?:'Kf%wnéy, Jockusch, Stob (141-174)

o

-

i Array nonrecursive sets and multiple permitting
arguments *

Rod Downey Carl Jockusch Michael Stob
Victoria University University of Illinois  Calvin College

April 2, 1990

Abstract

We study a class of permitting arguments in which each positive requirement
needs multiple permissions to succeed. Three natural examples of such construc-
tions are given. We introduce a class of r. e. sets, the array nonrecursive sets,
which consists of precisely those sets which allow enough permission for these con-
structions be performed. We classify the degrees of array nonrecursive sets and so
classify the degrees in which each of these constructions can be performed.

1 Introduction

Permitting is the name given to a class of techniques for constructing an r. e. set B which
is recursive is some fixed r. e. set A. In a permitting argument, enumeration into B is
allowed or “permitted” only if some event related to the enumeration of A occurs. For
example, in Yates permitting (often called permitting or simple permitting), we allow
z to be enumerated in B at stage s+ 1 only if some integer y < z is enumerated in A at
‘stage s + 1. It is obvious that this ensures that B <y A. Various notions of permitting
can be found in the literature corresponding to various classes of sets A and various
types of requirements which appear in the specification of B. Obviously, permitting
functions as a negative requirement on B and a notion of permitting may or may not
cohere with a positive requirement desired for the enumeration of B. For example, Yates -
permitting deséribed above and the standard positive requirements for constructing a
simple set are compatible, producing the theorem that every r. e. degree bounds an
1. e. degree containing a simple set. The most common notions of permitting are Yates -
permitting, Martin (or high) permitting, and prompt permitting. Each corresponds to
a natural class of r. e. degrees and for each there is a large class of constructions that
can be done precisely in those degrees.
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In this paper we analyze a class of permitting arguments which are characterized
by the fact that each positive requirement requires multiple permissions to succeed.
To see how our notion of multiple permitting differs from other standard notions of
permitting, and to place all these methods in a common framework, we now review
the basic (Yates) permitting method and make some remarks about it. We do this by
means of the following theorem.

Theorem 1.1 If A i3 r. e. and nonrecursive, then there is a simple set B such that
B <y A.

Proof. We construct B to be coinfinite and to meet for every e € N the requirement
P.: W, infinite = W, NB # 0.

Given an enumeration {A,},eny of A, we enumerate B in stages. The requirement
that B <t A is met as follows. We say that a number z is permitted by A at stage
s+ 1i (Jy < z)ly € Asp1 — A,]. We enumerate z into B at stage s + 1 only if z is
permitted by A at stage s + 1. This guarantees that B <rp A for if s is a stage such
that (Vy < z)ly€ 4, «~+y€ A),thenz € B, & z € B.

CONSTRUCTION.

Stage s +1
For every e < s,1f W, , N B, = §, and (3z)[z € W, ,,z > 2e, and z is permitted by
A at s + 1], enumerate the least such z in B.

By permitting, B <t A. The clause z > 2e guarantees that B is coinfinite. To see
that P, is satisfied, suppose that W, is infinite but that W, N B = §. We argue that A
is recursive, contrary to hypothesis. To determine if y € A, enumerate W, until a stage
s and integer = are discovered such that z > y, z > 2e, and z € W, ,. Since P, is not
satisfied, z is never enumerated in B. This implies that z is never permitted by A after
stage s. In particular, y€ Aoy € A;. u

We notice the following key features of P, which allows the above permitting argu-
ment to succeed.

(1) If W, is infinite, there are infinitely many potential witnesses for P.. (Any z € W,
such that z > 2e will do.) '

(2) The construction requires that only one witness for P, needs to be permitted only
once for P, to succeed.

(3) Witnesses, once discovered, do not disappear and are available at any later stage.
(In this case, if £ € W,,, then z € W, for all ¢ > s.)

Any set of positive requirements satisfying these three properties can be combined
with simple permitting in the manner of Theorem 1.1. Different notions of permitting
arise from positive requirements which do not have one or the other of the features
above. The two most important examples are high permitting and prompt permitting.-

The high permitting method of Martin [M] results from replacing (2) above by
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(2)nign The construction requires that cofinitely many of the witnesses for P, be per-
mitted each once.

As the name suggests, the method of permitting which results from (1), (2)nign, and (3)
can only be used with sets of high r. e. degree. Martin used it to show that maximal
r. e. sets exist in all high r. e. degrees.

The prompt permitting method of Maass, [MSS,AJSS] results from keeping (1) and
(2) but replacing (3) by

(3)prompt Witnesses, once discovered, need to be permitted immediately (promptly) if
they are to be used in satisfying P..

The method of permitting which results from (1), (2), and (3)prompt can only be
used with 1. e. sets of promptly simple degree. The class of promptly simple degrees is
a filter in the upper semilattice of all r. e. degrees which contains low degrees but not
all high degrees. Thus prompt permitting is up to degree a different notion than high
permitting or standard Yates permitting.

The notion of permitting that we study here arises from positive requirements that
satisfy (1) and (3) but in which we modify (2) to

(2)mp At least one witness  needs to be permitted f(z) times; f is some fixed recursive
function.

Note that (2)mp is a stronger requirement than
(2), At least one witness = needs to be permitted n times; n a fixed positive integer.

It is easily seen that (2), is no harder to guarantee than (2).

We study arguments which have positive requirements with the characteristics (1),
(2)mp, and (3) in a somewhat indirect manner. We first introduce a class of 1. e. sets,
the array nonrecursive sets.

The array nonrecursive sets are defined as follows. Recall that a sequence of finite sets
{F,}nen is called a strong arraey if there is a recursive function f such that F,, = Dy,
for every n € N where D, denotes the finite set with canonical index y.

Definition 1.2 A strong array {F, }.cn is a very strong erray (v. s. a.) if

(4) UnEN Fﬂ- = N:
(5) F.NF,=0ifn#m, and
(6) 0 < |Fu| < |Faga| for all n € N.

Definition 1.3 Anr. e. set A is array nonrecursive with respect to {F,}nen (F-a. n.1.)
if
(7) (Ve)(Fn)W.NF, = AN E,].

Definition 1.4 An r. e. set A is array nonrecursive (a. n. r.) if there is a v. s. a.
{F,}nen such that A is F-a. n. r.
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Definition 1.5 An r. e. degree a is array nonrecursive if there is an r. e. set A € a
such that A is array nonrecursive.

We note the following facts about these definitions. First, if A is a. n. r., then
A is nonrecursive. Second, F-a. n. r. sets exist for any v. s. a. {F},}.en, since 4 =
Ueen We N F is F-a. n. 1. Finally, (7) is equivalent to

(8) (Ve)(3 n)[W. N F, = ANF,).

The condition (7) translates to a notion of multiple permitting in roughly the follow-
ing way. Suppose that A is F-a. n. r. and that we are constructing an r. e. set B <1 4
using Yates permitting. If we enumerate an r. e. set V we are entitled to assume that
(An)[V N F, = AN F,]. Since we enumerate V, for this n equality implies that we can
force up to |Fy,| many integers all less than max(F,) to enter A, This gives several Yates
permissions for a large enough number. (If all that is assumed is that A is nonrecur-
stve, Yates permitting guarantees a single permission on a large enough number.) The
simplest example of such a multiple permitting argument is Theorem 2.5 below.

We show in Section 4 that such multiple permitting arguments arise naturally in
recursion theory by showing that three constructions from elsewhere in recursion theory
can be carried out precisely below those r. e. degrees which are array nonrecursive. These
theorems are as follows.

Theorem 1.6 Let f be a strictly increasing recursive function. Then an 7. e. degree a
is a. n. v. iff there is a degree b < a (not necessarily r. ¢.) such that some set B of
degree b is not f-r. e. (A Aj set is f-r. e. if it has a recursive approzimation {B,},en
as a A} set such that |{s|B,(z) # Beya(z)}| < f(z) for all z.)

The next theorem arises from a construction performed by Jockusch and Soare [JS,
Theorem 1} to show that every degree which contains a consistent extension of Peano
arithmetic bounds an incomparable pair of degrees. In that proof, sets By, Cy, By, C;
were constructed satisfying the conditions in part (c) of Theorem 1.7.

Theorem 1.7 For r.e. sets A, the following are equivalent:

(e) A has a. n. . degree,

(b) there are disjoint r.e. sets B and C each recursive in A such that BUC is coinfinite
and no set of degree 0' separates B and C,

(¢) there exist two disjoint pairs of r.e. sets By,Co and By, C; such that B; U C;
is coinfinite for ¢ = 0,1, each set B;,C; is recursive in A, and each set which
separates (Bo, Co) 18 Turing incomparable with each which separates (By,Cy).

The third major theorem concerns a class of r. e. theories called the Martin Pour-El
theories. To define this class let @ be the free countable, atomless Boolean algebra and
let {pn|n € N} be a set of generators for it. Then a theory T can be identified with a
filter of (). We call such a theory well-generaied if there are sets B and C such that
T is generated by a set of the form {p,|n € B} U {-p.|n € C}. Anr. e. theory T is
Martin-Pour-El if it is well-generated, essentially undecidable, and every r. e. theory
W 2 T is principal over T'. The existence of such theories is due to Martin and Pour-El
(MP, Theorem I]. They have been extensively studied by Downey [D1].
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' Theorem 1.8 An r. e. degree a i3 a. n. r. iff there i3 a theory T of degree a which s
Martin Pour-El

In sections 2 and 3 we initiate an investigation into the properties of a. n. r. sets and
degrees. Of particular interest because of Theorems 1.6, 1.7, and 1.8 is the classification
of a. n. r. degrees. Our principal results are as follows.

e The array nonrecursive degrees are closed upwards in R, the class of all r. e.
degrees (Corollary 2.8).

¢ There are low a. n. r. degrees (Theorem 2.1).
e Allr. e. degrees a such that a” > 0” are a. n. r. (Corollary 4.3).

' There exist promptly simple degrees which are not a. n. r. Thus, since promptly
simple degrees are noncappable and the non-a. n. r. degrees are closed upwards,
every nonzero 1. e. degree bounds a nonzero r. e. degree which is not a. n. r.

(Corollary 2.11).

¢ Every a. n. r. degree bounds a low a. n. r. degree (Corollary 3.8, due to Cameron

Smith).

¢ The r. e. weak-truth-table degrees containing no a. n. r. set form an ideal in the
upper-semilattice of r. e. wtt-degrees (Corollary 3.14).

Our notation is standard; a reference is Soare [S]. All sets and degrees are r. e. unless
otherwise noted. The principal exceptions to this convention are in Theorems 1.6 and

1.7.

