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1 INTRODUCTION
Classical probability theory gives all sequences of fair coin tosses
of the same length the same probability. On the other hand, when
considering sequences such as

101010101010101010101010101010101010 . . .

and
101101011101010111100001010100010111 . . . ,

none but the most contrarian among us would deny that the second
(obtained by the first author by tossing a coin) is more random than
the first. Indeed, wemight well want to say that the second sequence
is entirely random, while the first one is entirely nonrandom. But
what are we to make in this context of, say, the sequence obtained
by taking our first sequence, tossing a coin for each bit, and if the
coin comes up heads, replacing that bit by the corresponding one
in the second sequence? There are deep and fundamental questions
involved in trying to understand why some sequences should count
as “random”, or “partially random”, and others as “lawful”, and
how we can transform our intuitions about these concepts into
meaningful mathematical notions.

One goal of the theory of algorithmic randomness is to give
meaning to the notion of a random individual (infinite) sequence.
Questions immediately arise: How should we try to define ran-
domness? How can we measure whether one sequence is more
random than another? How are computational power and random-
ness related? Is a theory of randomness for individual sequences at
all useful? How does such a theory relate to classical probability
theory?

The modern development of the theory of algorithmic random-
ness goes back to the 1960s (with even earlier roots, as we will
discuss), but there has been a particular surge of development in
the last couple of decades. In this article, we hope to give some of
the flavor of this work, though we will of course be able to mention
only a few samples of what is by now a vast area of research. Our
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book [10], for example, is over 800 pages long and still manages to
cover only a fraction of the area. . . Another book covering some of
the work we discuss here is Nies [33].

For simplicity, we assume all sequences are binary unless we say
otherwise. We use the terms sequence to mean an infinite sequence
and string to mean a finite one. We write |σ | for the length of a
string σ , write X (n) for the nth bit of the sequence X (beginning
with the 0th bit X (0)), and write X � n for the string consisting of
the first n bits ofX . We identify a real number x in the interval [0, 1]
with its binary expansion, i.e., the sequence X such that x = 0.X .
There are reals that have two binary expansions, but they are all
rational and will not be relevant here.

2 HISTORICAL ROOTS
2.1 Borel
In the beginning of the 20th century, Émile Borel was interested in
sequences that satisfy the law of large numbers, which says that if
we repeat an experiment with a numerical result many times, the
average value of the result should be close to its expected value. If
we toss a fair coinmany times, for example, we expect the frequency
of heads to be about 1

2 . Let X be a sequence representing infinitely
many such tosses. After s many coin tosses, we can see how we are
doing so far by looking at how many heads we have seen in the
first s tosses compared to s , i.e., the ratio

|{X (k ) = 1 | k < s}|

s
,

where we think of a 1 as representing heads. If this is indeed a fair
coin, this ratio should get closer and closer to 1

2 as s increases.
More generally, we say that an n-ary sequence sequence X is

(Borel) normal if it has the same property relative to an “n-sided
coin”, in other words, if for any digit between 0 and n − 1,

lim
s→∞

|{X (k ) = i | k < s}|

s
=

1
n
.

Borel defined a real number to be normal to base n if its base n
representation is normal, and absolutely normal if it is normal to
every base. He observed that almost every real number is absolutely
normal. Mathematically, this fact can be expressed by saying that
the collection of absolutely normal numbers has Lebesgue measure
1, which corresponds to saying that if we threw a dart at the real
line, with probability 1 it would hit an absolutely normal number.
We would thus expect a random sequence to be normal, and indeed
(recalling that we identify the sequence X with the real number
0.X ) we would expect a random sequence to be absolutely normal.
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2.2 Von Mises and Ville
The late 1920s and early 1930s saw the development, particularly by
Kolmogorov, of an adequate foundation for probability theory, using
measure theory and based on the idea of the expected behavior
of events in a probability space. This theory does not give any
meaning to the idea of randomness of an individual object, such
as a particular sequence of coin tosses. Tossing a fair coin n times
takes place in a “space of possibilities” (in this case, the collection of
all binary strings of length n), and we assign any sequence of length
n the probability 2−n of occurring. For example, as we are taught
in school, any particular sequence of three coin tosses occurs with
probability 2−3 = 1

8 .
In the infinite case, we might look at the event that a sequence

has a certain string, say 101, as an initial segment. The probability
that we begin a sequence of coin tosses with heads, tails, heads
is 2−3 = 1

8 . The mathematical way to express this fact is that the
(uniform) measure (also known as the Lebesgue measure) of the
collection of all sequences beginning with 101 is 2−3, or, more
generally, the measure of the set of sequences beginning with any
particular string of length n is 2−n . Probability theory is of course
a vast and complex field, but for our purposes this simple example
suffices.

It is less commonly known that Kolmogorov’s work came af-
ter earlier attempts to give meaning to the notion of randomness
for individual objects such as infinite sequences. This idea is com-
pletely contrary to the approach in which all sequences are equally
likely, but is quite reasonable when thinking about the difference
between sequences like the two that open this article. The question
is how to differentiate between a sequence like 010101 . . ., which is
clearly nonrandom, and one arising from a random source. There
are certain tests we can clearly apply to a sequence to try to verify
its apparent randomness. For example, a random sequence should
be normal in the sense of the previous section. However, that is
clearly not a sufficient condition, since the sequence 010101 . . . is
in fact normal.

