↵
increases by no more than 2´r

� . So we cannot increase ↵ by the desired 2´r

� until
the next ⌧2-expansionary stage. Now ⌧1 is in a bind. It cannot act on its own to
help �, it seems; but it does not know if there are infinitely many ⌧2-expansionary
stages, so it cannot wait for one while not making its own promises about ↵ stricter.

The solution is to follow a nested loop. Suppose that t • r
�

is ⌧2-expansionary.
Unlike ⌧1, the node ⌧2 can a↵ord to wait until � is done, and so keeps the bound
between ⌧2-expansionary stages to be 2´r

� . Until the next ⌧2-expansionary stage
the entire construction is restricted to the interval r↵

s

,↵
s

` 2´r

� q. At stage s the
node ⌧1 announces a strict bound, roughly 2´t. At subsequent ⌧1-expansionary
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stages we increase ↵ on �’s behalf, say up to ↵
s

` 2´r

�{2. This means that at the
next 2t´r

�

´1 many ⌧1-expansionary stages, the path of accessible nodes ends at ⌧1.
After this action, the construction continues without special action on �’s behalf but
with su�cient initialisations to the right of � so that the promise that ↵ † ↵

s

`2´r

�

is honoured. At the next ⌧2-expansionary stage we repeat the cycle again: a new,
stricter bound 2´t

1

is announced by ⌧1; for the next 2t
1´r

�

´1 many ⌧1-expansionary
stages we act on behalf of �, and then again wait for a new ⌧2-expansionary stages.
After no more than 2r� many such iterations we meet �’s requirement.

Consider now how this argument would translate to a permitting argument. We
know in advance that to meet � on the follower k we will need sometime like 2r�pkq
many ⌧2-expansionary stages. If t is one of these stages, we will need roughly 2t

many permissions for ⌧1 to act on �’s behalf. We will not know the next value
until we actually observe the next ⌧2-expansionary stage. So the number of total
permissions required is given by an !2-c.a. function: the number of times we change
our mind about how many permissions we need for follower k is bounded by the
computable number 2r�pkq. If we know that d is not totally !2-c.a. then we can
meet �’s requirement. If there are three negative nodes ⌧1, ⌧2 and ⌧3 below �, then
we have three layers of nesting of loops, and so the number of permissions is now
given by an !3-c.a. function, and so on. Overall we see that this kind of permission
is related to non-total † !!-c.a. permission.

2. Total !-c.a. anti-permitting

We prove part (2) of Theorem I.0.2. Let ↵ be a left-c.e. real such that degTp↵q
is totally !-c.a. We enumerate a presentation C of ↵ which is Turing equivalent
to ↵.

The technique we use is the so-called “anti-permitting” technique described
in [17, 5]. In some sense it is a mirror image of the previous construction. As
discussed earlier in this chapter, we view ↵ as an infinite binary sequence via binary
expansion. This is unique as we may assume that ↵ is noncomputable. In fact we
will later make significant use of the assumption that ↵ is noncomputable; it will
help us lift array computable anti-permitting to total-!-c.a. anti-permitting.

2.1. Basic algorithm and plan. Before we describe the construction we
discuss one of the algorithms that will be used in the construction and the high-
level plan for the construction.

Building presentations. We want to enumerate a presentation C of ↵. We follow
a proof by J. Miller of the Kraft-Chaitin theorem of algorithmic randomness theory
(see [21]). We fix an increasing approximation x↵

s

y of ↵, where each ↵
s

P r0, 1q
is a dyadic rational number. We will not require that �pC

s

q “ ↵
s

for all stages s.
We will only add strings to C

s

to bring its measure up to ↵
s

at stages s at which
we receive some “certification” that various initial segments of ↵

s

are correct. This
process of certification is the heart of the construction. Ignoring the mechanics
of certification for the moment, let s be a stage at which we want to add strings
to C

s´1 to ensure that �pC
s

q “ ↵
s

. The instruction will be:

Adding strings to C.
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Let � “ ↵
s

´ �pC
s´1q. For each k such that �pkq “ 1, add a

single string of length k to C
s

.

(Recall that we consider � as a string via its binary expansion.) Since � “ ∞
�pkq2´k, it is clear

that �pC
s

q “ ↵
s

. The pertinent point is:

if � • 2´k then a string of length at most k enters C
s

.

We need to argue though that the instruction can be carried out while keep-
ing C

s

prefix-free. This is done by using an auxiliary sequence of strings. At each
stage t we will have reserved strings ⌧

k,t

for each k such that �pC
t

qpkq “ 0, with
|⌧

k,t

| “ k, such that C
t

Y t⌧
k,t

: �pC
t

qpkq “ 0u is prefix-free. We work with each
length at a time, so we may assume that � “ 2´k, i.e., we want to add a single
string of length k to C

s´1. Since �pC
s´1q † ↵

s

† 1 there is some m § k such
that �pC

s´1qpmq “ 0. Let m be the greatest such. So the change in ↵
s

compared
to ↵

s´1 is that the mth bit changes from 0 to 1, and the nth bit, for all n P pm, ks
(if k ° m) changes from 1 to 0. So ⌧

n,s

“ ⌧
n,s´1 for n R rm, ks. We then add

⌧
m,s´1 0̂k´m to C

s

and for n P pm, ks we let ⌧
n,s

“ ⌧
m,s´1 0̂n´m´11. See Figure 1.

�pC
s´1q

↵
s

. . .

. . .

. . .

. . .

0

1

1

0

1

0

1

0

1

0

1

0

m

k

⌧
m,s´1

⌧
m`1,s

⌧
m`2,s

⌧
m`3,s

⌧
k,s�

Figure 1. C
s

“ C
s´1 Y t�u.

Henceforth the details of the auxiliary strings are assumed, and we only invoke
the algorithm above.

Layers. Suppose that we enumerate a presentation C as described above. Why
is it the case that C might not compute ↵? We have arranged for that in the
previous construction: we gradually add small amounts to ↵. If we update C each
time, this means that only long strings enter C. However the cumulative e↵ect on ↵
may be big, which is a change that C does not comprehend.

In terms of binary expansions, the problematic case is when ↵
s

contains a long
block of 1’s. Suppose that ↵

s

æpm,ks is a string of ones. Then adding 2´k to ↵
s

results in adding a string of length k to C but changes the bit ↵pmq.
We can try to prevent this by setting up layers which contain su�ciently

many zeros, and appropriately set uses for computing ↵ from C. We set mark-
ers �0 † �1 † �2 † ¨ ¨ ¨ such that the block ↵ ær�

n

,�

n`1q contains many zeros (and
the idea is that the markers may increase with time, but hopefully settle down
eventually). We let �

n`1 be the use for reducing ↵ æ
�

n

to C. See Figure 2. Here
since C is a set of strings, by use u we mean querying the oracle on strings of length
less than u.

Now the point is that if between stages s and s ` 1, ↵ changes on the interval
r�

n´1, �nq, then since the interval ↵
s

ær�
n

,�

n`1q contains zeros, the increase ↵s`1´↵
s
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↵

C

�0 �1 �2 �3
0 0 0 0 0 0

Figure 2. Layers. The dashed lines represent the reduction of ↵ to C.

is greater than 2´�
n`1 ; and so if we update C then some string of length smaller

than �
n`1 will enter C and allow us to fix the reduction of ↵æ

�

n

to C.
After this increase, we may have ↵

s`1 ær�
n

,�

n`1q be all ones, but we can in-
crease �

n`1 so that the new interval contains many zeros. However, it is possible
that no string of length smaller than �

n

entered C
s`1; so we cannot increase �

n

, as
this is the use of computing ↵ æ

�

n´1 . Which is a problem, since we lost a zero on
the interval r�

n´1, �nq. Note though that we lose at most one zero, or the increase
is beyond 2´�

n and strings of length smaller than �
n

will in fact enter C
s`1. So if

we can ensure that the number of times this happens is at most the number of zeros
we originally set up in the interval r�

n´1, �nq, the construction will succeed. This
is precisely what the certification process gives us.

Certification. The certification process relies on the computational weakness
of degTp↵q. We enumerate a Turing functional � with intended oracle ↵, and
ensure that �p↵q is total. We know that the function �p↵q is !-c.a. Suppose that
xg

s

, o
s

y is an !-computable approximation for �p↵q. When a computation �
s

p↵
s

, nq
is destroyed, we redefine it with a new value. It follows that there are fewer than
o0pnq many stages s at which �

s

p↵
s

, nq “ g
s

pnq and the computation �
s

p↵
s

, nq is
↵-incorrect.

The plan for setting up the layers is then as follows. Given �
n´1, calculate o0pnq

and let �
n

be su�ciently large so that the current version of ↵ contains at least o0pnq
many zeros in the interval r�

n´1, �nq. Define �p↵, nq with use �
n

. Recall that since the

oracle ↵ is given our convention is that by use u we mean that ↵æ
u

computes �pnq, not ↵æ
u`1.

We can then carry out our original plan. Suppose that for a while, everything
is stable, but that at some stage t we see an increase in ↵

t`1, say a quantity
q P p2´�

n`1 , 2´�
ns. As discussed above, this may change the bits of ↵ on the

interval r�
n´1, �nq. This means that now �p↵, nqÒ. We define a new value for the

computation (say t) with the same use. Before we act, we wait for certification: for
a later stage s at which we see that g

s

pnq equals that new value t. Only once we’ve
seen this certification do we add strings to C

s`1 (of lengths between �
n

and �
n`1).

Compared to ↵
t

ær�
n´1,�nq, the interval ↵s

ær�
n´1,�nq contains one zero fewer. But this

is compensated by the change in g, which ensures that o
s

pnq † o
t

pnq. Note though
that while waiting, further increases can occur. If the amount increases beyond 2´�

n

then we can abandon �
n

and repeat the work on the interval r�
n´2, �n´1q.
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Uniformity, and simple permitting. All is well, except that even if we en-
sure that �p↵q is total, we cannot e↵ectively find an !-computable approximation
for �p↵q. We need to guess one. Let xgey be an enumeration of the !-c.a. functions,
equipped with tidy p!`1q-computable approximations xge

s

, oe
s

y (Proposition II.1.7).
We perform countably many constructions which are almost independent of each
other. The eth construction guesses that �p↵q “ ge, and based on this guess enu-
merates a prefix-free set Ce and a reduction of ↵ to Ce. If the guess is correct then
the construction will succeed.

Since they enumerate distinct sets and reductions, there is very little interac-
tion between the di↵erent constructions. However they do combine forces in defin-
ing �p↵q. To keep things simple, the eth construction defines �p↵, nq for inputs
n P !res (the eth column of !). The catch is that even if the guess that �p↵q “ ge

is incorrect, an eventual ↵-correct definition of �p↵, nq must be made by the eth

construction, for all n P !res.
Even while waiting for an agreement between �p↵, nq and gepnq, the eth con-

struction can keep defining new values of markers �
m

for m ° n in !res, and with
them computations �p↵,mq. If degTp↵q were array computable this would not be
a problem. Recall that we need to ensure that the block ending with �

m

must
contain at most oe

s

pmq many zeros (where s is the stage at which we make the
definition). If we know that �p↵q is say id-c.a., then we can work with a list of tidy
pid`1q-computable approximations, and so oe0pmq “ m for all e and m, and we can
find how large �

m

must be. However under the weaker assumption that degTp↵q is
totally !-c.a., we need to work with what are essentially (if not formally) partial
approximations. So the conflict is that we need to define �

m

even if oe
s

pmq “ ! for
all s; so we cannot wait for a value oe

s

pmq † ! to show up. But if we define �
m

before seeing oe
s

pmq † ! then we will not have enough zeros and will not be able
to carry out the construction outlined above, even if the eth guess is correct.

The solution (as in [17]) is to make use of the fact that ↵ is noncomputable. We
actually use simple permitting. This is perhaps paradoxical in an anti-permitting
argument. But of course the point is that noncomputable (simple) permitting is
weaker than non-total !-c.a. permitting, and so the former can co-exist with the
negation of the latter.

What we do is go ahead and define a computation �p↵,mq without waiting
for oe

s

pmq to give us a natural number. But we wait with the definition of the
reduction of ↵ to Ce (which is fine, as it is local to the eth construction). Once
we see the value oe

s

pmq we wait for a voluntary change in ↵ below the use �pmq.
Simple permitting will ensure that for infinitely many m we will see such changes
(provided of course that the approximation is eventually !-computable). If we
see such a change then we can now define a new large value for �pmq, bounding
su�ciently many zeros, and declare it to be one of our markers �

m

. Note again that
to move �

m

we need not only an ↵-change below �
m

, but also a change in Ce on
strings of length below �

m

, if the reduction of ↵æ
�

m´1 to Ce has already been defined.
This is why it is important to keep this reduction undefined until we see oe

s

pmq † !.
This discussion contained all the ideas needed for the proof, and so we turn to

giving the formal details.

2.2. Total !-c.a. anti-permitting: the details. As discussed, we are given
a noncomputable left-c.e. real ↵ P r0, 1q with an increasing approximation x↵

s

y. We
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use a list xgey of all !-c.a. functions, with tidy p!` 1q-computable approximations
xge

s

, oe
s

y.
We enumerate a Turing functional �, with intended oracle ↵, viewed as an

element of Cantor space.
For every e † ! we perform the eth construction. These constructions are

independent of each other. Fix some e † !. In the eth construction we enumerate
a prefix-free c.e. set Ce and define �p↵,mq for all m P !res. Also, we define an
increasing sequence of numbers kep0q † kep1q † . . . (the list may eventually be
finite or infinite). All of the numbers kepnq are elements of !res. These will be
the numbers that are permitted (simply) and so they will be the ones that will
be used as inputs for defining the layers. We renumber our markers by letting
�e
n

“ �pkepnqq.

The beginning of stage s. By the beginning of a stage s we will have already:

(1) Enumerated the set Ce

s

;
(2) Defined the sequence kep0q, kep1q, . . . , kepvq for some v “ ve

s

, such that
each ke

n

P !res X s. For brevity we let be
s

“ kepve
s

q be the last element of
this sequence.

(3) Defined computations �
s

p↵
s

,mq for all m P !res Xs, with uses �
s

pmq. For
n § ve

s

we let �e
n,s

“ �
s

pkepnqq.
The uses �

s

pmq are not quite monotone:

‚ if kepn ´ 1q † m † kepnq for some n § ve
s

then �
s

pmq “ 0. That is,
the computation �

s

p↵
s

,mq does not look at the oracle and so is never
destroyed. These inputs m were discarded when we got permission to
use kepnq to define the next layer ending with �e

n,s

.
‚ Otherwise, the uses are monotone:

– �e
n,s

“ �
s

pkepnqq † �
s

pkepn ` 1qq “ �e
n`1,s for all n † ve

s

;
– If n § ve

s

and m ° be
s

then �e
n,s

† �
s

pmq;
– If be

s

† m † m1 then �
s

pmq † �
s

pm1q.
See Figure 3.

The eth construction. The construction begins at stage s “ min!res. At
that stage we define kep0q “ s and Ce

s`1 “ H. We define a new computation
�
s`1p↵

s`1, sq “ 0 with use 1. So �e0,s`1 “ 1. Recall our convention that ↵ “ 0.↵p1q↵p2q ¨ ¨ ¨ .
This means that ↵ æ

k

is the bit-sequence ↵p1q↵p2q ¨ ¨ ¨↵pk ´ 1q. If we define a computation with use 1

this means that the oracle is not consulted and so this computation is never destroyed.

Now suppose that s ° min!res. We give the instructions for the eth construc-
tion at stage s.

Step 1: redefining destroyed computations �p↵,mq.
We may see that some of the computations �

s

p↵
s

,mq are destroyed by the
change from ↵

s

to ↵
s`1. If none of these computations are destroyed then we skip

to step 2 below.
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↵
s

Ce

s

�e0,s �e1,s �e2,s �e3,s
0 0 0 0 0 0

�
s

p↵
s

q
kep0q kep1q kep2q kep3q

“ be
s

m m1

Figure 3. The eth construction at stage s. In this example ve
s

“ 3,
and �

s

p↵
s

q is also defined on m1 ° m ° be
s

“ kep3q, the two next
elements in !res.

Otherwise we need to define new computations �
s`1p↵

s`1,mq for m for which
the computations were destroyed. In all but one case the value of the new compu-
tations will be s ` 1, and so to define these computations we only need to specify
their use �

s`1pmq.
Let p be the smallest element of !res such that p † s and �

s

p↵
s`1, pqÒ. There

are three cases.

First case. Useless change: p ° be
s

but oe
s

ppq “ !.

For all m P rp, sq X !res set �
s`1pmq “ �

s

pmq. We don’t increase the

uses, to ensure that they do not go to infinity.

Second case. Making use of simple permission: p ° be
s

and oe
s

ppq † !.

In this case we add p as the new last element of the list of useful
inputs. That is, we define kepnq “ p where n “ ve

s

` 1 “ ve
s`1;

so p “ be
s`1.

‚ For m P pbe
s

, be
s`1q X !res define �

s`1p↵
s`1,mq “ �

s

p↵
s

,mq
with use 1. We use the previous value to keep the functional consistent.

‚ Set �
s`1ppq (which of course equals �e

n,s`1) to be the
least u ° �e

n,s

` 1 such that the block ↵
s`1 ær�e

n´1,s,uq
contains at least oe

s

ppq ` 2 many zeros.
‚ For m P pp, sq X !res set �

s`1pmq to be large.

Third and main case: p “ kepqq for some q § ve
s

.

Let n P rq, ve
s

s. Let � “ ↵
s`1 ´ �pCe

s

q.
‚ If � § 2´�e

n,s then set �e
n,s`1 “ �e

n,s

(in other words, set
�
s`1pkepnqq “ �

s

pkepnqq).
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‚ If � ° 2´�e
n,s then set �e

n,s`1 to be the least possible value
greater than �e

n´1,s ` 1 so that the block ↵ær�e
n´1,�

e

n

q rs` 1s
contains at least oe

s

pnq ` 2 many zeros.
As in the second case, for all m P pbe

s

, sq X!res set �
s`1pmq to be

large.

This defines the computations �
s`1p↵

s`1,mq for allm † s in !res and concludes
the first step.

Step 2: updating Ce.
Let � “ ↵

s`1 ´ �pCe

s

q. Suppose that � ° 0 and that for all n § ve
s

, n ° 0
such that � § 2´�e

n´1,s we have �p↵, kepnqq “ gepnq rs`1s. Then enumerate strings
into Ce

s`1 following the algorithm above to ensure that �pCe

s`1q “ ↵
s`1.

Step 3: a new computation.
At the very end of the stage, if s P !res we define a new computation

�
s`1p↵

s`1, sq with new, large use.

This concludes the instructions for stage s ° min!res.

Verification. Each functional �
s

is consistent for ↵
s

. This uses the fact
that x↵

s

y is an increasing approximation, and that at every stage we define
a new computation �

s`1p↵
s`1,mq only if �

s

p↵
s`1,mq Ò, or otherwise we let

�
s`1p↵

s`1,mq “ �
s

p↵
s

,mq.
Lemma 2.1. �p↵q is total.

Proof. Let m † !; let e be such that m P !res. Let ve “ sup
s

ve
s

.
If there is some n † ve such that kepnq † m † kepn ` 1q then at the stage at

which kepn ` 1q is defined we define a new computation �pmq with use 1. Recall
that this means that the oracle is not consulted. So certainly �p↵,mqÓ.

Suppose that m “ kepnq for some n § ve or that ve † ! and m ° be “ kepveq.
By induction on such m we show that �p↵,mqÓ. For every s ° m the computation
�
s

p↵
s

,mq converges. To show that �p↵,mqÓ it is su�cient to show that the sequence
x�

s

pmqy is bounded. For if it is bounded by some value u and ↵
s

æ
u

“ ↵ æ
u

, then
�
s

p↵
s

,mq is an ↵-correct computation.
First suppose that m “ kepnq for some n. If n “ 0 then �

m`1pmq “ 0 which
implies that the computation �

m`1p↵
m`1,mq is ↵-correct and so is never destroyed.

Suppose that n ° 0. By induction we assume that �e
n´1,s reaches a limit �e

n´1.
Let r ° m be a stage su�ciently late so that n § ve

r

and �e
n´1,s “ �e

n´1 for
all s • r. We note that the fact that n § ve

r

implies that oe
r

pmqÓ. Let u be the least
number greater than �e

n´1 such that the block ↵ ær�e
n´1,uq contains at least oe

r

pmq
many zeros; such a number exists since ↵ is not a dyadic rational. By increasing r
we may assume that ↵

r

æ
u

“ ↵ æ
u

(and so ↵
s

æ
u

“ ↵ æ
u

for all s • r). If s • r is a
stage at which �

s`1pmq is redefined then we choose �
s`1pmq § u.

Now suppose that ve † ! andm ° be. Letm1 bem’s predecessor in !res. By in-
duction find a stage r ° m su�ciently late so that the computation �

r

p↵
r

,m1q is ↵-
correct. At every stage s • r at which we redefine �

s`1pmq we let �
s`1pmq “ �

s

pmq.
⇤
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Since we assume that degTp↵q is totally !-c.a. there is some e such that
�p↵q “ ge and the approximation xge

s

, oe
s

y is eventually !-computable. We fix
such e. From now we only concern ourselves with the eth construction. For clarity
of notation we omit the superscript e from all the associated objects (we write g

s

for ge
s

, C for Ce, �
n,s

for �e
n,s

and so on).

Lemma 2.2. lim
s

v
s

“ !.

Proof. Assume for a contradiction that v “ lim
s

v
s

is finite. Let r be a stage
su�ciently late so that by stage r, �

v,s

has reached a limit �
v

and ↵
r

æ
�

v

“ ↵ æ
�

v

.
The assumption for contradiction means that at all stages s ° r, for all m P !res Xs
such that o

s

pmq † !, the computation �
s

p↵
s

,mq is ↵-correct. This implies that ↵ is
computable. Given u † !, to compute ↵æ

u

we pick m ° u, r in !res and wait for a
stage s ° m at which o

s

pmq † !; so ↵
s

æ
�

s

pmq“ ↵æ
�

s

pmq. But �spmq ° m ° u. ⇤

We can show that C is a presentation of ↵.

Lemma 2.3. �pCq “ ↵.

Proof. Suppose not. Let n be su�ciently large so that 2´n † ↵´ �pCq. But
if s is a very late stage then all markers �

m,s

for all m § n have stabilised to their
final values and are all certified: g

s

pkpmqq “ �p↵, kpmqq for all m § n. Also assume
that ↵´ ↵

s

† 2´n and ↵
s

´ �pC
s

q ° 2´n. Then at stage s we would increase C to
have measure ↵

s

, which is a contradiction. ⇤

The next lemma (really an observation) is trivial but useful. Both parts rely
on the fact that for all � P r0, 1q and k • 1, � æ

k

(as a number in binary) is the
integral part of 2k´1�.

Lemma 2.4. Let t † s and k • 1.

(1) If ↵
t

´ ↵
s

• 2´pk´1q then ↵
t

æ
k

‰ ↵
s

æ
k

.
(2) If ↵

s

´ ↵
k

§ 2´k and further ↵
t

pkq “ 0 then ↵
t

æ
k

“ ↵
s

æ
k

.

The following is the main combinatorial lemma.

Lemma 2.5. Let s be a stage, and let n ° 0, n § v
s

. The block ↵ær�
n´1,�nq rss

contains a zero.

Proof. Fix n. For brevity let m “ kpnq. Suppose that s is a stage and n § v
s

.
As above, say that the marker �

n,s

is certified at stage s if �
s

p↵
s

, kpnqq “ g
s

pkpnqq.
Let S

cert

be the set of such stages. This set contains a final segment of !.
We say that the marker �

n,s

is redefined if �
s

p↵
s´1,mqÒ and either

‚ v
s´1 “ n ´ 1, i.e. �

n,s

is the very first value of this marker; or
‚ � “ ↵

s

´ �pC
s´1q ° 2´�

n,s´1 .

Let S
redef

be the set of such stages s.
Let S “ S

cert

YS
redef

. We show by induction on the stages s for which n § v
s

that:

(a) If s P S then the block ↵ ær�
n´1,�nq rss contains at least o

s

pmq ` 2 many
zeros.

(b) If s R S then the block ↵ ær�
n´1,�nq rss contains at least o

s

pmq ` 1 many
zeros.
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In either case the number is positive, and so the lemma follows.
The induction starts with s “ minS

redef

. The instructions ensure that (a)
holds at every stage s P S

redef

.
Let t P S and suppose that paq has already been verified for stage s. Let r be

the next stage in S after stage t. We verify that paq holds at stage r and that pbq
holds at all stages s P pt, rq.

The marker �
n,s

is constant for s P rt, rq; we denote this fixed value by �
n

(note
that this is not necessarily the final value of this marker). Similarly define �

n´1.
Now for brevity let:

‚ A be the set of stages u P pt, rq such that C
u

‰ C
u´1.

‚ If r P S
redef

let B be the set of stages s P pt, rq such that ↵
s

æ
�

n

‰ ↵
s´1 æ

�

n

;
if r R S

redef

let B be the set of such stages in the interval pt, rs.
We make two observations.

(1) Let u P A. Then ↵
u

´ �pC
u´1q is strictly greater than 2´�

n´1 . This is
because u R S

cert

.
(2) Let s P B. Then ↵

s

´ �pC
s´1q § 2´�

n . For otherwise s P S
redef

.

In particular, A and B are disjoint.
Suppose that B is empty. Then ↵

r´1 æ
�

n

“ ↵
t

æ
�

n

; and if r R S
redef

then
↵
r

æ
�

n

“ ↵
t

æ
�

n

. Since o
s

pmq § o
t

pmq for all s P pt, rs, we see that pbq holds for all
s P pt, rq. If r P S

redef

then we already know that (a) holds at r. If r R S
redef

then
the latter equality ensures that (b) holds at stage r.

We assume therefore that B is nonempty.

Suppose that A is nonempty. We claim that A † B. That is, there are no
s P B and u P A with s † u. For a contradiction, suppose there are. By choosing
a maximal s and then minimal u we can find s P B, u P A such that s † u but the
interval ps, uq is disjoint from both A and B. Since A X rs, uq is empty we see that
C

s´1 “ C
u´1. Let q “ �pC

s´1q; then ↵
s

´ q § 2´�
n and ↵

u

´ q ° 2´�
n´1 . Since

�
n´1 ° �

n

` 1, this means that ↵
u

´ ↵
s

° 2 ¨ 2´�
n . By Lemma 2.4, ↵

u

æ
�

n

‰ ↵
s

æ
�

n

.
This contradicts the assumption that B X ps, us is empty.

Thus, we let t1 “ maxA if A is nonempty, and t1 “ t otherwise. Then
↵
t

1 æ
�

n

“ ↵
t

æ
�

n

.

Let r1 “ maxB. Then ↵
r

1 æ
�

n

“ ↵
r´1 æ

�

n

; and if r R S
redef

then ↵
r

1 æ
�

n

“ ↵
r

æ
�

n

.
Also we note that C

r

1 “ C
t

1 and so ↵
r

1 ´ �pC
t

1 q § 2´�
n .