2 Basic Existence Theorems

Given a very strong array {Fp}nen, the F-a. n. r. set A = Upey Wo N Fy is clearly
Turing-complete and, in fact, is creative. The next theorem shows that low F-a. n. r.
sets exist. It also clearly exhibits the construction of an a. n. r. set as a finite injury
priority argument.

Theorem 2.1 Let {F,}.en be a very strong array. Then there is an r. e. set A of low
degree such that A is F-a. n. 7.

Proof. To make A F-a. n. r., it suffices to meet for every e € N the requirement
R.: (In)[W.N F, = ANF,].

The requirements to make A of low degree are

Ne: (T s){eXd(e) ] = {e}i(e) |

Recall that the requirement N, is met by preserving the restraint function r(e,s) =
u(As, e,e,3) at all but finitely many stages s. Let ¢(e,s) = max{r(¢,s)li < e}. To
meet R,, we reserve the sets Fi. oy, Fie,1),. ... The construction assigns priority to the
requirements in the order Ny, Ry, N3, Ry, ..
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CONSTRUCTION.

Stage s+ 1

Requirement R, requires attention at stage s + 1 if there is ¢ € N such that
(9) min(F.») > g(e, s), and
(10) © (V5 S9)[Weorr N Fle,jy # As N Fiey].

Let e be least such that R, requires attention and let 7 be least such that (9) and (10)
hold. Enumerate all of W, ,4; N Fles) into A. This ends the construction.

Note that the construction ensures that A, N Fleqy © W e N Fieyy for every e, ¢, and
s, so that if R, receives attention at stage s + 1 and 7 is the least integer satisfying (9)
and (10), then W, .41 N Flesy = Asp1 N Fiegy. It is now easy to show by simultaneous
induction on e that

(a) N, is satisfied,
(b) lim, g(e, s) < oo,
(c) R, is satisfied, and

(d) R, receives attention only finitely often. m

A. Kuéera has pointed out that the following extension of Theorem 2.1 holds: For
any very strong array {F, }nen, there is a complete extension T of Peano arithmetic of
low degree such that there is an F-a. n. r. set A recursive in T

The next two results, Theorems 2.2 and 2.5, clarify the role of the very strong array
{F.}nen in the definition of array nonrecursive sets. In particular, Theorem 2.5 shows
that up to degree, the notion of array nonrecursveness is independent of the choice of
very strong array. It will also be used in the proof of many subsequent results.

Theorem 2.2 For every r. e. set A there is a very strong array {F,},en such that A
18 not F-¢. n. 1.

Proof. If A is recursive, then A is not F-a. n. r. for any F. If 4 is not recursive, let
R be an infinite recursive subset of A. Choose a v. s. a. {Fy}nen such that F, N R # 0
for every n € N. Let W = R. Then for every n € N, WN F, # AN F, witnessing that
Aisnot F-a.n.r. ®

The following definition and lemma will be used in the proof of Theorem 2.5 and
elsewhere.

Definition 2.3 Suppose that A is r. e. with a given enumeration {4, },eny and {F, }nen
is a strong array. A F-permits y at stage s + 1 if

(3z £ y)(Fr < max(F,))[z € A1 — A4
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Lemma 2.4 Suppose that A is r. e. with a given enumeration {A,}sen and {Fp}nen
13 a strong array. Suppose that f is a recursive funclion. Suppose that B is an r. e.
set with enumeration {B,}.en such that for every x, 2 € Byyy — B, only if A F-permits
f(z) at stage s+ 1. Then B <t A. In fact B <qu A.

Theorem 2.5 Suppose that {F,}neny and {E,}nen are very strong arrays, that A is
F-a. n. 1., and that b is an r. e. degree such that deg(A) < b. Then there ts B € b
such that B 13 E-a. n. .

Proof. Fix a set B € b. To ensure that B <t B, we will reserve the sets E 3,
i € N, for coding B. Namely, we will enumerate all of By in B ifand only if 7 € B.
The requirements R, to make B F-a. n. r. are similar to those of Theorem 2.1:

R.: (In)[W.NE,=BnNE,).

We will reserve the sets Eyei1,0), Fles1,1), -+ - for meeting R.. To aid in meeting R. we
shall also enumerate an r. e. set V, and since A is F-a. n. r., (8) guarantees that

(11) G n)V.nF, = AnF,).

For each e, let n(e) be the least integer n such that || > |Eq1,0]. For each
n 2> n(e) let g(e,n) be the greatest pair of the form {e + 1, ) such that

(12) |Fal > [Eglem-

Note that if e # f, then g(e,n) # g(f,m) for all n,m. However it is possible that

g(e,n) = g{e,m) for some n # m. However, for every z, the set {n | g(e,n) = z} is

finite (uniformly in z).
We will replace the requirement R, with the following requirements R.,, for n >
n(e):
Ren: VenNE,=ANE, = W.N Eg(em) =BnN Eg(e,n)-

To ensure that action taken for R., does not interfere with the requirement to make -

B <1 B we will allow z € Eg(emn) to enter B at stage s 4+ 1 only if A F-permits n at
stage s + 1. By Lemma 2.4, we have that U, ;eny Ee41,5 N B <1 A <t B. -

Before giving the construction, which is quite simple, we describe the strategy for
one requirement. This strategy is the same one that is used throughout the paper when
it is necessary to construct a set recursive in some given a. n, r, set 4. It essentially
captures the notion of multiple permitting allowed by an a. n. r. set.

Fix e and n 2 n(e). R, is met if either V.NF, # ANF, or W.NEy(.n) = BﬂEg(m)
We view our attempts to establish this disjunction as a two-state finite automaton.

At any stage s of the construction, we say that requirement R., is in state Sy if -

We,s N Ey(en) = Bs N Ey(e,n) and in state S; otherwise. The construction is intended fo
ensure that if R., is in state Sy at stage s then V., N F, # A, N F,, as indicated in
Figure 1.

Suppose that stage s + 1 is such that R, , is in state S; at stage s but not at stage

s+ 1. Since we enumerate B, this is because an element of E (. , is enumerated in W,
at stage s +1 (and thus there are at most |Ey( )| such stages). To guarantee that the
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S S
@y : W, changes on Ey(n

We,s n Eg(e,ﬁ) = -Bs n Eg(e,n) 1-'/.‘3,‘9 N Fn :)'-L' As n Fn
ay A changes on F,

Figure 1: State diagram of the construction

condition of state S; holds at stage s+ 1, we enumerate, if necessary, one element of F,
into V, to cause V, .41 N F, # 4,41 N F,. This constitutes the action of arrow a;. Since
this is the only action which causes us to enumerate elements of F,, into V, and since
|Fo] > |Egiem|, it is always possible to perform this action at such a stage s + 1.

We also need to guarantee that while R, , remains in state S,, the condition V,, N
F, # A, N F, continues to hold. Thus, let s be a stage such that Ves NE, £ A;NE,
but Ve s41 NF, = A,;p1 N F,. It must be the case that an element of F,, is enumerated in
A at stage s + 1. This is just the condition that A F-permits n at stage s + 1. Thus at
stage s + 1 we may enumerate all of W, ,41 N Ey(.n) into B, thereby guaranteeing that
R. is in state 5; at stage s + 1. This constitutes the action of arrow a;. Note that
to perform such action, we must require that B, N Bylem) © We,s N Eg(e,qy for all e,n,s.
This is guaranteed by the construction described above and by the fact that Eyem) 18
disjoint from Egy; ) if € # f. Because of this stipulation, there are no conflicts between
the various requirements. We now give the formal details of the construction.

CONSTRUCTION.

Stage s + 1

Step 1. (Coding.) If 1 € R.,H — B,, enumerate all of E,q into B.

Step 2. (Arrow a,.) For every e and n > n(e), if A F-permits n, enumerate all of
We,,+1 n Eg(e,n) into B.

Step 3. (Arrow a;.) For every e and n > n(e) if

(13) B, N Ey(en) = We,s N Eyemy and B, N Egem) #£ Wes1 N Ey(em)

then enumerate one element of F, — V., into V;, if necessary, to cause A, N F, #
Ve,s+1 N E,. There is such an element since |F,| > |Eg(e,n)l and an element of F,, is
enumerated in V; only if (13) holds; i. e., if arrow a, is traversed.

Lemma 2.6 B =g B.

Proof. B <t B since B restricted to UienEyo,) is recursive in B by step 1 of the
construction and B restricted to UeieN Elet1,) 1s recursive in A by step 2 and Lemma
2.4 (applied to the array {F,}.cn and the function f where f(z) is the greatest n such
that ¢ € Eg(e,n))- O

Lemma 2.7 For each e € N, R, is satisfied.
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Proof. It is enough to show that for every e and n > n(e), that R, is satisfied.
At every stage of the construction, R, is either in state S or state S;. Thus, since
R.,» changes state finitely often, R, is in state Si at cofinitely many stages of the
construction or R, is in state 5; at cofinitely many stages of the construction. If the
former holds, W, N Eyen) = B N Eye,n). If the latter holds V. N F,, # AN F, since the
¢onstruction guarantees that if R, , is in state S; at stage s, then V, ,NF, # A,NF,. m

The following are easy corollaries of Theorem 2.5.

Corollary 2.8 Suppose that a 18 a. n. . and thetb > a. Then b i3 ¢. n. r. That 13,
the a. n. r. degrees form o filter in the upper semilattice of the r. e. degrees. Since the
Turing reductions employed in Theorem 2.5 are weak-truth-table reductions, this result
holds also for the weak-truth-table degrees.

Corollary 2.9 Suppose that {F,}nen i3 a very strong array and that A is a. n. v. Then
there i3 a set B of the same weak-truth-table degree as A such that B 13 F-a. n. r. That
i3, up to (weak-truth-table) degree, the notion of array nonrecursiveness i3 independent
of array.

We turn now to existence theorems for array recursive sets and degrees; a set (degree)
is array recursive just in case it is not array nonrecursive. The following result shows that
our notion of multiple permitting is strictly stronger than ordinary (Yates) permitting.

Theorem 2.10 There is an 7. e. degree a > O such that a is array recursive.

Proof. Fix a very strong array {F,}nen. By Corollary 2.9, it suffices to prove that
no set of degree a is F-a. n. r. (We will actually prove that no set of degree less than or
equal to that of a is F-a. n. r., which is equivalent by Corollary 2.9.)