In 1919, Richard von Mises1 attempted to give a definition of
randomness for a sequence X based upon a generalization of the
law of large numbers. His idea was to require normality not only of
X itself, but also of (certain) infinite subsequences of X . The point
here is that the sequence 010101 . . . is normal, but if we select every
other bit of this sequence, the resulting subsequence 0000 . . . is no
longer normal. It is not reasonable that selecting every other bit of
a random sequence should result in all 0’s, so our sequence fails
this randomness test.

Von Mises generalized this idea as follows. Let f : N → N be
an increasing function. We think of f as a selection function for
determining a subsequence of a given sequence. That is, f (i ) is the
ith place selected in forming this subsequence. In the law of large
numbers itself, where we consider the entire sequence, f (i ) = i . In
the nonrandomness argument in the previous paragraph, f (i ) = 2i .
Von Mises proposed replacing the ratio

|{X (k ) = 1 | k < s}|

s

1See [10] for references to this and other sources mentioned in this section.

used in the law of large numbers by

|{X ( f (k )) = 1 | k < s}|

s
,

the ratio of the number of selected places at which X has value 1
to the total number of selected places. For each choice of f , the re-
quirement that this ratio approach 1

2 as s goes to infinity constitutes
a randomness test.

So when should X be regarded as random? We could perhaps
try to say that X is random if and only if it passes this test for all
possible selection functions, reflecting the idea that in a sequence
of coin tosses, there should be no way to select a subsequence
ahead of time that will have a greater proportion of heads than
tails. There is a big problem with this idea, though. No sequence X
can be random for all selection functions. Since any nontrivial X
has infinitely many 0’s, there is an f that chooses the positions of
the 0’s of X in increasing order. But surely this counterexample is
unfair to the spirit of von Mises’ idea: we are trying to capture the
notion that we should not be able to predict the values of bits of X ,
and this f is chosen after definingX . It is always easy to predict the
answer if you know it in advance! The question then is what kinds
of selection functions should be allowed, to capture the notion of
prediction. A reasonable intuition is that prediction is somehow a
computational process, and hence from a modern perspective we
might want to restrict ourselves to computable selection functions,
a suggestion later made by Church.

Von Mises’ work predated the definition of computable func-
tion, however, so he had no canonical choice of “acceptable selec-
tion rules” and left his definition mathematically vague. But Wald
showed that for any countably infinite collection of selection func-
tions, there is a sequence that is random in the sense of passing all
tests corresponding to the functions in this collection.

However, von Mises’ program was dealt a major blow in 1939
by Ville, who showed that for any countable collection of selection
functions, there is a sequenceX that passes all of the resulting tests,
but such that for each n, there are always more 0’s than 1’s inX � n.
If we were told that there would always be more tails than heads
in a sequence of coin flips, we would not believe the coin to be a
standard fair coin, and could use this information to make some
money betting on its flips. Thus Ville’s sequence is random in the
sense of von Mises, but certainly not random in the intuitive sense.

Ville suggested adding versions of another law (the law of the
iterated logarithm) to the list of tests that a sequence would need
to pass to be considered random. Perhaps von Mises’ tests together
with these additional tests would capture the notion of algorithmic
randomness. But this all begins to look very ad hoc, and immedi-
ately raises the natural question of whether there is a Ville-like
counterexample for this new set of laws. (As it turns out, there is,
as discussed e.g. in [10].)

Notice that in these discussions we are abandoning the idea of
absolute randomness in somemetaphysical sense in favor of a notion
of algorithmic randomness, where we use tools from computability
theory to define and quantify randomness. Abandoning absolute
randomness leads to the idea of “levels of randomness” that can be
defined by calibrating the computability-theoretic complexity of
the tests we require our random sequences to pass. But, of course,
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following Ville’s work it was not clear that even one reasonably
robust level of algorithmic randomness could be defined.

2.3 Martin-Löf
This is howmatters stood until 1966 and the work of Per Martin-Löf,
who effectivized the notion of null set from classical measure theory
and gave a satisfying definition of algorithmic randomness based
on this effectivization. The basic idea is that a random sequence
should not have any “rare” property, i.e., that if we find a way to
distinguish and describe a small collection of sequences, then no
random sequence should be in our collection. The notion of null
set allows us to make precise what we mean by “small”.