Let k be the rightmost zero in the block ↵ ær�
n´1,�nq rts – the greatest k † �

n

such that ↵
t

pkq “ 0. Such k exists by induction.
Since ↵

r

1 ´ ↵
t

1 § 2´�
n and ↵

t

1 pkq “ ↵
t

pkq “ 0, Lemma 2.4 says that
↵
r

1 æ
k

“ ↵
t

1 æ
k

. Overall, we see that ↵
r´1 æ

k

“ ↵
t

æ
k

; and if r R S
redef

then
↵
r

æ
k

“ ↵
t

æ
k

.
The block ↵

t

ær�
n´1,kq contains at least o

t

pmq ` 1 many zeros. Since
o
s

pmq § o
t

pmq for all s ° t, we see that (b) holds for all stages s P pt, rq.
Now consider r. We may assume that r R S

redef

. Then the argument above
shows that the block ↵

r

ær�
n´1,�ns contains at least otpmq ` 1 many zeros. Further,

�
n,r

“ �
n

and �
n´1,r “ �

n´1.
We assumed that B ‰ H. Indeed, a new computation �

r

1 p↵
r

1 ,mq is defined
and �

r

p↵
r

,mq “ �
r

1 p↵
r

1 ,mq “ r1. Since r P S it must be that r P S
cert

.
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Thus g
r

pmq “ r1 ° t ° g
t

pmq. It follows that o
r

pmq † o
t

pmq, and so
o
r

pmq ` 2 § o
t

pmq ` 1. This establishes (a) for stage r. ⇤
Finally we show that C computes ↵.

Lemma 2.6. Let s be a stage and let n † v
s

. Suppose that for all strings � of
length at most �

n`1,s, � P C if and only if � P C
s

. Then ↵æ
�

n,s

“ ↵
s

æ
�

n,s

.

Proof. Let s be a stage as described. The assumption means that for all u ° s,
if C

u

‰ C
u´1 then �pC

u

q ´ �pC
u´1q † 2´�

n`1,s .
For brevity let �

n

“ �
n,s

and �
n`1 “ �

n`1,s. By induction on t • s we show that
�
n,t

“ �
n

, �
n`1,t “ �

n`1 and ↵
t

æ
�

n

“ ↵
s

æ
�

n

. Suppose this is known for t ´ 1 • s.
We claim that � “ ↵

t

´ �pC
t´1q § 2´�

n`1 . Suppose otherwise; let u be the
least stage u • t such that C

u

‰ C
u´1. Then �pC

u´1q “ �pC
t´1q and ↵

u

• ↵
t

and
so �pC

u

q ´ �pC
u´1q • �, contradicting our assumption on C

s

.
The instructions (third case) now show that at stage t ´ 1 we set �

n,t

“ �
n,t´1

and �
n`1,t “ �

n`1,t´1.
Further, ↵

t

æ
�

n

“ ↵
s

æ
�

n

. Since �
n`1,t´1 “ �

n`1 and �
n,t´1 “ �

n

, Lemma 2.5
implies that the block ↵

t´1 ær�
n

,�

n`1q contains a zero. If ↵
t

æ
�

n

‰ ↵
t´1 æ

�

n

then by
Lemma 2.4, ↵

t

´ ↵
t´1 ° 2´�

n`1 , and of course ↵
t´1 • �pC

t´1q. ⇤





CHAPTER VI

m-topped degrees

Downey and Jockusch [13] showed that there are incomplete m-topped c.e.
degrees: c.e. Turing degrees d which contained a many-one degree, greatest among
all of the c.e. many-one degrees inside d. These are all low2, and in fact every low2

c.e. degree is bounded by an m-topped degree [18].
In [15] we investigated the dynamics required for the Downey-Jockush con-

struction. We showed that the cascading e↵ect that happened in the construction
led to an !!-type behaviour. Specifically, we showed that there is an m-topped de-
gree which is totally !!-c.a. We also hinted at a proof that this is the best possible:
no m-topped degree is totally † !!-c.a. In this chapter we flesh out the details
of this construction. Apart from the intrinsic interest in this result, this argument
will serve as a preparation for the next chapter.

We remark that unlike the 1-3-1 embedding, the m-topped phenomenon cannot
be captured precisely by the hierarchy of totally † ↵-c.a. degrees. This is because
no m-topped degree can be low [13]. As a result, at every level of our hierarchy
there are degrees which do not bound anym-topped degrees. It would be interesting
to see if there is a permitting argument combining non total † !!-c.a.-ness and
non-lowness that would yield bounding of m-topped degrees.

Before we give the full argument we start with easier, weaker results. We show
that no totally !-c.a. degree is m-topped; then that no totally !2-c.a. degree is
m-topped; and then give the full proof.

1. Totally !-c.a. degrees are not m-topped

Let d be a totally !-c.a. c.e. degree. To show that d is not m-topped we need,
given a c.e. D P d, to enumerate some c.e. set V §T D which is not many-one
reducible to D.

The basic module is as follows. Suppose that we want to show that the dth

computable function '
d

is not a many-one reduction of V to D. We set up a finite
set X of followers and wait for them to be realised, which means that '

d

pxqÓ for all
x P X. While we wait we prevent the enumeration of the followers into V . When
they get realised we may assume that '

d

pxq R D
s

for all x P X; otherwise we get an
easy win. We then attack by enumerating some x P X into V . The opponent can
respond by enumerating '

d

pxq into D, in which case we will attack with another
follower in X. We need to ensure two things:

‚ V is Turing reducible to D; and
‚ X is su�ciently large so that the opponent cannot always respond.

For the first we will define a functional  with the intention of having  pDq “ V .
To be able to attack without violating this reduction we will ensure that the use
 
s

pxq of any follower is greater than '
d

pyq for any other follower. Thus a response

109
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by our opponent to our attack with y will be the D-change which allows us to
attack next with x.

For the second we use the “anti-permitting” method used in Chapter V. We tie
the set of followers X with some input n for a function �pDq we build which will
serve as an “anchor” (or “anti-permitting number”). Since �pDq is !-c.a. we find a
bound m on the number of times an approximation for �pD,nq changes. We ensure
that the use �pnq of �pD,nq is the same as the use  

s

pxq for followers x P X. So
the opponent’s D-change that allows us to attack with another follower also allows
us to redefine �pD,nq to have a new value and so reduce the number of changes left
to the opponent. If |X| ° m then the opponent will not be able to always respond.
See Figure 1.

As in the previous chapter we need to add a simple permitting step. Pre-
viously this was only necessary because we were working with a degree which is
totally !-c.a. and not neccessarily an array computable one: the number m is re-
vealed to us eventually but is not fixed in advance; if we guess incorrecty about our
approximation for �pDq it may never be given. We nonetheless must make sure
that �pD,nqÓ (so that �pDq is total) even if the guess using n is wrong. In the
current construction there is another reason to use simple permitting. We do not
know whether '

d

is total or not. This means that we need to set the uses  
s

pxq
for x P X immediately when we appoint these followers. Before we attack we need
to lift these uses beyond '

d

pyq for y P X, and these values are revealed to us after
we already appoint the followers and define the  -computations. So we wait for
a “free pass” to raise these markers, and this will be given as usual by assuming
that D is noncomputable.

�pDq

V

D

n

x0

'
d

px0q

x1

'
d

px1q

x2

'
d

px2q

 

�

Figure 1. !-c.a. degrees are not m-topped

1.1. Construction. We are given a c.e. set D whose Turing degree is totally
!-c.a. We use a list xgey of all !-c.a. functions, with tidy p! ` 1q-computable ap-
proximations xge

s

, oe
s

y. We enumerate a Turing functional � with intended oracle D.
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For every e † ! we perform an eth construction. These constructions are inde-
pendent of each other, except that as usual they together define the functional �.
For every d † ! the eth construction will employ an agent d. The action of distinct
agents is independent of each other; we only need to ensure that they don’t share
followers.

The eth construction will enumerate a c.e. set V e. It also defines a Turing
functional  e with the aim of having  epDq “ V e.

An agent d for construction e aims to define a finite set X of followers. The
sets of followers for distinct agents are pairwise disjoint. The agent will choose an
anchor n (distinct from the numbers chosen by any other agent for any construc-
tion). The agent will be responsible for defining �pD,nq and for defining  e

s

pD
s

, xq
for x P X. The use  e

s

pxq for all x P X will be the same, namely �
s

pnq.
We note that the agent must ensure that n P dom�

s

pD
s

q at every stage s
(and that the uses �

s

pnq are bounded). However  epDq “ V e is required only
if the hypothesis that �pDq “ ge is correct. The agent is thus allowed to leave
computations  e

s

pD
s

, xq undefined until it gets further evidence that the hypothesis
holds.

In this chapter we simplify our notation as follows.

Notation 1.1. The intended oracle for the functionals � and  e is D; At
stage s we only define computations �

s

pD
s

, nq and  e

s

pD
s

, xq. Further, the value of
these computations is also fixed: at stage s, the value of a new �

s

pD
s

, nq computa-
tion is always s, and the value of a new  e

s

pD
s

, xq computation is V e

s

pxq. Thus to
specify a computation all we need to provide is the use �

s

pnq or  e

s

pxq. Instead of
mentioning the functionals we only mention the uses (which can be thought of as
moving markers). So for example we write  e

s

pxqÓ if  e

s

pD
s

, xqÓ, and when a new
computation is defined, we simply say that we define  e

s

pxq.
As mentioned above, before we can use any followers to diagonalise against

many-one reductions we need them to be simply permitted by D. Thus before
commencing the attacks, the agent will define distinct sets of followers X0, X1, . . .
associated with anchors n0, n1, . . . , one of which we hope will become the X and n
we eventually use.

To carry out the construction we need the following, which we will verify after
we specify the construction.

Lemma 1.2. Suppose that at some stage s, an agent d for the eth construction
is attacking with a set of followers X. Then X Ü V e

s

.

The action of agent d for the eth construction. We now describe two cycles
(subroutines) detailing the action of an agent d for the eth construction. The agent
starts with set-up cycles; if some set of followers is set-up and permitted then the
agent moves to attack cycles. During either cycle the agent is instructed to wait
for some event. It is possible that the event does not happen, in which case the
agent will wait for ever and not act again, other than maintaining the convergence
of some functionals. In fact we will show that either we get an easy win, or the
agent will get stuck waiting indefinitely from some point onwards, either because
ge is not the correct guess, '

d

is not total, or because some attack succeeds.

The agent starts with setting up the first set of followers.

Setting up the kth set of followers.
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1. Let s0 be the stage at which this set-up cycle begins. Choose
a large anchor n

k

. Define �
s0pn

k

q “ n
k

.

2. We wait for a stage s1 at which oe
s1

pn
k

q † !. At that stage
we choose a set X

k

of poe
s1

pn
k

q ` 2q-many large followers. For
each x P X

k

we define  e

s1
pxq “ n

k

.

3. We wait for a stage s2 ° s1 at which 'd,s2pxqÓ for all x P X
k

.

4. We then wait for a stage s3 ° s2 at whichD
s3 æ

n

k

‰ D
s3´1 æ

n

k

.

While waiting we (recursively) set up the pk`1qth set of followers.
When such a stage s3 is found, we interrupt all set-up cycles.

We discard all anchors n
k

1 and sets of followers X
k

1 for k1 ‰ k.
We letX “ X

k

and n “ n
k

. We let u “ 1`max t'
d

pxq : x P Xu.
We start an attack with some x P X.

Throughout the set-up phase, if some anchor n
k

is already chosen and
D

s

æ
n

k

‰ D
s´1 æ

n

k

then unless we start an attack at stage s, we redefine �
s

pn
k

q “ n
k

and if also X
k

is defined,  e

s

pzq “ n
k

for all z P X
k

.

If we start an attack at some stage t then we will ensure that �
t´1pD

t

, nqÒ and
that  e

t´1pD
t

, zqÒ for all z P X.

Attacking with a follower x.

1. Let t0 be the stage at which the attack begins. We define a
new � computation by setting �

t0pnq “ u.

2. We wait for a stage t1 ° t0 at which ge
t1

pnq “ �
t1pD

t1 , nq.
While waiting, the markers  e

s

pzq for all z P X remain undefined.

If '
d

pxq P D
t1 then we interrupt the attack cycle and discard

both n and X; all action for the agent ceases. In this case we get an

easy win by keeping x out of V e.

Otherwise, we enumerate x into V e

t1
; we define  e

t1
pzq “ u

for all z P X.

3. We wait for a stage t2 ° t1 at which '
d

pxq P D
t2 . At that

stage we end the current attack and commence a new attack
with some x1 P XzV e

t2
.

Throughout the attack phase, if D
s

æ
u

‰ D
s´1 æ

u

and we do not start a new
attack at stage s then we define �

s

pnq “ u, and if further  e

s´1pzqÓ for z P X (i.e.
if s ° t1) then we define  e

s

pzq “ u.

Globally, if n † s and n is at stage s not used as anchor by any agent for any
construction (either it was never chosen, or was chosen and later discarded) then
we define �pnq “ 0. For all e † s, if x † s and x is not at stage s used as a follower
by any agent for the eth construction then we define  epxq “ 0.
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1.2. Verification. We first need to show that the construction can be per-
formed as described. Fix an agent d for the eth construction.

Let t be a stage at which an attack cycle begins. We need to show that
�
t´1pD

t

, nqÒ and that  e

t´1pD
t

, zqÒ for all z P X. Suppose that the set-up phase
ended at stage t. Then D

t

æ
n

‰ D
t´1 æ

n

and n equals both �
t´1pnq and  e

t´1pzq for
z P X. If on the other hand an attack cycle (with some follower x) ends at stage t
then '

d

pxq P D
t

zD
t´1 and '

d

pxq † u, and u equals both �
t´1pnq and  e

t´1pzq for
z P X.

Proof of Lemma 1.2. During each attack cycle at most one follower is enu-
merated into D. Let t † s be two stages at which an attack cycle begins. Since
ge
r

pnq “ �
t

pD
r

, nq • t at some stage r P pt, sq and by convention ge
t

pnq † t we
see that oe

s

pnq † oe
t

pnq. It follows that at most o
s0pnq ` 1 many attack cycles are

started, where s0 is the stage at which X is appointed. The lemma follows from
the choice |X| “ o

s0pnq ` 2. ⇤

We also observe that �pDq is total. For let n † !. If n is not chosen as an
anchor by any agent for any construction, or is chosen but is later discarded, then
we arranged that n P dom�pDq (with use 0). Otherwise n “ n

k

for some unique
agent for a unique construction. If the agent never enters the attack phase then
�
s

pnq is defined at every stage after n is chosen, always with use n, and so eventually
a correct computation is defined. If the agent enters the attack phase with n then
at every stage s during this phase the computation �

s

pnq is defined, with use u; so
again a correct computation is eventually defined.

We fix some e such that �pDq “ ge and xfe

s

, oe
s

y is eventually !-computable.
We will show that the eth construction succeeds. We drop all supserscripts e from
now on.

Lemma 1.3.  pDq “ V .

Proof. Let x † !. If x is enumerated into V at some stage t then  
t´1pD

t

, xqÒ
and a computation with a correct value is defined at stage s. So it su�ces to show
that x P dom pDq.

If x is never chosen as a follower by any agent for the eth construction, or if it
is chosen and later discarded, then we arrange that  pD,xqÓ with use 0. Suppose
that x is chosen by some agent d and is never discarded.

During the set-up phase we ensure that  
s

pxqÓ at every stage after the stage at
which x was appointed, with use n

k

(if x P X
k

). As with �pDq, if the attack phase
never begins then this ensures that n P dom pDq.

Suppose that the attack phase eventually begins and that x P X. Suppose
that s is a stage during the attack phase and that  

s

pxqÒ. Let t § s be the stage
at which the attack cycle began which is running at stage s. At stage s we are still
waiting to see g

r

pnq “ �
r

pD
r

, nq. Since we assume that x is never discarded, the
attack phase is never interrupted. Since g “ �pDq we see that a stage r as required
will occur, and at that stage we will define  

r

pxq “ u. Again we see that eventually
a correct computation will be defined. ⇤

Lemma 1.4. V ¶
m

D.

Proof. Suppose that '
d

is total; we show that there is some x such that
x P V ô '

d

pxq R D.
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We claim that agent d will enter the attack phase. For otherwise, the fact
that '

d

is total and that xfe

s

, oe
s

y is eventually !-computable ensures that anchors n
k

are defined for every k † !. But then we compute D: if X
k

is appointed and
X

k

Ñ dom'
d

at stage s, then D
s

æ
n

k

is correct.
We have argued that only finitely many attack cycles are started by the agent.

Let x be the last follower with which we start an attack. If the attack is interrupted
then '

d

pxq P D but we keep x R V . Otherwise, as argued above, we eventually
enumerate x into D. Since no new attack is ever started, '

d

pxq R D. ⇤

2. Totally !2-c.a. degrees are not m-topped

2.1. An easy proof. Consider how the construction in the previous section
needs to change if degTpDq is totally !2-c.a. In this case the ordinal o

s0pnq that we
discover is not a natural number m but an ordinal of the form ! ¨ m0 ` m1, where
m0 and m1 are natural numbers.

The most natural adaptation is the following. When the ordinal ! ¨ m ` k is
revealed, we appoint a set X of followers of size k ` 1. We wait for '

d

to converge
on the followers in X and then for permission to lift the uses �

s

pnq “  e

s

pzq (for
z P X) above the values of '

d

pzq for z P X. When permission is granted we attack
as above; but it is possible that eventually we exhaust all the followers in X. But
when that happens, since |X| ° k, the ordinal we see when X is exhausted is
! ¨m1 `k1, with m1 † m: we dropped below the limit ordinal ! ¨m. We then would
like to repeat the process: appoint a new set X 1 of followers of size k1 ` 1; wait
for '

d

to converge on X 1, and then for permission to lift �
s

pnq “  e

s

pzq above the
values of '

d

; and then attack again. We can go through at most m many cycles of
cycles of attacks, and so eventually the opponent will not be able to respond.

The only question is why we would get enough permissions. Simple permitting
is insuficient here; we need multiple permitting for each attempt to meet the require-
ment. But it is hopefully clear that the kind of permitting which we need to carry
this plan out is non-total !-c.a. permitting. That is, if we assume that degTpDq
is totally !2-c.a. but not totally !-c.a. then this argument will actually work. If
degTpDq does happen to be totally !-c.a. then we just refer to the construction in
the previous section.

We can also see how to generalise this argument to show to n ° 2, to show that
every c.e. degree which is totally !n-c.a. is not m-topped. This approach however
does not seem to work when we consider degrees which are totally † !!-c.a. but
not totally !n-c.a. for any n (see Theorem III.4.2). In that argument we define
a single function �pDq and guess some n such that �pDq is !n-c.a.; and guess an
appropriate approximation. However the for the permitting part of the argument
we cannot just guess some function ⇥pDq which is not !n´1-c.a.: the point is that
to set �pmq in the first place we need ✓pkq where k is the associated permitting
number; if ⇥pD, kq never converges then we will fail to make �pDq total.

We thus give even for the case n “ 2 a more complicated argument which we
will be able to generalise to give the full result.

Nonuniformity. Rather than hope for a voluntary D-change, we manufacture it
by using more than one set. Returning to the !2 case, suppose that we enumerate
two c.e. sets V and W . It su�ces to ensure for every pair pc, dq of indices that
either '

d

is not a many-one reduction of V to D or '
c

is not a many-one reduction
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of W to D. The rough idea is to use two sets of followers Y and X. We associate
an anchor n with the requirement; if we guess that �pD,nq will not change more
than ! ¨ m ` k many times then we set |Y | ° m and |X| ° k. We attack with the
followers x P X against '

d

(and so enumerate them into V ). When X runs out,
as discussed above, the new ordinal is smaller than ! ¨ m; we then attack with one
follower y P Y against '

c

(and so aim to enumerate it into W ). Before the attack
with y commences we appoint a new set of followers to take the role of the new X,
su�ciently large to last until we drop below the next limit ordinal. We wait for
realisation of the new followers and then attack with y. The failure of this attack
will give us the D-change that allows us to lift the new �pDq-use (and  epDq-use
for computing V from D) beyond '

d

pxq for all x in the new X.
While we wait for the realisation of the new followers we must leave open the

reduction of W to D (in the same way that in the !-construction, while we wait for
a new agreement between ge and �pDq to appear we leave the reduction of V to D
open). This means that the totality of the reduction of W to D must rely on the
totality of '

d

. We thus enumerate not a single set W but infinitely many, one for
each '

d

, and we rename the sets V
d

. Assume that the guess ge is correct. Then we
will in any case ensure that V §T D; and if '

d

is a many-one reduction of V to D,
then we will ensure that V

d

§T D and that it is not many-one reducible to D. See
Figure 2.

�pDq

V
d

D

V

n

y0

x0

'
c

py0q '
d

px0q

y1

x1

'
c

py1q '
d

px1q

y2

x2

'
c

py2q '
d

px2q

 
d

 

�

Figure 2. !2-c.a. degrees are not m-topped

2.2. Construction. We are given a c.e. set D whose Turing degree is totally
!2-c.a. We use a list xgey of all !2-c.a. functions, with tidy p!2 ` 1q-computable
approximations xge

s

, oe
s

y. We enumerate a Turing functional � with intended ora-
cle D.
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For every e † ! we perform an eth construction. As above, these constructions
are independent of each other. For every pair pd, cq of natural numbers, the eth con-
struction will employ an agent pd, cq. The action of distinct agents is independent
of each other; we only need to ensure that they don’t share followers.

The eth construction will enumerate a c.e. set V e, and for all d † !, a c.e. set
V e

d

. It also defines a Turing functional  e with the aim of having  epDq “ V e, and
Turing functionals  e

d

with the aim of having  e

d

pDq “ V e

d

. We continue to follow
Notation 1.1 and mostly refer to the uses of these computations.

As disccused, an agent pd, cq for the eth construction plans to set up sets of
followers Y and X. Once it enters the attack phase, the set Y is fixed, but the
set X is not: once the followers in X are exhausted, we attack with another follower
from Y and appoint a new set of followers to play the role of X. While it is not
precise, during the construction we refer to the currect version of X simply by “X”
rather than give it an index. During the verification we may refer to the version
of X at stage s by X

s

.
During the set-up phase we appoint a sequence Y1, Y2, . . . of sets, one of which

may be chosen to be the set Y we use for attack.

The action of agent pd, cq for the eth construction. The agent starts with setting
up the first set Y1.

Setting up Y
k

.

1. Let s0 be the stage at which this set-up cycle begins. We
choose a large anchor n

k

. Define �
s0pn

k

q “ n
k

.

2. We wait for a stage s1 at which oe
s1

pn
k

q † !2. Suppose that
oe
s1

pn
k

q “ ! ¨ m ` p. At stage s1 we choose a set Y
k

of pm ` 2q-
many large followers. For each y P Y

k

we define  e

d,s1
pyq “ n

k

.

3. We wait for a stage s2 ° s1 at which 'c,s2pyqÓ for all y P Y
k

.

4. We then wait for a stage s3 ° s2 at whichD
s3 æ

n

k

‰ D
s3´1 æ

n

k

.

While waiting we (recursively) set up the set Y
k`1.

When such a stage s3 is found, we interrupt all set-up cycles.
We discard all anchors n

k

1 and sets of followers Y
k

1 for k1 ‰ k.
We let Y “ Y

k

and n “ n
k

. We let u “ 1`max t'
c

pyq : y P Y u.
We start an attack with some y P Y .

Throughout the set-up phase, if some anchor n
k

is already chosen and
D

s

æ
n

k

‰ D
s´1 æ

n

k

then unless we start an attack at stage s we redefine �
s

pn
k

q “ n
k

and if also Y
k

is defined,  e

d,s

pyq “ n
k

.

Attacking with a follower y P Y .

1. Let r0 be the stage at which the attack begins. We define
�
r0pnq “ u. We appoint a set X of pp ` 2q-many large followers,

where oe
r0

pnq “ ! ¨ m ` p. For each x P X we define  e

r0
pxq “ u.

For now, we leave  e

d,s

py1q for y

1 P Y undefined.

2. We wait for a stage r1 ° r0 at which '
d,r1pxqÓ for all x P X.

If '
c

pyq P D
r1 then we interrupt the attack cycle, discard all as-

sociated followers and anchor, and cease all action for the agent.
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Otherwise we enumerate y into V e

d,r1
. For all y1 P Y we

define  e

d,r1
py1q “ u.

3. We wait for a stage r2 ° r1 at which '
c

pyq P D
r2 . At that

stage we end the current attack and commence an attack with
some x P X; we let v “ 1 ` maxt'

d

pxq : x P Xu.
Throughout this attack phase, if D

s

æ
u

‰ D
s´1 æ

u

and we do not start an attack
with some x P X at stage s, then we redefine �

s

pnq “ u with use u; and we redefine
 e

s

pxq “ u for x P X. If s ° r1 then we also define  e

d,s

py1q “ u for all y1 P Y .

Attacking with a follower x P X.

1. Let t0 be the stage at which the attack begins. We define
�
t0pnq “ v.

2. We wait for a stage t1 ° t0 at which ge
t1

pnq “ �
t1pD

t1 , nq.
While waiting, we leave  e

s

px1q for x

1 P X undefined. Note that  e

d,s

pyq for y P Y

will be undefined throughout the attack with x.

If '
d

pxq P D
t1 then we interrupt the attack cycle, discard

all associated followers and anchor, and cease all action for the
agent.

Otherwise, we enumerate x into V e

t1
. We define  e

t1
px1q “ v

for all x1 P X.

3. We wait for a stage t2 ° t1 at which '
d

pxq P D
t2 .

If X Ñ V e

t2
then we discard X and start a new attack with

some y P Y zV e

d,t2
. Otherwise we commence a new attack with

some x1 P XzV e

t2
.

The functionals �pD,nq and  epD,x1q are maintained as above.

Also as in the ! case, we ensure totality of functionals by defining them with
use 0 on all inputs which are not used as anchors or followers.

2.3. Verification. We need to show that the construction can be preformed
as described. Fix an agent pd, cq for the eth construction.

First we observe that if an attack cycle begins at some stage w then all func-
tionals are divergent at that stage. Namely:

‚ If an attack with y P Y begins at stage w “ r0 then �
w´1pD

w

, nqÒ, and
 e

d,w´1pD
w

, y1qÒ for all y1 P Y ; and
‚ If an attack with x P X begins at stage w “ t0 then also  e

w´1pD
w

, x1qÒ
for all x1 P X.

But as above these are ensured by the D-change encountered at the last stage of
the previous cycle. If the set-up phase ended at stage w, then we just saw a change
on D æ

n

, and all uses are n; at the end of an attack with y P Y , we just saw a
change on Dæ

u

, and all uses are u; at the end of an attack with x P X, we just saw
a change on D æ

v

, and the uses �pnq and  epx1q are v, while  e

d

pyq are undefined
throughout the attack with x.