Let (®.,B.)cen be an effective listing of all pairs (@, B) of recursive functionals
® and r. e. sets B. We will enumerate r. e. sets V., e € N, satisfying the following
requirement for every ¢ € N and for every n > e:

R.,: @.A4)=B.=V.nF,+# B.NF,

Requirements R., for n > e suffice to make B not F-a. n. r. by (8). To make A
nonrecursive we have for every e € N the requirement

P, AL W,.

We use the following priority ordering of the requirements: Roi, Po, Roz, Ri2, P1, Roa,
Ris, Rys, Py, .... The key fact about this priority ordering is that R., can only be
injured by P; for : < n — 2 or at most n — 1 times.

The strategy for meeting R, , is as follows. Wait until {(e,s) > max(F,) (where
I(e, 8) measures the length of agreement between the computation &, ,(A,) and the set
Be.). Cause V, 11N F, to be unequal to B, NF, (by enumerating at most one element
of F, into V). Restrain A on the use of the computations involved in establishing that
length of agreement. Thus, if R, , is not injured by a higher priority requirement, either
V.NF, #£ B.NF, or ®.(A) # B, and, in either case, R, imposes only a fixed finite
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restraint on A for the rest of the construction. Since R, , can be injured at most n — 1
times, at most n — 1 attempts of the above form need be made and this can be done
since |F,| > n. Note that the requirements R, , are purely negative requirements on
A (although positive on V,) and so do not conflict with each other. We omit further.
details of the construction and its verification. m

The next two corollaries follow By making the obvious modifications to the con-
struction suggested in the proof above. Alternatively, the second follows from the first,

Corollary 2.8, and the fact that no promptly simple degree is half of a minimal pair
[MSS, Theorem 1.11].

Corollary 2.11 There is a promptly simple degreec a which is array recursive.

Corollary 2.12 For every r. e. degree b > 0, there is an 1. e. degree a such that
0 < a <b end a is array recursive.

To state the final theorem of this section, we need the following definition.

Definition 2.13 Anr. e. set is semirecursive if there is a recursive function f : N2 - N
such that '

(14) f(z,y) € {z,y}
(15) flz,y) e A= {2,y} C A

Thus, the function f of Definition 2.13 chooses of £ and y the one “least likely” to be
an element of A.

Theorem 2.14 If r. e. set A is semirecursive, then A is not a. n. 7.

Proof. Let {F,}.en be a very strong array and let A be semirecursive with f
the recursive function satisfying (14) and (15). We enumerate V so that if |F,| > 2,
VNF, # ANF,. To do this, for each n such that |F,| > 2, we wait for a stage such that
for some pair {z,,y,} C F,, we have that z, # y, and f(z,,y,) converges. We then
enumerate f(z,,y,) and no other element of F, into V. Thus VN F, = {f(s,y.)} but
if f(2n,yn) €A, ANF, D {2n,n} #VNF,. n

Corollary 2.15 Ewvery r. e. truth-table degree contains an array recursive set.

Proof. This is immediate from Theorem 2.14 since every r. e. truth-table degrée
contains a semirecursive r. e. set [J1, Corollary 3.7(ii)]. m
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3 Properties of a. n. r, sets and degrees

The first two theorems in this section locate the array nonrecursive sets in the hierarchy
of simplicity properties.

Theorem 3.1 If A i3 a. n. 7., then

(e) A is not dense simple, and

(b) A 1is not strongly hypersimple.

Proof. (a). An 1. e. set A is dense simple if pz, the principal function of the com-
plement of A, dominates every recursive function. We use an alternate characterization
of dense simplicity due to Robinson [R, Theorem 3]. Namely, A is dense simple if and
only if for every strong array {F, }nen of disjoint sets,

(16) (3m)(¥n > m)]|F, N A < n).

Now suppose that 4 is F-a. n. r. Using W, = 0 and the characterization of F-a. n. r. in
(8), we have

(17) (I n)ANF, =)
But for any such n, |F,, N A} > n, and thus by (16) A is not dense simple. O

(b). A is strongly hypersimple if for every weak array, {W(}nen, of disjoint sets
such that Upeny Wyin) = N there is an n such that Wy, C A. Now suppose again that
A is F-a. n. r. Define Wy, for all n € N as follows. Given F,,, enumerate the least
element of Fy,, in Wy (), the next least in Wyy), and so forth. Obviously because {F}, }nen
is a very strong array, U,ey Wim) = N and the sets Wy(,), n € N, are disjoint. By
(17), Wi(ny N A 5 @ for every n. (In fact, Wy(m) N A is infinite). Thus A is not strongly
hypersimple. m

Corollary 3.2 No arrey nonrecursive set is mazimal, hyperhypersimple, or r-mazimel.

The following theorem shows that Theorem 3.1 is the best possible as far as the
standard list of simplicity properties is concerned.

Theorem 3.3 There is an r. e. set A such that A is array nonrecursive and finitely
strongly hypersimple.

Proof. Fix a v. s. a. {F.}nen. As usual, the requirements to make A F-a. n. r. are
R. (En)[We NE,=ANF,.
The requirements to make A finitely strongly hypersimple are.

Q.: the sets Wiey(n),n € N are not disjoint or
Unenw Wigyn) # IV or
(3n)[Wiep(n) is infinite] or
En)[Wieym) S Al-
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For ease of notation, we will write V for Wi and V7, for Wiey,(m),s (where we
understand that Vg, = @ if {e}.(n) does not converge). The strategy for meeting Q.
while respecting Ro, Ra, ...Re_1 is as follows. Wait for a stage s so that Unen Vi,
contains all the elements of each set F, assigned to any requirement R;, i < e, If such-
a stage does not exist then U,exy Wieym) # N and Q. is satisfied. At stage s, choose n
such that V7, does not contain any element of any such F;,. Assign V¢ to Q.. We then
attempt to meet Qs by enumerating all of V)¢ into A. However this threatens to interfere
with requirements Ry, ¢ > e, as this V,* may contain elements from almost every F.,.
To avoid this conflict, we enumerate an element of ¥ into A only if we discover a new
F,,, which we can certify is disjoint from V¢ (by virtue of being entirely contained in the
union of other sets V? for ¢ # n). Thusif V! N A4 is infinite the requirement is met since
V. is infinite but also we are assured of having infinitely many sets F,, not interfered
with by Q. and so available for use by requirements R;, ¢ > e.

The details of combining the strategies for various Q. are straightforward and are
omitted. m

The next four theorems and their corollaries concern degree-theoretic and set-theoretic
splitting properties of array nonrecursive sets,

Theorem 3.4 For every array nonrecursive set A there are disjoint array nonrecursive
sets Ag and A; such that A = AgU A;.

Proof. Suppose that A is array nonrecursive with respect to the very strong array
{Fr}nen. For each e € N and ¢ € {0,1} we have the requirement

R.;: (In}[W.NF, = A;NEF,].

To meet R.; we will enumerate a certain set V,; and use the fact that

(18) (3 n)[Ves N F, = ANF,].

During the course of the construction, we will reserve certain n for R, ;. Each n may
be reserved for at most one requirement R.; at any one stage, but the reservation
may be cancelled at a later stage for the purpose of reserving n for a requirement of
higher priority. (The intention of these reservations is that there will be some n which is
reserved for R, ; and for which W.NF,, = ANF,.) The priority order of the requirements
R.: is in order of increasing {e,z). '

CONSTRUCTION.

Stage s + 1

Step 1. For each z € A,;1 — A, let n be the integer such that x € F,. If n is
reserved for the requirement R.;, then enumerate z in A4;. If n is not reserved for any
requirement, enumerate x in Aj.

Step 2. For each z and e, if 2 € W, ;41 — W,,, # € F,,, and n is reserved for a
requirement R.;, then enumerate z in V,;.
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Step 3. R.; requires atiention at stage s + 1 if

(19) (Vn)[n is reserved for R,; = W, , N F, # A4;, N F,], and
(20) (In)[A, N F, = 0 and n is not reserved for any R;; such that {f,7) < (e, i}]

If such a pair e, exists, choose the pair such that (e,:) is least and let » be the least
integer satisfying (20) for e,i. Perform the following actions for these fixed e,i,n.
Reserve n for R, ;. Cancel any other reservation of n. Enumerate all of W, ,4; N F, into
Ve,i. This ends the construction.

Lemma 3.5 If n is reserved for R.;, and that reservation is never cancelled, then
WenFn - I/e,ann ﬂ-nd AinFn =AnFﬂ_-

Proof. The first clause of the conclusion is by steps (2) and (3) of the construction.
To see that A; N F,, = AN F,, notice that at the stage that n is first reserved for R, ,
A NF, =A,NE, (=) by (20). Step (1) guarantees that this equality is maintained
for all later stages. 0O

Lemma 3.6 If V.; N F, # 8, then n is reserved for R.; or some requirement of higher
priority at cofinitely many stages.

Lemma 3.7 Each requirement R, ; receives atiention only finitely often and is satisfied.

Proof. Given e, 1, let sy be such that if {f, j} < (e, 1), R;; does not receive attention
after so. By (18), there are infinitely many n such that V,; N F, = ANF,. Let n be
any such n which is not reserved for Ry ; for any (f,j) < (e,:). There are two cases.

Case (i): n is reserved for R.; at some stage of the construction. Then by Lemma
3.3, W.NF, =V,;NF, = ANF, = 4;NF,. Thus R, is satisfied. Let s, be a stage such
that W, ,, N F, = W, N F, and A; ,NF, = A; N F,. Then by (19), R.; never receives
attention after stage s;.

Case (ii): n is never reserved for R.;. Then by Lemma 3.6, V,; N F,, = §. Thus
ANF, =§. Thus (20) applies to n at cofinitely many stages of the construction. Since
n is never reserved for R, ;, it must be that R, ; receives attention only finitely often and
that at cofinitely many stages of the construction (19) fails. This implies the existence
of m such that W, N F,, = A; N F,, and hence that the requirement is satisfied. m

It is clear that the requirements to make each set Ay and A; of low r. e. degree can be
combined with the construction of Theorem 3.4. Thus we have the following corollary
which was first proved (directly) by Cameron Smith.

Corollary 3.8 For every array nonrecursive degree a there 15 an array nonrecursive
degree b < a such that b is low.

It is not true that if A is a. n. r. and A is the disjoint union of sets Ay and A;, then
at least one of A or A; is anr. However this result is true up to degree. In fact we have
the stronger result of the next theorem.
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Theorem 3.9 Suppose that A <y Ao ® Ay and that A 13 array nonrecursive. Then
there are r. e. sets By and By such thaet B; < A; and one of By or By is array
noONTECUTIIVE.