Randomness tests like the ones suggested by von Mises are
computable ways of narrowing down the set of sequences that can
be considered to be random. For example, consider sequences like
0101 . . . that have 0’s in all even places. We do not want any such
“bad” sequence to be consider random. To test whether a sequence
is of this form, we can take a “level-by-level” approach: Given a
sequence X , we first ask whether X (0) = 0. If so, then X fails the
first level of our test. (That is, X has failed to demonstrate so far
that it is not one of our bad sequences.) Notice that exactly half of
all sequences X have X (0) = 0, which can be formalized by saying
that the set of sequences X such that X (0) = 0 has measure 1

2 .
Next, we ask whether X (0) = 0 and X (2) = 0. If so, then X fails

the second level of our test. The proportion of all sequences X that
fail this second level is 1

4 (corresponding to the fact that exactly 1
4

of all strings of length 3 have 0’s at positions 0 and 2). We continue
in this fashion, testing more and more even places. A sequence X is
one of our bad sequences if and only if it fails all levels of our test.
The fact that the set Tn of sequences that fail the nth level of our
test has measure 2−n implies that the set of bad sequences, which
is the intersection of all the Tn ’s, has measure 0, i.e., that it is what
we call a null set.

Martin-Löf’s approach was to generalize this process by consid-
ering all possible level-by-level procedures for testing randomness.
We can think of such a procedure as being generated by a machine
M . At each level n, this machine determines a set Tn of sequences
that are deemed to have failed the test so far. It does so by enumerat-
ing strings σn0 ,σ

n
1 , . . ., where we then letTn be the collection of all

sequences that begin with some σni . Of course,M needs to be fair
and not, say, consider all sequences to be nonrandom, so we insist
that, like in the above example, Tn contain at most a proportion
2−n of all sequences (which we can formalize by saying that the
measure of Tn is at most 2−n ). Now a sequence X fails M ’s test if it
is contained in every Tn , and otherwise it passes this test.

We say that a sequence is Martin-Löf random if and only if it
pass all such tests.2 It can be shown that almost all sequences are
Martin-Löf random (i.e., that the collection of Martin-Löf random
sequences has measure 1). Furthermore, Martin-Löf’s notion of tests
includes the ones proposed by von Mises (in the specific realization
suggested by Church), the ones proposed by Ville, and indeed all
“algorithmically performable” randomness tests. Thus the objection

2Formally, a Martin-Löf test is a collection S0, S1, . . . of uniformly computably enu-
merable sets of strings such that, if we let Tn be set of all sequences that begin with
some element of Sn , then Tn has measure at most 2−n . (The notion of computable
enumerability is also known as recursive enumerability.) A sequence X passes this
test if X <

⋂
n Tn . A sequence is Martin-Löf random if it passes all Martin-Löf tests.

to the idea of adding more and more specific tests as we uncover
more and more Ville-like sequences is neatly circumvented.

As it turns out, Martin-Löf randomness is also quite well-behaved
mathematically, and has provided a robust basis for the theory of
algorithmic randomness. As Jack Lutz put it in a lecture at the 7th
Conference on Computability, Complexity, and Randomness, held in
Cambridge in 2012 (in connection with work of Turing that we will
discuss in Section 3.3),

Placing computability constraints on a noncon-
structive theory like Lebesgue measure seems a
priori to weaken the theory, but it may strength-
en the theory for some purposes. This vision
is crucial for present-day investigations of in-
dividual random sequences, dimensions of in-
dividual sequences, measure and category in
complexity classes, etc.

In summary, Martin-Löf reformulated all the laws that we would
expect a random sequence to obey at an abstract level, based upon
the idea of effectivizing measure theory. The measure of a set of
sequences is the mathematical version of the probability that a
sequence is in this set. Martin-Löf randomness says that we regardX
as random if and only if it passes each effective test that determines
a set of effective measure 0 (as the intersection of the levels of the
test). Such an X has every property that we can algorithmically
describe as a set of probability 1.

2.4 Solomonoff, Kolmogorov, Levin, Chaitin,
and Schnorr

There are other approaches to a definition of algorithmic random-
ness. For (finite) strings, a suitable definition was formulated by
Kolmogorov, who argued that if a string has identifiable regularities,
thenwe should be able to compress it, and that a compressible string
should not be thought of as random. Here we think of a machineM
as a descriptional process. If an input τ is processed byM to yield
an output σ , then τ is a description of σ , i.e., a program thatM can
use to print σ . A random σ should have no short descriptions.

As an illustration, consider the sequence σ = 010101010 . . .
(1000 times). A short description τ of σ is “print 01 1000 times”.
This brief program produces an output of length 2000. We are
exploiting the regularities of this particular σ to compress it into a
short description. Kolmogorov’s intuition was that for a random
sequence there should be no regularities, so that the only way to
describe σ is to essentially use σ itself. More precisely, a string of
length n should be random relative to some descriptional process if
and only if its shortest description has length n. Like white noise, a
random string should be incompressible.

To give a physical analog of this idea, suppose that we have
a maze shaped like a binary tree of height 6, with boxes at the
end. That is, there are 26 possible routes to get to the boxes. One
of the boxes has money in it, and someone is to tell us which. If
the box is the leftmost one, all they have to say is “always turn
left”. If the box is to be found by say, left-right-left etc., this path
is again easy to describe. If the place of the prize is determined
randomly, though, the person would likely need to tell us the whole
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sequence of turns.3 This compressibility approach gives rise to
what is now called Kolmogorov complexity. For a Turing machine
M , the Kolmogorov complexity CM (σ ) of σ relative to M is the
length of the shortest program τ such thatM (τ ) = σ . We can then
take a universal Turing machineU , which can emulate any other
given machine M with at most a constant increase in the size of
programs, and define the (plain) Kolmogorov complexity of σ to be
C (σ ) = CU (σ ).