We also obtain an analogue of Lemma 1.2: if Y is already defined at stage w
then Y Ü V e

d,w

. Suppose that the set Y is chosen at some stage s1, with
oe
s1

pnq “ ! ¨ m˚ ` p, so |Y | “ m˚ ` 2. We argue that an attack with some follower
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in Y is started at most m˚ ` 1 many times. For t † ! let oe
t

pnq “ ! ¨ m
t

` p
t

. We
claim that if two attacks with followers in Y start at stages s † t then m

t

† m
s

.
This in turn is done by examining attacks started with elements of X. We have
|X

s

| “ p
s

` 2. The argument in the !-case shows that if w † r are stages in ps, tq
at which we start an attack with an element of X

s

then oe
r

pnq † oe
w

pnq. The fact
that p

s

` 2 many such attacks occur implies that m
t

† m
s

as required.

Next we observe that �pDq is total. The argument is similar to the one in the
!-case. Suppose that n is an anchor for some agent, and is never discarded. A
computation �

s

pD
s

, nq is defined at every stage s ° n. The use is bounded. There
are three possibilities. An attack may never begin; in this case �

s

pnq “ n for all s.
Alternatively, an attack with some y P Y is never ended; we then eventually have
�
s

pnq “ u. Finally it is possible that an attack with some x P X for some version
of X is never ended; we then eventually have �

s

pnq “ v (and v is never redefined).

We fix some e such that �pDq “ ge and xge
s

, oe
s

y is eventually !2-computable.
We will show that the eth construction succeeds. We drop all supserscripts e from
now on.

The argument proving Lemma 1.3 shows that  pDq “ V . If V ¶
m

D then
we are done. Assume this fails; fix some total computable function '

d

such that
'´1
d

rDs “ V .

We argue that  
d

pDq “ V
d

. Observing that we only enumerate y P Y into V
d

at stages at which  
d

pD, yq diverges, again it su�ces to show that  
d

pDq is total.
We focus on some y which is a follower in some set of followers Y for some agent
pd, cq. If no attack by the agent is every started (it is always in the set-up phase)
then  

d

pyqÓ at every stage after y is appointed, with a bounded use n
k

. Otherwise,
the key is that since '´1

d

rDs “ V , every attack by this agent with a follower x P X
must end. So there is an attack with some y1 P Y by the agent which never ends.
However the assumption that '´1

d

rDs “ V implies that the attack is not stuck
waiting for a stage r1; 'd

is total. So we are eventually stuck waiting for a stage r2;
while waiting, we keep defining  

d

pyq “ u.

Finally, the argument of Lemma 1.4 shows that V
d

¶
m

D. Fix some total '
c

.
The simple permitting argument shows that the agent pd, cq will enter the attack
phase; we just observed that an attack with some y P Y must succeed.

3. Totally † !!-c.a. degrees are not m-topped

The general case follows the structure of the !2 case. Each construction guesses
the m such that �pDq is !m-c.a., and an appropriate approximation. It builds sets
in m layers of nonuniformity.

3.1. Construction. We are given a c.e. set D whose Turing degree is totally
† !!-c.a. We use uniform lists xge,my of all !m-c.a. functions, with tidy p!m ` 1q-
computable approximations xge,m

s

, oe,m
s

y, for all m † !. We enumerate a Turing
functional � with intended oracle D.

For every pair pe,mq we perform an pe,mq-construction. These constructions
are independent of each other. For every m-tuple d̄ “ pd0, . . . , dm´1q, the pe,mq-
construction will employ an agent d̄. The construction enumerates c.e. sets V e,m

c̄

for
all tuples c̄ of numbers of length strictly smaller than m. For each such sequence c̄,
the construction also enumerates a functional  e,m

c̄

, as usual with the aim of having
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 e,m

c̄

pDq “ V e,m

c̄

, so as usual, to define a computation for one of these functionals,
we only need to specify its use.

The action of agent d̄ for the construction pe,mq. The agent aims to estab-
lish m sets of followers X

m´1, Xm´2, . . . , X0. The followers in X
k

are targeted for
V e,m

d̄æ
k

. After receiveing simple permission, the set X
m´1 is fixed but the sets X

m´2,

X
m´3, . . . are not fixed. When all followers in X

k´1, Xk´2, . . . , X0 are used, we
discard these sets and attack with a new follower from X

k

.
Before we receive our simple permission though we need to appoint a sequence

of candidates for X
m´1. These will be denoted by Y1, Y2, . . . .

The agent starts with setting up the first set Y1.

Setting up Y
i

.

1. Let s0 be the stage at which this set-up cycle begins. We
choose a large anchor n

i

. Define �
s0pn

i

q “ n
i

.

2. We wait for a stage s1 at which oe,m
s1

pn
i

q † !m. Suppose that
oe,m
s1

pn
i

q “ !m´1 ¨ p ` � (for some � † !m´1). At stage s1 we
choose a set Y

i

of pp ` 2q-many large followers. For each y P Y
i

we define  e,m

d̄æ
m´1,s1

pyq “ n
i

.

3. We wait for a stage s2 ° s1 at which '
d

m´1,s2pyqÓ for all
y P Y

i

.

4. We then wait for a stage s3 ° s2 at which D
s3 æ

n

i

‰ D
s3´1 æ

n

i

.
While waiting we (recursively) set up the set Y

i`1.
When such a stage s3 is found, we interrupt all set-up cycles.

We discard all anchors n
i

1 and sets of followers Y
i

1 for i1 ‰ i. We
let X

m´1 “ Y
i

and n “ n
i

. We start an attack with some
x P X

m´1.

Throughout the set-up phase, if some anchor n
i

is already chosen and
D

s

æ
n

i

‰ D
s´1 æ

n

i

then unless we start an attack at stage s we defne �
s

pn
i

q “ n
i

and if also Y
i

is defined,  e,m

d̄æ
m´1,s

pyq “ n
i

for y P Y
i

.

Throughout the attack phase we let

oe,m
s

pnq “ !m´1p
m´1,s ` !m´2p

m´2,s ` ¨ ¨ ¨ ` ! ¨ p1,s ` p0,s.

When we start an attack with some element of X
k

(for k † m) the sets
X

m´1, . . . , Xk

are defined but X
k´1, . . . , X0 are not. If X

k

is defined then so
is u

k

“ 1 ` max
 
'e,m

d

k

pxq : x P X
k

(
. During an attack with some x P X

k

, the
computations  e,m

d̄æ
k

1

pyq for all k1 ° k and y P X
k

1 are undefined.

Attacking with a follower x P X
k

for k ° 0.

1. Let r0 be the stage at which the attack begins. We define
�
r0pnq “ u

k

. We appoint a set X
k´1 of pp

k´1,r0 ` 2q-many large
followers. For each z P X

k´1 we define  e,m

d̄æ
k´1,r0

pzq “ u
k

. For

now we leave  e,m

d̄æ

k

,s

px1q for all x1 P X

k

undefined.

2. We wait for a stage r1 ° r0 at which '
d

k´1,r1pzq Ó for all
z P X

k´1. If '
d

k

pxq P D
r1 then we interrupt the attack cycle,
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discard all associated followers and anchor, and cease all action
for the agent.

Otherwise we enumerate x into V e,m

d̄æ
k

,r1
. For all x1 P X

k

we

define  e,m

d̄æ
k

,r1
px1q “ u

k

.

3. We wait for a stage r2 ° r1 at which '
d

k

pxq P D
r2 . At that

stage we end the current attack and commence an attack with
some y P X

k´1.

As usual we respond to spontaneous Dæ
u

k

-changes by rectifying existing com-
putations with the same use u

k

.

Attacking with a follower x P X0.

1. Let t0 be the stage at which the attack begins. We define
�
t0pnq “ u0.

2. We wait for a stage t1 ° t0 at which ge,m
t1

pnq “ �
t1pD

t1 , nq.
While waiting, we leave  e,m

xy,s

pyq for y P X0 undefined. If '
d0pxq P D

t1 then
we interrupt the attack cycle, discard all associated followers and
anchor, and cease all action for the agent.

Otherwise we enumerate x into V e,m

xy,t1 . For all x1 P X0 we

define  e,m

xy,t1px1q “ u0.

3. We wait for a stage t2 ° t1 at which '
d0pxq P D

t2 . At that
stage we end the current attack. Let k • 0 be the least such
that X

k

Ü V e,m

d̄æ
k

,t2
. Discard X

k

1 (and so u
k

1) for all k1 † k. Start

a new attack with some y P X
k

zV e,m

d̄æ
k

,t2
.

As above, we maintain functionals, and define them on numbers that are not
used by any construction.

3.2. Verification. These are similar to the previous verifications. First we
need to ensure that the construction can be carried out as described. As above we
observe that at the end of any cycle (set up or attack), all related computations are
undefined. We also prove that if X

m´1 is defined at a stage s (for some agent d̄ for
a construction pe,mq) then X

m´1 Ü V e,m

d̄æ
m´1

. To see this, by induction on k † m

we observe that if s † t are stages at which at attck with some x P X
k

is started,
then oe,m

s

pnq ´ oe,m
t

pnq • !k.
The proof that �pDq is total is as above. Fixing pe,mq which is a correct

guess (�pDq “ ge,m and xge,m
s

, oe,m
s

y is eventually !m-computables), and dropping
the superscripts pe,mq, we argue that the pe,mq construction is successful. As
above we argue that  pDq “ V . If V is not as required, we fix some d0 such that
'´1
d0

rDs “ V . Then for any agent c̄ such that c0 “ d0, no attack with some x P X0

can succeed. This shows that  
d0pDq “ V

d0 . If V
d0 is not as required then we fix

some d1 such that '´1
d1

rDs “ V
d0 . Then for any agent c̄ with pc0, c1q “ pd0, d1q, no

attack with some x P X1 can succeed. This shows that  
d0,d1pDq “ V

d0,d1 . And so
on. . . this process must end at some k † m, giving some V

d0,d1,...,dk

which shows
that degTpDq is not m-topped.



CHAPTER VII

Embeddings of the 1-3-1 lattice

In this chapter we prove Theorem I.0.7: the 1-3-1 lattice is embeddable in the
c.e. degrees below a c.e. degree d if and only if d is not totally † !!-c.a.

1. Embedding the 1-3-1 lattice

We prove the first direction: if d is not totally † !!-c.a. then the 1-3-1 lattice
is embeddable below d.

1.1. Lachlan’s construction. To prove this we use the construction of
Downey and Shore’s [19] which shows that the 1-3-1 lattice can be embedded be-
low any non-low2 degree. This is an elaboration on Lachlan’s original embedding of
the 1-3-1 lattice into the c.e. degrees. We briefly recall a version of the construction
given by Stob (unpublished notes), using Lerman’s pinball machine technique [46].
This is one of the few infinite-injury constructions which does not benefit much from the use of a tree

of strategies.

In this construction we enumerate three c.e. sets A0, A1 and A2. To ensure
that their degrees form the middle section of an embedding of the 1-3-1 lattice
(with bottom 0) we need to ensure that they are noncomputable, any two form
a minimal pair (which also implies that they must be Turing incomparable), and
each is computable from the join of the other two. The requirements to meet are:

P i

e

: A
i

‰ �
e

,

where x�
e

y is an enumeration of all partial computable functions; and for i ‰ j
from t0, 1, 2u,

N i,j

e

: If ⇥
e

pA
i

q and  
e

pA
j

q are total and equal, then they are computable;

here x⇥
e

, 
e

y is an enumeration of all pairs of Turing functionals.
The global requirement that A

i

§T A
j

‘ A
k

when ti, j, ku “ t0, 1, 2u is met by
the mechanism of appointing traces. A requirement P i

e

will appoint a follower x,
targeted for A

i

, and wait for it to be realised, which means �
e

pxqÓ“ 0; as usual,
when the follower is realised the requirement will want to enumerate it into A

i

.
Before x is realised, it is assigned a trace y ° x, another number, which is targeted
for either A

j

or A
k

. This is essentially the current A
j

‘A
k

-use of computing A
i

pxq.
The main rule is that we cannot enumerate x into A

i

before we enumerate y into
the set it is targeted for, A

j

or A
k

. Sometimes we will be able to enumerate y into
the required set, but not be yet able to enumerate x into A

i

; in this case, we will
appoint a new trace y1, again targeted for A

j

or A
k

, but not necessarily to the same
set for which y was targeted. Indeed it is switching between A

j

and A
k

which is
the key idea which makes the construction work.

Say that currently (at some stage s) x has a trace y, targeted for A
j

. Another
global requirement is A

j

§T A
i

‘ A
k

. And so we need to repeat: the number y

121
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receives a trace z ° y of its own, targeted for either A
i

or A
k

. Overall, the follower x
is accompanied by an entourage of traces y, z, . . . , each element of the sequence
being a trace for the number appearing before. At any stage, only numbers in a
final segment of the entourage may be enumerated into the sets for which they are
targeted. No two successive elements of the entourage are targeted for the same
set. At stage s, the last element w of the entourage is a number of size at least s,
and so does not yet require a trace. At the end of the stage, if w † s ` 1 then we
will assign it a new, large trace. The construction will specify the set for which the
new trace will be targeted. For simplicity of expression, we abuse the term a little
by letting the word entourage refer to the entire sequence x, y, z, . . . , including the
follower.

All numbers we use in the construction as potential elements of the three
sets A0, A1 and A2 are represented as balls which will move in a pinball ma-
chine (see Figure 1). The main components of the machine are gates and holes.
Some balls drop through holes to the main track of the machine. The balls move
downwards. Along their journey they encounter gates. A gate may allow a ball
to pass, or stops its movement. In the latter case, the ball is placed in a corral
associated with the gate. Balls in the corral may later be released and allowed to
resume their journey. When a ball arrives at the bottom of the machine we imagine
that it lands in one of the pockets associated with one of the sets A

i

, namely the
set the ball is targeted for. When a ball marked with the number x lands in the
pocket associated with A

i

, the number x is enumerated into the set A
i

.
Holes H0, H1, H2, . . . are associated with positive requirements P i

e

(much like
strategies on a tree are assigned to requirements). As described above, the require-
ment appoints a follower x “ t0. While waiting for the follower to be realised, an
entourage of traces t1, t2, t3, . . . is appended to x. Once the follower is realised,
the entourage t0, t1, . . . drops through the associated hole H

n

and starts moving
down through the machine. The entourage may be stopped by one of the gates G

m

for m § n, in which case it enters the corral C
m

. The last ball y “ t
`

in the
entourage rolls out of the corral and waits at the gate G

m

. While waiting, the
entourage is extended with more traces, all of which wait at the gate with y. At
some point the gate opens and y and its sequence of traces (the final segment of the
current entourage waiting at the gate) continue their journey down the machine.
This sequence of balls may be stopped at a lower gate G

m

1 (so m1 † m). All of
the balls enter the corral C

m

1 and the last element z “ t
`

1 rolls out to the gate.
Again while waiting, new traces are added to the entourage beyond z. When the
gate opens, z and its traces continue their fall. Eventually some of these balls, in a
final segment of the entourage, pass all of the gates and land in their pockets (with
numbers enumerated into the sets they are targeted for). These balls are removed
from the entourage. Say the final segment starting with t

k

has just landed in the
pockets, and k ° 0. The ball t

k´1 is now the last element of the entourage. It
has been waiting in some corral C

n

. It now rolls out to the gate G
n

and waits
for the gate to open. While it is waiting, new traces t

k

, t
k`1, . . . are added to the

entourage; they wait at the gate G
n

together with t
k´1. The process continues...

in general the structure is as described in the following lemma.

Lemma 1.1. Let x be a follower for some requirement P i

e

associated with the
hole H

m

. Suppose that x has already been dropped through its hole but has not
yet been enumerated into A

i

, so all balls in x’s entourage are currently lying at
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Pockets

A0 A1 A2

Gate G0Corral C0

Hole
H0

Gate G1Corral C1

Hole
H1

Figure 1. A pinball machine

various corrals and gates below the hole. The entourage is partitioned into segments
I
m

† I
m´1 † ¨ ¨ ¨ † I0 † I˚, where each I

k

lies in the corral C
k

and I˚ waiting at
some gate G

n

. Some of the segment I
k

may be empty; indeed all segment I
k

for
k † n are empty. I˚ however is nonempty.

We need to address two issues:

(1) we need to describe when gates open and when balls are stopped at some
gate; and
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(2) we need to explain why the follower will eventually be enumerated into
its set.

We first explain (1). The gates G0, G1, G2, . . . are associated with negative
requirements. Let G

n

be a gate and suppose that it is associated with the require-
ment N i,j

e

. The requirement is met by following Lachlan’s minimal pair strategy of
freezing a computation on one side or the other until it recovers on the other side.
Suppose that s is a stage and that t † s was the previous stage at which the gate G

n

was open. Then G
n

opens at stage s if the length of agreement between ⇥
e

pA
i

q
and  

e

pA
j

q exceeds t. That is, if for all x § t, ⇥
e

pA
i

, xqÓ“  
e

pA
j

, xqÓ rss. When
open, the gate G

n

cannot allow both balls targeted for A
i

and balls targeted for A
j

to drop below it. For this reason we need to ensure that if a final segment I˚ of
an entourage is waiting at the gate G

n

at the beginning of stage s then either no
ball in I˚ is targeted for A

i

or no ball in I˚ is targeted for A
j

. This is achieved
by appointing new traces correctly: say that the first ball z in I˚ rolled out to the
gate G

n

from the corral C
n

at stage r † s. Suppose that z is targeted for A
i

.
Then the next trace w that we appoint for z will be targeted not for A

j

but for A
k

.
And the next trace that we appoint for w will be targeted for A

i

; and so on, so no
ball waiting at the gate at stage s is targeted for A

j

. The segment I˚ is sometimes
called an pi, kq-stream. If z is targeted for A

j

then we build I˚ to be a pj, kq-stream.
Of course if z is targeted for A

k

then we can build I˚ to be either a pk, iq-stream
or a pk, jq-stream.

The whole process can be thought of as retargeting of traces. Say that the
segment I

n

waiting in C
n

is an pi, jq-stream. Each ball in that segment waits until
its trace, its successor in I

n

, is enumerated into its set; we then appoint a new trace,
targeted for A

k

.

This brings us to question (2) above. We need to show that progress is made
at every step. Let x be a follower. On the face of it, it would appear that because
we keep extending the entourage, it is possible that balls in x’s entourage move
down at infinitely many stages (but x itself is never enumerated). This is not so.
Consider as a first example the case of one gate: suppose that x “ t0 and its
entourage I “ pt0, t1, . . . , t`q at stage r arrive at the corral C0 at that stage. The
last ball t

`

in I rolls out to the gate G0. We keep appointing traces and extend
the entourage beyond t

`

, but when the gate opens, t
`

and all of these new balls fall
to the pockets and are removed from the entourage. Next, the ball t

`´1 rolls out
to the gate and the process resumes. We see that after t

`

` 1 many iterations, the
follower x “ t0 will be enumerated into the set it is targeted for, and the process
will end.

Now consider two gates G0 and G1. At some stage r0, x and its entourage
I “ pt0, . . . , t`q arrives to the corral C1. The ball t

`

rolls out to the gate. While
waiting the entourage is extended to I˚ “ pt

`

, t
``1, . . . , t``p

q. At some stage the
gate G1 opens, this segment is allowed to proceed, but is placed in the corral C0. As
discussed above, after p´``1 many times at which G0 opens, t` will be enumerated
into its set and the ball t

`´1 will roll out to the gate G1. After ``1 many iterations
of this longer process, the follower lands in C0, and we are back in the first case.
This kind of nested analysis can be extended to any finite number of gates.

This argument can be coded succinctly using ordinals below !!. Say x is a
follower, and let I

m

† I
m´1 † ¨ ¨ ¨ † I0 † I˚ be a partition of its entourage as

in Lemma 1.1. Consider the ordinal !m|I
m

| ` !m´1|I
m´1| ` ¨ ¨ ¨ ` !0|I0| ` !n,
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where I˚ lies at the gate G
n

. The analysis above shows that each time a gate
opens and part of x’s entourage moves, this ordinal decreases. The well-foundedness
of !! guarantees that parts of x’s entourage move only finitely many times. In the
next subsection we will see that this “ordinal analysis” corresponds to the kind of
permitting which is required to get the argument to work below a given c.e. degree.

We also remind the reader of Theorem I.0.9, part of which relies on the fact that for most admissible

ordinals ↵ ° !, the 1-3-1 lattice cannot be embedded (at least with an incomplete top). The reason the

argument fails is the instruction that the last ball of the entourage roll out to the gate. Since entourages

may keep growing, it is perfectly possible that some will have order-type a limit ordinal. The only way

to overcome this is if an ↵-c.e. degree can compute a bijection between ↵ and !. In that case the

construction is essentially rearranged to resemble the standard !-construction, with finite entourages at

every stage.

The main ideas of this construction have been described, but we mention a
couple of aspects which we missed. In the analysis above we ignored the possibility
that the last segment of an entourage is waiting at a gate which will never open
again, because the hypothesis of the associated negative requirement fails. In this
case the follower will not be enumerated into its set. For this reason, a positive
requirement needs to appoint more followers and hope that one of them succeeds.
We need to ensure that not all the followers will get stuck in this way. A good way to
do this is to let each gate apprehend the entourage-segment of at most one follower.
This is made possible by a process of cancellation. Followers are assigned priorities
based on the time they were appointed. When a positive requirement receives
attention (for example when appointing a new follower or when one of its followers
receives attention), all followers for weaker requirements are cancelled. Thus the
priority ordering between followers respects the ordering between requirements.
When a follower receives attention (when its last entourage segment moves), all
weaker followers, even for the same requirement, are cancelled. As usual, since new
followers are appointed large, a follower x is stronger than a follower y if and only
if x † y. Suppose that the last segment of x’s entourage is waiting at a currently
closed gate G

n

, and that the segment of y’s entourage is currently moving down.
The gate can let y’s segment pass even though it is not currently open and even
though y’s segment may contain balls targeted for both sets A

i

and A
j

that the
gate cares about. The reason is the following. The fact that x’s segment is still
waiting at the gate when y’s segment is moving (and so when y receives attention)
shows that x is stronger than y; otherwise x would be cancelled at this stage. The
last stage r at which x received attention is no earlier than the last stage u at
which G

n

was open. The computations currently protected by the gate have been
observed at stage u. At stage r, followers weaker than x are cancelled, and so y
was appointed later than stage u. It is therefore much too large to disturb any of
the computations that the gate is currently trying to protect, and it (or part of its
entourage) can pass without let or hindrance. Overall, this shows that if a positive
requirement is using the hole H

n

, then at most n ` 1 many of its followers could
be permanently stuck at some gate. One of its followers will therefore either never
get realised, or successfully enumerated into its set.

We remark that the necessity for appointing more than one follower could be
avoided if we put the construction on a tree of strategies. The tree now acts as
the track of the machine, with positive nodes acting as holes and others as gates.
A positive node on the true path guesses correctly which gates will open infinitely
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often and so its follower cannot get permanently stuck. However, when we add
permitting in the next section we will need to let positive requirements appoint
many followers; even if they do not get stuck at gates, they can wait in vain for a
permission. For the permitting argument it seems that adding a tree of strategies
does not help simplify the construction.

1.2. Embedding the 1-3-1 lattice with non-total † !!-c.a. permitting.
Recall the argument above for why every follower x receives attention only finitely
many times. The ordinals used to show that the progress was well-founded corre-
spond to the amount of permissions required to get the follower to its pocket. First
note that for that argument, it is crucial that when part of x’s entourage lands in
the pockets, that the numbers are actually enumerated into their sets. We cannot
appoint a new trace for the last element of the entourage still waiting in a corral
without first enumerating its current trace. Further, before a gate opens again, we
need to ensure that the numbers that it allowed to pass at the last time it was open
are actually enumerated into the sets. Otherwise it may let balls potentially injur-
ing the other side pass, and then both sides may get injured before the next time
the gate opens. So the number of permissions we need to get until x is enumerated
is close to the number of times the follower actually receives attention. The fact
that x receiving attention corresponds to a decrease in the ordinal shows us that
a bound on the ordinal also bounds the number of permissions required. For the
hole H

m´1 the bound is !m.
This can be explained in detail looking at the simple cases. In the one-gate-

case, once the follower is realised, we know the size of its entourage that enters the
corral C0, and so the number of times the gate G0 needs to open until the follower
arrives in its pocket. If the gate opens at some stage and releases one of the balls in
the entourage, then we need a permission before the next such stage. So the number
of permissions required is the same as the size of the entourage. This corresponds
to non-total !-c.a. permitting. (It is not array noncomputable permitting because
we need to wait until the follower is realised before we know the eventual size of
the entourage that enters C0; we cannot tell it in advance.) When two gates are
involved, when the follower is realised we know how many times we need G1 to
open. Each time it does open (and not before) we find out how many G0-openings,
and so how may permissions, we need until the next G1-opening. Even though we
don’t need a permission between G1 opening and the first time after that when G0

opens, the size of the entourage in C1 does tell us how many times we need to
update the bound on the number of permissions required. This is precisely non-
total !2-c.a. permitting. Weaker holes need to pass more and more gates, so overall
for permitting we need a function which is not !n-c.a for any n † !.

This analysis shows that to pass m gates, a single ball requires !m permissions.
However, the situation becomes more complicated when more than one ball is
involved. As usual, a positive requirement will issue many followers, because some
of them may get stuck at gates that don’t open, and some of them will get stuck
waiting for permissions. When one ball receives attention, weaker balls for the
same requirement are cancelled. In many other ↵-c.a. permitting constructions, if a
follower x cancels a follower y then x takes over the “permitting number” of y. That
is, from that point on, every y-permission should be also counted as an x-permission.
We cannot do this in this construction. The reason is that in order to increase x’s
permission number we first need to actually receive x permission (with the old
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number). Otherwise the whole process of requiring permissions does not help us
show that the permitting degree bounds all the sets being constructed. However in
the 1-3-1 construction below a nonlow2 degree we cannot require permission during
every movement of a follower; this is only possible with high permitting. (This has
to do with the question of what happens when a gate opens but the corresponding
follower is waiting for permission to move.) In a nonlow2 or weaker construction
we can only require permissions when attempting to enumerate numbers into sets.
So whenever x receives attention but does not try to enumerate numbers into sets,
weaker followers y will be cancelled, but their permitting numbers cannot be taken
over by x.

Our solution is to abandon the technique of taking over permitting numbers.
Essentially this means that if y is a follower with permitting number k, and y is
cancelled, then the next follower y1 appointed gets the permitting number k as well
(technically this is not quite so, but for nonessential reasons). However the first
ordinal we compute for y1 may be much larger than the ordinals we observed for y
while y was still alive. When arguing that the positive requirement is met we need
to threaten to give an !n-computable approximation (for some n) for a function
which doesn’t have one. During this approximation we are not allowed to increase
the ordinals. However we notice that y was cancelled because a stronger follower x
received attention. This means that x’s ordinal count went down. Multiplying x’s
ordinal by the bound !m (on the left) and adding to y’s ordinals we see that a single
drop in x’s ordinal allows us to increase the y-ordinal to the y1-ordinal. Overall,
to pass m gates, we need !2m-permission. The details are given in the proof of
Lemma 1.5.