Proof. Let {Fo}nen and {E.}nen be very strong arrays such that |E,| > 2|F; |
for every : and n > i. We first show that we may assume that A is F-a. n. r. and
A = ApU A;. To see this we first notice that since A is array non-recursive, the wtt-
degree of A contains an array-nonrecursive set A. This follows from Corollary 2.9. We
next rely on the following lemma of Lachlan [L].

Lemma 3.10 Suppose that B, By, and By are r. e. sets such that B <.y Bo & Bj.
Then there are 1. e. sets Cy and C) such that Cy <,y By, C1 S By, and B = CoUC,.

Applying the lemma with B = A gives sets Ay and A; such that 4 = A4, U 4, and

A; <wit A;- The sets B; which result from the proof of the theorem satisfy B; <y A;
and thus B; <, A;. We shall also assume that A4, 4y, and A, are enumerated so that

(21) As = AO,s U Al,s-
We will meet the following requirements for every e, j € N:

R.;: (@n)W.NF,=B,NF,or W;NF, =B NF,]L

(These requirements suffice to make one of By or By F-a. n. r. since if e is such that
there is no n with W, N F,, = By N F,, then the satisfaction of R, ; for all j € N implies
that B; is F-a. n. r.) As in Theorem 2.5, we will reserve the sets Fuoy, Frigy, ... for
requirement R.; where ¢ = (e, j). We will use the fact that A is a. n. r. by enumerating
r. e. sets V; and assuming that

(G n)ViNE, = AN E,).

To insure that B; <u A; we will use permitting as follows. We allow y € Fliny to enter
By (B;) at stage s + 1 only Ay (A;) E-permits n at stage s + 1.

Fix e and j and let ¢ = (e,7). Requirement R, ; is split into the following subre-
quirements for all n > {e, 7).

Re,j,n : VinE,=ANE, = [We N .F(;,n) = ByN Ip(;'n> or T/VJ., N F(,"n) =B N F(i,n)].

We describe the construction for R. ;, as a two-state automaton as in Theorem 2.5.
As in Theorem 2.5, we say that R, ;, is in state S) at stage s if the condition for state
51 in Figure 2 holds. Otherwise R, is in state S; at stage s and the construction
guarantees that if this happens, the condition in the diagram for state S, holds. In order
to accomplish this, the action corresponding to arrow @, is the same as that of Theorem
2.5. That is, if R, ;, is in state S; at stage s but not at stage s + 1, we enumerate
an element of E, into V; if necessary to cause the condition of state S; to hold. Since
this happens only if an element of Fii ny is enumerated in W, or W; at stage s + 1, this
action need only be performed at most 2|F;»y| many times. Since |E,| > 2|Fj | if
n > 1, we will be able to perform this action. Similarly, if s is such that the condition
of state S holds at s but fails at s + 1, we must be able to ensure that the condition
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Sy S,
Wg,, N .F(,' n) = By, N F'(:' ) ay: Weor W; cha,nges -

or VisNE, #A,NE,
Wes N Flimy = B1s N Fupy ) 92 A changes on E,

Figure 2: State diagram of the construction.

of state Sy holds at stage s + 1. For such an s, it must be the case that an element of

E,, is enumerated into A at stage s + 1, and hence by (21), that element is enumerated

in either Ap or A; at stage s + 1. By our condition on permitting, this allows us to

enumerate elements of Fi;,) into either By or B, at stage s 4 1, thereby guaranteeing"
that R. ;. is in state ) at stage s + 1.

CONSTRUCTION.

Stage s+ 1
Step 1. (Arrow ay.) For every triple e, 7, n such that {e,j) < n, if W, N Fieiny #
Bo,s N Fie,i)ny and Ao E-permits n at stage s + 1, enumerate all of W ,41 N Fe, )0y into
By and similarly for W;, A, and B, in place of W, Ag and B,.
Step 2. (Arrow a,.) For each triple e, j, n, if
(8) Weat1 N Fiie,ipny # Bost1 N Fge,iyny, a0d
(b) Wiss1 N Fiejyny # Brotr N Fie,smyy but
(€) Wes N Fie,iymy = Bos N Fteiyny O Wis N Ftejymy = Br,s N Fieihnys

then enumerate one element of E, — Vje,j),s,if necessary, into Ve 5y so that Vie jy .41 N By #
Asp1NE,. (Such an element will exist by the construction.) This ends the construction.

The relevant lemmas, parallel in statement and proof (which is omitted), to those
of Theorem 2.5 are

Lemma 3.11 Bo Swtt Ao,‘ Bl Swtt. A1.

Lemma 3.12 For every e, j, R, ; is satisfied. m

The following cdrollary follows directly from the Theorem and Corollary 2.8.

. Corollary 3.13 Suppose that A <yu Ao ® A; end that A i3 array nonrecursive. Then

the weak-truth-table degree of either Ag or A; contains an array nonrecursive set.
An immediate consequence of the preceding corollary is the following.

Corollary 3.14 The array recursive wit-degrees form an ideal in the uppersemilaitice
of r. e. wit-degrees. '
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Proof. By the corollary, the array recursive wtt-degrees are closed under join. By
Corollary 2.8, the array recursive wtt-degrees are closed downward. m

The analogue of Corollary 3.13 and hence of Corollary 3.14 is not available for the
Turing degrees as we now show in Theorem 3.15.

Theorem 3.15 There are 7. e. degrees ag and a; such that agUa; = 0’ and ay and a,
are array recursive.

Proof. Fix a v. s. a. {F, }nen such that |F,] > 2% for all n € N. We construct sets
Ao and A, of array recursive degree by showing that every set recursive in either is not
F-a. n. r. To do this, as in the proof of Theorem 2.10, we enumerate sets V, and U, so
that for every e and n > e the following requirements are satisfied.

R.,: ®.(4o)=B.=>V.nNF,£B.NF,

Qern: @(A1)=B.=>UNF,#£B,NF,
Here (®., B,).cn enumerates all pairs (®, B) of reductions ® and r. e. sets B. To

guarantee that K <t Ao @ A, we will define a recursive function 4 : N2 — N such that

(22) limy(z, s) exists;

(23)y(z,5 + 1) # v(,s) only if (Jy < (z, S))[?J € Agss1 — Ao O Y € Ay op1 — A
(24) i z € K,y1 — K, then (y < 4(=, )y € Aoyss1 — Aoy O Y € Ay op1 — Ayl

The existence of such a function v implies that K <t Ay @ A;; the fact that ~ depends
on s makes this a Turing reduction rather than a weak-truth-table reduction which is
prohibited by Theorem 3.9. We define y(z,0) = z for all z € N.

The two-state automaton corresponding to requirement R, is in Figure 3.

S}_ SZ
a . QC(AQ) = Be on F"L

®. (Ao, 2) # B, , for

.‘fe,anFn#B r-’nFn
some ¢ € F, az : B, changes on F, e

Figure 3: State diagram of the construction.

Arrow a, is traversed at any stage s+ 1 such that . .41(A0s41,2) = B, op1(z) for all
T € F,. At this stage, we enumerate as usual into V, to cause Vest1 Ny #£ B, gy NF,.
We also take further action to attempt to preserve all the computations D, 511(Ao, 541, T)
for z € F,. Suppose that it is possible to preserve these computations forever and
suppose there is a stage t + 1 > s 4 1 at which the condition of state S, fails. This
implies that an integer # € F, is enumerated in B, at stage ¢ + 1. But then we have
that ®etr1(Aoss1) = Pep41(Ao,s41) = Begi1 # Bejrya and this disagreement is preserved
forever. Thus requirement R, remains in state S; forever and is satisfied. The bound -
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on |F,| above reflects the fact that in taking action a; we will not always be able to
preserve all computations because of the requirements for coding K. We will ensure that
the action n is injured fewer that 2% times and thus that arrow @, requires traversal
at most 2" times.

CONSTRUCTION.

Stage s+ 1

Step 1. Let n be the least element of K, — K,. Enumerate y(n, s) into Ay. Define
¥(y,s + 1) = 4(y + s,5) for all y > n.

Step 2. (Arrow a,.) Requirement R., (Q.n) requires attention at stage s + 1 if

(25)@e,s+1(A0,3+1-; -'5) = Be,s+1(x) (@e,s-l-l(Al,s-I—l:x) = Be,s+1($)) for all z € Fn: and

(26) VesNFy=Be 1 NF, (Ues N Fy = Begy1 NF).

Let n be least and e least for n such that either R, , or Q., requires attention. If R, ,
requires attention do the following. Let u be the maximum element of Ay used in the
computations mentioned in (25). If v(n,s) < u, enumerate ¥(n, s) into A; and define
Yy,s+1) = v(y+s,3) for all y > n. (By the usual conventions on the use function of a
computation, y(y, s + 1) > u for all y > n. Thus this step has the effect of clearing the
computations of (25) of lower priority markers.) Also, choose z € F,, — V,,, (such will
exist) and enumerate z € V.. If instead Q. , requires attention but R, does not, attend
to Q.n just as R, , but with U., Ao, and A, in place of V., A4,, and A, respectively.
This ends the construction.

Lemma 3.16 For every e,n € N such that n > e, requirements R, , and Q.. receive
attention ot most 2% times and are satisfied.

Proof. We assume the lemma is true for all pairs e/, n' such that n' < n or n/ =
n,e' < e and give the proof for R, ,. The proof for Q,, is identical. Suppose that
R. ., receives attention at stage s + 1 and there is z e F,~V.,. ThenV (1 NF, #
B, ,41 N F,,. Furthermore, by (25) ®.,s+1(Ao,s41,2) = Bes11(z) for all z € F, so that if
these computatmns are never injured, either V.NF, # B.NF, or ®,(Ap) # B, and R.x
never requires attention after stage s + 1. Now by the definition of y(y,s+1) fory > n,
the computation in (25) can be injured at a later stage ¢ +1 only if y(y,t+ 1) = v(v, .s)
enters Ay for some y < n. This happens only if such a number y enters K at stage t+1 or
because a requirement R, or Q.1 for some e’ such that ¢/ < y < n receives attention
at stage ¢ + 1. Therefore there can be at most 7 + Focycn 2¥ v many stages s + 1 at
which R, recelves attentmn and is later 1nJured Thus R, receives attention at most
1+ 7+ Yocy<n 2¥* < 2% times. Since |F,| > 2%, F, — V. # 0. Thus, if &.(4) =
R.,, will receive attention enough times to enumera.te Ve to make V. N F, # B, N F
a

Lemma 3.17 K <t 4, @ A,.
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Proof. The definition of v satisfies (24) by step (1) of the construction. (23) is
satisfied since ¥(y, s) # y(y,s+1) only if some v(n, s) for n < y is enumerated in either
Ao or A; at stage s + 1, and + is increasing in its first argument. To see that (22) is
satisfied, note that v(y,s + 1) # 4(y, s) only if some n < y enters K at stage s + 1 or
some requirement R, . or Q. receives attention for some n < y. Because of Lemma
3.16, there are only finitely many such stages and thus (22) is satisfied. m

4 Natural multiple permitting arguments

In this section we prove the three main theorems, Theorems 1.6, 1.7, and 1.8 promised
in Section 1. In each, we show that a certain construction from elsewhere in recursion
theory can be done below precisely the a. n. r. degrees. Thus, besides characterizing
the degrees which admit these constructions by a simple recursion theoretic property,
these constructions show that the notion of multiple permitting considered here is quite
natural.