A natural guess is that a sequence X is random if and only if for
all n, the first n bits of X are incompressible in the sense outlined
above. As it turns out, however, plain Kolmogorov complexity is
not quite the correct notion for infinite sequences. (The reason is
that in the above account, M can use more than just the bits of τ
to generate σ . It can also use the length of τ , which provides an
additional log |τ | many bits of information. Using this idea, Martin-
Löf showed that for any X , the plain Kolmogorov complexity of
X � n must always go significantly below n for some lengths n.)

There are several ways to modify the definition of Kolmogorov
complexity to avoid this issue, the best-known being to use prefix-
free codes4 and the resulting notion of prefix-free Kolmogorov com-
plexity, denoted by K in place ofC , as in the work of Levin, Chaitin,
and Schnorr, and in a certain sense even earlier in that of Solomonoff.
As shown by Schnorr, it is indeed the case that X is Martin-Löf
random if and only if the prefix-free Kolmogorov complexity of
the first n bits of X is at least n (up to a constant factor), that is,
K (X � n) > n −O (1).

(There are many other flavors of Kolmogorov complexity, includ-
ing time- and space-bounded ones, butC and K have been the most
studied. They have a complex relationship. It is easy to show that
K (σ ) 6 C (σ ) + 2 log |σ |+O (1). Solovay proved the remarkable fact
that K (σ ) = C (σ ) + C (C (σ )) + O (C (3) (σ )) and this result is tight
in that we cannot extend it to C (4) (σ ). There is a huge amount of
research on the Kolmogorov complexity of finite strings and its
applications. See for instance Li and Vitanyi [25].)

Returning to the story of the definition of algorithmic random-
ness, there is another approach, developed by Schnorr, that is close
in spirit to von Mises’ ideas. A martingale5 is a function d from
strings to nonnegative reals satisfying a fairness condition

d (σ ) =
d (σ0) + d (σ1)

2 .

We think of d as representing a betting strategy. We begin with
some capital d (λ), where λ is the empty string, and bet on the
values of the successive bits of a sequence X so that the amount
of money we have after n many bets is d (X � n). We are allowed
to hedge our bets by betting some amount of our capital on 0 and
the rest on 1. The displayed equation ensures that this betting is
fair, i.e., that the average of the returns of our bets on 0 and on 1
equals our current total. A martingale d succeeds on a sequence
X if and only if the associated betting strategy allows us to make
3Li and Vitanyi [25] report on an experiment of this kind about ant communication,
with the “food-finding” ants describing the location of a food box in a similar kind of
setup to the “food-gathering” ants.
4That is, descriptions that are like telephone numbers in that if τ and ρ are input
descriptions to M and both give outputs, then τ is not a prefix of ρ . No telephone
number should be a prefix of another! The point here is that in plain Kolmogorov
complexity both 100 and 1001 could be descriptions, even of different strings, which
requires us to have an implicit termination symbol.
5This notion is related to but distinct from that of martingale in probability theory.

arbitrarily much money when betting on the bits of X , that is,
lim supn→∞ d (X � n) = ∞. Schnorr showed that there is a notion
of effective martingale such that X is Martin-Löf random if and
only if no such martingale succeeds on X . This idea is close to von
Mises’ prediction-based approach, except that martingales allow
us to spread our bets between the outcomes 0 and 1, so von Mises’
intuition has a realization that works after all!

In summary, there are three basic approaches to defining random
sequences:
• the statistician’s approach, that a random sequence should
have no computably rare properties;
• the coder’s approach, that a random sequence should have
no regularities that allow for compression; and
• the gambler’s approach, that a random sequence should be
unpredictable.

In each of these cases, a natural effective realization leads to the
same notion, Martin-Löf randomness.

3 SOME THINGS WE HAVE LEARNED
3.1 Calibrating randomness
As natural and robust as Martin-Löf’s definition of algorithmic
randomness is, it is only one among many reasonable notions that
together allow us to calibrate levels of randomness. One way to ob-
tain new notions of randomness is to change the collection of tests
that a sequence is required to pass to be considered random. For
instance, we can consider Martin-Löf tests with computable mea-
sures (that is, where the measure of each levelTn is exactly 2−n , for
instance), which yields a notion called Schnorr randomness. Another
possibility is to use martingales with different levels of effective-
ness, for instance ones that are computable functions from strings
to nonnegative rationals, which yields a notion called computable
randomness. Computable randomness can also be miniaturized to
complexity classes, giving rise to notions such as polynomial-time
randomness.

It can be shown that Martin-Löf randomness implies computable
randomness, which in turn implies Schnorr randomness, and that
neither of these implications can be reversed. But the separations
between these notions are quite subtle, and indeed the notions
coincide for sequences that are in a sense “close to computable”.
(More precisely, they coincide outside what are know as the high
sequences, which resemble the Halting Problem in a certain tech-
nical sense; see Nies, Stephan and Terwijn [34].) Indeed, there is a
notion of nonmonotonic randomness—which is like computable ran-
domness but allows for strategies that can bet on the values of the
bits of a sequence in any computable order—for which equivalence
to Martin-Löf randomness is still a longstanding open question.