The permitted embedding cannot be done while preserving the least element.
Our embedding will have a bottom degree b ° 0. This is similar to the non-
low2 construction of Downey and Shore’s [19]. The reason is an aspect of the
construction that we glossed over in the previous section. Let G

n

be a gate, work-
ing for requirement N i,j

e

, and suppose that the requirement’s hypothesis holds:
⇥

e

pA
i

q “  
e

pA
j

q. We need to show how to compute this common function. We
look at a stage s at which the gate opens; we need to argue that if no balls targeted
for A

j

(say) drop from the gate at this stage, then the computation  
e

pA
j

qrss up to
the length of agreement will survive until the next stage t at which the gate opens.
This is not actually always true, the reason being that small balls targeted for A

j

are currently waiting at a gate G
m

below G
n

and may be enumerated between
stages s and t. We only certify the computation at stage s if we know that no
small balls targeted for A

j

that are at stage s waiting at gates below G
n

will ever
be enumerated into A

j

. Note that some such balls may be stuck for ever at a gate
below G

n

. So G
n

cannot wait for a stage at which there are no small balls targeted
for A

j

at any gate below. It only needs to ensure that such balls will not enter A
j

.
How can G

n

tell? Well, there are only finitely many gates below G
n

, and each can
have at most one segment as a permanent resident. The information which of the
gates below has permanent residents can be given to G

n

non-uniformly, and we
can wait for stages at which below G

n

, only gates with permanent members are
occupied. Again, a tree of strategies is equivalent to non-uniformly giving this advice to G

n

; but as

we will now see, this advice will be insu�cient in the permitted construction.

In the permitted construction, many more balls can get stuck below G
n

: those
which passed all the gates, are lying in their pockets, but are still waiting for
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permission to be enumerated (the pockets act as a “permission bin”). Over all the
construction, there will be infinitely many such balls. We need some uniform way
to tell G

n

which of those are dangerous. For this reason we introduce the new c.e.
set B. To ensure that degTpA0 ‘ Bq, degTpA1 ‘ Bq and degTpA2 ‘ Bq form the
middle of an embedding of the 1-3-1 lattice with bottom degTpBq we need to meet
the modified requirements:

P i

e

: A
i

‰ �
e

pBq; and
N i,j

e

: If ⇥
e

pA
i

, Bq and  
e

pA
j

, Bq are total and equal, then they are com-
putable from B.

The global requirements are now A
i

§T A
j

‘ A
k

‘ B.

When an entourage segment lands into the pockets, we attach a new trace to
the end of the entourage; this new trace is targeted for B. When permitted, the
balls in that segment, together with the new trace, are enumerated into their sets.
A gate G

n

now can look at the pockets and consulting B can tell which entourage
segments will be enumerated in the future into their sets, and so find whether a
computation it is examining may be injured by balls waiting in the pockets.

Note that a number targeted for B does not need a trace of its own. We may
be tempted to close o↵ entourages with a trace targeted for B before they land in
the pockets. We cannot appoint such a trace while the ball is waiting to be realised:
since we are now diagonalising against B, a positive requirement will protect the B-
computation which realises the follower; it can certainly not plan to enumerate a
number into B before it sees the use of such a computation. Suppose that the
follower dropped through the hole, is moving down the machine, and its entourage
has a final segment I˚ waiting at a gate. When the gate will open it will want to
protect a computation on one side. However now both sides use B, so again, the
gate cannot allow the appointing of a small number targeted for B before it sees
the use of these computations. Thus only an entourage segment which passed all
the gates and is waiting in the pockets can appoint a trace targeted for B.

The reader may want to compare this construction with the permitted con-
struction of a critical triple below a non-totally !-c.a. degree in [17]. In that
construction the gates do not look at computations involving the “centre” B, and
so a B-trace can be appointed at the node working for the positive requirement,
once the B-computation realising the follower is discovered.

Toward the construction. Let d be a c.e. degree which is not totally † !!-c.a.
Let g P d be a function which is not !n-c.a. for any n † !. As in the argument
in Chapter V, since d is c.e., we may replace g by its modulus, and obtain an
approximation xg

s

y which is non-decreasing and such that changes in gpnq force
changes in gpmq for all m • n.

List both kinds of requirements in order-type !; associate the hole H
n

with
the nth positive requirement P i

e

and the gate G
n

with the nth negative require-
ment N i,j

e

.
As discussed, each positive requirement appoints followers. Each follower x for

a positive requirement will be assigned a permitting number apxq. We say that
a follower x for the requirement P i

e

is realised at stage s if �
e,s

pB
s

, xqÓ“ 0. An
uncancelled follower may, at a given stage, either still reside above its hole; occupy
some gate or corral; lie in a pocket; or already be enumerated into the set A

i

. We
say that the requirement is satisfied at stage s if there is a follower x for P i

e

which
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is both realised and has already been enumerated into A
i

. We say that a follower x
is permitted at stage s if g

s`1papxqq ‰ g
s

papxqq.
As discussed, followers are linearly ordered by priority. When a follower x

receives attention, all weaker followers are cancelled. When a follower is cancelled,
all of its entourage is cancelled with it.

At each stage, a gate may be occupied by a final segment of some entourage.
We will ensure the following.

Lemma 1.2. Let G
n

be a gate, associated with the requirement N i,j

e

. At a
stage s the gate may be occupied by at most one final segment of an entourage.
That entourage segment does not contain both a ball targeted for A

i

and a ball
targeted for A

j

.
The associated corral may contain segments of more than one entourage. How-

ever, if the gate is occupied by the final segment of the entourage of some follower x,
then x is weaker than any other follower which has a segment of its entourage in
the corral.

We also ensure the following:

Lemma 1.3. Let x be a follower for a requirement associated with the hole H
m

.
Suppose that at stage s, x is on the machine. Then x’s entourage at stage s is
increasing and is partitioned into intervals I

m

† I
m´1 † ¨ ¨ ¨ † I0 † I˚ such that:

‚ For each k § m, I
k

is in the corral C
k

; and
‚ I˚ is nonempty, and either occupies a gate G

k

for some k § m, or is lying
in the pockets. If I˚ is at gate G

k

then I
n

“ H for all n † k.

Every ball in the entourage, except possibly for the last one, is targeted for one of
the sets A0, A1 or A2, with no two successive ball in the entourage targeted for the
same set. The last ball of the entourage is targeted for B if and only if I˚ lies in
the pockets.

Construction. At stage s a gate G
n

, associated with the requirement N i,j

e

,
opens if for all y § t, ⇥

e

pB,A
i

, yq “  pB,A
j

, yq rss, where t is the previous stage
at which the gate opened, t “ 0 if there was no such stage.

At stage s, a follower x requires attention if one of the following holds:

(1) x is still waiting above its hole, and is now realised;
(2) x is on the machine, and the final segment I˚ of its entourage (as in

Lemma 1.3) is waiting at a gate G
n

, which is now open; or
(3) x is on the machine, the final segment I˚ of its entourage is waiting in the

pockets, and x is permitted at stage s.

A positive requirement P i

e

requires attention if either one of its followers requires
attention, or if it is not currently satisfied, and no follower for this requirement is
currently waiting above the hole.

Let P i

e

be the strongest requirement which requires attention at stage s. We
cancel the followers for all weaker requirements. If no follower for P i

e

requires
attention at this stage, then we appoint a new, large follower x for P i

e

, and place it
over the hole. Define apxq to be large.

Otherwise, let x be the strongest follower for P i

e

which requires attention at
stage s. We cancel all weaker followers for P i

e

.
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Let I˚ be the final segment of x’s entourage given by Lemma 1.3; if x currently
lies above its hole let I˚ be all of x’s current entourage. In cases (1) and (2), the
segment I˚ drops to the highest gate below its current location which is now unoc-
cupied (this is measured after the cancellation of weaker followers). The segment I˚
is put in the corresponding corral, and the last ball in I˚ rolls out to wait at the
gate.

However, if there are no unoccupied gates below I˚’s current location, then
the balls in the segment I˚ are put into the pockets. A new, large trace, targeted
for B, is appended to this segment.

In case (3), all of the balls in I˚ are enumerated into the sets for which they are
targeted; they are removed from x’s entourage. If I˚ consisted of the entirety of x’s
entourage then x has just been enumerated and the requirement is now satisfied;
we can cancel all other followers for P i

e

. Otherwise, the last ball in the remaining
entourage is waiting in some corral. That last ball now rolls out of the corral and
waits at the gate.

At the end of the stage, for any follower z which is still uncancelled, if the last
ball w in z’s entourage is smaller than s ` 1, and is not targeted for B, then we
appoint a new, large trace and append it to the end of z’s entourage. The location
on the machine of the new trace is the same as the location of the previously last
ball w. Say w is targeted for a set A

i

. The new trace is targeted for one of the two
sets A

j

or A
k

(where ti, j, ku “ t0, 1, 2u) so that Lemma 1.2 still holds.

Verification. Before we embark on the verification, we need to ensure that
the construction can actually be carried out as described. We need to show that
Lemmas 1.2 and 1.3 hold at every stage. The are proved by simultaneous recursion
on the stage. Most parts are immediate. We verify two parts of Lemma 1.2:

(1) If x and y are distinct followers, and at stage s, part of x’s entourage lies
in the corral C

n

and part of y’s entourage waits at the gate G
n

, then y is
weaker than x; and

(2) If a ball z rolls out to a gate G
n

at stage s, then at that time, the gate is
unoccupied.

For (1), consider the stage r † s at which the segment of y’s entourage which
occupies the gate G

n

at the beginning of stage s arrived at the gate. Between
stages r and s the gate is occupied so no new entourage segments are added to
the gate or corral. Hence x’s entourage segment already lay in the corral at the
beginning of stage r. Since x was not cancelled at stage r, it must be stronger
than y.

For (2), Let x be the follower of whose entourage z is a member. The follower x
receives attention at stage s. If at that stage the final segment of x’s entourage
arrives at the corral C

n

, then by the instructions, G
n

is empty when that segment
moves. Otherwise, balls in a final segment of x’s entourage are enumerated into
their sets at stage s. The new final segment (of which z is the last element) has
been waiting in the corral C

n

at the beginning of the stage. Suppose that G
n

was
occupied at the beginning of the stage. Then we know it was occupied by the final
segment of the entourage of some other follower y. By (1), x is stronger than y. And
so all the balls in y’s entourage are cancelled at stage s (as x receives attention),
and the gate becomes unoccupied.
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Let x be a follower which at stage s has already been issued from the
hole H

m

but is not yet cancelled or enumerated into the set it is targeted for.
Let I

m,s

pxq † I
m´1,spxq † ¨ ¨ ¨ † I0,spxq † I

s̊

pxq be the decomposition of x’s
entourage at that stage given by Lemma 1.3. We define an ordinal �

s

pxq. Let
�̄
s

pxq “ !m ¨ 2|I
m,s

pxq| ` ¨ ¨ ¨ ` !1 ¨ 2|I1,spxq| ` !0 ¨ 2|I0,spxq|.
If I

s̊

pxq resides at gate G
k

at stage s then we let �
s

pxq “ �̄
s

pxq ` !k. If I
s̊

pxq
resides in the pockets then we let �

s

pxq “ �̄
s

pxq.
Considering various cases, we observe:

Lemma 1.4. Suppose that x is on the machine at stage s and is not cancelled
at stage s, nor is it enumerated into its set a stage s. Then �

s`1pxq § �
s

pxq; if x
receives attention at stage s then �

s`1pxq † �
s

pxq.
It follows that every follower receives attention only finitely many times.

Lemma 1.5. Every positive requirement P i

e

receives attention finitely many
times, and is met.

Proof. Suppose that the requirement P i

e

is associated with the hole H
m´1.

To begin, we note that if x is a follower for P i

e

which is realised at some
stage r and is still not cancelled at a stage s ° r then �

e

pB, xqÓ“ 0rss by the
same computation which was present at stage r. This is standard: suppose that a
number b † '

e,s

pB
s

, xq enters B at stage s. The number b is the last element of an
entourage of some follower y. If y is stronger than x then x is cancelled at stage s.
Otherwise, the trace b is chosen after stage r, and so is greater than '

e,r

pB
r

, xq,
which by induction equals '

e,s

pB
s

, xq.
By induction, all positive requirements stronger than P i

e

eventually cease all
action; in particular, they stop cancelling followers for P i

e

. Let r˚ be the last stage
at which a requirement stronger than P i

e

receives attention.
If some follower for P i

e

enters A
i

after stage r˚ then the lemma holds. This is
also the case if some follower x for P i

e

is never cancelled but never realised. We will
show that one of these two cases must hold. Suppose otherwise, for a contradiction.
We will give an !2m-computable approximation for g.

Suppose that x is a follower for P i

e

which is never cancelled. By assumption, it is
realised at some stage. By Lemma 1.4 the follower receives attention finitely many
times. We assumed that x is not enumerated into A

i

. This means that the final
configuration for x (given by Lemma 1.3) contains an ever-increasing final segment
I˚pxq which is either a permanent resident of some gate G

n

, or a permanent resident
of the pockets. In the first case, we say that x’s entourage is stuck at the gate G

n

;
in the second case, that it is stuck in the pockets.

There are only finitely many followers for P i

e

whose entourage gets stuck at
some gate. Indeed there are at most m many. This is because each gets stuck at
some gate G

n

for some n † m, and each gate contains at most one segment as a
permanent resident.

We let r˚˚ ° r˚ be the last stage at which a follower, whose entourage is
eventually stuck at some gate, receives attention; r˚˚ “ r˚ if there is no such
stage. Every follower which receives attention after stage r˚˚ was also appointed
after stage r˚˚. Every such follower is either eventually cancelled, or eventually its
entourage is stuck in the pockets, awaiting permission which is never given.
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Infinitely many followers are appointed for P i

e

, and of those, infinitely many
are never cancelled. The argument is again standard: for any stage t consider
the strongest follower x which requires attention after stage t. Then x is never
cancelled, and after the last stage at which x receives attention, a new follower is
appointed, and eventually receives attention as it is eventually realised.

Let p ° r˚˚. To approximate gppq we let, for s ° p, X
s

ppq be the set of
followers y ° r˚˚ for P i

e

which are uncancelled at stage s such that apyq § p.
This set is naturally ordered (in an increasing fashion). If s † t then X

t

ppq is an
initial segment of X

s

ppq; some followers in X
s

ppq may get cancelled; new permitting
numbers are always assigned to be large.

Let Sppq be the set of stages s ° r˚˚, p such that:

‚ at stage s there is some follower x ° r˚˚ for P i

e

such that apxq ° p; and
‚ if x “ x

s

ppq is the least such follower, then the final segment I
s̊

pxq of x’s
entourage is waiting in the pockets at stage s.

The set Sppq is infinite, indeed it is cofinite. The sets X
s

ppq stabilise to
some Xppq; let s be the last stage at which any follower in Xppq receives attention.
The next follower x, appointed at stage s ` 1, is never cancelled and apxq ° p, so
x “ x

t

ppq for all t ° s; x’s entourage is eventually stuck in the pockets.
Let s P Sppq; let y1,s, y2,s, . . . , y

`psq,s be the increasing enumeration of X
s

ppq.
We let ÿ

yPX
s

ppq
�
s

pyq “ �
s

py1,sq ` �
s

py2,sq ` ¨ ¨ ¨ ` �
s

py
`psq,sq

and

�
s

ppq “ !m ¨
¨

˝
ÿ

yPX
s

ppq
�
s

pyq
˛

‚` �
s

px
s

ppqq.

Since �
s

pxq † !m for all x, we see that �
s

ppq † !2m.
Let s P Sppq, and let t be the next stage in Sppq after stage s. We show that

�
t

ppq § �
s

ppq, and that if g
t

ppq ‰ g
s

ppq then �
t

ppq † �
s

ppq.
Suppose that x

t

ppq ‰ x
s

ppq. Then the follower x
s

ppq must be cancelled
by stage t. This means that one of the followers in X

s

ppq received attention
between stages s and t; let z be the least such follower. Then z is the last
(greatest) element of X

t

ppq. By Lemma 1.4, �
t

pzq † �
s

pzq. This shows that∞
yPX

t

ppq �tpyq † ∞
yPX

s

ppq �spyq. Even though �
t

px
t

ppqq may be much larger than
�
s

px
s

ppqq, it is smaller than !m, and this shows that �
t

ppq † �
s

ppq.
So we assume that x

t

ppq “ x
s

ppq; let x “ x
s

ppq. For all y P X
s

ppq “ X
t

ppq,
�
t

pyq § �
s

pyq, and �
t

pxq § �
s

pxq, so �
t

ppq § �
s

ppq. Suppose that g
t

ppq ‰ g
s

ppq.
Since x is not cancelled between stages s and t and apxq ° p, it follows that x is
permitted at some stage between s and t. At the first such stage, x’s final entourage
segment is still waiting in the pockets, and so x receives attention between stages s
and t. Lemma 1.4 guarantees that �

t

pxq † �
s

pxq, and this implies that �
t

ppq † �
s

ppq
as required. ⇤

Lemma 1.6. All sets A0, A1, A2 and B are computable from d.

Proof. To determine if a number z is an element of one of these sets or not,
we first go to stage z. We then see if z has already been chosen as a follower or a
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trace; and if so, to which set it is targeted. If not, then z does not enter any set,
since new followers and traces are chosen to be large.

Suppose that z is an element of an entourage of a follower x (possibly x “ z)
at some stage t § z. The number apxq is already determined by stage z. With
oracle g we can find a stage after which the follower x is never permitted. The
function g can thus calculate a stage after which z cannot enter any set. ⇤

The verification concludes with the following two lemmas, which are standard,
but are added for completeness.

Lemma 1.7. If ti, j, ku “ t0, 1, 2u then A
i

§T A
j

‘ A
k

‘ B.

Proof. We ensured that if y is targeted for A
i

then at all stages s ° y at
which y is on the machine, y has a trace z targeted to one of the sets A

j

, A
k

or B,
and y does not enter A

i

unless the trace z enters the set it is targeted for. Further,
y is either cancelled or eventually receives a trace which is never cancelled; this is
due to Lemma 1.4. ⇤

Lemma 1.8. Every negative requirement N i,j

e

is met.

Proof. Suppose that ⇥
e

pA
i

, Bq “  
e

pA
j

, Bq are total. Let G
n

be the gate
associated with the requirement N i,j

e

.
By Lemma 1.5, let r˚ be the last stage at which either:

‚ Any positive requirement which is a associated with a hole H
m

for
some m † n receives attention; or

‚ Any follower whose entourage is eventually stuck at some gate G
m

for
some m † n receives attention.

Let M be the set of m § n such that the gate G
m

does not have a permanent
resident. We assumed that the hypothesis of N i,j

e

holds; this implies that G
n

opens
infinitely often, and so n P M .

We let S˚ be the set of stages s ° r˚ at the beginning of which:

‚ For all m P M , the gate G
m

is unoccupied;
‚ If I

s̊

pxq is the final segment of an entourage of a follower x which lies in
the pockets, then x will not receive attention at stage s or after stage s.

The set S˚ is computable from B; this is because entourage segments in the
pockets end with traces targeted for B. We note that if s P S˚ and x is a follower,
part of whose entourage resides anywhere below the gateG

n

, then x does not receive
attention after stage s; the last segment of x’s entourage is either permanently at
a gate or in the pockets.

The set S˚ is infinite. Let t be a large stage. As usual, let x be the strongest
follower which ever receives attention after stage t; say x last receives attention at
stage s ´ 1 ° t. All balls on the machine at the beginning of stage s will never
move again; if a gate G

m

is occupied at the beginning of stage s then the residents
of G

m

at stage s are permanent. Hence s P S˚.
Let p † !. We let sppq be the least stage s P S˚ such that s ° p, G

n

was
open at some stage in the interval pp, sq, and ⇥

e

pA
i

, B, pqÓ“  
e

pA
j

, B, pqÓ rss.
Such a stage exists because we assume that the hypothesis of N i,j

e

holds.
Let a “ ⇥

e

pA
i

, B, pqrsppqs. We claim that a “ ⇥
e

pA
i

, B, pq. To show this
we prove by induction that for all s ° sppq, either ⇥

e

pA
i

, B, pq Ó rss “ a or
 

e

pA
j

, B, pqÓ rss “ a.
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Let s ° sppq and suppose that the claim is already established for all stages in
the interval rsppq, sq. Let x be the strongest follower which receives attention at any
stage in the interval rsppq, sq (if no follower receives attention then the computations
which were observed at stage sppq were not destroyed by stage s).

Since sppq P S˚, no part of x’s entourage lies below G
n

at stage sppq. Suppose
that no part of x’s entourage crosses the gateG

n

at any stage in the interval rsppq, sq.
In this case let t † s be the last stage before stage s at which x received attention.
By induction either ⇥

e

pA
i

, B, pqÓ rts “ a or  
e

pA
j

, B, pqÓ rts “ a; without loss of
generality, assume the former. No numbers are enumerated into sets during stage t.
If a number from some follower y’s entourage is enumerated into any set between
stages t and s, then y is weaker than x, and so was appointed after stage t, and so
is greater than the use ✓

e,t

ppq. Thus the computation ⇥
e

pA
i

, B, pqrts is preserved
until stage s.

Suppose then that parts of x’s entourage do cross the gate G
n

at some stages
in the interval rsppq, sq. Let t be the last stage in that interval at which any part
of x’s entourage crosses the gate. We note that whenever x receives attention, all
other followers that were appointed after stage sppq are cancelled. In particular, G

n

becomes unoccupied. We conclude that no segments of x’s entourage ever pass by
the gate without stopping first. Hence, at stage t, the gate opens, and part of x’s
entourage that was waiting at the gate is allowed to proceed downwards.

This implies two things: the first, that ⇥
e

pA
i

, B, pqÓ rts “  
e

pA
i

, B, pqÓ rts; by
induction, the common value is a. The second is that the segment of x’s entourage
which is released from the gate at stage t does not contain both balls targeted for A

i

and balls targeted for A
j

. Without loss of generality, suppose it does not contain
any balls targeted for A

j

. We claim that the computation  
e

pA
j

, B, pqrts is not
destroyed by stage s.

For suppose that some number u below the use  
e,y

ppq of that computation is
enumerated into A

j

or B at some stage in the interval rt, sq. Let y be the follower to
whose entourage u belongs. By the choice of x, either y “ x or y is weaker than x.
If y is weaker than x then y is appointed after stage t, and so y, and all of the balls
in its entourage, are greater than the use  

e,t

ppq. But y “ x is impossible too: u
must be appointed before stage t, and so is already an element of x’s entourage at
stage t. But it does not cross the gate at stage t: no balls targeted for either A

j

or B proceed from the gate at stage t. All other balls in x’s entourage at stage t
remain above the gate until stage s. ⇤

1.3. The 1-4-1 lattice. The embedding technique used above actually shows:

Theorem 1.9. If d is a totally † !!-c.a. c.e. degree then for all n • 3, the
1-n-1 lattice can be embedding into the c.e. degrees below d.

Take for example the case n “ 4. We enumerate sets A0, A1, A2 and A3, and a
bottom set B. The requirements are as above, except for the pairwise joins: if i, j, k
are distinct indices from t0, 1, 2, 3u then A

i

§T A
j

‘ A
k

‘ B. The rule for traces
now is that if ti, j, k, lu “ t0, 1, 2, 3u then every number targeted for A

i

needs to
have two traces, for two of the sets A

j

, A
k

and A
l

.
It would seem that an entourage in this construction will be a binary branching

tree, but we can actually make do with linear entourages as in the construction
above; the two balls following a ball in a (linear) sequence of balls are considered
its traces. That is, if the follower is t0 and the entourage is t0, t1, t2, . . . , t` then
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a0 a1 a2 a3 a
n´1

b

¨ ¨ ¨

¨ ¨ ¨

¨ ¨ ¨

Figure 2. The 1-n-1 lattice

for all i § ` ´ 2, t
i`1 and t

i`2 are the traces for t
i

. For the tracing to work we
need to require that for any such i, no two of the three balls t

i

, t
i`1 and t

i`2 are
targeted for the same set. Given two previous balls t

i´2 and t
i´1, this still leaves

two options for choosing a target for the next ball t
i

, and this allows us to retarget
followers at gates. A sequence of balls waiting at a gate working for N i,j

e

will be an
pi, k, lq-stream or a pj, k, lq-stream. The rest of the construction is identical.

In fact, we can string together these constructions to obtain an embedding of the
1-!-1 lattice; the nth follower appointed (across all requirements) and its entourage
will only concern itself with the first n middle sets; reductions A

i

§T A
j

‘ A
k

‘ B
will be non-uniform.

2. Non-embedding critical triples

A critical triple in an upper semi-lattice consists of three incomparable elements
a0,a1 and b such that a

i

§ b _ a1´i

for i “ 0, 1, and such that any e lying below
both a0 and a1 lies below b as well. That is, a0 ^ a1 § b, except that we don’t
actually require the meet a0 ^a1 to exist. The element b is called the centre of the
triple.

In [17] the authors show that a c.e. degree bounds a critical triple (in the
c.e. Turing degrees) if and only if it is not totally !-c.a. The proof shows that
the same holds for weak critical triples, a related concept we will not use here.
The proof that no totally !-c.a. c.e. degree bounds a weak critical triple is an
“anti-permitting” elaboration on an argument from [8] that constructs a c.e. degree
which bounds no weak critical triple. That argument in turn is a simplification
of an argument from [14], which constructs a c.e. degree that bounds no critical
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triple. Toward the proof of the second half of Theorem I.0.7, we now give an anti-
permitting elaboration on Downey’s original argument in [14]. It is somewhat more
complicated than the weak critical triple argument, and gives a weaker result. But
it will be the argument that we need to generalise in order to prove our theorem.
To avoid an extra step of simple permitting we work with array computable degrees
rather than totally !-c.a.