Theorem 4.1 Let f be a strictly increasing recursive function. Then the r. e. degree
a 13 a. n. 7. iff there is a degree b < a (not necessarily r. e.) such that some set B of
degree b is not f-r. e,

Proof. (only if). Let {F,},en be a very strong array such that |F,| > f({e,n}) for
every n and e < n. Let A € a such that A is F-a. n. r. We shall define B by giving
a recursive approximation {B,}.,en of B so that for every pair (e,n), B,11{{e,n)) #
B,({e,n)) only if A F-permits n. Then, by a suitable analogue to Lemma 2.4, B <t A.
The requirements to make B not f-r. e. are as follows. Let {¢.}.eny be a recursive
enumeration of the partial recursive binary functions.

Re: if lim@(z,y) = B(z) then (Fz)[{y : ¢e(2,y) # ¢e(z,y + 1)} > f(2)].
To meet R,, as usual we enumerate sets V, and use (8):

(27) G n)V.nF, = AN Fy).

For the witness z mentioned in requirement R., we use the numbers (e, 0), (e, 1)
We recast R, as the following sequence of requirements R, , for n > e.

gos e

Ren: V.NE,=ANF, = (e,n) witnesses R,.

In light of (27), the requirements R, for n > e are enough.

The strategy for meeting R., is represented by a two-state automaton. For the
purpose of describing the machine, we make the following definition. We say that ¢, is
correct on (e,n) at stage s if ¢.,({e,n),ys) = B,({e,n)) where y, is the greatest integer,
if such exists, such that ¢..({e,n},y;) converges. The machine is given by Figure 4.
Arrow g; is implemented in the usual way. That is, when ¢, is not correct on (e, n) at
s but is correct at s 4+ 1, we enumerate an element of F}, into V, if necessary to enter
state S,. For arrow a,, we define B,y so that ¢, is not correct on {e,n) at s+ 1. Since
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St Sa

a1 : ¢. changes on (e, n)

-~

$. is not correct on {e,n) Ves NF, #£ A,NF,
at s ag : A changes on F, ’

Figure 4: State diagram for construction.

arrow a. is traversed only if A F-permits n, we are allowed by our permitting condition
to do this. The important thing to notice is that for each complete traversal of the
machine from state S; to S; and back to §; again, there must exist a new y such that
pe({e,n},y) # de({e,n),y+1). Since |F,| > f({e,n)}), we will be able to force that there
are more than f({e,n)) suchy if V,NF, = ANEF, and lignd)e((e,n),y) = B({e,n}).

CONSTRUCTION.

Stage s + 1

Step 1. (Arrow ay) For every e and n > e such that A F-permits n at s +1 do the
following. Let y,41 be maximal, if such exists, such that ¢, ,;1({e,n),ys11) converges.
Define B,,;1({e,n)) so that B,.1({e,n)) # e s+1({€;n),Ys+1). For all z such that Byy;(z)
has not otherwise been defined in this step, define B,y,(z) = B,(z).

Step 2. (Arrow a;) For each ¢ and n 2> e, if ¢, is correct on {e,n) at s + 1 and
Ves N B, = Aypq1 N F,, enumerate the least element of F,, — V, , into V..

To see that R, is satisfied, suppose that V,NF, = ANF, and that lim, ¢.({e,n},y) =
B({e,n)). Step (2) then implies that arrow a; is traversed |F,| many times. Let s; < s3
be stages such that consecutive traversals of arrow a, are made at s;+ 1 and s3+1. Let
s2+1 be the intervening stage at which arrow a, is traversed. Thus ¢, , +1({e, n}, ¥s;41) =
By 11({e,n}), be,s541({€;7), Yss11) = Bagya({e, n)), and ¢e s, +1({€, 1}, Ysp41) #F Bsyr1({e, m)).
This implies the existence of y such that y, 41 < y < Ys41 such that ¢.({e,n),y) #
de({e,n},y + 1). The existence of |F,,| > f({e,n)) such y implies that R, , is satisfied.
O . :

(if}) Suppose that B € b is not f-r. e., and B <1 A. Let I' and 4 be such that
B = I'(A) with use function #; i.e., v(z, s) is the use of the computation I';(4,,z) at
stage s if the computation converges. We may assume that 4(z, s) is increasing in z. By
speeding up the enumeration of I' and A, we may also assume that I';(4;, z) is defined
for all s > z. We construct C <y A such that C is array nonrecursive. Fix a v. s. a.
{F.}nen. The requirements are

R.: (3n)[W.NnE,=CnNE,)

We devote the sets Fie o), Fley, - .- to Re.
To meet R, we will construct a recursive approximation {B¢},ey which threatens
to witness that B is f-r. e. Define Iie ) = {2 | [Flemy| < 2 < [Fiemtny|}. We split R, into
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the following requirements
R.n: W.NFyn =CNFy or B° works on I,y

where B® works on I ny means that for all z € I, ), we have that |{s | Bi(z) #
B i(z)} £ f(z) and lim, Bé(z) = B(m) Note that for a fixed e, the sets Ij. .y are
finite, disjoint, and have cofinite union. It is clear that the requirements R., are
sufficient to meet R.,.
The strategy for meeting R, , is given by the two-state automaton of Figure 5.

S Sy
ay : A changes on y{I. »

Bi(z) = I'y(A,, z) for all

We,s N F(e,n) =Cs N F(e,n}
& € Liem) az : W, changes on Fi,

Figure 5: State diagram for the construction.

In Figure 5, y[I(¢ny] denotes max{y |y < 7(z, s) for some z € I\, .y}. We begin the
strategy for R., at stage so such that s = max I .y + 1. At this stage, I';,(A4,,, %)
converges for all £ € Ijny and we set Bj(z) = I'y,(As, z) for all ¢ < so. Thus, at stage
so, we are in state 5; of figure 5. While I'y(A,, ) = ['spa1(Aspa, ) for all & € Ip, y, we
set Byy1(z) = B,(z) and remain in state S; (without any changes in our approximation
to B). Suppose that s > sg is such that T'yy1(A.41,2) # Te(4,,2) for some z € I, .
Then it must be the case that (Jy < y(z,s))[y € A,y — A,]. We take this to be our
permitting condition and thus are allowed to follow arrow a; at stage s + 1 and set
Cyt1 N Fien) = We,eg1 N Flony. While in state S, we also cause B,1(z) = B,(z) for all
T € Ife ny. We remain in state S; unless there is s such that W, changes on Fieny at stage
s + 1. For such an s, we pass to state S; by defining B,.;(z) = I';11(A,41,2) for all
z € Iieny. Notice that the above construction requires us to change the approximation
to B at a stage s + 1 on @ € Ij 5y only if arrow a, is traversed at stage s + 1. This can
occur only Fieny times. Since f(z) > |Fieny| for all # € I ny, our approximation B, to
B does not change too often. Furthermore, if the construction for R, , ends in state
51, we have that lim, B(z) = B(z) for all z € I, .y and R, is satisfied. On the other
hand, if the construction for R., ends in state S,, the requirement R, is satisfied (on
Fieny)- Note also that our permitting condition guarantees that C' <t A. There are no
conflicts among the various requirements R,,. We omit the description of the whole
construction as it is now quite routine. m

We now use Theorem 4.1 to improve the classification begun in Section 3 of the

a. n. 1. degrees in terms of the jump operator. We use the following result of Jockusch
[J2, Theorem 1].

Lemma 4.2 If a is any 7. e. degree then a' > 0" iff the recursive sets are uniformly of
degree < a.
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- We now have the following Corollary of Theorem 4.1.
Corollary 4.3 Ifa is an r. e. degree such that a"” > 0", then a is array nonrecursive.

Proof. Suppose that a is array recursive. By the theorem, this implies that if f isa
strictly increasing function, then every set B such that deg(B) < ais f-r. e. It is easy
to see that this irﬁplies that the sets recursive in a are uniformly <,;; K and hence of
degree < 0. By the relativization of Lemma 4.2 to a, we have that 0’ is high over a;
l.e,0"=a" m

The result of Corollary 4.3 is best possible since Downey [D2, Theorem 1.3] has
shown that there are array recursive degrees that are low; but not low. The easiest way
that we know to construct such a degree is indirect. First, it is possible to construct an
r. e. l-topped degree which is array recursive. This is done by modifying a construction
of Downey and Jockusch [DJ, Theorem 2.1). Then we use the fact, also proved in [DJ,
Theorems 3.1, 3.2), that all nonzero 1-topped r. e. degrees are complete or low, but not
low.

A. Kuéera and the authors have observed that Theorem 4.1 can be used in con-
junction with other results to give a new proof of Theorem 2.10. First, observe that
a straightforward modification of the proof of the low basis theorem [JS, Theorem 2.1}
shows that every nonempty, recursively bounded II class has an element A such that,
for some recursive function f, every set B r. e. in A is f-r. e. Applying this to such a I1?
class which contains only sets of fixed-point-free degree (see [K, Remark 1]), there is a
set A of fixed-point-free degree and a function f such that every set Br. e, in A is f-r.
e. Then by Kuéera’s result that every fixed-point-free degee below 0’ bounds a nonzero
r. e. degree [K, Theorem 1], there is a nonrecursive r. e. set C recursive in A. The degree
of C is array recursive by Theorem 4.1. Corollaries 2.11 and 2.12 of 2.10 follow by the
same argument, since every fixed-point-free degree below 0’ bounds a promptly simple
degree by [K, Remark 2].

In [JS, Theorem 1], Jockusch and Soare show that every degree which contains a
consistent extension of Peano arithmetic bounds an incomparable pair of degrees. Used
in the proof of that theorem is a construction of two pairs By, Cp and B;, C; of r. e. sets
such that By N Cp = B, N C; = 0 and whenever S separates By and Cp and T separates
S1 and Cj, then § and T' are Turing incomparable. We now show that this construction
can be done below precisely the array nonrecursive degrees.