We can also modify our tests to yield notions stronger than
Martin-Löf randomness. For instance, relaxing the condition that
the nth level Tn of a Martin-Löf test must have measure at most
2−n , and requiring only that the measures of the Tn ’s go to 0 as n
goes to infinity, yields the notion of weak 2-randomness, which is
intermediate between Martin-Löf randomness and the notion of
2-randomness discussed below.

In someways, weak 2-randomness is better-behaved thanMartin-
Löf randomness. To give an example, let us begin by considering the
fact that, although almost every sequence is Martin-Löf random,
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it is not that easy to come up with an explicit example. That is
at it should be, of course. Easily describable sequences (such as
computable ones, for example) should not be random. Nevertheless,
such examples do exist, the best-known being Chaitin’s Ω, defined
as the probability that a universal prefix-free Turing machine U
halts on a given input, or, more formally, as

Ω =
∑

U (σ ) halts
2−|σ | .

(The exact value of Ω depends on the choice ofU , but its basic prop-
erties do not.) While Ω is Martin-Löf random, it is also computa-
tionally powerful, being Turing equivalent to the Halting Problem.6

The existence of computationally powerful Martin-Löf random
sequences is somewhat surprising, as intuitively we should expect
random sequences not to contain much “useful information”. (The
distinction here is between the kind of information that makes a
sequence hard to describe and the kind that can actually be used. If
we choose 1000 characters at random, we expect the resulting text
to be hard to describe, but would be shocked to find that it contains
instructions for making a soufflé.) However, not only is it possible
for a Martin-Löf random sequence to compute the Halting Problem,
but every sequence can be computed from some Martin-Löf random
sequence, as shown by Kučera [23] and Gács [16]. By increasing the
level of randomness, we can make these “pathological” examples
disappear. If X is weakly 2-random, then it cannot compute the
Halting Problem. In fact, it cannot compute any noncomputable
sequence that is computed by the Halting Problem, and in particular
cannot compute any noncomputable, computably enumerable set.

We do not have to go all the way to weak 2-randomness, though.
There are results, beginning with work of Stephan [37], that indi-
cate that the Martin-Löf random sequences split into two classes:
powerful ones that can compute the Halting Problem, and weaker
ones that exhibit much more of the behavior we expect of random
sequences, and in particular are computationally much weaker than
the sequences in the first class. Franklin and Ng [15] showed that
the level of randomness of these “true Martin-Löf randoms” can be
captured by a natural test-based notion known as difference ran-
domness. The study of notions of algorithmic randomness like this
one, which are intermediate between Martin-Löf randomness and
weak 2-randomness, has had an important role in recent research in
the area, and helped us refine our understanding of the relationship
between levels of randomness and computational power.

Another way to calibrate randomness is to relativize notions such
as Martin-Löf randomness. For instance, we can consider Martin-
Löf tests that are produced not by a standard Turing machine, but
by a Turing machine with access to an oracle Z . If Z is the Halting
Problem, for example, we obtain a notion called 2-randomness. More
generally, we have a notion of n-randomness, where we relativize
Martin-Löf tests to the (n − 1)st iterate of the Halting Problem.7
Here 1-randomness is just Martin-Löf randomness.

6When we say that X can be computed from Y , we mean it in the sense of Turing
reducibility. That is, there is a Turing machine M with an oracle tape so that if the
oracle tape contains Y , thenM computes X . Two objects are Turing equivalent if each
can be computed from the other. Turing’s Halting Problem is the classic example of a
complete computably enumerable set; that is, it is itself computably enumerable, and it
can compute every computably enumerable set.
7The k th iterate of the Halting Problem is just the Halting Problem for Turingmachines
with the (k − 1)st iterate of the Halting Problem as an oracle.

Much is known about this hierarchy, including some surprising
facts. Here are a few examples: As noted by Miller and Yu [31],
it follows from a fundamental result about Martin-Löf random-
ness known as van Lambalgen’s Theorem (see [10]) that if X is
Martin-Löf random and is computed by an n-random sequence,
then X is itself n-random. We have mentioned that we can never
have C (X � n) > n − O (1) for all n, but it is possible to have a
sequenceX such thatC (X � n) > n−O (1) for infinitely many n. Re-
markably, Miller [28] and Nies, Stephan, and Terwijn [34] showed
that this condition is equivalent to 2-randomness. Miller [29] also
proved a similar result saying that 2-randomness also coincides
with having infinitely often maximal initial segment prefix-free
Kolmogorov complexity. Indeed, it is possible to give characteri-
zations of n-randomness for all n using unrelativized Kolmogorov
complexity, by results of Vereshchagin [39] and Bienvenu, Much-
nik, Shen, and Vereshchagin [7]. These facts are examples of the
often subtle interplay that recent research in this area has uncov-
ered between levels of randomness, initial-segment complexity, and
relative computability.