2.1. Layering. The fundamental notion from [14] is that of protecting com-
putations by layers. In our setting, let D be a c.e. set whose Turing degree is array
computable; and let A0, A1, B §T D be sets whose degrees potentially form a crit-
ical triple. To show that they in fact do not form a critical triple we will build a
c.e. set Q §T A0, A1 such that Q ¶T B; or we may fail to do so, but in that case
we will show that A0 is computable from B. We fix functionals ⇤, �0 and �1 such
that ⇤pDq “ pB,A0, A1q, and such that �

i

pB,A1´i

q “ A
i

for i “ 0, 1.
The general idea of the construction is as follows. We define an auxiliary

function �pDq, and as in the anti-permitting arguments in the previous chapters,
non-uniformly we know an id-computable approximation for �pDq. We enumerate
the set Q, together with reductions �

i

of Q to A
i

. For each d † !, to ensure that
 

d

pBq ‰ Q we appoint a follower x, and after it is realised ( 
d

pB, xqÓ“ 0) we hope
for double permission — changes in both A0 and A1 below the uses of reducing
Qpxq to these sets — so that we can enumerate x into Q. The natural two questions
are: (a) why would we get double permission? (b) if we do, how do we protect the
realisation of the follower — i.e., how do we ensure that indeed  

d

pB, xq “ 0?
The idea is to have a backup strategy. We build a functional ⌅

d

; if the dth

requirement fails, that is, if  
d

pBq “ Q, then we will ensure that ⌅
d

pBq “ A0.
Suppose that x is a follower. When we see that x is realised then we set up
a computation of A0 æ

x

from B, with use at least  
d

pB, xq. If later we attack
with x and then x becomes unrealised, then we will be able to cancel x, because
any incorrect computation of A0 æ

x

from B can be discarded as well. This solves
the problem (b) above. However, this process introduces two analogous problems
(assuming that indeed  

d

pBq “ Q): (b’) how do we protect the correctness of a
computation ⌅

d

pBq “ A0 æ
x

(when x is not cancelled); and (a’) how to ensure that
infinitely many followers are not cancelled so that ⌅

d

pBq is total?
This is where anti-permitting comes in. We associate a follower x with an

anchor n, an input for �pDq. As long as we keep �pDq total, having guessed the
correct approximation, we know there will be no more than n many changes to
D æ

�pnq. If we can arrange �pnq to be large enough, beyond �puq, then we can
ensure that there are at most n many changes to A

i

æ
u

or B æ
u

(recall that ⇤ is the
functional computing A0, A1 and B from D).

A single layer above x is the length u ° x required to ensure that a change
in one of the sets A0 or A1 below x necessitates a change in at least one other set
among A0, A1 and B below u. Formally we define

xp1q “ maxt'0pB,A1, xq,'1pB,A0, xqu;
see Figure 3. We then let

xpn`1q “ pxpnqqp1q

(see Figure 4).
When we set up x, we define the use of reducing Qpxq to the sets A

i

to be
xpnq; and set �pnq “ �pxpnqq. When x is realised, we set the use ⇠

d

pxq of reducing
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A1

A0

B

x '1pxq

'0pxq

Figure 3. One layer.

A0

A1

B

x xp1q xp2q xp3q

Figure 4. Three layers.

A0 æ
x

to B to be maxtxpnq, 
d

pxqu. We consider what the next change could be.
Assuming that x remains realised, we are concerned about A

i

-changes. The key,
again, is that yp1q is chosen so that a change in some A

i

below y forces a change in
either B or A1´i

below yp1q. So now there can be two kinds of A
i

-changes. If one A
i

changes below xpn´1q, then (again assuming that x remains realised, so B does not
change), there must be a change in A1´i

below xpnq. But xpnq “ �
i

pxq “ �1´i

pxq,
the uses of reducing Qpxq to A

i

and A1´i

; so in this case we get the double change
we wished for, and we can attack with x: enumerate it into Q, and hopefully
win the eth requirement  

d

pBq ‰ Q. Otherwise, the A
i

-change that concerns us
happens below xpnq but above xpn´1q. We say that the nth layer is peeled. Since
�pnq “ �pxpnqq, the A

i

-change allows us to redefine �pnq and extract one D æ
�pnq-

change from our opponent. And the opponent’s captial is bounded: at most n
changes are possible. The nth layer is gone, but we now repeat the argument with
the pn ´ 1qst layer instead: a change below xpn´2q leads to an attack; a change
below xpn´1q but not below xpn´2q means that the next layer is peeled, and another
change in �pD,nq is paid by the opponent. Since we have set up su�ciently many
layers, if an attack never occurs, the opponent cannot peel all of the layers, which in
particular means that no changes to A0 æ

x

are possible — ensuring the correctness
of the reduction ⌅

d

pBq on x.
Finally, the anchor n is also used to solve problem (a’): if we can ensure that

each time that we cancel x, D changes below �pnq, then we can cancel x and
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appoint a new follower x1, but keep the same anchor n. For each anchor n, at
most n followers can be cancelled, and so one will be permanent. There are some
delicate details involved, though, and we discuss them below.

2.2. Four procedures. Let us give more details and fix notation. For every
e † ! we will perform an eth construction. All constructions together define a
functional�, and ensure that�pDq is total. Let xfe, oey be an e↵ective enumeration
of all id-c.a. functions (with tidy pid`1q-computable approximations). The eth

construction guesses that �pDq “ fe. The eth construction enumerates a c.e. set
Qe. For each d, an agent d for the eth construction tries to ensure that  

d

pBq ‰ Qe.
The construction builds two functionals �e0 and �e1, with the aim of ensuring that
�e
i

pA
i

q “ Qe. The dth agent also enumerates a functional ⌅e

d

.
We adopt the conventions of Notation VI.1.1; for example, we write ⇠e

d,s

pxqÓ
to indicate that ⌅e

d

pB, xqÓ rss, and when we define the computation we just as-
sign a value to the use; we know that we always define ⌅e

d

pB, xq “ A0 æ
x

rss,
�e
i

pA
i

, xq “ Qepxq rss, and �
s

pD
s

, nq “ s.
We go one step further and omit mentioning the stage number during the

construction; so we just write ⇠e
d

pxqÓ and understand that this is to be evaluated
at the present, i.e., at the stage currently under consideration. To further simplify
the notation we omit the superscript e.

As discussed above, we are given funcitonals ⇤ and �
i

such that for i “ 0, 1,
�

i

pB,A1´i

q “ A
i

, and ⇤pDq “ pB,A0, A1q. At a given stage of the construction we
may refer to uses such as �puq for some number u. When we do this we understand
that we are speeding up the enumerations of the sets and functionals which are given
to us so that we see a convergence of the relevant computation (in the example,
⇤pD,uq). Applying this to the uses '

i

, this allows us to refer to numbers such as
xpnq defined above.

At each stage, agent d will appoint a new anchor n (using the next unused
number). Each anchor will start a process which will be indpendent of all other
processes for all agents and all constructions. The process cycles between four
procedures (or phases):

Set-up: Appointing a follower x; defining a parameter u “ xpnq, and defin-
ing �pnq “ �puq; waiting for �pD,nq “ fepnq. Once this is observed,
defining �

i

pxq “ u.
Realisation: Waiting for  

d

pB, xqÓ. When convergence is obtained, defin-
ing ⇠

d

pxq “ maxtu, 
d

pxqu.
Maintenance: Waiting for double permission: both �

i

pxqÒ. (While waiting,
demanding payment for layers being peeled.)

Attack: When double permission is received, enumerating x into Q. Then,
monitoring the correctness of the realising computation  

d

pB, xq.
To understand the construction we need to explain under what circumstances we
move from one procedure to another, and how we react to changes when we see
them. We discuss some of the principles involved.

Cancelling a follower. We cancel a follower x if both �pnqÒ and ⇠
d

pxqÒ, except
during the set-up procedure. We need �pnqÒ so that we will be free to redefine
�pnq “ �ppx1qpnqq for a new follower x1 which will be appointed once x is cancelled.
We need ⇠

d

pxqÒ as while ⌅
d

pxqÓ we need to maintain the correctness of this compu-
tation. We are not allowed to cancel the follower during the set-up phase, because
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during set-up we are still waiting for our opponent to make a payment; each can-
cellation will be charged against a change in fepnq, and during set-up we have not
seen this change yet.

Why would we need to cancel x? While we are in set-up, both �
i

pxq are
undefined, and so any change to any of the sets A

i

or B below u will cause us
to simply recalculate a new value for u “ xpnq and restart the set-up procedure;
note that this change forces �pnqÒ. However once we exit set-up, a change in B
below u might cause many layers to disappear but it is still possible that one of
�
i

pxq remains defined; so we cannot return to a fresh set-up for x. And certainly,
once we have attacked, if realisation is destroyed ( 

d

pB, xqÒ) then we need to get
rid of x, as we cannot extract it from Q.

The value of u. As discussed above, during the set-up phase, any changes to
sets A

i

or B may increase the value of xpnq; we need to keep track of these changes
and update the value of u. Once we leave set-up we cannot update the value of u
anymore; peeling the layers one by one would result in increases to xpnq, but at
least one of �

i

pxq is still defined, so we cannot increase this use to be the new xpnq.
Once we leave set-up, the value of u is fixed (until the follower x is cancelled).

Actually, one could ask why we ever need to give up on any layer. When the
last layer is peeled — say A0 æ

u

changes but not A1 æ
u

— why shouldn’t we just
redefine �0pxq to be the new xpnq and leave �1pxq “ u? And later if A1 æ

u

changes
we could update �1pxq as well. However the change causes xpnq ° ⇠

d

pxq. A change
now in A1 below xpn´1q would cause a change in B (rather than A0) below the
new xpnq but not below ⇠

d

pxq; we cannot cancel x, so we are peeling another layer
even though we tried to resurrect the last layer. In other words, there is no way to
actually revive the last layer: one change means it is gone.

The value of �pnq. To keep �pDq total, as usual, we need to ensure that �pnqÓ
at every stage (even if the guess �pDq “ fe is wrong), and we need to ensure that
the value of this use is bounded. When exiting set-up we have �pnq “ �puq; when we
see that x is realised we will likely have  

d

pxq ° u so will not have �pnq • �p⇠
d

pxqq.
This means that during maintenance it is quite possible that a B-change causes the
realising computation  

d

pB, xq to disappear, but D does not change below �pnq.
In this case we need to go back to the realisation procedure and cannot cancel x.

However, once we attack, it is important that �pnq • �p⇠
d

pxqq; the reason is
that if B æ

⇠

d

pxq changes we must be able to cancel x, as it is already enumerated
into Q. However the double change in A

i

æ
u

that enabled that very attack caused
�pnqÒ, and this allows us to redefine �pnq to be at least �p⇠

d

pxqq as required.
Further, during maintenance, if we see one layer peeled the we must update

�pnq to be �p⇠
d

pxqq. The reason is that while waiting for the opponent to pay for
this peeling we may see that  

d

pB, xqÒ. We would then like to cancel x: if we do
not do so, while waiting we may see more layers unravel, so we would like to attack,
but obviously cannot do so if x is no longer realised.

2.3. Construction. We detail how to react to changes during each procedure
for an anchor n for an agent d (for construction e). Recall that during the con-
struction, at each stage, every agent for every construction appoints a new anchor n
and starts cycling through the procedures for n. The following description of these
procedures therefore describes the entire construction.

Set-up.
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1. Appoint a new follower x. Define �pnq “ �pxpnqq. Wait for
�pD,nq “ fepnq.

‚ While waiting, if D changes below �pnq, we redefine �pnq
using the current value of xpnq.

2. Once we see that �pD,nq “ fepnq, we define u “ xpnq and
�
i

pxq “ u, and move to realisation.

Realisation.

1. Wait for  
d

pB, xqÓ“ 0.
‚ If, while waiting, we see that D changes below �pnq, then
we cancel x and return to set-up.

2. Once we see that 
d

pB, xqÓ“ 0, we define ⇠
d

pxq “ maxtu, 
d

pxqu,
and move to maintenance.

Maintenance.

We wait for a change in D below �pnq or in B below ⇠
d

pxq. When
we see such a change we react according to the first case which
applies:
(a) Cancellation: If both �pnqÒ and ⇠

d

pxqÒ then we cancel x
and return to set-up.

(b) Realisation: If ⇠
d

pxqÒ (but �pnqÓ), we return to the realisa-
tion phase.

(c) Attack: If both �
i

pxqÒ (but ⇠
d

pxqÓ) then we move to the
attack phase.

(d) Layer peeled: If only one �
i

pxqÒ then we redefine �pnq “ �p⇠
d

pxqq
and wait for �pD,nq “ fepnq.

‚ While waiting, if one of the cases (a), (c) or (e) ap-
plies, we react accordingly. (b) cannot happen anymore.

When we see the required agreement we redefine �
i

pxq “ u,
�pnq “ �puq, and stay at the maintenance phase.

(e) Trivial change: If only �pnqÒ then we redefine �pnq “ �p⇠
d

pxqq
and stay at the maintenance phase.

Attack.

1. We enumerate x into Q. We define �pnq “ �p⇠
d

pxqq.

2. We wait for ⇠
d

pxqÒ. When this is observed, we cancel x and
return to set-up.

‚ While waiting, if we see that �pnqÒ, we redefine �pnq “ �p⇠
d

pxqq,
and keep waiting.
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2.4. Verification.

Lemma 2.1. Let e be a construction, d an agent for e, and n an anchor for d.
There is a follower which is appointed for n and is never cancelled.

Proof. Let s0 be a stage after which fepnq does not change. Suppose that at
some stage s1 ° s0 a follower x is appointed for n. Then the set-up phase is never
exited, and so x is never cancelled. ⇤

Lemma 2.2. �pDq is total.

Proof. Let n † ! be an anchor for some agent d (for construction e). We
note that �pnq is never left undefined at the end of a stage, so we just need to show
that the value of �pnq is bounded (over all stages).

By Lemma 2.1, let x be the last follower appointed for n. There are several
possibilities for where we can end up with x.

(1) It is possible to get stuck for ever waiting for realisation. In this case, we
know that �pnq can never get undefined after starting the realisation run,
as that would cancel x.

(2) An attack with x is performed. We would never end this attack. The
value ⇠

d

pxq is constant during the attack. During the attack we let
�pnq “ �p⇠

d

pxqq. Since ⇤pDq is total, the value �pvq stabilizes for all v.
(3) It is possible to be left in the set-up cycle, never getting a correct fe guess.

The value of xpnq may change a number of times, but since �
i

pB,A1´i

q
are both total, it eventually stabilises. We always define �pnq “ �pxpnqq,
and so again since ⇤pDq is total, this value is eventually constant.

(4) After we enter the maintenance phase, Dæ
�pnq never changes. In this case

obviously �pnq is constant after we enter maintenance.
(5) We enter maintenance with x, and at some stage s1 after that we see a

Dæ
�pnq-change. We then define �pnq “ �p⇠

d

pxqq. After stage s1 there can-
not be a change inB æ

⇠

d

pxq — such a change would cause us to cancel x. We
will therefore remain at maintenance and always define �pnq “ �p⇠

d

pxqq;
again, this reaches a limit. ⇤

We fix some e such that �pDq “ fe, and continue with omitting the super-
script e.

Lemma 2.3. Q is computable from both A0 and A1.

Proof. The construction ensures that a follower x never enters Q unless both
�0pA0, xqÒ and �1pA1, xqÒ. We always define �

i

pA
i

, xq to agree with Qpxq; so we
just need to show that �

i

pxqÓ, or x is cancelled, or is enumerated into Q. Suppose
that x is a follower (for some anchor n for some agent d) which is never cancelled
and is never enumerated into Q. We show that �

i

pxq is defined at infintiely many
stages, and that the value is bounded. (As usual we assume that if x is cancelled,
or never chosen as a follower, or is enumerated into Q, then we eventually define
both computations �

i

pA
i

, xq with use 0.)
Since the guess �pDq “ fe is correct, we successfully exit the set-up phase

for x. After set-up, the parameter u is fixed, and �
i

pxq, when defined, is always
defined to equal u, and is thus bounded. The only time after set-up at which �

i

pxq
is undefined is when a layer is peeled, and we wait for agreement between �pnq and
fepnq; such agreement will eventually be found, and then �

i

pxq will be redefined.
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Since whenever �
i

pxqÒ we also get �pnqÒ, any other context at which �
i

pxqÒ causes x
to be cancelled (or attacked with). ⇤

If Q ¶T B then we are done. Otherwise, we fix some d such that  
d

pBq “ Q; we
will show that ⌅

d

pBq computes A0 successfully. We made sure that if a follower x
for agent d is ever cancelled, then ⇠

d

pxqÒ when we do so. The agent d appoints a
new anchor at every stage; by Lemma 2.1, for each one there is a follower which
is never cancelled. So it su�ces to show that if x is a follower for agent d which
is never cancelled, then eventually a permanenet computation ⌅

d

pB, xq is defined,
and this computation correctly computes A0 æ

x

. Fix a never-cancelled follower x
for an anchor n for agent d.

Since e’s guess that �pDq “ fe is correct, we exit the set-up phase with x.
Since  

d

pBq “ Q, every time we enter the realisation phase with x we will also
exit it. Further, the use  

d

pxq reaches a limit, which implies that the use ⇠
d

pxq
reaches a limit; whence we eventually define a permanent computation ⌅

d

pB, xq.
We need to verify its correctness. We note that since x is never cancelled, we do not
enter the attack phase with x. And so after the permanent computation ⌅

d

pB, xq
is defined, we will for ever be in maintenance with x, potentially observing layers
being peeled. Again, since e is correct, after each peeling we will observe agreement
between �pD,nq and fepnq.

Let s˚ be the stage at which the permanent computation ⌅
d

pB, xq is de-
fined. We need to show that A0 æ

x

“ A0,s˚ æ
x

. This is the heart of the argu-
ment: showing that setting up su�ciently many layers protects the correctness of
⌅
d

pB, xq. First we observe again that between set-up and last realisation we do
not see D æ

�pnq-changes. That is, if t˚ is the stage at which set-up of x is ex-
ited, then D

s

˚ æ
�pnq“ D

t

˚ æ
�pnq; otherwise, we would increase �pnq to be ⇠

d

pxq,
and then at some stage before stage s˚, x would be cancelled. This implies that
A

i,s

˚ æ
u

“ A
i,t

˚ æ
u

and B
s

˚ æ
u

“ B
t

˚ æ
u

; since u “ xpnq as calculated at stage t˚, we
have u “ xpnq at stage s˚ as well.

For k § n we let v
k

“ xpkq as calculated at stage s˚ (or t˚); and we let
s1 † s2 † s3 † ¨ ¨ ¨ † s

m

be the stages at which a layer for x is peeled (stages
at which we observe case (d) of the maintenance cycle for x). So for some i † 2,
A

i,s

k

`1 æ
u

‰ A
i,s

k

æ
u

.
Since oe0pnq § n and during the set-up stage we force one change in �pD,nq,

we have oe
s1

pnq § n ´ 1. Every time a layer is peeled we force one more change in
�pD,nq; this implies that for all k, oe

s

k

pnq § n ´ k. It follows that m § n.

Lemma 2.4. For all k § m, for both i “ 0, 1,

(1) A
i,s

k

æ
v

n´k`1“ A
i,s

˚ æ
v

n´k`1

Proof. The stage s1 is the least stage after stage s˚ at which we see any
change in either A

i

below u. In other words, A
i,s1 æ

u

“ A
i,s

˚ æ
u

; since u “ v
n

, the
equalities (1) hold for k “ 1.

Now by induction let k † m and suppose that Eq. (1) holds for k (for both
i † 2). We note that for all s ° s˚ and r § n, if A

i,s

æ
v

r

“ A
i,s

˚ æ
v

r

for both i

then xprq “ v
r

when calculated at stage s. Fix i such that A
i,s

k

`1 æ
u

‰ A
i,s

k

æ
u

.
Since at the beginning of stage s

k

, xpn´k`1q “ v
n´k`1, the fact that A1´i

æ
u

does
not change at stage s

k

implies that the change in A
i

at that stage is neccessarily
above v

n´k

. Now, by induction on s P ps
k

, s
k`1q we show that for both j † 2,

A
j,s

æ
v

n´k

“ A
j,s

k

æ
v

n´k

.
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Let t
k

° s
k

be the stage at which we exit the peeling subroutine (d) of the
maintenance cycle that we enter at stage s

k

. Suppose that s P ps
k

, t
k

q. Between
stages s

k

and t
k

we see no changes in A1´i

æ
u

as such a change would open an
attack. Recall that we are assuming that B æ

⇠

d

pxq, and hence B æ
u

, is correct from
stage s˚ onwards. This, and the fact that A1´i,s

æ
u

“ A1´i,s

k

æ
u

, implies that
'
i

pB,A1´i

, v
n´k

qrss § v
n´k`1, and that A

i,s

æ
v

n´k

“ A
i,s

k

æ
v

n´k

.
After stage t

k

and before stage s
k`1 we see no changes in A

j

æ
u

for ei-
ther j † 2; this follows from the definition of s

k`1. It follows that for both j † 2,
A

j,s

k`1 æ
v

n´k

“ A
j,s

k

æ
v

n´k

“ A
j,s

˚ æ
v

n´k

as required. ⇤

3. Two gates

We go up one level in our hierarchy: in this section we show that a uniformly
totally !2-c.a. c.e. degree does not bound a copy of the 1-3-1 lattice in the c.e.
degrees.

Of course the main di↵erence between this and the previous section must come
from the fact that some uniformly totally !2-c.a. degrees do bound critical triples
(those which are not totally !-c.a.). We observe that if a0, a1 and a2 are the
middle elements of the 1-3-1 lattice then each of the a

i

is the centre of a critical
triple (consisting of these three elements). Given a c.e. set D of uniformly totally
!2-c.a. degree and B0, B1, A §T D we show that either B0 is not the centre of a
critical triple B1, B0, A; or B1 is not the centre of a critical triple B0, B1, A. As
expected, this adds one more level of non-uniformity.

The main idea is the following. We enumerate a c.e. set Q “ Qe which will
be computable from A and B0, and try to ensure that Q ¶T B1. If we fail, say
 

d

pB1q “ Q, then we enumerate a back-up set Q
d

“ Qe

d

, this time computable
from A and B1, and hope that Q

d

¶T B0. If we fail then we will ensure that
B1 §T B0.

The number of times that D æ
�pnq could change will be at most !n. We will

appoint two followers x and y; the latter targeted for Q, the former for Q
d

. We
will ensure that if the remaining number of changes is !m ` k then y ° u

x

• xpmq
and u

y

• ypkq, where u
x

and u
y

are our analogus of u of the previous construction.
The peeling as above will happen from outside in: first, y layers will be peeled by
successive A- and B0 changes, while B1 remains unchanged. When all the y-layers
have been peeled, one or two x-layers will be peeled. But peeling the x-layers
happens in successive A- and B1-changes, not B0-changes. Such a B1-change will
allow us to cancel our follower y (while keeping x), and set up a new version of y,
with however many new layers we might need (the new ordinal is now !pm´1q`k1,
with k1 as large as our opponent may like).

An overall intuition is that the alternation between A,B0-peeling and A,B1-
peeling reflects the retargeting of traces in two gates of the pinball machine used
for constructing an embedding of the 1-3-1 lattice. Speaking vaguely, we say that a
degree which is not totally !-c.a. has enough power to pass one gate, but may run
out of gas when trying to pass two gates.

3.1. Discussion. We start with some details. LetD be a c.e. set whose Turing
degree is uniformly totally !-c.a. Let A,B0, B1 §T D; fix a functional ⇤ such that
⇤pDq “ pA,B0, B1q. We further suppose that any two of of these sets compute the
third; we fix functionals �, �0 and �1 such that �0pB0, B1q “ A, �0pA,B1q “ B0
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and �1pA,B0q “ B1. For x † ! we define

xp1q “ max
 
'pB0, B1, xq,'0pA,B1, xq,'1pA,B0, xq(

and xpn`1q “ pxpnqqp1q.
Again the idea is that a change in one of the sets A, B0 or B1 below x necces-

sitates a change in one other of these sets below xp1q.

Let hpnq “ !n; let xfe, oey be an e↵ective listing of all h-c.a. functions (with
tidy ph ` 1q-computable approximations). We will define a functional �; the eth

construction will guess that �pDq “ fe.
The eth construction will enumerate a c.e. set Q “ Qe and functionals � “ �e

and ⇥ “ ⇥e with the aim of having �pAq “ Q and ⇥pB0q “ Q. Further, for
each d † ! the construction will enumerate a c.e. set Q

d

“ Qe

d

and functionals
�
d

“ �e
d

and ⇥
d

“ ⇥e

d

with the aim of having �
d

pAq “ Q
d

and ⇥
d

pB1q “ Q
d

.
The action for the construction will be done by agents indexed by pairs of nat-
ual numbers. An agent pd, cq for the eth construction will enumerate a funcitonal
⌅
d,c

“ ⌅e

d,c

with the aim of computing B1 from ⌅
d,c

pB0q.
As mentioned, each anchor for each agent will try to appoint a pair of followers x

and y. The movement between the four procedures is now complicated by the fact
that each x can have several y’s. In other words we will sometimes cancel y but
not x (we always cancel y if we cancel x). So for example we may need to return
to the set-up procedure to set up a new y; but a change may cause us to interrupt
the set-up and either cancel x or attack with it.

How should we set up our uses? On top of the principles applied in the
simpler construction above, we have the following. Recall that the idea is to
set up x † u

x

† y † u
y

and to arrange that if at the current stage we have
oepnq “ !m ` k then u

y

• ypkq and u
x

• xp2mq. We need to think about the
possible changes and at which times they occur.

The follower y behaves similarly to the follower in the previous construction.
It is targeted for Q; we will define �pyq “ ✓pyq “ u

y

once we leave the set-up
procedure (and define �pnq • �pu

y

q). After y is realised ( 
d

pB1, yqÓ“ 0), when
both A and B0 change below u

y

we will be able to attack with y: enumerate it
into Q. Changes in B1 below  

d

pyq will either cause us to return to the realisation
phase or to cancel y; when a single layer is peeled (either �pyqÒ or ✓pyqÒ) then we
redefine �pD,nq and wait for the opponent to catch-up.

The follower x is targeted for Q
d

; we will be able to attack with x if we see
that  

c

pB0, xqÓ“ 0 and then both �
d

pxq and ✓
d

pxq are undefined. As discussed,
the idea is that if two layers below u

x

are peeled and x is still realised (no change
in B0) then we are guaranteed a change in B1 (and in A); so we would be able to
cancel y and set up many layers for the new y.

One role of x of the simpler construction is taken up in this construction by x
and not by y: we will define ⇠

d,c

pxq •  
c

pxq, and will use the peeling of x layers
to protect the computation ⌅

d,c

pB0, xq “ B1 æ
x

. The role of the y-layers is sec-
ondary; they protect the x-layers. As before, we can only cancel x if it becomes
unrealised ( 

c

pxqÒ) — otherwise we need to keep protecting the correctness of the
⌅
d,c

-computation. However, we will also only be allowed to cancel y if it is un-
realised ( 

d

pyqÒ); while it is realised, it needs to keep protecting the outermost
x-layers.
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A threat. The success of this process relies on the layers between y and u
y

to
be peeled one at a time, so that when the two layers below u

x

are peeled, we will
have already seen oepnq drop below the next limit ordinal (we see !m1 `k1 for some
m1 † m). Consider though the situation in which layers between y and u

y

are still
unpeeled, but the last layer below u

x

is peeled due to an A-change. Of course there
is a change in either B0 or B1 on the first y-layer; the former would allow us to
attack with y. The latter would allow us to cancel y. But our opponent will pay
by dropping but not below the limit ordinal !m (say to !m ` k1, for k1 † k). We
are now left with insu�ciently many x-layers.