Theorem 4.4 For r.e. sets A, the following ere equivalent:

(a) A has a. n. 7. degree,

(b) there are disjoint r.e. sets B and C each recursive in A such that BUC is coinfinite
and no set of degree 0" separates B and C,

(c) there exist two disjoint pairs of r.e. sets Bo,Cy and By,C) such that B; U C;
is coinfinite for i = 0,1, each set B;, C; is recursive in A, and each set which
separates (By, Cy) 18 incomparable with each which separates (By,Cy).
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Proof. (¢)=(b) is easy; let B = By, C' = C.

(a)=(c). We first review the construction of By, Cp, By, and Cy when there is no
requirement that any of these sets be recursive in A. Let Ry.4; (7 =0 or j = 1) be the
requirement that if S is any separating set for B;, C;, and T is any separating set for
B,.j, Cy_j, then S # {e}T. The basic strategy for Ry, ; is to choose a witness w and
wait for a stage s such that for some set T with max(T') < s, T separates B;_;,, Ci.js,
and {e}?(w) = Owor 1. Let u be the use in the computation {e}?(w). At stage s + 1,
we enumerate all elements of T into B;._; and all elements of T which are less than u
into Cy_;. This insures that T'[u] = T’[u] for any set T' which separates By_js4+1 and
Ci_js+1 and hence for any set T’ which separates B;_; and C;_;. Now if {e}¥(w) =0
we enumerate w into B; and if {e}¥(w) = 1 we enumerate w into C;. This meets the
requirement forever.

To combine the requirements, we use many witnesses for each requirement. Specif-
ically, if ¥ witnesses are assigned to requirements R., for m < n, we use 2* witnesses
for R,; i.e., one for every subset D of the set W of witnesses for the requirements R,,,
for m < n. If witness wp corresponds to D C W, it is handled as above except that
one considers only separating sets ' with TN W = D, and Rq.4; does not cause any
elements of W to be enumerated into B;_; or C;_;. Whenever a witness w for Ryeq;
is enumerated into B; or C; by a requirement Ro;y(1-;) of higher priority, then w is
replaced by a new witness w’ for Rg.4; which is not yet in B; or C;. Thus requirements
Roc+; of lower priority than Ra;y; must consider new possibilites for sets D contained
in the witnesses assigned to requirements (such as Rgy;,.;) of higher priority than Rjey;.
Nonetheless, it is easy to compute a recursive upper bound w(n) for the number of
witnesses ever assigned to R,. This is not important for the basic existence result we
have been discussing but it is crucial to carrying it out below a given array nonrecursive
degree.

To make the sets we construct recursive in a given array nonrecursive set A, we first
choose a very strong array {Fp,}n.en such that each F), has sufficiently large cardinality
(to be specified later). We shall assume that A is F-a. n. r. since by Theorem 2.5 there
is a set A of the same degree as A which is F-a. n. r. If X is any one of the sets By,
Co, By, €y, we shall guarantee that X <¢ A by the condition: z € X,;; — X, only if
A F-permits z at stage s + 1. The requirements R;, above, are replaced by infinitely
many requirements

Ryi: ANnEF =V,NF = R; holds

where V; is an auxiliary r. e. set enumerated during the construction. We meet Ry;
only for ¢ > & which suffices by (8). We assign priorities to the requirements Ry in
increasing order of (k,1}.

- We now describe the strategy for meeting Ry ; which is similar but not identical to
that for R;. The basic idea is to make Vi, N F; # A, N F; by enumerating an element
of F: whenever permission is needed to enumerate an element > 7 into one of By, Co,
By, or C). If AN F; = Vi, N F;, then the desired permission must occur, The set F;
will be of sufficiently large cardinality so that an element of F} will always be available.
Let W be the set of numbers which are less than ¢ or are witnesses for requirements
of higher priority than Ry ; (and thus either cannot be forced to be permitted by the
above method or-cannot be enumerated by Ry ;). Actually, W depends on the stage.
For each set D C W, assign a witness wp > ¢ to Ry ;. Suppose that k = 2e+j. Wait for
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a stage s such that there is a set T with max(T) < s, T separates B;_;, and Cy_;,, and
{e}T(wp) = 0 or 1. Now restrain B;_; and C;_; through the use of this computation.
(Notice that this restraint was not involved in the original strategy for Ry. It is needed
now to ensure that T is still a separating set when, if ever, we get permission for the
desired enumerations.) If Vi, N F; = A, N F;, enumerate the least element of F; — V;,
into V. As usual, this element will exist by the construction and the choice of the F;.
Assign new witnesses to all requirements of lower priority than Ry ;. If there is a stage
t > s such that A F-permits ¢ at stage ¢, and no requirement of higher priority. than
R ; has acted between s and ¢, then the obvious enumerations should be made to meet
R ; for all separating sets T with 7' N W = D. Specifically, let T be, as before, a set
separating B;_;, and C;_;, with maxT < s and {e}Z(wp) = 0 or 1 with use u and
TNW = D. Enumerate all elements of T' — W into B;_; and all elements of TnW
into Cy_;. If {e}T(wp) = 0, put wp into B;, and otherwise put wp into Cj;. Assign new
witnesses to all requirements of lower priority than Ry ;.

It is a standard finite injury argument to see that the above procedure works. The
main point is that we can in advance choose the sets F; to be of sufficiently large
cardinality. We first define, by recursion on (k,7), a recursive bound w(k,7) on the
number of witnesses ever assigned to Ry;. Let ¢ = S {w(k’,i)|{k',¢') < (k,7}}, so that
¢ bounds the total number of witnesses ever assigned to requirements of higher priority
than Ry;. Since any requirement acts at most twice using any given witness, there
are at most 2c¢ stages at which requirements of higher priority than Ry ; act. At any
such stage, at most 2+° witnesses are assigned to Ry, so we may set w(k,i) = 2c2ite,
Finally, it suffices for the cardinality of F; to be at least the number of witnesses for
Ry for each k < 4, since each witness can causes at most one element of F; to enter V.
We thus require that |F;| = max{w(k,?)|k <¢}. O |

(b)=(a). Let {F,.}.en be a very strong array. We construct A <t B ® C to meet
R.: (In)W.NF,=ANF,].

As usual, we reserve the sets Fi. ., ¢ € N for meeting R.. We first give the construction
of A. We show that if the construction fails to meet R, for some e, then there is a A
set X such that K <t X and X separates the pair B,C.

Define a recursive function g by the two conditions

9(e,0) = 14 (F0| foreveryee N
gle,i+1) = gle,i)+ 1+ |Fpiny] for every e,i € N.
At any stage in the c;onstruction, let dp, < dy, < da,... be the elements of B, U C,.

To ensure that A <p B & C, we require that if x € A1 — 4, and z € Fi; then
dg(e,it1),s F dy(ei+1),s+1. Let d, denote lim, dy, ,.

CONSTRUCTION.
Stage s+ 1

For every e and i, if W, N Fiegy # A, N Fley and dgei1),s # dy(e,i+1),041, then
enumerate all of W, .13 N Fi.; into A at stage s+ 1. This ends the construction of A.
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To see that each requirement R, is satisfied, suppose otherwise and fix e such that
R. is not satisfled; i. e., that W, N Fiey # AN Fe for all i € N. We shall define a A9
set X such that K <r X, X D B and X N C = . We specify X by giving a recursive
approximation {X,}sen.

We first describe the idea behind the construction of X. Let Dy = {do, dy,... 1 dg(e,0)}
and let D; = {dy(e;i—1)415+++,dy(e,p} for all 2 > 0. Since d, € BUC for every y, we are
free to enumerate elements of D; in or out of X as we wish. QObserve that our choice
of g guarantees that |D;| = 14 |F, 5| for all i. We will use the set D; to code into X
whether ¢ € K and also to code into X the set D;y;. (Thus X will be able to compute
inductively for each integer n whether n € K.) The coding into D; will be tied to the
attempt to meet R, via Fi.; so that the fact that W, N Fi.y # AN Fiey will allow the
coding to be successful. Figure 6 gives the two-state diagram for the coding for 3.

S1 SZ

a1 : dy(eiy1) changes

Code i € K and D;y, T
into X N D; ay : W, changes

Wc,s N -F(e,i) = A-s N F'(e,t')

Figure 6: State diagram for the construction of X.

We call Figure 6 the i-module. The action that we take for the i-module at any
stage s + 1 is predicated on the assumption that the current approximation to D; is
correct. Arrow a; of the é-module corresponds exactly to the construction of A given
above. Also, if a; is traversed at stage s + 1, this indicates that the hypothesis of the
j-module for all § > ¢ is false for all stages < s so we restart each of these modules at
stage s + 1. This is the intent of Step 1 of the construction of X below. If arrow a, is
traversed or 7 is enumerated in K at stage s+ 1, step 2 of the construction below codes
this event in X by using an element of (the current approximation to) D;. This coding
is enough for X to recover D,y from D;. We now give the formal construction of X
and the verification.

CONSTRUCTION.

Define Xy = . Having defined X,, we define X,;; in steps. (For convenience, if we do
not specify whether n € X,,,, then n € X, if and only if n € X,.)

Stage s +1

Step 1. Let ¢ be least, if any, such that dg(. ) .41 # dy(e,),s» Remove from X all
integers ¥ > dygei—1),s (¥ = 0 if 7 = 0).

. Step 2. Let ¢ be least, if any, such that 7 € K,;y — K, or such that Wes41 N Fley #
AstaNFiey but W ;N Fleiy = A, NFeqy. Let j be least such that g(e, i—1) < j < gle,i)
and djs41 & X,. (We will argue in Lemma 4.7 that such a j exists.) Enumerate d; o1
into X. .

Step 3. Enumerate each y in B, into X.
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Lemma 4.5 1i§r1Xs ezists,

Proof. Only step 1 causes removal of any element of X. It is clear from step 1 that
any integer y may be removed finitely often. 0O

Lemma 4.6 XD Band XNC =0.

Proof. X D B by step 3 of the construction. Suppose that y € C is enumerated
into X at some stage s + 1. Then by the construction, y = d; .4+ for some j. Since
y € C, there is t > s 4 1 such that d;; # d;+41. Thus by step 1, y is removed from X
‘at stage t + 1 (if not before). O

Lemma 4.7 K <p X.