3.2 Calibrating nonrandomness
For sequences that are not Martin-Löf random, there are ways to
calibrate how close they come to randomness. A natural way to
do this is to consider the (prefix-free) Kolmogorov complexity of
their initial segments. For example, a sequenceX is complex if there
is a computable, nondecreasing, unbounded function f such that
K (X � n) > f (n) for all n. Complex sequences can be characterized
in terms of their ability to compute certain sequences that resemble
the Halting Problem to some extent (see [10]), which is another
example of the interplay between randomness and computability.

At the other extreme from random sequences are those that have
strong “anti-randomness” properties. Identifying a natural number
with its binary expansion, we always have C (σ ) > C ( |σ |) −O (1),
since if we know a string then we can easily describe its length.
Thus for a sequenceX , the lowest the plain Kolmogorov complexity
of the initial segments ofX can be isC (X � n) 6 C (n)+O (1). In the
1970s, Chaitin showed that this condition is satisfied if and only if
X is computable, and asked whether the same holds for prefix-free
Kolmogorov complexity.

In an unpublished manuscript written in 1975, Solovay showed
the surprising fact that there are noncomputable sequences X such
that K (X � n) 6 K (n) +O (1) for all n, though Chaitin had already
shown that there are only countably many of them, and indeed
that they are all computable from the Halting Problem. Such se-
quences are said to be K-trivial, and they have played a major role
in the theory of algorithmic randomness. For those who know some
computability theory, we mention that, as shown by Nies [32], the
K-trivial sequences form an ideal in the Turing degrees, and that
they can be seen as giving a kind of priority-free solution to Post’s
Problem (see Downey, Hirschfeldt, Nies, and Stephan [11]). Nies
[32] showed that these sequences are computability-theoretically
weak, and gave several characterizations of K-triviality in terms
of natural notions of randomness-theoretic weakness. For exam-
ple, when we relativize the notion of Martin-Löf randomness to
a noncomputable X , we expect the notion to change, because the
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noncomputability of X should result in some amount of derandom-
ization power. Nies showed that the K-trivial sequences are exactly
those for which this intuition fails.

Since then, many other characterizations of K-triviality have
been given. For example, a result of Hirschfeldt, Nies, and Stephan
[19] and more recent work of Bienvenu, Day, Greenberg, Kučera,
Miller, Nies, and Turetsky [5] show that a computably enumerable
set is K-trivial if and only if it is computed by a difference random
sequence (i.e., one of the “true Martin-Löf randoms” that does not
compute the Halting Problem). Recent work on K-triviality has also
revealed subclasses of the K-trivials that can further help us under-
stand the fine structure of the interaction between randomness and
computability.

Considering the properties of highly nonrandom sequences like
the K-trivials, and those of sequences with increasing levels of ran-
domness, leads to the following heuristic graph, where the horizon-
tal axis represents randomness level and the vertical axis represents
maximum computational power. (Another way to see this graph is
that the horizontal axis represents information content, while the
vertical axis represents maximum useful information content.)

Among the sequences that are neither random nor highly non-
random are ones that can be thought of as being “partially random”.
For example, if Z is Martin-Löf random and we replace every other
bit of Z by a 0, we obtain a new sequence Y such that K (Y � n)
is roughly n

2 . It makes sense to think of such a sequence as being
“ 12 -random”. More generally, we can think of the limit behavior
of the ratio K (X �n)

n as a measure of the partial randomness of a
sequence X . This ratio does not necessarily have a limit, but we
can look at

lim inf
n→∞

K (X � n)

n
and lim sup

n→∞

K (X � n)

n
,

which both give us values between 0 and 1.
These values are also central to the theory of effective dimension.

In 1919, Hausdorff introduced a notion of dimension that measures
the “local size” of a set in a metric space, for example a subset of
the plane. As usual, points have dimension 0, lines have dimen-
sion 1, and the whole plane has dimension 2, but there are also
objects of fractional dimension, such as well-known fractals like
the Koch curve (which has Hausdorff dimension log3 (4)). Starting
with the work of Lutz in the early 2000’s, the theory of dimension
has been effectivized, initially by using a characterization of Haus-
dorff dimension in terms of martingales and passing to effective
martingales as in Schnorr’s approach to algorithmic randomness.
This process has also been carried out for other notions of dimen-
sion, most notably that of packing dimension. An important fact
here is that the effective Hausdorff dimension and effective packing
dimension of a sequence X turn out to be exactly the liminf and
limsup, respectively, in the above displayed equation. Thus these
dimensions can be seen as measures of partial randomness. (See
e.g. [10] for details.)

The theory of effective dimension has also been extended to
points on the plane and higher-dimensional Euclidean spaces. A
remarkable feature of this theory is that there is a tight correspon-
dence between the classical Hausdorff dimension of a set and the
effective Hausdorff dimension of its points. For a fairly wide class
of sets S ⊆ Rn , Hitchcock [20] showed that the Hausdorff dimen-
sion of S is the supremum of the effective Hausdorff dimensions
of its individual elements, and Lutz and Lutz [26] have now given
versions of this result for arbitrary sets (and for both Hausdorff and
packing dimension) using relativizations of effective dimension. It
is surprising that the notion of dimension, which seems so clearly
to be a global property of a set, based on its “overall shape”, can be
completely understood by focusing on the individual elements of
the set and understanding them from a computability-theoretic per-
spective. This correspondence is also quite useful, and can be used
to obtain new proofs and results in areas such as fractal geometry,
as in Lutz and Lutz [26] and Lutz and Stull [27], for instance.