In this situation what we would really like to do is attack with x. For this
reason we will define the use ✓

d

pxq to be at least u
y

, not u
x

.
In fact, we will want to define ✓

d

pxq •  
d

pyq as well. This is done to prepare
the ground for the new follower. When y is cancelled we appoint a new one, say y1,
and then we would like to define ✓

d

pxq • u
y

1 . For us to be able to do so, we need
✓
d

pxqÒ when y is cancelled. The cancellation of y of course follows from  
d

pyqÒ.
This requirement in turn means that while we are waiting for y to be realised,

we must leave ✓
d

pxq undefined. This is ok because we only need to use the set Q
d

if our first attempt with Q has failed; we only need ⇥
d

pB1q “ Q
d

if  
d

pB1q “ Q.

Similarly, if during an attack with y we see that �
d

pxqÒ, then we leave it unde-
fined for the duration of the attack. The attack is prompted by changes in A and
in B0, but B1 remains fixed; in particular, ✓

d

pxqÓ. The A-change below u
x

“ �
d

pxq
causes an x-layer to be peeled; the opponent has not paid for this by successive
peeling of y-layers. If the attack later fails (B1 changes below  

d

pyq § ✓
d

pxq) then
the fact that �

d

pxqÒ will allow us to attack with x instead.

3.2. Construction. At every stage, every agent pd, cq for a construction e
appoints a new anchor n and starts a new set-up procedure for n. We then cycle
through the four procedures for n as soon described. For brevity:

‚ We say that x is realised if ⇠
d,c

pxqÓ. We say that y is realised if ✓
d

pxqÓ.
‚ We say that a follower is confirmed if we have already exited the set-up
cycle during which it was appointed.

‚ We may cancel a follower if it is confirmed, unrealised and �pnqÒ.
‚ We may attack with x if it is realised, and both �

d

pxqÒ and ✓
d

pxqÒ. We
may attack with y if it is realised, and both �pyqÒ and ✓pyqÒ.

We stipulate that throughout the construction, including the set-up cycle, if we
may cancel x or attack with it then we do so; in either case we cancel y. Otherwise,
if we may cancel y or attack with it we do so, except during the set-up of y. If we
cancel a follower but are not attacking, then we return to the set-up cycle. These
instructions override all other instructions during the construction.

We now describe the procedures. We also list facts about divergence of func-
tionals at the beginning of each procedure, to be verified later.

Set-up: �pnqÒ and ✓
d

pxqÒ.
1. If x is not currently defined, appoint a new follower x.
In either case, appoint a new follower y ° xp2nq. Define
�pnq “ �pypkqq, where currently oepnq “ !m ` k. Wait for
�pD,nq “ fepnq. Note that if x is already defined, then it is realised, and

we choose y ° ⇠

d,c

pxq, so �pnq • �p⇠
d,c

pxqq.
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While waiting, we react to changes as follows.
‚ If x was appointed during this set-up cycle, and one of A,
B0 or B1 changes below xp2nq, we cancel y, appoint a new y,
and redefine �pnq accordingly.

‚ Otherwise, if �pnqÒ then we redefine �pnq “ �pypkqq (using
the current value of ypkq).

2. Once we see that �pD,nq “ fepnq, we define u
y

“ ypkq and
�pyq “ ✓pyq “ u

y

. If x was appointed during this cycle, then
we define u

x

“ xp2nq. If �
d

pxqÒ then we define �
d

pxq “ u
x

. As

discussed, we leave ✓
d

pxq undefined.

We move to realisation.

Realisation: ✓

d

pxqÒ or ⇠
d,c

pxqÒ.

1. If y is unrealised, wait for  
d

pB1, yq Ó“ 0. Once this is
observed, define ✓

d

pxq “ maxtu
y

, 
d

pyqu.
2. If x is unrealised, wait for  

c

pB0, xq Ó“ 0. Once this is
observed, define ⇠

d,c

pxq “ maxtu
x

, 
c

pxqu; move to maintenance.
We could have defined ⇠

d,c

pxq • u

y

but this cannot be maintained, since we may

later cancel y but be unable to move ⇠
d,c

pxq.

Maintenance: all functionals defined.

We wait for a change in D below �pnq or for x or y to become
unrealised. When this occurs:
(a) If x or y are unrealised, move to realisation.
(b) If a layer is peeled: either �pyq Ò or ✓pyq Ò, but not

both — redefine �pnq “ � pmaxt✓
d

pxq, ⇠
d,c

pxquq . Wait
for �pD,nq “ fepnq. While waiting, if �pnqÒ (but no attack
or cancellation are possible) then we just redefine it by the
same formula. When �pD,nq “ fepnq is observed we rede-
fine all the markers �pyq, ✓pyq, �

d

pxq which are undefined,
with value u

y

or u
x

as appropriate.
(c) If only �pnqÒ then we redefine �pnq “ � pmaxt✓

d

pxq, ⇠
d,c

pxquq
and stay at the maintenance phase.

Attack with y: ✓pyqÒ, �pyqÒ, �pnqÒ.
We enumerate y intoQ. We define �pnq “ � pmaxt✓

d

pxq, ⇠
d,c

pxquq.
We wait for changes. If �pnqÒ we redefine it according to the
formula above. As discussed, if �

d

pxqÒ we leave it undefined.

Attack with x: ✓

d

pxqÒ, �
d

pxqÒ, �pnqÒ.
We enumerate x into Q

d

. We define �pnq “ � p⇠
d,c

pxqq. If �pnqÒ
we redefine it according to the same formula.
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B0

B1

A

x y⇠
d,c

pxq

✓
d

pxq

✓pyq

�
d

pxq �pyq

Figure 5. Two gates: a typical configuration.

3.3. Verification. First, we observe that functionals discussed indeed diverge
as promised at the beginning of each cycle. For example, we indeed have �pnqÒ at
the beginning of an attack because we always define �pnq • �pu

y

q (which in turn is
at least �pu

x

q), and �pyq “ u
y

and �
d

pxq “ u
x

whenever they are defined. Similarly,
when we return to a set-up and x is not cancelled, it is because y is cancelled; y
became unrealised, which means that ✓

d

pxqÒ.
We also observe that the instructions described cover all possible occurences.

Consider for example the maintenance cycle. We stipulated that if x or y can be
either cancelled or attacked with then we do so (with x having precedence over y
in that respect). Suppose that �pnqÒ during maintenance. If x or y are unrealised,
then they are cancelled. Otherwise, at most one of �pyqÒ or ✓pyqÒ, in which case a
y-layer is peeled; and possibly �

d

pxqÒ but as y is realised, ✓
d

pxqÓ, so an x-layer is
peeled.

Also observe that during an attack with x, if x becomes unrealised then it is
cancelled, as �pnq • �p⇠

d,c

pxqq. Similarly, during an attack with y, if either x or y
becomes unrealised then it is cancelled. And similarly, if �pnqÒ during maintenance
then we never return to the realisation cycle without passing through set-up again.

We note that if we attack with x then we may indeed cancel y, as ✓
d

pxqÒ implies
that y is unrealised, and �

d

pxqÒ implies that �pnqÒ.
Finally note that ✓

d

pxq •  
d

pyq so if y is realised then  
d

pB1, yqÓ“ 0; if x is
realised then  

c

pB0, xqÓ“ 0.

We extend Lemma 2.1.

Lemma 3.1. Let e be a construction, d an agent for e, and n an anchor for d.
There is a follower x for n which is never cancelled. There is a last follower y for n
which is ever appointed; it is only cancelled if we attack with x.

Proof. As in the proof of Lemma 2.1, let s0 be a stage after which fepnq does
not change. Suppose that at some stage s1 ° s0 we are in the set-up cycle. the
follower x at that time will never be cancelled. The follower y may be cancelled,
but only if one of the sets A, B0 or B1 change below xp2nq. Eventually, the value
of xp2nq stabilizes. ⇤

Lemma 3.2. �pDq is total.
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Proof. Let n † ! be an anchor for some agent d (for a construction e). Again
we note that �pnq is never left undefined at the end of a stage, so we just need to
show that the value of �pnq is bounded (over all stages).

By Lemma 3.1, let x and y be the last followers appointed for n. There are
several possibilities for where we can end up.

(1) It is possible to get stuck for ever waiting for realisation for either x or y.
In this case, we know that �pnq can never get undefined after starting the
realisation run, as that would cancel x or y.

(2) An attack with x or with y is performed. The attack with y can be exited
only if we start an attack with x (otherwise, y is cancelled). The attack
with x cannot be exited. The value ✓

d

pxq is constant during an attack
with y; the value ⇠

d,c

pxq is constant during an attack with y or with x.
And ⇤pDq is total.

(3) It is possible to be left in the set-up cycle, never getting a correct fe guess.
The value of oepnq and so of ypkq eventually stabilizes; we again then use
the totality of ⇤pDq.

(4) After we enter the maintenance phase, Dæ
�pnq never changes. In this case

obviously �pnq is constant after we enter maintenance.
(5) We enter maintenance with x, and at some stage s1 after that we see a

Dæ
�pnq-change. After that stage, x and y are always realised. ⇤

As above we fix e such that �pDq “ fe.

Lemma 3.3. Q is computable from both A and B0.

Proof. The proof is pretty much identical to the proof of Lemma 2.3: if y a
permanent follower for some anchor n for some agent for e, then u

y

is eventually
defined; if we never attack with y then we only leave �pyq or ✓pyq undefined when
waiting for agreement between �pD,nq and fepnq (after a layer is peeled). ⇤

If Q ¶T B1 then we are done. Otherwise fix some d such that  
d

pB1q “ Q.

Lemma 3.4. Q
d

is computable from both A and B1.

Proof. The proof is slightly more elaborate; let x be a follower for an anchor n
for an agent pd, cq, and suppose that x is neither cancelled nor attacked with. We
consider stages during which �

d

pxqÒ or ✓
d

pxqÒ.
We possibly have �

d

pxq Ò while waiting for agreement between �pD,nq
and fepnq. As for y, during a realisation cycle, if �

d

pxqÒ then �pnqÒ and then we
cancel x or y; eventually this stops happening. We may also have �

d

pxqÒ during
an attack with some y. But such an attack must end, as  

d

pB1q “ Q. So �
d

pxq is
defined at all but finitely many stages, and its value is constant u

x

.
Usually, when ✓

d

pxqÒ we can cancel y. Otherwise, we can have ✓
d

pxq while we
are waiting for some y to be realised (here it is important that if both y and x
are unrealised, we first realise y, then x); but  

d

pB1q “ Q implies that every y
is eventually realised or cancelled. There will be a last y appointed, and never
cancelled (as we assumed that we do not attack with x); and the value  

d

pxq will
eventually stabilise. This implies that the values of ✓

d

pxq are bounded. ⇤
If Q

d

¶T B0 then we are done. Otherwise fix some c such that  
c

pB0q “ Q
d

.
We will show that with ⌅

d,c

, B0 correctly computes B1. As in the simpler construc-
tion, we need to show that if x is a follower for some anchor for the agent pd, cq,
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and x is never cancelled, then eventually we define a computation ⌅
d,c

pB0, xq which
always converges, and that B1 æ

x

is constant from the stage at which this compu-
tation is defined. Fix such x. The argument of the simpler construction shows
that ⇠

d,c

pxq is bounded and defined at infinitely many stages. We only need to
notice that if y is the last follower appointed for x’s anchor, then every realisation
cycle that we enter after appointing y must be exited, as both  

d

pB1q “ Q and
 

c

pB0q “ Q
d

.
So it all comes down to correctness, which as above is the heart of the argument.

Let s˚ be the stage at which the permanent computation ⌅
d,c

pB0, xq is defined. For
k § 2n let v

k

“ xpkq as calculated at stage s˚. As x is not cancelled, �pnqÓ at all
stages from the end of the set-up of x and stage s˚; it follows that u

x

“ v2n.
The key observation is that the peeling of the x-layers has to alternate

between A and B1. For k § n let s
k

be the least stage s • s˚ such that
B1,s`1 æ

v2k‰ B1,s æ
v2k ; otherwise let s

k

“ 8. By induction on s P rs˚, s
k

s
we see that v2k´1 “ xp2k´1q at stage s and that A

s

æ
v2k´1“ A

s

˚ æ
v2k´1 ;

but A
s

k

æ
v2k`1‰ A

s

˚ æ
v2k`1 . Let t

k

be the least stage t • s˚ such that
A

t`1 æ
v2k´1‰ A

s

˚ æ
v2k´1 ; the fact that we never attack with x implies that

s
n

† t
n

† s
n´1 † t

n´1 † ¨ ¨ ¨ .
Lemma 3.5. For all k † n such that s

k

† 8,

(2) o
s

k

pnq † !k

(where o “ oe).

The inequality will imply that s0 must equal 8, and so B1,s˚ æ
x

“ B1 æ
x

as
required.

Proof. Since we start with o0pnq “ !n and we redefine�pD,nq when setting x
up, we have o

s

n

pnq † !n; so Eq. (2) holds for k “ n.

We prove Eq. (2) by induction on k. Fix k § n such that s
k´1 † 8, and suppose

that o
s

k

† !k. Since v2k § u
x

§ ✓
d

pxq, y is unrealised at stage s
k

and �pnqÒ at that
stage; so we cancel y at stage s

k

. At stage t
k

we must have ✓
d

pxqÓ, since otherwise
we attack with x at that stage. So there is some last stage r

k

P ps
k

, t
k

q at which
we realise a follower y “ y

k

. The familiar argument shows that at stage r
k

we have
u
y

“ ypmq where o
r

k

pnq “ !pk ´ 1q ` m1 for some m1 † m (we may assume that
o
r

k

pnq • !pk´1q, otherwise we are done for this inductive step). The follower y
k

is
not cancelled before stage t

k

. An important point is that we do not attack with y
k

before or at stage t
k

. To see this, observe that every attack with y
k

must eventually
fail, and y

k

is then cancelled; so this failure does not happen before stage t
k

. But
then, as �

d

pxqÒ at stage t
k

, it remains undefined until the attack with y fails —
and then we would attack with x.

At stage t
k

we do not start an attack with x so at that stage ✓
d

pxqÓ (and recall
that ✓

d

pxq • u
y

). We do not start an attack with y at that stage, whereas �pyqÒ
at t

k

; so ✓pyqÓ at t
k

. So yp1q ° u
y

at stage t
k

. The only way this could happen is
that between stages r

k

and t
k

, all the layers between y and u
y

were peeled. Each
time this happens we extract another �pD,nq change; we have m such changes,
which drives the ordinal o

t

k

pnq below !pk ´ 1q as required. ⇤



150 CHAPTER VII. EMBEDDINGS OF THE 1-3-1 LATTICE

4. The general construction

No new ideas are required for the general construction. The general idea that
if we guess that �pDq is !m-c.a. then we set up m many followers. We go straight
to the details. We are presented with a c.e. set D of totally † !!-c.a. degree, three
c.e. sets A,B0 and B1, and reductions ⇤pDq “ pA,B0, B1q, �pB0, B1q “ A, and
�

i

pA,B1´i

q “ B
i

for i “ 0, 1. For x † ! we define xp1q and xpnq as in the previous
section.

For m † ! define h
m

pnq “ !m ¨ n. Every function computable from D is h
m

-
c.a. for some m. Fix (uniformly in m) an e↵ective list xfe,m, oe,my of all h

m

-c.a.
functions, with the usual tidy approximations. For simplicity of notation we will
only use odd m’s. We enumerate a functional �; a construction pe,mq for e † !
and odd m will guess that �pDq “ fe,m. Agents for the pe,mqth-construction are
indexed by m`1-tuples d̄ “ pd0, d1, . . . , dmq of natural numbers. For each sequence
c̄ of length at most m the construction enumerates a c.e. set Q

c̄

“ Qe,m

c̄

and func-
tionals �

c̄

“ �e,m
c̄

and ⇥
c̄

“ ⇥e,m

c̄

; we plan for �
c̄

pAq “ Q
c̄

and for ⇥
c̄

pBrc̄sq “ Q
c̄

,
where we let rc̄s “ |c̄| mod 2. For simplicity we will also write rks for k mod 2.
Each agent d̄ defines a functional ⌅

d̄

“ ⌅e,m

d̄

, hoping that ⌅
d̄

pB0q “ B1 (if m were
even we would need to exchange B0 and B1, all the rest would be identical). We
write ✓, �, Q for ✓xy, �xy, Qxy.

An agent d̄ will appoint anchors n, inputs for �pDq. Each anchor will try
to appoint a sequence of followers x

m

† x
m´1 † ¨ ¨ ¨ † x1 † x0, with x

k

tar-
geted for Q

d̄æ
k

. When a follower x
k

is cancelled or attacked with, we cancel
all the larger followers x

k

1 for k1 † k. The main idea will be to ensure that if
oe,mpnq “ !mp

m

` !m´1p
m´1 ` ¨ ¨ ¨ ` !p1 ` p0 then x

k´1 will bound at least p
k

many layers above x
k

.
To streamline the description of the construction we define, for k “ 0, . . . ,m´1,

�px
k

q “ ✓
d̄æ

k`1
px

k`1q; and define �px
m

q “ ⇠
d̄

px
m

q. See Figure 6. We will say that
the follower x

k

is realised if �px
k

qÓ.

B0

B1

A

x0x1x2x3

�
d̄æ3

px3q �
d̄æ2

px2q �
d̄æ1

px1q �px0q

✓px0q

✓
d̄æ1

px1q
= �px0q

✓
d̄æ2

px2q
= �px1q

✓
d̄æ3

px3q
= �px2q

⇠
d̄

px3q
= �px3q

Figure 6. Four gates: a typical configuration.

As before, we say that we may attack with a follower x
k

if it is realised, and
both �

d̄æ
k

px
k

qÓ and ✓
d̄æ

k

Ó. We say that a follower x
k

is confirmed if the set-up
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cycle at which it was appointed has already finished. We may cancel a confirmed
follower x

k

if it is unrealised and �pnqÒ. Throughout the construction, if we may
cancel a follower or attack with it then we do so, always choosing the smallest
follower (the one with largest index) with which to attack or cancel. If we cancel a
follower and do not start an attack, then we return to the set-up cycle.

We now describe the procedures undertaken by an anchor n.

Set-up.

1. Say that x
m

, x
m´1, . . . , xk`1 are defined and confirmed. We

appoint new followers x
k

† x
k´1 † x

k´2 † ¨ ¨ ¨ † x0 so that

x
k

° u
k`1, and for all j † k, x

j

° x
p2p

j`1q
j`1 , where currently

oe,mpnq “ !mp
m

`¨ ¨ ¨`!p1`p0. We then define �pnq “ �pxpp0q
0 q,

and wait for �pD,nq “ fe,mpnq. While waiting, we update the
values of x

j

for j † k and of �pnq to keep the desired inequalities.
We do so in a conservative way: only cancel x

j

if there is a change

in A, B0 or B1 below x
p2p

j`1q
j`1 .

2. Once we see that �pD,nq “ fe,mpnq we define for all

j “ 1, . . . , k, u
j

“ x
p2p

j

q
j

, and define u0 “ x
pp0q
0 . For each j such

that �
d̄æ

j

px
j

qÒ we define this marker to equal u
j

. We also define
✓px0q “ u

j

.
We move to realisation.

Realisation.

For each k § m, if x
k

is unrealised, wait for  
d

k

pB1´rks, xk

qÓ“ 0.
Once this is observed we define �px

k

q “ maxtu
k

, 
d

k

px
k

qu. That

is, we define ✓
d̄æ

k`1
px

k`1q or ⇠
d̄

px
m

q depending if k “ m or k † m.

Note that the search is done in parallel, and we define �px
k

q
immediately when the realising computation is discovered. Once
all followers are realised we move to maintenance.

Maintenance.

We wait for a change in D below �pnq or for some follower to
become unrealised. When this occurs:
(a) If a follower is unrealised, move to realisation. As above this

assumes that �pnqÓ, otherwise we would cancel the follower.

(b) If either �px0qÒ or ✓px0qÒ, but not both, redefine
�pnq “ � pmaxt�px

k

q : k § muq .
Wait for �pD,nq “ fe,mpnq. While waiting, if �pnqÒ (but
no attack or cancellation are possible) then we just redefine
it by the same formula. When �pD,nq “ fe,mpnq is ob-
served we redefine all the markers �px

k

q and ✓px0q which
are undefined (with value u

k

).
(c) If only �pnqÒ then we redefine �pnq “ � pmaxt�px

k

q : k § muq
and stay at the maintenance phase.

Attack with x
k

.
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We enumerate x
k

intoQ
d̄æ

k

. We define �pnq “ � pmaxt�px
j

q : j • kuq.
We wait for changes. If �pnqÒ we redefine it according to the
formula above. If �

d

px
j

qÒ for some j † k we leave it undefined.

4.1. Verification. The verification is identical to the two-gate case and so we
omit it.



CHAPTER VIII

Prompt permissions

In this chapter we consider prompt versions of the permitting notions we in-
vestigated in this monograph. These can be used to obtain results more akin to
what is obtained in constructions. For example, in the usual embedding of the 1-3-1
lattice one gets the bottom element to be 0; this does not appear to be consistent
with permitting at the level of non-total † !!-c.a.-ness, but can be done if the
permitting is obtained promptly.

1. Prompt classes

Recall that a c.e. set A permits promptly if is has a enumeration xA
s

y such
that for some computable function p • id, for any e, if W

e

is infinite then there is
some n which enters W

e

at some stage s such that A
s

æ
n

‰ A
ppsq æ

n

. This notion
is invariant under Turing equivalence; a degree permits promptly if and only if it
contains a promptly simple set; see [2]. Prompt permitting is the prompt version
of simple permitting; a set which permits promptly is in some sense promptly non-
computable.

For considering the prompt version of non-total ↵-c.a. permitting, fix an ef-
fective listing xfe,↵y of all ↵-c.a. functions, each equipped (uniformly) with tidy
p↵ ` 1q-computable approximations xfe,↵

s

, oe,↵
s

y as in Proposition II.1.7. We will
shortly use more properties of this list. However to motivate these properties we
first give our definitions.

Definition 1.1. Call a function g self-modulating if there is a computable
approximation xg

s

y of g such that:

‚ for all s and n, g
s

pnq § s;
‚ for all s and n, if g

s

pnq ‰ g
s´1pnq then g

s

pnq “ s and in fact for all m • s,
g
s

pmq “ s.

It follows that for all s, g
s

§ g
s`1 (pointwise) and that if g

s

pnq ‰ g
s´1pnq

then g
s

pmq ‰ g
s´1pmq for all m • n. The idea is that g is the modulus of the

approximation xg
s

y. Above we used the fact that if d is c.e. but not totally ↵-
c.a. then there is a self-modulating function g P d which is not ↵-c.a. Note that
every self-modulating function has a c.e. degree. Below we assume that each self-
modulating function g “comes with” the approximation xg

s

y of which it is the
modulus.

Definition 1.2. A speed-up function is a non-decreasing, computable func-
tion p such that ppnq • n for all n.

Definition 1.3. Let g be a self-modulating function and let p be a speed-up
function. Let n † !. Let xf

s

, o
s

y be a tidy p↵ ` 1q-coputable approximation. We
say that g promptly p-escapes xf

s

, o
s

y on input n if for all s, if o
s

pnq † ↵ and

153
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f
s

pnq “ g
s

pnq then g
ppsqpnq ‰ g

s

pnq. We say that g promptly p-escapes xf
s

, o
s

y if
it promptly p-escapes it on some input.

A self-modulating function g is promptly not ↵-c.a. if there is some speed-up
function p such that g promptly p-escapes each xfe,↵

s

, oe,↵
s

y.
A c.e. degree d is promptly not totally ↵-c.a. if there is a self-modulating func-

tion g §T d which is promptly not ↵-c.a.

Note that if an approximation xfe,↵

s

, oe,↵
s

y is not eventually ↵-computable then
vacuously, for almost all n, g promptly p-escapes this approximation on n; the power
of promptness is when it is applied to “total” approximations (approximations
which are eventually ↵-computable).

1.1. Slow-down lemma. Recall how prompt permitting is used in construc-
tions. Suppose for example that we want to show that a promptly permitting de-
gree d is not half of a minimal pair. LetD P d and let B be c.e. and non-computable.
We build a c.e. set Q computable from both D and B and plan to make Q non-
computable. To diagonalise against the eth computable set, a Friedberg-Muchnik
requirement appoints a follower x and waits for it to be realised ('

e

pxqÓ“ 0). When
it is realised we wait for simple permitting from B; B

s`1 æ
x

‰ B
s

æ
x

. When we see
this we ask for prompt permission from D, namely D

ppsq æ
x

‰ D
s

æ
x

. If both are
granted then we can enumerate x into Q and meet the requirement. Why will
permission be granted? Of course we potentially appoint infinitely many follow-
ers. Since B is non-computable, infinitely many of them will be permitted by B.
Let U

e

“ W
gpeq be the c.e. set of followers for this requirement which will be permit-

ted by B. Applying prompt permission to this set U
e

guarantees prompt permission
from D for one of the followers in U

e

.
This sketch of an argument involved a little cheating. While indeed we know,

by the recursion theorem, an index gpeq for U
e

, the e↵ective enumeration of W
gpeq

may be di↵erent from our enumeration of U
e

. We put x into U
e

at the stage at
which B permits x. It is conceivable that x is enumerated into W

gpeq at an earlier
stage; so the prompt permission for x was given in the past, and is useless for
us now. We need to find gpeq such that not only W

gpeq “ U
e

but every number
enters W

gpeq not before we put it into U
e

.
This “slow-down lemma” can be obtained by a more sophisticated use of the

recursion theorem (see [57, Thm.XII.1.5]). Actually this is not quite necessary.
Interpret the eth partial computable function '

e

as a function of two variables. We
can transform this function into an e↵ective enumeration of a c.e. set (call it W

e

)
such that if '

e

is an e↵ective enumeration xV
e,s

y of a c.e. set V
e

(that is, '
e

is
total and for all s, '

e

p´, sq is the characteristic function of V
e,s

) then W
e

“ V
e

and further, for all s, W
e,s

Ñ V
e,s

. Namely, we put x into W
e

at stage s if at that
stage we have seen su�ciently much convergence from '

e

to see that x P V
e

. The
slow-down lemma can now be obtained by using the recursion theorem to obtain
an index gpeq such that '

gpeq is our enumeration of U
e

; we then apply prompt
permitting to W

gpeq.
In our usage of prompt permitting of the form given by Definition 1.3 we need

a similar form of a slow-down lemma. Namely, to force changes we will define,
for some requirement, an ↵-computable approximation xh

s

y attempting to trail the
function g given by the definition, and ask for immediate changes in g. To do this
we will need to find one of the functions fe,↵ on the list such that for all n, for
all s there is some t • s such that fe,↵

t

pnq “ h
s

pnq. To obtain this we follow the
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construction proving Proposition II.1.7. Using the notation of the proof of that
proposition, we think of '

e

as giving the sequence xh
s

,m
s

y which we transform
into the partial approximation xfe,↵

s

, oe,↵
s

y, making sure that as long as xh
s

,m
s

y
appears to be a tidy p↵ ` 1q-computable approximation, we copy every value that
shows up. It is this sequence of approximations that we use in Definition 1.3. This
sequence will be acceptable in a strong way.