Proof. Let s; be the least stage such that dg(e),si = dg(e,i)- By the construction,
all integers in D; are removed from X at stage s;. Now for any such integer, d;, d; is
enumerated into X at a stage s +1 > s; only if step 2 applies to 7 at stage s + 1; i. e. if
it € K, — K, or W, changes on F.; at stage s+ 1. This can happen at most 1+ |F(e,,->|
times. This proves the claim in the construction that j exists with g(e,i—1) < j < g(e,?)
and d;s41 & X,.

Now to compute K from X, we assume by induction that we know D; and show
how to compute from X whether ¢ € K and D;;;. We can assume that we know Dy
since it is a finite set. Given D;, let s be a stage such that Wes N Fleiy # Ay N Fiepy,
dy(e,i)s = dge,i), and such that for all y < ¢(e,?), d, € X iff d, € X,. Then by step 2 of
the construction, 7 € K iff i € K,. We claim also that dy(eis1),s = dg(e,i+1). For otherwise
let 2 > s be such that dy(ei11),e41 # dg(eit1)s- Then W i1 N Fley = Ay N Fleyiy by the
construction of A. Thus there is u > ¢ + 1 such that W, o1 N Fleiy # Aug1 N Fieiy but
Weu N Fie sy = Ay N Fieyy. Then by step 2 of the enumeration of X, an element of D; is
enumerated in X at stage v + 1 contrary to the assumption on s. Thus, at stage s we
also know D;y;. =

Let @ denote the free Boolean algebra generated by a fixed recursive set {p;|i € N}
of literals. A (propositional) theory can be viewed as a filter of ). We consider r. e.
theories. Anr. e. theory is well-generated if it is generated by a pair of sets {p;|: € B}
and {-p;[i € C}. It is well-known that if an r. e. theory T is well-generated and the
r. e. sets B and C are recursively inseparable, then T is essentially undecidable. We
examine such theories which in addition have relatively few r. e. extensions.

Definition 4.8 An r. e. propositional theory is Martin—Pour-El if it is well-generated,
essentially undecidable, and every r. e. eztension of T is a principal extension. (That
18, if T CW and W is a consistent v, e. theory, then there 1s ¢ € Q such that W is the
theory generated by T and ¢.) :

Martin and Pour-El [MP, Theorem I] showed the existence of such theories. Downey
in his thesis and in [D1], obtained numerous related results, including a number of results
on the possible Turing degrees of such theories. The next theorem, together with the
results of sections 2 and 3 considerably extend these results.
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Theorem 4.9 An r. e. degree a is array nonrecursive if and only if there is ¢ Martin—
Pour-El theory T of degree a.

Proof. (only if) We first review the construction of a Martin—Pour-El theory T
without the requirement that T be of a particular a. n. r. degree a. Let {S,}nen
be an enumeration of the r. e. consistent theories. If F C Q, we write F™* for the
theory generated by F. We will construct 7' in stages so that T}, will denote the theory
constructed by stage s. For each s, Tyy; will be of the form (T, U F)* where F is a finite
set of literals or their negations. At each stage s, we will denote by dos < dis <...the
set {p:|pi, ~p; & T, }; the ordering of the literals is that given by py < p; < .... We will
use €p; to denote either p; or ~p;.

For each e € N we have the requirements:

R.: 0€(TUS) = F)[(TU{z})*=(TUS.), and
N.: lign d. , exists.

The requirements N, guarantee that T is incomplete and consistent. The requirements
R. guarantee that every r. e. extension of T is principal over T. Together these require-
ments and the fact that T' is well-generated guarantee that T is essentially undecidable.
To meet R, we shall construct a finite set Q. such that z = AQ, is the witness for
R.. Q. will be constructed in stages; @, , is the finite set constructed by stage s and
Qe = lim, Qe,_‘,.

We say that R. requires attention at stage s+1if (Jy)[y € S5, y & (T3UQe,s)* and 0 ¢
(Ts U S.,)*]. If y is least with this property, we say that R, requires attention at s + 1
e y. We will assume that S, consists of elements of the form \/ €:P;.

CONSTRUCTION.

Stage 0

Let Tp = Q.0 = 0 for every e € N.

Stage s + 1 ‘ :

Find the least e such that R, requires attention and let y be such that R, requires
attention via y. Define F = {-¢;d;,|€id; , occurs in y and ¢ > e}. Let Tyyy = (T, U F)*
and Qest1 = Qe,s U {y}. Fori #e, let Q;.41 = Q;,. This ends the construction.

We show that the construction succeeds in two lemmas.

Lemma 4.10 If R, receives attention at stege s -1 via y, then there exists a Boolean
combination Of {dO,sa d]_,, . de—l,s} = {d0’3.|_1, d1’3+1 TN de-l,s+1} such that T,+1 F Yy e T

Proof. We write y as a disjunction of the form

Vedi, VYV adis v V eV V ep

i<e i>e eipi €T, =& pi €T,

Thus y has the form zV 2V mVn. Since F £ — y, it suffices to show that T Fy—a
Now if m # Q, then y € T, since F m — y and m € T,. But then R, does not require
attention via y. Thus m = 0. Now —-n € T,;; by definition of n, and -z € T\, by
construction so it follows that T,y; F ¥y — z as desired. O
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Lemma 4.11 For every e, Q. i3 finite (and hence R, is satisfied and lim, d. , ezists).

Proof. Assume by induction that for all i < e, lim, d; s exists and let sp be such
that for all ¢ < e, lim, d; s = di;,. Suppose that R. receives attention via y at a stage
s+1 > so. Then by Lemma 4.10, there is z, a disjunction of some of the d; ,,, ¢ < e, and
their negations such that Tyy; F y < z. Thus (Ty41 U Qcs41)* F = (since y € Q. oi1)-
However (T, UQ.,)* i/ = since otherwise y € (T, UQ.,.)*, contradicting that R, requires
attention via y. Thus, for each stage s + 1 > sp such that R, requires attention, a new
disjunction z of the literals d;,,, ¢ < e , or their negations is used. There are only 2%
such disjunctions. Thus R, receives attention only finitely often after so, Q. is finite,
and thus R, is satisfied. O

Of course the key fact in the above construction is that requirement R, requires
attention only 2%¢ times, at most, after requirements R;, ¢ < e, have ceased acting.

-We now include the requirements that 7' be Turing computable from A for a fixed
array nonrecursive set A. (We construct T <t A. A simple coding strategy similar
to that of the previous theorem can be used to make T' =1 A.) Let f be a recursive
function defined by the conditions: f(0) =1 and f(i+1) = 2%+2 Zf,‘:o f(7) foralli > 0.
We assume that A is array nonrecursive for a fixed v. s. a. {F, },en such that |F| > f(2)
for all 7. As usual, we conceive of requirement R, as consisting of subrequirements

R.;: Ve.NE, = ANF;, = R, holds

where V, is an auxiliary r. e. set which we enumerate. We need only meet cofinitely
many of these requirements for each e € N. (In this construction, unlike previous ones,
the confinite set of requirements R, ; which we meet for a fixed e is specified only by
recursive approximation.) Requirement R.; follows requirements Ny, Ny,,.., N;_; in
priority. The permitting condition is

d;s or ~d;, € Tgyy — T, only if A F-permits 7 at stage s + 1.

Since requirement R, ; uses F; and does not attempt to enumerate dy,...,d;_1,s or the
negations of these into 7, this permitting is appropriate.

The strategy for meeting a single R.; in isolation is the natural one. That is, R, ;
waits for a stage s +1 such that R, requires attention at stage s +1 via y in the sense of
the above construction. At such a stage, we cause V, 541 N F; % 4,41 NF; and enumerate
Yy € Qe At alater stage ¢ + 1 such that A F-permits ¢ at t + 1, we enumerate —¢;d;,
into T for every j > ¢ such that €;d;, occurs in y. Were there no other requirements,
R.; would be satisfied since |Fi| > 2% by exactly the proofs of Lemmas 4.10 and 4.11.

The strategy for Re; conflicts with that for R, ;, j # ¢, and for other requirements
R;. It may be the case, for instance, that by the stage ¢ + 1 such that A F-permits :
at stage t + 1, d;, # d;: and indeed that ¢;d;, € T;. Then the action specified for R, ;
results in making T3, inconsistent.

Two devices serve to relieve these conflicts. First, to minimize the interference of
R, with Ry for e < f, we do the following. We will insure that R, acts only finitely
often and at each stage s + 1 such that R, acts at stage s -+ 1 we will restart R;. We
will assume at stage s +1 the literals d;, that R, is concerned with satisfy j < s. Thus,
we specify that after stage s + 1, we shall only attempt to meet requirements R ; for
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J > s. Since these requirements do not disturb dj,, for j < s, this insures that R;; will
not injure whatever action was wanted for R, at stage s 4 1. We may also assume for
such stages s 41, that V.3 = 0 (by starting 2 “new” V;.) In the construction, m(f, s)
will denote the least ¢ such that we are attempting to meet Ry; at stage s.

The device to insure the cooperation of the requirements R,; and R, ; for j # i
is the following. Requirement R,; works under the assumption that for j < i there
will be no further permissions for R, ;. By the above, R.; may also work under the
assumption that Ry for f < e has ceased acting. Thus it is the assumption of R.; at
stage s that dos,...d;_1,, have attained their final values. Suppose then that at stage
s + 1, Re; requires attention via y. Then at stage s + 1 we activate not only R.;, but
all requirements R, ; such that ¢ < j < s (by causing V, 44 NF; # Ay NF; for all such
7). Let 41 be the least stage beyond s +1 such that A F-permits some such j at stage
t+ 1. Then R.; causes us to enumerate —exdy, into 7" for all k¥ > j such that eydy,
occurs in y. Notice first that di; = di,, for all such k because this is the first stage at
which such permission occurs. Thus, this action at stage ¢ + 1 is permissible. Notice
also that this action does not injure R, for this action only enumerates in T' terms that
requirement R.; would enumerate in T', given permission. Of course R, ; must now
be allowed to act again after stage ¢ + 1 (for a different y) since its assumption is that
there will be no further permissions for R., k < j. However any later action for R, ;
involves only literals di 4,4 for k > j. By the construction at ¢, no such literal occurs
in y and so such actions do not interfere with R.;. What this argument shows is that
R.,; does not interfere with R.; if ¢ < j and that R, ; is satisfied (in 2% attempts) if its
hypothesis is correct.

In the construction below, n(e,s) denotes the greatest integer such that R.; is
waiting for a permission for all j such that m(e,s) < j < n(e,s). (For convenience,
n(e,s) = m(e,s) — 1 denotes that there is no such j.) If defined, z(e, j,s) denotes the
term which R, ; wishes to enumerate in T if permitted (either d;, or —d;,).