Randomness amplification is an issue that can be investigated
in many settings. A basic question is whether (a greater degree
of) randomness can always be extracted from a partially random
source. In our setting, effective dimension can be used to measure
the degree of randomness of a sequence, and extraction can be
interpreted algorithmically, i.e., as relative computation. One way
to think of this question is that it is easy to decrease the effective
dimension of a sequence in a computable way, say by changing
a large proportion of its bits to 0’s, but it is less clear in general
whether there is a way to reverse this process.

As it turns out, the answer depends onwhich notion of dimension
we are considering. Fortnow, Hitchcock, Pavan, Vinochandran,
and Wang [14] showed that if X has nonzero effective packing
dimension and ε > 0, then there is a Y that is computable from X
such that the effective packing dimension of Y is at least 1 − ε .8 On
the other hand, Miller [30] showed that there is a sequence X of
effective Hausdorff dimension 1

2 such that if Y is computable from
X then the effective Hausdorff dimension of Y is at most 1

2 . (The
specific value 1

2 does not matter here.) Greenberg and Miller [17]
showed that there is a sequence of effective Hausdorff dimension
1 that does not compute any Martin-Löf random sequence. Thus
we see that there are some strong senses in which randomness
amplification is not possible. However, Zimand [40] showed that,
remarkably, if we have two sequences of nonzero effective Hausdorff
dimension that are sufficiently independent in a certain technical
sense, then they together compute a sequence of effective Hausdorff
dimension 1.

This is still an area of significant research interest. For example,
we can ask about a randomness amplification process where, instead
of using computable reductions, we simply seek to increase the
randomness of a sequence by changing a relatively small proportion
of its bits. Greenberg, Miller, Shen, and Westrick [18] recently gave
precise bounds on the proportion of bits of a sequence of effective
Hausdorff dimension s that need to be changed to increase the
Hausdorff dimension to a given t > s , in terms of the binary entropy
function from information theory. They also showed that if X has

8In fact, they showed thatY can be chosen to be Turing equivalent toX via polynomial-
time reductions, making the randomness amplification process quite efficient in this
case.
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effective Hausdorff dimension 1 then X can be transformed into a
Martin-Löf random sequence by changing it only on the bits in a
set S ⊂ N of density 0 (which means that limn→∞

|S�n |
n = 0).

3.3 Turing and absolute normality
We return to Borel’s notion of normality. This is a very weak form
of randomness; polynomial-time randomness is more than enough
to ensure absolute normality, and indeed, Schnorr and Stimm [35]
showed that a sequence is normal if and only if it satisfies a notion of
randomness defined using certain finite state machines, which are
much weaker than arbitrary Turing machines. Borel asked whether
there are explicit examples of absolutely normal numbers. It is
conjectured that e , π , and all irrational algebraic numbers, such
as
√
2, are absolutely normal, but none of these have been proven

to be normal to any base. In an unpublished manuscript, Turing
attacked the question of an explicit construction of an absolutely
normal number by interpreting “explicit” to mean computable. His
manuscript, entitled A note on normal numbers and presumably
written in 1938, gives the best kind of answer to date to Borel’s
question: an algorithm that produces an absolutely normal number.

An interesting aspect of Turing’s construction is that he more
or less anticipated Martin-Löf’s work by looking at a collection of
computable tests sensitive enough to make a number normal in
all bases, yet insensitive enough to allow computable sequences to
pass all such tests. He began by giving an extension of the law of
large numbers to “blocks” of digits. Indeed, it makes sense that not
just single digits, but fixed blocks of digits should occur with the
appropriate frequencies in a random sequence. Translating between
bases results in correlations between blocks of digits in one base and
blocks of digits in the other, which is why this extension allowed
Turing to construct absolutely normal numbers.

Turing’s construction remained largely unknown, because his
manuscript was published only in his 1997 Collected Works [38].
The editorial notes in that volume say that the proof given by Turing
is inadequate and speculate that the theorem could be false. Becher,
Figueira, and Picchi [4] reconstructed and completed Turing’s man-
uscript, preserving his ideas as accurately as possible while correct-
ing minor errors. More recently, there has been a highly productive
line of research connecting algorithmic randomness, computabil-
ity theory, normal numbers, and approximability notions such as
that of Liouville numbers; see for instance the papers listed at
http://www-2.dc.uba.ar/profesores/becher/publications.html. Some
of this work has yielded results in the classical theory of normal
numbers, as in Becher, Bugeaud, and Slaman [3].