Call a pair xh
s

,m
s

y of partial computable functions a partial tidy p↵ ` 1q-
computable approximation if for all x and s, h

s

pxqÓô m
s

pxqÓ and if so, for all y § x
and r § s, h

r

pyqÓ and the array xh
r

pyq,m
r

pyqy
r§s,y§x

satisfies the conditions for
being an initial segment of such an approximation: that is, m0pyq “ ↵, m

r

pyq § ↵,
h0pyq “ 0, m

rpyq § m
r´1pyq, and if h

r

pyq ‰ h
r´1pyq then m

r

pyq † m
r´1pyq. The

sequence xfe,↵

s

, oe,↵
s

y is acceptable in the following sense:

‚ if xhe

s

,me

s

y
e,s†! is a sequence of (uniformly) partial tidy p↵`1q-computable

approximations then there is a computable function k (obtained uni-
formly from an index for the sequence) such that for all e, x and s ° 0,

if he

s

pxq Ó then there is some t • s such that o
kpeq,↵
t

pxq “ me

s

pxq and

f
kpeq,↵
t

pxq “ he

s

pxq.
In particular, for each e, if xhe

s

,me

s

y is a (total) ↵-computable approximation, thenA
f
kpeq,↵
s

, o
kpeq,↵
s

E
is eventually ↵-computable and further, for all n and s there is

some t • s such that he

s

pnq “ f
kpeq,↵
t

pnq.
Finally, in some arguments it would be useful to assume that like the enumer-

ation of the sets W
e

, at each stage s we have only said finitely much about all
functions. Formally,

‚ For all s, e and n, fe,↵

s

pnq § s, and oe,↵
s

pnq † ↵ implies e, n † s.

1.2. Counting down ↵. The functions fe,↵

s

are not really important for
promptness; it is the ways oe,↵

s

of counting down ↵ that we need to escape.

Definition 1.4. A counting down ↵ is a sequence of uniformly computable
functions xo

s

y from ! Ñ ↵ ` 1 such that for all n, o0pnq “ ↵; o
s

pnq “ ↵ if s § n;
o
s

pnq § o
s´1pnq for all n and s; and if o

s

pnq † ↵ then o
s

pn ´ 1q † ↵ as well.

In other words, it appears as the ordinal part in a tidy p↵ ` 1q-computable
approximation xf

s

, o
s

y.
Definition 1.5. Let g be a self-modulating function and let p be a speed-up

function; let xo
s

y be a counting down ↵. We say that g promptly p-escapes xo
s

y on
an input n if for all s ° 0, if o

s

pnq ‰ o
s´1pnq then g

ppsqpnq ‰ g
s

pnq. We say that g
promptly p-escapes xo

s

y if it does so on some input.

Lemma 1.6. Let g be a self-modulating function. Then g is promptly not ↵-c.a.
if and only there is a speed-up function q such that g promptly q-escapes each xoe,↵

s

y.
One direction is short.

Lemma 1.7. Let xf
s

, o
s

y be a tidy p↵` 1q-computable approximation such that
f
s

pnq § s for all s and n. Suppose that a self-modulating function g promptly
p-escapes xo

s

y on input n. Then it also promtply p-escapes xf
s

, o
s

y on input n.

Proof. Suppose that o
s

pnq † ↵ and that f
s

pnq “ g
s

pnq. Let t § s be the
least such that o

t

pnq “ o
s

pnq. So f
s

pnq “ f
t

pnq. Since f
t

pnq § t we see that
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g
s

pnq § t; since g is self-modulating, this implies that g
t

pnq “ g
s

pnq. By assump-
tion, o

t

pnq ‰ o
t´1pnq, and so g

pptqpnq ‰ g
t

pnq “ g
s

pnq. But pptq § ppsq and g is
non-decreasing so g

ppsqpnq • g
pptqpnq ° g

s

pnq as required. ⇤

Proof of Lemma 1.6. One direction is provided by Lemma 1.7 and one of
our conditions on the listing of approximations xfe,↵

s

, oe,↵
s

y. In the other direction
suppose that p witnesses that g is promptly not ↵-c.a. For brevity we write fe

s

and oe
s

for fe,↵

s

and oe,↵
s

. For each e we define an approximation xhe

s

y which chases g as
much as oe allows it. Namely, we define

he

s

pnq “
$
’&

’%

0, if s “ 0;

he

s´1pnq, if s ° 0 and oe
s

pnq “ oe
s´1pnq; and

g
s

pnq, otherwise.

The approximation xhe

s

, oe
s

y is p↵ ` 1q-computable and tidy. By the ↵-slow-down
lemma find some computable function k such that for all e, n and s there is some

t “ tpe, n, sq • s such that okpeq
t

pnq “ oe
s

pnq and f
kpeq
t

pnq “ he

s

pnq. For s † ! define
t˚psq “ max ttpe, n, sq : e, n § su, and let qpsq “ ppt˚psqq.

Fix e. There is some n such that g promptly p-escapes
A
f
kpeq
s

, o
kpeq
s

E
on input n.

We claim that g promptly q-escapes xoe
s

y on input n. For let s ° 0 be a stage such

that oe
s

pnq ‰ oe
s´1pnq. Then he

s

pnq “ g
s

pnq; so fkpeq
t

pnq “ g
s

pnq for t “ tpe, n, sq. We
need to show that g

qpsqpnq ‰ g
s

pnq. Note that oe
s

pnq † ↵ implies that e, n † s, so

t § t˚psq. If g
t

pnq ‰ g
s

pnq then we are done, as qpsq • t. Otherwise fkpeq
t

pnq “ g
t

pnq
(and o

kpeq
t

pnq “ oe
s

pnq † ↵) so by our assumption, g
pptqpnq ‰ g

t

pnq; but qpsq • pptq.
⇤

Therefore for the purposes of promptness we from now on ignore the function
part f

s

. We state the slow-down lemma in this context. As expected, define a
partial counting down ↵ to be a partial computable sequence xo

s

y such that for
all s and x: (a) if o

s

pxqÓ then o
s

pxq § ↵ and o
t

pyqÓ for all t § s and y § x; (b)
if o0pxqÓ then o0pxq “ ↵; (c) if s ° 0 and o

s

pxqÓ then o
s

pxq § o
s´1pxq; if o

s

pxqÓ,
y † x and o

s

pyq “ ↵ then o
s

pxq “ ↵.

Lemma 1.8. Suppose that xme

s

y is a uniform sequence of partial countings
down ↵. There is a computable function k such that for all e, s and x, if me

s

pxqÓ
then there is some t • s such that o

kpeq,↵
t

pxq “ me

s

pxq. The function k can be
obtained e↵ectively.

We can conclude that promptness does not really depend on the choice of list
xoe,↵

s

y (as long as it is acceptable).

Corollary 1.9. Suppose that xme

s

y is a uniformly computable sequence of
(total) countings down ↵ such that for all s the set tpe, xq : me

s

pxq † ↵u is bounded,
computably in s. Suppose that a function g is promptly not ↵-c.a. Then there is a
speed-up function q such that g promptly q-escapes xme

s

y for each e.

Proof. As in the proof of Lemma 1.6 let t˚psq be a bound on stages

t “ tpe, x, sq • s such that o
kpeq
t

pxq “ me

s

pxq for all e, x such that me

s

pxq † ↵
(where k is given by the slow-down Lemma 1.8; as above oe “ oe,↵). Suppose
that p witnesses that g is promptly not ↵-c.a.; let qpsq “ ppt˚psqq. To see that this
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works, suppose that g promptly p-escapes
A
o
kpeq
s

E
on an input x. Let s ° 0 and

suppose that me

s

pxq ‰ me

s´1pxq. Then me

s

pxq † ↵, so t˚psq • tpe, x, sq. Let u be the

least such that okpeq
u

pxq “ me

s

pxq; so u § tpe, x, sq. But also u ° tpe, x, s´1q • s´1
so u • s. By assumption, g

ppuqpxq ‰ g
u

pxq, and qpsq • ppuq. ⇤
We can escape infinitely many inputs.

Lemma 1.10. Suppose that g is promptly not ↵-c.a. Then there is some speed-
up function q such that for all e there are infinitely many x such that g promptly
q-escapes xoe,↵

s

y on input x.

Proof. Note that the first attempt that comes to mind to prove this does
not work. Non-uniformly we could guess an initial segment of g and change an
approximation to make sure that permission is not given on the first n locations.
But there are infinitely many possible initial segments of a fixed finite length, and
we cannot define our speed-up taking into account all of them (see the proof of [57,
Thm.XII.1.7(iii)]). What we do is shift by n.

Namely, for all e and n define me,n

s

pxq “ oe
s

px ` nq (for brevity let oe
s

“ oe,↵
s

).
Note that me,n

s

pxq † ↵ implies e, x, n † s. Let q be given by Corollary 1.9. Suppose
that g promptly q-escapes xme,n

s

y on input x; we conclude that g promptly q-escapes
xoe

s

y on input x ` n, the reason being that if g
qpsqpxq ‰ g

s

pxq then g
qpsqpyq ‰ g

s

pyq
for all y ° x.

⇤
The proof of this lemma shows that we can e↵ectively, given a uniform list xme

s

y
of tidy p↵ ` 1q-computable approximation and a speed up-function p such that g
promptly p-escapes each xme

s

y, find a speed-up function q such that g promtply
q-escapes each xme,sy on infinitely manu inputs.

1.3. Powers of !. Let ↵ § ✏0. For brevity let PNp↵q denote the class of
degrees which are promptly not totally ↵-c.a.

Lemma 1.11. If � † ↵ then every function which is promptly not ↵-c.a. is also
promptly not �-c.a.

Hence PNp↵q Ñ PNp�q.
Proof. Define me

t

pxq “ oe,�
t

pxq if this value is smaller than �; otherwise let
me

t

pxq “ ↵. Now apply Corollary 1.9. ⇤
Proposition 1.12. Suppose that g is promptly not ↵-c.a. Then for all m † !,

g is promptly not ↵ ¨ m-c.a.

So PNp�q “ PNp↵q for all � P r↵,↵ ¨!q. As for the non-prompt case, this means
that each prompt class is PNp↵q for an ordinal ↵ which is a power of !. Below we
will see that this is sharp.

Proof. We need to uniformise Lemma III.2.2. We define a list
@
me,k

s

D
e†!,k†m

of countings down ↵. We claim that by the recursion theorem we have a speed-up
function q such that g promptly q-escapes each

@
me,k

s

D
(and further we require that

this happens on infinitely many inputs).
Actually this relies on a property of the construction. By stage s we will have

already defined me,k

r

for all r † s (for all e and k † m). The finiteness condition of
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Corollary 1.9 will be obtained by ensuring that me,k

r

pxq “ ↵ unless e, x † r. During
stage s we define the functions me,k

s

, but in the process of doing so we only consult q
on values strictly smaller than s. Then the fact that me,k

s

is defined for all s implies
that qpsq is defined (as in the proof of Corollary 1.9), and the construction can
proceed to the next stage.

The counting me,k

s

guesses that k “ k˚ (in the notation of Lemma III.2.2).
However it is not su�cient for g to escape xoe,↵m

s

y on some input only from the
stage at which oe,↵m

s

pxq † ↵pk ` 1q; we need it to escape earlier as well. So it
looks for inputs which have already been escaped up to that point (using q) and
only copies them. Inductively, Lemma 1.10 says there will be infinitely many such
inputs.

Now to the details. To define me,k

s

pxq we search for some y • x such that:

‚ oe,↵m
s

pyq P r↵k,↵pk ` 1qq but oe,↵m
s´1 pyq • ↵pk ` 1q (note that this implies

y † s); and
‚ for all t † s at which oe,↵m

t

pyq ‰ oe,↵m
t´1 pyq we have g

qptqpyq ‰ g
t

pyq.
If such y is found then we declare y “ ye,kpxq and s “ se,kpxq. If such y is never
found we let se,kpxq “ !. Now we can define:

me,k

t

pxq “
$
’&

’%

↵, if t † se,kpxq;
�, if t • se,kpxq and oe,↵m

t

pye,kpxqq “ ↵k ` �; and

0, if t • se,kpxq and oe,↵m
t

pye,kpxqq † ↵k.

Fix e. For k § m we let I
k

“ Ie
k

be the set of inputs x such that for all s such
that oe,↵m

s

pxq ‰ oe,↵m
s´1 pxq and oe,↵m

s

pxq • ↵k, we have g
qpsqpxq ‰ g

s

pxq. Vacuously
we have I

m

“ !; and our aim is to show that I0 is nonempty. In fact we show by
decreasing induction on k “ m,m ´ 1, . . . , 0 that each I

k

is infinite.
Let k † m and suppose that we know that I

k`1 is infinite. There are two cases.
It is possible that for almost all x P I

k`1, for all s, oe,↵m
s

pxq • ↵pk`1q. Each such x
is in I

k

(in fact in I0). Otherwise, for all x † !, se,kpxq (and ye,kpxq) are defined.
There are infinitely many x on which g promptly q-escapes

@
me,k

s

D
. Let x be such

an input and let y “ ye,kpxq, s˚ “ se,kpxq. So y P I
k`1 and we claim that in fact

y P I
k

: if s • s˚, oe,↵m
s

pyq • ↵k and oe,↵m
s

pyq ‰ oe,↵m
s´1 pyq then me,k

s

pxq ‰ me,k

s´1pxq
and so g

qpsqpxq ‰ g
s

pxq; since y • x, g
qpsqpyq ‰ g

s

pyq. ⇤
1.4. Relation to prompt simplicity. A counting xo

s

y down the ordinal 1
is essentally a computable function. Namely let hpnq be the unique stage s such
that o

s

pnq “ 0 but o
s´1pnq “ 1. The domain of h is an initial segment of !.

As mentioned above, the property PNp1q can be thought of as being “promptly
non-computable”: it forces that gpnq ‰ hpnq, and this is observed promptly.

Lemma 1.13. A c.e. degree is promptly simple if and only if it is in PNp1q.
Proof. Suppose that A permits promptly; let xA

s

y be an enumeration of A
which witnesses this fact. Let g be the modulus of the enumeration of A: g

s

pnq “ t
if t § s is least such that A

s

æ
n

“ A
t

æ
n

.
For each e and n let hepnq “ s if oe,1

s

pnq “ 0 but oe,1
s´1pnq “ 0. If hepnq “ s then

enumerate n into a c.e. set Ue at stage s. By the promptly simple slow-down lemma
there is a non-decreasing computable function q such that for all e, if Ue is infinite
then there is some n which enters Ue at some stage s such that A

s

æ
n

‰ A
qpsq æ

n

, so
g promptly q-escapes

@
oe,1
s

D
on n. We only care about the case Ue “ !.
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In the other direction suppose that degTpAq P PNp1q, witnessed by some g
(which recall comes with an approximation xg

s

y). Let � be a functional such
that �pAq “ g. Let xA

s

y be some enumeration of A such that for all s,
dom�

s

pA
s

q • s. Define a subsequence 0 “ sp0q † sp1q † . . . such that for
all k, �

spkqpA
spkqqæ

k

“ g
spkq æ

k

.
For each x † ! search for an index k “ kepxq ° x, e such that some num-

ber n enters W
e

at stage k and the use �
spkqpxq is smaller than n. We then define

hepxq “ spkq. The domain of he is an initial segment of !. We translate this to a
counting down the ordinal 1: me

t

pxq “ 1 i↵ t † hepxq (or hepxqÒ). Note that the
counting xme

t

y is total even if he is partial. Further, me

t

pxq “ 0 implies e, x † t. So
by Corollary 1.9 find a computable function q such that for all e, if he is total then
there is some x such that g

qphepxqqpxq ‰ g
h

epxqpxq.
Fix e. If W

e

is infinite then he is total. Suppose that g escapes he

on x (as described above). If hepxq “ spkq then find the k1 ° k such that
qpspkqq P pspk1 ´ 1q, spk1qs. Define ppkq “ k1. Let n be a number which enters W

e

at stage k such that �
spkqpxq † n. The fact that gpxq changes between stages

spkq and ppspkqq means that A
spk1q æ

�

spkq

pxq‰ A
spkq æ

�

spkq

pxq. We conclude that the

enumeration
@
A

spkq
D
and the function p witness that A permits promptly. ⇤

1.5. A prompt hierarchy theorem. Let Np↵q denote the class of c.e. de-
grees which are not totally ↵-c.a. The class Np1q consists of the nonzero degrees.

PNp!0q Np!0q

PNp!1q Np!1q

PNp!2q Np!2q

PNp!3q Np!3q

...
...

Figure 1. Prompt and regular classes. Arrows indicate containment.

The following proposition implies that no further implications hold between
these classes.
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Proposition 1.14. Suppose that ↵ § � § ✏0 are powers of !. Then there is a
c.e. degree d such that:

‚ d P PNp�q if and only if � † ↵; and
‚ d P Np�q if and only if � † �.

For example, by choosing ↵ “ � we obtain:

Corollary 1.15. Let ↵ § ✏0. There is a degree which is promptly not totally
!↵-c.a. but is totally !↵`1-c.a.

On the other hand by choosing � ° ↵ we see:

Corollary 1.16. Let ↵ § ✏0. There is a degree which is not totally !↵-c.a.,
but not promptly so (i.e. not in PNp!↵q), but is promptly not �-c.a. for all � † !↵.
(In particular if ↵ ° 0 then the degree is promptly simple.)

In this subsection we prove Proposition 1.14.
We define an approximation xg

s

y witnessing that g “ lim
s

g
s

is self-modulating,
and intend to let d “ degTpgq.

For the positive side, for each � † � and e † ! we need to find some p † !
such that:

‚ gppq ‰ fe,�ppq;
‚ and if � † ↵ then in fact g promptly id-escapes xoe,�

s

y on the input p.

Call this requirement P e,� .
For the negative side, we need to meet the usual requirements Ne: if �

e

pgq
is total then it is �-c.a. But now we also have new requirements ensuring that d
is not in PNp↵q. Let

@
�j , j , hj

D
be an e↵ective list of all triples of functionals,

partial computable functions and partial computable approximations. We will build
a family mj

s

of (total) countings down ↵; we will need to enjure, for each j, that
if

@
hjpn, sqD

is a (total) approximation of a self-modulating function �jpgq, and
if  j is total, then �jpgq (equipped with the approximation hj) does not promptly
 j-escape mj

s

on any input (we then appeal to Corollary 1.9). The plan to meet
this requirement is the following. One n at a time we:

(1) Wait for a stage at which we see �jpg, nqÓ, say with value q; until the end
of the module for n we restrain g from changing below the use.

(2) Wait for a stage s at which we see that hjpn, rqÓ“ q for some r § s;
(3) Define mj

s

pnq ‰ mj

s´1pnq;
(4) Wait until we see that  jpsqÓ and hjpn, jpsqqÓ“ q. When this is observed

we end the module for n, lift the restraint, and move to n ` 1.

The main conflict is between the actions that must be done promptly and
those that must wait until they become accessible again. We argued above that
to meet Ne we must use a tree of strategies. However to meet P e,� for � † ↵
we need to change gppq immediately when we see that oe,�

s

ppq changes. The main
observation here is that while action with existing followers must be immediate,
the appointment of followers need not be: it can respect the priority tree. We will
argue that this is su�cient to resolve the conflict between P e,� and Ne.

Another conflict is between M j and P e,� for � • ↵, in particular when M j

is stronger. When � † ↵ we can allow action for P e,� injure the action for M j .
We restart the module above (for the same n). If we started with a large enough
ordinal mepnq then we have room to keep decreasing it. We just need to distribute
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priorities so that for all n, only finitely many P e,� can disturb the module for n.
If � • ↵ then we cannot allow P e,� to injure M j . However, if � • ↵ then we do not
need to act promptly for P e,� . And between ending the module for n and starting
the module for n`1, M j can drop all restraint. On a tree, this is enough to ensure
that P e,� eventually succeeds.

Construction. On the tree of strategies we apportion to each requirement all
nodes of some level of the tree. The outcomes for nodes working for Ne and M j

are 8 † fin; nodes working for P e,� have a single outcome.
We start with g0 being the constant function 0. At a stage s ° 0 we define g

s

.
This is done by determining a number p

s̊

and letting g
s

ppq “ s for p • p
s̊

, and
g
s´1ppq “ g

s

ppq for p † p
s̊

. If the stage is ended without determining p
s̊

then we
let g

s

“ g
s´1.

Nodes � working for some P e,� will appoint followers. If a node � is initialised
then its follower is cancelled.

Nodes ⇢ working for some M j will define a counting xm⇢

s

y down ↵. We start
with m⇢

0 being the constant function ↵. At stage s ° 0 we define m⇢

s

for all ⇢.
If ⇢ is initialised then we throw the counting xm⇢

s

y out and start a new one (we
complete the old counting trivially, say with zeros everywhere, so that at the end
we do get a uniformly computable sequence of total countings.) If ⇢ is initialised
at stage s then we (re)define m⇢

t

to be the constant function ↵ for all t § s. If ⇢ is
not initialised at stage s but is not accessible at stage s then we define m⇢

s

“ m⇢

s´1.
At each stage s, each node ⇢ working for M j will be trying to meet the subre-

quirement M⇢

n

for some n; we denote this n by n
s

p⇢q. We set n0p⇢q “ 0, and
reset n

s

p⇢q “ 0 if ⇢ is initialised at stage s. Unless otherwise stated, we let
n
s

p⇢q “ n
s´1p⇢q.

At stage s we first tend to promptness requirements. We ask if there is some
node �, working for some P e,� for � † ↵, which has a follower p defined, and
oe,�
s

ppq ‰ oe,�
s´1ppq. If so, we let � be the strongest such node; we determine p

s̊

“ p,
and initialise all nodes weaker than �. No node is accessible, and we move to the
next stage.

If there is no such node � then we build the path of accessible nodes.

Suppose that a node ⌧ , working for some Ne, is accessible at stage s. We let t
be the greatest stage before s at which ⌧ˆ8 was accessible, t “ 0 if there was no
such stage. If dom�

e,s

pg
s´1q • t then we let ⌧ˆ8 be next accessible. Otherwise we

let ⌧ f̂in be next acccessible.

Suppose that a node �, working for some P e,� , is accessible at stage s. If � has
no follower then it appoints a new, large follower, initialises all weaker nodes, and
ends the stage. If � already has a follower p, � • ↵ and fe,�

s

ppq “ g
s´1ppq then we

determine that p
s̊

“ p, initialise all weaker nodes, and end the stage. Otherwise,
we let the unique successor of � on the tree be next accessible.

Suppose that a node ⇢, working for some M j , is accessible at stage s.
Let n “ n

s´1p⇢q. The subrequirement M⇢

n

is currently seen to be satisfied if
there is some stage r † s such that m⇢

r

pnq ‰ m⇢

r´1pnq,  jprqÓ by stage s, and
hjpn, jprqq Ó“ hjpn, rq. If this subrequirement is currently seen to be satisfied
then we let n

s

p⇢q “ n ` 1, and let ⇢̂ 8 be next accessible; we let m⇢

s

pkq “ 0 for
k § n and m⇢

s

pkq “ ↵ for k ° n.
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Suppose that this is not the case. If �j
s

pg
s´1, nqÒ, let m⇢

s

“ m⇢

s´1 and let ⇢̂ fin

be next accessible. Suppose that �j
s

pg
s´1, nqÓ“ q, and let �j

s

pnq be the use. If there
is some node � • ⇢̂ fin, working for some P d,� , which has a follower p † �j

s

pnq,
then we initialise all nodes to the right of ⇢̂ 8, let m⇢

s

“ m⇢

s´1, and end the stage.
Otherwise, if there is no r † s such that currently we see that hjpn, rq “ q

then again we let m⇢

s

“ m⇢

s´1 and let ⇢̂ fin be next accessible. If there is such r,
let t be the last stage at which ⇢̂ 8 was accessible, t “ 0 if there was no such stage.
Let �1,�2, . . . ,�k be the list, with descending priority, of the nodes extending ⇢̂ 8,
working for some P e,� for some � † ↵, which currently have a follower p; let p

i

be
the follower for node �

i

and say that �
i

works for P e

i

,�

i . We let

m⇢

s

pnq “
ÿ

i§k

oei,�i
s

pp
i

q;

we let m⇢

s

pn1q “ 0 for all n1 † n and m⇢

s

pn1q “ ↵ for all n1 ° n. We let ⇢̂ fin be
next accessible.

Verification. Let ⇢ be a node, working for some M j . Our first task is to prove:

Lemma 1.17. xm⇢

s

y is a counting down ↵.

Let s † !, and let r˚ be the last stage prior to stage s at which ⇢ was accessible.
We need to show that the conditions for m⇢ for being a counting have not been
violated by stage s. We observe:

‚ If r˚ § t § s then n
t

p⇢q § n
s

p⇢q;
‚ For all n1 † n

s

p⇢q, m⇢

s

pn1q “ 0;
‚ For all n1 ° n

s

p⇢q, m⇢

s

pn1q “ ↵.

So the only question is what happens on n “ n
s

p⇢q. Let u˚ • r˚ be the least stage
such that n

u

˚ p⇢q “ n. For t P pu˚, ss let �t

1,�
t

2, . . . ,�
t

kptq be the list, with descending
priority, of the nodes extending ⇢̂ 8, working for some P e,� for some � † ↵, which
at stage t have a follower. Since ⇢̂ 8 is not accessible on the interval pu˚, ss, we in
fact know that the node �t

i

does not depend on t, so we write �1,�2, . . . ,�
kptq; and

the follower p
i

for �
i

does not change. Say �
i

works for P e

i

,�

i ; for brevity let, for
t ° u˚,

⌘⇢
t

“
ÿ

i § koei,�i
t

pp
i

q.
So ⌘⇢

t

is non-increasing, and if some node �
i

acts at a stage w P pu˚, ss then as
oei,�i
w

pp
i

q † oei,�i
w´1pp

i

q we have �⇢
w

† �⇢
w´1. Further, since ↵ is closed under addition

and each �
i

is smaller than ↵, we have �⇢
t

† ↵ for all t P pu˚, ss. Now let t † s.
Either m⇢

t

pnq “ ↵, in which case certainly m⇢

s

pnq § mt

⇢

pnq; or there are stages t1 § t

and s1 • t1 such that m⇢

t

pnq “ �⇢
t

1

and m⇢

s

pnq “ �⇢
s

1

; so we get m⇢

s

pnq § m⇢

t

pnq as
required. This proves Lemma 1.17.

Keeping with the same notation, say that ⇢ acts at a stage t ° u˚ if it is
accessible at stage t and ends the stage (initialising all extensions of ⇢̂ fin).

Lemma 1.18. Suppose that ⇢ acts at two stages s ° t, that n
s

p⇢q “ n
t

p⇢q, and
that ⇢ is not initialised at any stage in the interval rt, ss. Then �⇢

s´1 † �⇢
t

.