CONSTRUCTION.

Stage 0

Define m(e, 0) = e, n(e,0) = m(e,0)—1 and let 2(e,?,0) be undefined for all e,z € N.
Stage s + 1

Requirement R, requires atfention at stage s + 1 if

(a) A F-permits n(e, s) and m(e,s) < n(e,s) or
(b) there is y € S, , such that y ¢ (T,UQ.,)* and 0 ¢ (T, U Se,s)*.

Let e be least such that R, requires attention at stage s + 1. For all f > e, let
m(f,s + 1) = max{f,s 4 1}, let V;, = 0, let n(f,s +1) = m(f,s +1) — 1, and
let z(f,é,s + 1) be undefined for all ¢. For f < e let m(f,s +1) = m(f,s) and let
n(f,s +1) = n{j, ).

If R, requires attention because of clause (a) above, let i be least such that A F-
permits i. For all j > ¢ such that z(e,7,s) is defined, enumerate z(e, j,s) into Tpyy
and let z(e,j,'s + 1) be undefined. Let n(e,s + 1) = i — 1. In this case we say that
requirements R, ; for j such that ¢ < j < n(e, s) receive permission at stage s + 1.
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If R, requires attention because of (b) above but not (a), let y be least satisfying
(b). Enumerate y in Q. s+1. Let y be written as a disjunction

Yy = v E;d{,_g vV V eidi,s \Y v €Pi \' V iy

i<n(e,s) i>n(e,s) eipi €T, —eipi €T

(As we argued in Lemma 4.10, the third term of the disjunction is vacuous.) For each
i > n(e, s) such that e;d;, occurs in y, set z(e,i,s + 1) = ~ed;,. Let n{e,s +1) = s.
For each i such that n(e,s) < i < n(e,s + 1), enumerate one integer, if necessary, into
Ve N F; so as to cause V, ;41 N F; 3 A,41 N F;. In this case, we say that requirements R.;
such that n(e,s) <i < ne,s + 1) receive attention at stage s + 1.

Ifm(e,s+1) is not otherwise specified by this construction, then m(e, s+1) = m(e, s).
Similarly, for n(e,s + 1) and z(e,?,s + 1). This ends the construction.

It suffices to prove the following lemma.

Lemma 4.12 For every e € N, the requirement R, is satisfied and receives attention
finttely often.

Proof. Fix ¢ € N. By induction, let sp be the least stage such that for all f < e
and s > sg, requirement Ry does not receive attention at s. Then m(e, so) is the final
value of Asmf(e, s), n(e, s0) = m(e,s0) — 1, and V, 5, = 0.

By induction on 7 > m(e, 8¢), we show that R, ; receives attention after sq fewer
than f(¢) times and is satisfied. If this is the case, then R, is satisfied (via the least
¢ > m(e, so) such that V., N F; = AN F;) and it is easy to see that this implies that R.
receives attention only finitely often. Fix ¢ > m(e, sp). We establish the following claim.

Claim Suppose that o < #; are stages > sg such that no requirement R. ; for j < ¢
receives attention or permission at any stage s such that { < s < #;. Then R.; receives
attention at at most 2% stages s such that ¢, < s <.

To prove the claim, suppose that R.; receives attention at stage s; + 1 such that
to £ 81+ 1 <. Let sy + 1 <ty be the least stage, if any, beyond s; + 1 such that A
F-permits ¢z at s; + 1. Then by induction on s, for all s such that s; +1 < s <85+ 1,
we have n(e, s) > ¢, d;,, = d;,, for all § <1, and 2(e,?,8) = 2(e, ¢,51 + 1). Furthermore
z(e,%,81 + 1) is enumerated in T at stage s; + 1. By the same argument applied to j
such that ¢ < j < n(e,s; + 1), we have that each value z(e, 7, s; + 1) defined at stage
51+ 1 is enumerated in T at or before stage s; + 1. Thus, for the y enumerated in @, at
stage s; + 1, we have enumerated into Ty, all the elements the basic strategy for R.
would have immediately enumerated into 7. Thus, applying the arguments of Lemmas
4.10 and 4.11, we see that requirement R, ; receives attention at most 2% times between
stages {g and #;.

To see that the claim is enough to prove the lemma, first note that the claim and the
choice of f imply that R, ; receives attention at most f(¢) times. Thus, since [ F}| > f(%),
an element of F; — V, is always available for R.; if it requires attention. Therefore, if
VeNF = ANF; and s is a stage such that no higher priority requirement that R.;
receives attention after s and such that V., NF; = V. N F; and A, N F; = AN F;, then
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R.; never receives attention after stage s. This implies both that R, is satisfied and
that R, never requires attention after stage s because of case (b). Thus R, receives
attention only finitely often. [

(if) Suppose that T is a Martin~Pour-El theory. We construct A array nonrecursive
such that A <1 T. Let a very strong array {F,}.cn be given. As usual we have the
requirements

R.: (@n)[W.NnF,=ANE,)

We reserve Fie oy, Fle,1), . . . for meeting R,. The proof is quite similar to that of Theorem
4.4, (b) implies (a). As in that theorem, we will first give the construction of A <p T
and then show that if the construction fails to meet R., then there is an r. e. theory
V O T which is not principal over T

As in the proof of the other direction of this theorem, let dp, < di s < - list the p;
in order of increasing ¢ such that neither p; nor —p; is in T,. Define a recursive function

g:N? = N as follows.

g(e,0) = 1+ |F.y| foreveryee€ N
gle,1) = gle,i—1)+ 1+ |Feiq1y| for everye€ N and i > 0.

To insure that A <p T, we require that z € A,4; — A, and = € F|,; implies that
dg(c:i)!"’ ié dg(e,i),s+1-

CONSTRUCTION.

Stage s + 1
For every e and %, if W, N Fieyy # As N Fley and dy(eys),e # do(esi).s+1, then enumerate
all of We 541 N Fle ) into A at stage s + 1.

To see that each requirement R, is satisfied, suppose that e is a counterexample;
i. e., that W.NF, # ANF, for all n € N. We construct an r. e. theory V such that
V O T, V is consistent, but V is not a principal extension of T. To construct V, we
shall- produce an infinite sequence (not necessarily recursive) z; of elements such that

(28) V =(TU{x|ie N}

We will ensure that z; & (T'U {z; | § #i})*.

Let d, = lim, dy, for all n, let Do = {dy, ..., dg(c,0)}, and let D; = {dy(e;i—1)41, - - - » dy(ei) }
for all ¢ € N. We will define for each ¢ € N a nonempty finite set E; C D;. Given any
finite set X C {p; | i € N}, let X denote the subset of X resulting from removing the
literal p; of greatest index. Then for every i € n, z; is defined by

(29) z=V(UE)VVE:
J<i :
It is easy to see that if the z; are defined in this way then V as defined in (28) has the
desired properties except possibly for recursive enumerability.
At each stage we will have defined approximations to finitely many of the sets E;.
E;,, if defined, will denote the approximation to E; at stage s. We will have that
E; s C Dis = {dg(ei—1)41,01 - 1 dy(ei),s }- The two-state diagram is as follows. Of course
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Sl ‘ . S2

@y : dg(e,) changes

=

Define E; As N Fepy = We,o N Fey
a; : W, changes on Fi,;

Figure 7: State diagram of the construction.

the i-module pictured in Figure 7 works at a stage s under the assumption that the
j-modules for j < i are in state S; for every stage after stage s.
The construction of the sets E; is in stages as follows. First, let s be the least stage

such that Do,ao = Do and We,so N F(e,O) # A80 N F(e:U)'
CONSTRUCTION.

Stage sg

Let Eo s = Do, = Do and E; ;, be undefined if ¢ > 0.

Stage s+ 1 > 3.

There are three cases.

Case (a): (Arrow a;.) There exists ¢ such that E;, is defined and dge),s # dy(e,i),s1-
In this case, let ¢ be least with this property. Let E;, 41 be undefined for j > 1. Let
Ej,3+1 = Ej,s for j < 2-—- 1. Let E,‘.._].,_H_] = Ez’—l,s-

Case (b): (Arrow ap.) If ¢ is least such that E; is not defined, then W 41 N Fie sy #
A,41NFesy. (Note that this case cannot happen if case (a) happens.) In this case define
E, 41 =D;sp1 and E; 1y = E;, for all j <z.

Case (¢): Otherwise, let E; .41 = E;, for all ¢ such that E;, is defined.

The following facts can easily be shown by induction on s > so. For each s there is
¢ such that E;, is defined for j < ¢ and undefined for j > :. Further, if E;, is defined, .
then W, N Fiojy # As N Wiejy and E;, C© Dj,. Finally, if E;,q and Ej, are both
defined then E; 41 = E;, unless case (a) applies at stage s + 1 with ¢ = 7 + 1. In this
case ;41 C B, and |E; s — Ej 41| = 1. ‘.
Fix ¢ and let s; be the least stage such that for all s > s;, E;,, is defined. (This is
consistent with our definition of sg.) At s;, E;,; is defined by case (b) (unless i = 0)
and E;,, = D;,,. Thus |E; ;| = |Fsn| + 1. Furthermore, dy(),s; = dg(e,i) 50 that
D; s, = D;. Now for s 2 s;, E; 41 # Ei s only if By, , is defined but becomes undefined
at stage s + 1 because case (a) applies to ¢ + 1. This can happen at most |F 11y
times since it corresponds to the traversal of arrow a; in the (¢ + 1)-module. But if this
happens at stage s + 1, we have that E; .,y C E;, and |E;, — E; 41| = 1. Thus we have
~ that lim, E;, = E; exists and is nonempty. Therefore, if #; is defined as in (29), we have
that V as defined in (28) is a nonprincipal extension of T. We need only show that V
ist. e.
We now give an enumeration procedure for V. For any s such that E;; is defined,

let
Zie = V(U EJ,S) v V E"’"

3<i
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;s is the natural approximation to z;. Obviously lim, z;; = 2;. We claim that V =
(T'U {z,|i€ N,s > s, and 2, is defined})*. The inclusion from left to right follows
from lim, z;; = 2z;. To see the other inclusion, let ¢ and s > s; be given such that
Zi,s 7 Zis+1. Then by the definition of z; 5, E;, # Fj.+1 for some j < 1. Let j be least.
with this property. Then z;,4, is defined and - z; .41 — #,. Thus we have that for all
1,8, if z;; is defined there is § < 7 such that & z;,.1 — 2, This immediately implies
that for every ¢,s such that z;, is defined, there is j < 7 such that F z; — #,. This
establishes the desired inclusion. =
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