3.4 Some further applications
There have been several other applications of ideas related to al-
gorithmic randomness in areas such as logic, complexity theory,
analysis, and ergodic theory. Chaitin famously used Kolmogorov
complexity to give a proof of a version of Gödel’s First Incom-
pleteness Theorem, by showing that for any sufficiently strong,
computably axiomatizable, consistent theory T , there is a number
c such that T cannot prove that C (σ ) > c for any given string σ .
More recently, Kritchman and Raz [22] used his methods to give
a proof of the Second Incompleteness Theorem as well. (Their pa-
per also includes an account of Chaitin’s proof.) We can also ask

about the effect of adding axioms asserting the incompressibility
of certain strings in a probabilistic way. Bienvenu, Romashchenko,
Shen, Taveneaux, and Vermeeren [8] have shown that this kind of
procedure does not help us to prove new interesting theorems, but
that the situation changes if we take into account the size of the
proofs: randomly chosen axioms can help to make proofs much
shorter under a reasonable complexity-theoretic assumption.

Randomness is used in several algorithms to accelerate compu-
tations. A classic example is the use of randomness for primality
testing by Solovay and Strassen [36], and there are problems like
polynomial identity testing—which asks whether a polynomial in
many variables is identically zero, like x1x2 − x2x1, say—for which
there are efficient algorithms if we have a randomness source, but no
known fast deterministic algorithms. It is thought that a wide class
of randomized algorithms can be derandomized to yield determinis-
tic polynomial-time algorithms, following the work of Impagliazzo
and Wigderson [21], who showed that if certain problems are as
hard as we think they are, then we can provide enough randomness
efficiently to derandomize problems in the complexity class BPP. A
recent result of Bienvenu and Downey [6] implies that randomness
can always be used to accelerate some computations. They showed
that if X is Schnorr random, then there is a computable language L
such that X can compute L (in exponential time) via a computation
ΦX (i.e., a Turing machine Φ with oracle X ) so that for any Turing
machineM that computes L, the computation ΦX is faster thanM
by more than a polynomial factor. (That is, ΦX computes L in time
f , and there are no Turing machineM and polynomial p such that
M computes L in time p ◦ f .)

Another connection with complexity theory comes from looking
at the computational power of the set of random strings. There are
a few reasonable ways to define what we mean by this set; one of
them is to consider the strings that are incompressible in the sense
of plain Kolmogorov complexity, that is

R = {σ | C (σ ) > |σ |}.

It turns out to be particularly interesting to consider what sets can
be reduced to this one via polynomial-time reductions. For instance,
Allender, Buhrman, Koucký, van Melkebeek, and Ronneburger [1]
showed that the complexity class PSPACE is contained in the col-
lection of sets that are polynomial-time reducible to R, and other
connections with complexity theory have been explored in this
paper and other such as Allender, Friedman, and Gasarch [2].

A particularly promising current line of research is the use of
notions of algorithmic randomness to give precise, “quantitative”
versions of results about almost everywhere behavior in areas such
as analysis and ergodic theory, an idea that goes back to the work
of Demuth in the 1970’s.9 For example, it is a result of basic analysis
that every nondecreasing function [0, 1] → R is differentiable at
almost every x ∈ [0, 1] (that is, the set of x at which it is differen-
tiable has measure 1). Brattka, Miller, and Nies [9] showed that the
reals x ∈ [0, 1] such that every nondecreasing computable func-
tion (in the sense of computable analysis) is differentiable at x are

9Demuth came from the constructivist tradition, but he independently rediscovered
notions of randomness like Martin-Löf randomness by working on questions such as
the ones discussed in this paragraph. See Kučera, Nies, and Porter [24] for an account
of his work.

http://www-2.dc.uba.ar/profesores/becher/publications.html
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exactly the computably random ones. Thus computable random-
ness is exactly the level of randomness needed for this particular
almost everywhere behavior to manifest itself. For other similar
conditions, the relevant level of randomness can vary. For instance,
for functions of bounded variation in place of nondecreasing ones,
the corresponding level of randomness is exactly Martin-Löf ran-
domness, as shown in [9] as a recasting of a result by Demuth.

One source for overviews of some recent work at the intersection
of algorithmic randomness with analysis and ergodic theory is the
collection of slides at https://www.birs.ca/cmo-workshops/2016/
16w5072/files/.

Another interesting application is to the study of tilings (of the
plane, say). For a sequence X , let X [m,n] be the string consisting of
the bits ofX from positionm to position n. One might think that for
a Martin-Löf randomX , we should haveK (X [m,n]) > n−m−O (1),
or that at least K (X [m,n]) should not dip too far below n −m. This
is not the case, though, because random sequences must have long
simple substrings, such as long runs of 0’s. (If we know that X has
infinitely many runs of 6 consecutive 0’s, but only finitely many
runs of 7 consecutive 0’s, then we can make money betting on the
values of the bits of X by betting that the next value is 1 each time
we see 6 consecutive 0’s.) However, for any ε > 0, there are ε-shift
complex sequences X for which

K (X [m,n]) > (1 − ε ) (n −m) −O (1)
for allm and n. These sets can be coded to yield tilings with various
interesting properties, such as certain kinds of pattern-avoidance.
See for instance Durand, Levin, and Shen [12] and Durand, Ro-
mashchenko, and Shen [13].
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