Proof. Let n “ n
t

p⇢q. The action of ⇢ at stage t ensures that the computation
�j
t

pg
t´1, nq is injured between stages t and stage s. This action, and the fact that ⇢

itself is not initialised between stages t and s, means that some node � extending
⇢̂ 8 acts at some stage w P pt, sq and changes g below the use of the computation.
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Since ⇢̂ 8 is not accessible at that interval, � must work for some P e,� where � † ↵.
We observed that this means that �⇢

w

† �⇢
w´1. ⇤

Lemma 1.19. The true path is infinite, and the construction is fair to every
node on the true path.

Proof. As usual, if p is a follower for some node � then � acts for p only
finitely often. This shows that there are infinitely many stages at which we build
the path of accessible nodes. Hence the root node lies on the true path, and of
course is never initialised. Also this shows that a node that lies to the left of the
true path can act at most finitely often.

Further, the usual arguments show that if a node working for either P e,� or Ne

is on the true path and is initialised only finitely many times, then some immediate
successor of the node on the tree lies on the true path, and is only initilaised finitely
many times.

So we consider a node ⇢ on the true path, working for some M j . The node ⇢
never initialises nodes extending ⇢̂ 8, so if ⇢̂ 8 is accessible infinitely often then
we are done. Suppose that this is not the case. Then we can let t˚ be the stage
at which the last value n˚ for n

s

p⇢q is set (either the last stage at which ⇢̂ 8 is
accessible, or the last stage at which ⇢ is initialised). Now Lemma 1.18 implies
that ⇢ acts only finitely many times after stage t˚. ⇤

It is not di�cult to see that every positive requirement is met. Further, fol-
lowing the proof of Theorem III.2.1 we can see that each requirement Ne is met.
As we mentioned above, it is not actually important that a computation �

e

pg, xq,
already certified by a node ⌧ on the true path, is injured only during ⌧ˆ8-stages;
it is only important that the node injuring the computation extends ⌧ˆ8. We are
left therefore with verifying that each M j is met. Fix j, let ⇢ be a node on the
true path working for M j , and suppose that  j is a total speed-up function, hj is a
(total) approximation witnessing that �jpgq (which is total) is self-modulating. We
show that every subrequirement M⇢

n

is satisfied: for every n there is some stage r
such that m⇢

r

pnq ‰ m⇢

r´1pnq and hjpn, jprqq “ hjpn, rq. Of course if the subre-
quirement is every seen to be satisfied then it is indeed satisfied. So by induction
we show that xn

s

p⇢qy is unbounded, equivalently that ⇢̂ 8 lies on the true path.
Suppose that this is not the case; let n “ lim

s

n
s

p⇢q; let t˚ be the least stage
(not before the last stage at which ⇢ was initialised) such that n

t

˚ p⇢q “ n. The fact
that �jpg, nqcÓ and that lim

s

hjpn, sq “ �jpgq implies that lim
s

m⇢

s

pnq “ lim
s

�⇢
s

pnq;
let � be that common value. Let s be the least stage at which m⇢

s

pnq “ �; since
� † ↵, m⇢

s

pnq ‰ m⇢

s´1pnq. Also, by our instructions, m⇢

s

pnq “ �⇢
s

pnq so �⇢
s

pnq “ �
and in fact �⇢

t

pnq “ � for all t ° s.
Suppose that the computation �j

s

pg
s´1, nq “ q is correct. There is some r † s

such that hjpn, rq “ q; since hj correctly approximates �jpgq, and in a non-
decreasing way, it must be that hjpn,wq “ q for all w • r. But then since  j

is total, we will eventually see that M⇢

n

is satisfied, contrary to our hypothesis.
Hence the computation �j

s

pg
s´1, nq is injured at some stage w ° s. The fact that ⇢

does not act at stage s implies, as in the arguments above, that some node � ex-
tending ⇢̂ 8 does this injury, and that it must work for P e,� for some � † ↵; this
implies that �⇢

w

† �⇢
s

. This is the desired contradiction, showing that M j is met,
and concluding the proof of Proposition 1.14.
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1.6. Uniform prompt classes. The uniform layers in our hierarchy also have
prompt versions. Let ↵ § ✏0 be an infinite power of !. Recall the definition
of an ↵-order function h and of h-computable approximations (Definition III.3.1).
Recall also that we have a uniform listing

@
fe,h

s

, oe,h
s

D
of tidy ph ` 1q-computable

approximations of all h-c.a. functions. To avoid technical annoyances we define:

Definition 1.20. A self-modulating function g is promptly not h-c.a. if there
is a speed up function p such that g promptly p-escapes each counting

@
oe,h
s

D
on

infinitely many inputs.

An elaboration on the argument giving Lemma III.3.2 yields the following.

Lemma 1.21. The following are equivalent for a c.e. degree d:

(1) For some ↵-order function h, some g §T d is promptly not h-c.a.;
(2) For every ↵-order function h, some g §T d is promptly not h-c.a.

If these conditions hold then we say that d is promtply not uniformly ↵-c.a.
When ↵ “ ! we say that d is promptly array noncomputable.

Proof. Let h and h̄ be ↵-order functions; let f be a function which is promptly
not h-c.a. As in the proof of Lemma III.3.2 partition ! into an increasing sequence
of finite intervals I˚ † I0 † I1 † I2 † . . . such that for all n, for all x P I

n

we have
hpxq • h̄pnq.

Define a self-modulating function g by setting g
s

pnq “ s if f
s

pxq “ s for some
x P I

m

for some m § n.
For each e, define a counting xme

s

pxqy down h by letting

me

s

pxq “

$
’’&

’’%

0, if x P I˚;

hpxq, if x P I
n

and oe,h̄
s

pnq “ h̄pnq; and
oe,h̄
s

pnq if x P I
n

and oe,h̄
s

pnq † h̄pnq.
The slow-down lemma holds for h and so an analogue of Corollary 1.9 ensures
that there is a speed-up function p such that f promptly p-escapes each xme

s

y on
infinitely many inputs.

Fix e and suppose that f promptly p-escapes xme

s

y on an input x R I˚;
say x P I

n

. Then g promptly p-escapes
A
oe,h̄
s

E
on the input n. ⇤

We can also define the prompt version of the class of not totally † ↵-c.a.
functions; the definition carries no surprises. The techniques used above allow us
to prove hierarchy theorems for these classes; we do not elaborate here.

2. Incomparable pairs of separating classes

To demonstrate the dynamic power encapsulated by prompt classes we discuss
separating classes. Recall that a separating class P “ PpA0, A1q is the ⇧0

1 class of
all sets separating two disjoint c.e. sets A0 and A1; for non-triviality we require that
A0 YA1 is co-infinite, so that the separating class is uncountable rather than finite.
Recall that we say that a Turing degree d computes a ⇧0

1 class P if it computes
the finite binary strings extendible to elements of P. A Turing degree d computes
a separating class PpA0, A1q if and only if it computes both A0 and A1.
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Downey, Jockusch and Stob [23] proved that a c.e. degree is array noncom-
putable if and only if it computes two separating classes P and Q which are incom-
parable in the sense that any element of P is Turing incomparable with any element
of Q. In one direction they showed that any separating class computed by an array computable degree

has an element of degree 01. Here we prove:

Theorem 2.1. Every c.e. degree which is promptly array noncomputable com-
putes two separating classes P and Q such that any element of P forms a minimal
pair with any element of Q.

2.1. The Jockusch-Soare construction. To prove the theorem, we first
recall how to construct such classes P and Q, as was first done by Jockusch and
Soare in [38]. We are not aware of a modern presentation of this construction, so
we discuss it in some detail.

We wish to enumerate four c.e. sets A0, A1, B0 and B1 with the intention of
letting P “ PpA0, A1q and Q “ PpB0, B1q. The minimality requirements we need
to meet are:

R
e

: If X P P, Y P Q and �
e

pXq “  
e

pY q is total, then it is computable.

(Here as usual x�
e

, 
e

y is a list of all pairs of functionals). To meet one requirement
on its own we can follow the forcing constuction of a minimal pair of degrees: we
look for splits and take them if possible. Namely, if we find two strings � and ⌧
such that �

e

p�q K  
e

p⌧q then we ensure that P Ñ r�s and that Q Ñ r⌧ s. This is
done by enumerating into A0 every x such that �pxq “ 0 and into A1 every x such
that �pxq “ 1; and similarly with ⌧ and the sets B0 and B1.

In the forcing construction, we argue that if we never find splits then the only
value we ever see must be correct. When more than one requirement is acting this
is no longer true. While R

e

is searching for splits, weaker requirements shrink the
classes P and Q by enumerating numbers into the various sets. It is possible that
e-splits appear too late for us to be able to take them. In particular, it is possible
that we first see �

e

pXq computations (for clopen sets of X P P
s

) agreeing with
 

e

pY q computations (for Y P Q
s

), say giving value 0 on some input n; then the
action of weaker requirements extracts all these X’s and Y ’s from P and Q; and
only afterwards we see new computations on the remaining elements of the classes,
giving value 1 on the input n.

The solution is to add Lachlan’s idea for constructing a minimal pair of c.e.
sets. Rather than only searching for splits, we will actively declare values that
we believe and act to preserve them. Requirements weaker than R

e

will only act
during e-expansionary stages; and at each such stage either shrink P, or shrink Q,
but not both. In other words, at all times we keep one side of the computation
alive, and wait for the other side to reveal a new agreement with the constant value
(likely with a di↵erent computation). Note that we still need to keep looking for
splits and take them when we can: preserving a computation on the P-side means
that we keep ensuring that �

e

pX,nqÓ“ i for some X P P
s

; we cannot expect that
we will see the same value for all X P P

s

.

We also need to ensure that the classes P and Q are infinite: that the comple-
ments of A0 Y A1 and B0 Y B1 are infinite. A simple way to arrange for this is to
assign a number k to each strategy ⌧ working for R

e

and prevent that strategy ⌧
from enumerating the k-many smallest elements of those complemenets into the
sets. This will force us to consider p2kq2 many di↵erent subrequirements of R

e
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at the strategy ⌧ . Suppose that the strategy sees a split ↵ and �. Let C and D
be the sets of numbers that R

e

is prevented from enumerating into A0 Y A1 and
B0 YB1. Except for on numbers in these sets, we can make sure that all separators
of A0 and A1 agree with ↵, and the same on the other side. What this means is
that we have ensured that the requirement is met for all separators X and Y that
agree with ↵ and � on C and D. So for any possible configuration on C and D,
a substrategy of ⌧ is restricted to work on the clopen sets determined by these
configurations.

Recall that the Lachlan strategy posits that between expansionary stages,
weaker requirements are restrained from destroying the computation remaining on
one side. In this construction, this means that they are prevented from completely
extracting from P (or perhaps Q) oracles that give the constant value. This is done
by restraining these weaker nodes from enumerating numbers below the length of ↵
(or perhaps �) above into the sets. In other words, by setting the restraint k of
these nodes to be larger than the use. Of course this means that these nodes have
to consider more sub-strategies. Which in turn means that substrategies of the
same strategy cannot restrain each other; it seems that we cannot consider them
as independent nodes on the tree os strategies.

On the other hand, ⇧2{⌃2 outcomes for di↵erent sub-strategies are indepen-
dent; we can see more convergences and agreement on some clopen subsets but
not on others. As a result, when calculating the restraint that a node imposes on
weaker strategies, it is important to see all the subrequirements as independent
nodes on the tree. It is just that these nodes will only contribute toward meeting
the subrequirement negatively, by extending the length of agreement and imposting
restraint; the positive parts of meeting the subrequirement, that of seeking splits
and following them, must all be shared at one “primary” node.

The tree of strategies. Nodes on the tree of strategies will be finite sequences of
numbers and the symbol 8. With every node � we will associate a restraint rp�q
(imposed on �). There will be two kinds of nodes: primary nodes ⌧ which work
for some requirement R

e

; and auxiliary nodes whose job is to help calculate the
restraint imposed by subrequirements. For brevity for a primary node ⌧ we let
mp⌧q “ 22rp⌧q. The tree and the restraint are defined recursively.

We start with the empty string xy which is a primary node, working for R0. We
let rpxyq “ 0. Suppose that ⌧ is a primary node, working for a requirement R

e

. The
outcomes of ⌧ are all the numbers k ° rp⌧q (ordered naturally). We let rp⌧ k̂q “ k.
For each i † mp⌧q, all extensions of ⌧ of length |⌧ | ` pi ` 1q are auxiliary nodes
associated with a subrequirement R

⌧,i

(which will be the restriction of R
e

to a pair
of clopen sets). If � is such a node then the outcomes of � are 8 and all natural
numbers k • rp�q, ordered 8 † rp�q † rp�q ` 1 † ¨ ¨ ¨ . We let rp�ˆ8q “ rp�q and
rp� k̂q “ k.

All extensions of ⌧ of length |⌧ | ` mp⌧q ` 1 are primary nodes, each working
for R

e`1.

Construction. For definiteness, for a pair of disjoint sets E and F we let

PpE,F q “ tX P 2! : pn P E Ñ Xpnq “ 0q & pn P F Ñ Xpnq “ 1qu.
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We enumerate four sets A0, A1, B0 and B1, and make sure to keep A0 and A1

disjoint, and B0 and B1 disjoint. At stage s we let P
s

“ PpA0,s, A1,sq and
Q

s

“ PpB0,s, B1,sq.
At stage s • 1 we describe the path of accessible nodes. The root is always

accessible. Let ⌧ be a primary node which is accessible at stage s. If |⌧ | • s we
end the stage. Suppose that |⌧ | † s.

Let Ā
s

be the complement of A0,s YA1,s; similarly define B̄
s

. We let Ā
s

p⌧q be
the collection of the rp⌧q-many smallest elements of Ā

s

; we similarly define B̄
s

p⌧q.
Let C

s

p⌧q be the collection of all clopen subsets of 2! determined by a choice of bits
on Ā

s

p⌧q; let D
s

p⌧q be the collection of all clopen subsets of 2! determined by a
choice of bits on B̄

s

p⌧q; and let xC
i

,D
i

y
i†mp⌧q be an enumeration of C

s

p⌧q ˆD
s

p⌧q.
The subrequirement R

⌧,i

is the restriction of R
e

to the clopen sets C
i

and D
i

.
Suppose that ⌧ works for R

e

. Recall that an e-split is a pair p↵,�q of binary
strings such that �

e

p↵q K  
e

p�q. Let i † mp⌧q.
‚ We say that the subrequirement R

⌧,i

is already met at stage s if there
is an e-split p↵,�q (observed by this stage) such that P

s

X C
i

Ñ r↵s and
Q

s

X D
i

Ñ r�s.
‚ We say that R

⌧,i

admits a split at stage s if there is an e-split p↵,�q,
observed by this stage, such that r↵s Ñ C

i

, r�s Ñ D
i

, r↵s X P
s

‰ H and
r�s X Q

s

‰ H.
‚ Suppose that R

⌧,i

does not admit a split at stage s. We then define ⇣
s

p⌧, iq,
the p⌧, iq-agreement at stage s, to be the longest binary string ⇣ such that
⇣ § �

e

pXq and ⇣ §  
e

pY q for some X P P
s

X C
i

and some Y P Q
s

X D
i

(of course, as observed at stage s).

At stage s, if there is some subrequirement R
⌧,i

which admits a split but is not
already met, then we choose the least such i, and we let p↵,�q be the least split
admitted by the subrequirement. We then act as follows:

‚ If P
s

XC
i

Ü r↵s then we enumerate numbers into A0,s`1 and A1,s`1 so that
P
s`1 X C

i

Ñ r↵s. Namely for all x † |↵|, x P Ā
s

zĀ
s

p⌧q, we enumerate x
into A0,s`1 if ↵pxq “ 0 and enumerate x into A1,s`1 if ↵pxq “ 1. We
declare that ⌧ acted at stage s and end the stage.

‚ If P
s

X C
i

Ñ r↵s then we act similarly, to ensure that Q
s`1 X D

i

Ñ r�s,
declare that ⌧ acted and end the stage.

If ⌧ does not act at stage s we extend the path of accessible nodes up to the next
primary node. We first determine the immediate extension of ⌧ by determining ⌧ ’s
outcome at stage s; the outcome is the greatest stage so far at which ⌧ acted, if
there is such a stage; if not, the outcome is rp⌧q `1. Now let i † mp⌧q and suppose
that a node � of length |⌧ | ` pi ` 1q (and so associated with R

⌧,i

) is accessible at
stage s. If this is the first stage at which � is accessible, let the outcome of � at
this stage be 8. Otherwise, let t be the greatest stage prior to stage s at which
�ˆ8 was accessible. If |⇣p⌧, iq| ° t then we let �ˆ8 be next accessible. Otherwise
we let � t̂ be next accessible.

Verification. We first work toward showing that the true path is infinite. To
do this we will need to show that every (primary) node acts only finitely many
times. The following lemma shows that nodes are successful in imposing restraint.
Note that for every stage s, for every node ⌧ which is accessible at stage s, we
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have rp⌧q † s (this shows that the outcome of a primary node ⌧ is indeed always a
number greater than rp⌧q). Also note that if � § ⌧ then rp�q § rp⌧q.

Lemma 2.2. Let ⌧ be a node on the tree of strategies. Suppose that ⌧ is accessi-
ble at some stage t; suppose that a node ⇢, which lies to the right of ⌧ , is accessible
at some stage s ° t. Then rp⇢q • t.

Proof. Let � be the longest common initial segment of ⌧ and ⇢; let o and p
be the outcomes of � such that � ô § ⌧ and � p̂ § ⇢. So o † p. If � is a primary
node then p is a stage at which � acts, and p ° t (or at stage t the outcome would
be at least p), and rp⇢q • p. The other case is similar. ⇤

Note that the lemma implies that if some node ⇢ is accessible at some stage t,
and that at stage s ° t, some node that lies to the left of ⇢ is accessible, then ⇢ is
never accessible after stage s. This implies that if ⌧ lies on the true path then no
node to the left of ⌧ is ever accessible.

Lemma 2.3. Let ⌧ be a primary node which lies on the true path; let t be a
stage at which ⌧ is accessible.

(1) No node � † ⌧ acts after stage t.
(2) For all s ° t, Ā

s

p⌧q “ Ā
t

p⌧q and B̄
s

p⌧q “ B̄
t

p⌧q.
(3) Suppose that a subrequirement R

⌧,i

is seen to be already met by stage t`1,
witnessed by some e-split p↵,�q. Then for all s • t ` 1, R

⌧,i

is also seen
to be met, by the same pair.

(4) The node ⌧ acts at most finitely many times.

Proof. (1): Say that � † ⌧ acts at stage s ° t. Every outcome of � taken
after stage s will be at least s, which is greater than rp⌧q, so ⌧ will not be accessible
after stage s.

(2): Suppose that a node � acts at some stage s • t and enumerates some
numbers from Ā

t

p⌧q into A0 YA1 (or from B̄
t

p⌧q into B0 YB1). Then rp�q † rp⌧q.
As observed, � cannot lie to the left of ⌧ ; and � cannot extend ⌧ . Lemma 2.2 (and
the fact that rp⌧q † t) implies that � cannot lie to the right of ⌧ . And (1) implies
that ⌧ cannot extend �.

(3): The point here is that for all s, P
s

X C
i

‰ H and Q
s

X D
i

‰ H.

(4): by induction on i, we show that ⌧ acts on behalf of R
⌧,i

only finitely many
times. Fix some i † mp⌧q and suppose that after stage t0, ⌧ does not act on behalf
of R

⌧,j

for any j † i. Suppose that ⌧ acts on behalf of R
⌧,i

at stage t1 • t0.
If R

⌧,i

is met by this action then we are done by (1). If not, then the action at
stage t1 was on the P-side (rather than the Q-side). Let p↵,�q be the split that
prompted the action; let s be the next stage after stage t1 at which ⌧ is accessible.
We claim that r�s X Q

s

‰ H; this would imply that at stage s, ⌧ will act again on
behalf of R

⌧,i

and cause it to be met. The fact that r�s X Q
s

‰ H follows from
the success of imposing restraint: if a node � acts at some stage u P pt, sq then by
(1) and Lemma 2.2, rp�q ° t, so � cannot enumerate any numbers below |�| into
B0 Y B1. ⇤

Lemma 2.3 implies that the true path is infinite.

Lemma 2.4. The classes P and Q are uncountable.
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Proof. Let e † !. Let ⌧ be a node on the true path which works for R
e

.
Then rp⌧q • e. If ⌧ is accessible at stage t then no number from Ā

t

p⌧q is ever
enumerated into A0 Y A1, and so the complement of A0 Y A1 contains at least e
many elements. The same holds for B. ⇤

Lemma 2.5. Every requirement R
e

is met.

Proof. Let e † !; let ⌧ be the primary node on the true path which works
for R

e

.

Let X P P and Y P Q, and suppose that �
e

pXq “  
e

pY q. There is a
unique i † mp⌧q such that X P C

i

and Y P D
i

. The subrequirement R
⌧,i

is never
seen to be met, and in fact, by Lemma 2.3, at no stage t at which ⌧ is accessible
does R

⌧,i

admit a split.
Let � be the auxiliary node on the true path which is associated with R

⌧,i

.
The reals X and Y show that �ˆ8 lies on the true path. We show that if s ° t are
stages at which �ˆ8 is accessible then ⇣

t

p⌧, iq † ⇣
s

p⌧, iq; the fact that no splits are
ever observed will imply that ⇣

t

p⌧, iq † �
e

pXq for all such t. Note that the node ⌧
does not act after stage t (or � would not be on the true path).

As discussed above, the argument is really the Lachlan minimal pair argument.
At stage t, at most one node extending � acts. That node enumerates numbers
into A0 Y A1, or into B0 Y B1, but not both. Without loss of generality, say it is
the former. The arguments above show that any node � that acts between stages t
and s has restraint rp�q • t. This implies that if r�s Ñ Q

t

X D
i

has length t and
 

e

p�q • ⇣
t

p⌧, iq then r�s X Q
s

‰ H as well. ⇤

2.2. Adding prompt permissions. To prove Theorem 2.1 we observe that
the proof of Lemma 2.3 shows that in fact we can computably bound the number of
times a primary node will need to act: at most twice for each R

⌧,i

, once all action

for R
⌧,j

for j † i has ceased. The total is
∞

i†mp⌧q 2i`1 § 2mp⌧q`1 “ 21`22rp⌧q

. So

we let hprq “ 21`22r . We need the permissions to be prompt: otherwise the Lachlan
mechanism of keeping one side of the computation alive cannot work. Let d be a
c.e. degree which is promptly array noncomputable; by Lemma 1.21 there is some
function g §T d which is promptly not h-c.a.

The idea is to use g to permit the action of a node ⌧ . Each time ⌧ wants to act
we will seek a change in gprp⌧qq. If we do not get it we will of course notice that
immediately; we will then essentially want to increase rp⌧q by 1 and try all over
again. Of course this means that we need to break the requirement up into more
subrequirements. Rather than increase rp⌧q we will incorporate into the tree the
guess as to where permission will be given.

To the details. We will define our tree of strategies as above, except that instead
of one primary node we will have a whole layer of them. Call the root of the tree a
super-primary node, working for R0. If µ is a super-primary node, working for R

e

,
then its immediate successors are µ k̂ for k • rpµq; these nodes are now called
primary nodes, working for the same requirement. We let rpµ k̂q “ k. Beyond the
primary nodes we build the tree as above; if ⌧ is a primary node then its extensions
are ⌧ k̂ for k ° rp⌧q, and the extensions of length |⌧ | ` pi ` 1q work for R

⌧,i

,
defined as above, with the same outcomes; extensions of length |⌧ | ` pmp⌧q `1q are
super-primary nodes working for R

e`1.
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For each super-primary node µ we will build a (total) counting xoµ
s

y down h. By
the recursion theorem (and the slow-down lemma) we can find a speed-up function p
such that for all µ, the function g promptly p-escapes each xoµ

s

y, each on infinitely
many inputs.

For each super-primary node µ we will have a counter n
s

pµq, starting with
n0pµq “ rpµq. If µ is accessible at stage s then its successor µˆn

s

pµq is next
accessible. We will let oµ

s

pnq “ 0 whenever n † n
s

pµq, and oµ
s

pnq “ hpnq whenever
n ° n

s

pµq. As usual, unless otherwise stated, we will let oµ
s

pnq “ oµ
s´1pnq.

Construction. Suppose that a super-primary node µ, working for R
e

, is acces-
sible at stage s, and that |µ| † s. As mentioned above, we let ⌧ “ µˆn

s

pµq be next
accessible. We define Ā

s

p⌧q and B̄
s

p⌧q as above, and so get the list xC
i

,D
i

y
i†mp⌧q

and the subrequirements R
⌧,i

. The instructions for ⌧ ’s action are as above, except
that whenever ⌧ decides it would like to act, it first defines oµ

s

pnq “ oµ
s´1pnq where

n “ n
s

pµq. We then check to see if g
ppsqpnq ‰ g

s

pnq. If so, then ⌧ can carry out the
desired action. If not, then ⌧ stops the stage and we set n

s`1pµq “ n
s

pµq ` 1.
The rest of the construction is identical to the one above.

Verification. We observe how we need to augment the proofs of the lemmas
above. Lemma 2.2 does not hold as written, but does hold provided that we assume
that ⌧ lies on the true path. The point is that if � from the proof of the lemma
is a super-primary node then ⌧ will not be accessible after stage s; the outcomes
of a super-primary node only increase with time. If ⌧ lies on the true path then
nodes to the left of ⌧ may be accessible, but not after the least stage at which ⌧ is
accessible.

Lemma 2.3 holds, with the same proof. However to show that the true path is
infinite we now need to consider super-primary nodes. If µ is a super-primary node
on the true path then the sequence xn

s

pµqy must come to a limit: if g promptly
p-escapes xoµ

s

y on an input n • rpµq then we will never have n
s

pµq ° n. Of course
we need to note that the calculation above ensures that hpnq is large enough, so
that whenver a primary node ⌧ “ µˆn wants to act, we have oµ

s

pnq ° 0. The rest of
the verifications follow as above to see that all requirements are met. Finally, we
observe that all sets enumerated are computable from g: if g

s

prq “ gprq then the
first r elements of Ā

s

will never enter A0 Y A1, and the same holds for B.

3. Prompt permission and embedding results

Prompt versions of permitting can also be adapted to other constructions we
have been discussing. The main example is the embedding of the 1-3-1 lattice. The
main idea is that if non-total † !!-permission is given promptly then when balls
enter the permitting bin, instead of appointing a trace for the bottom set B, we
ask for prompt permission. If this is not given then the follower is cancelled. This
yields:

Theorem 3.1. If d is promptly not totally † !!-c.a. then there is an embedding
of the 1-3-1 lattice in the c.e. degreed below d which maps the bottom element to 0.

As mentioned above, a full reversal is impossible, since every high degree bounds
such an embedding as well.
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