
ADVICE CLASSES OF PARAMETERIZED

COMPLEXITY-CORRIGENDUM

LIMING CAI, JAINER CHEN, ROD DOWNEY, AND MIKE FELLOWS

1. Introduction

The goal of this note is to correct an error in the paper [1] of the authors.
In that paper the authors introduced the advice view of parameterized com-
plexity. This paper formalized the notion that a language L was fixed pa-
rameter tractable iff there was a c and a function f such that on input 〈x, k〉
we could decide 〈x, k〉 ∈ L in time O(|x|c) + f(k) where we viewed the f(k)
as advice for the slices of the language with parameter k. Nowadays we
would view this as all FPT problems were kernelizable. (For simplicity, we
will ignore issues of uniformity here.)

In the same paper we began to also look at analogs of this idea for other
complexity classes. In particular, we introduce the class Logspace + Ad-
vice. On input 〈x, k〉, these were problems which were solvable in space
c log |x|+ f(k) for some f , and fixed constant c.

In Theorem 2.3 of that paper we claimed that parameterized Vertex
Cover is in the class Logspace + Advice. The proof offered contained a
flaw which we wish to repair with this note. This flaw was noticed by Murali
Krishna Enduri, and later Jyothi Jyothi, both PhD students. The proof in
the original paper was based on the method of bounded search trees which
seems intrinsically flawed. The goal of this note is to give a correct proof of
the Theorem.

We are indebted to Murali and Jyothi for pointing out the flaw.
We remark that the method we use below seems applicable to a wide class

of problems which are proven to be FPT by the method of reduction to a
problem kernel with simple local reduction rules. (See for example, Downey
and Fellows [3], Chapters 4 and 5, or Cygan, et. al. [2].) Thus it might well
be of independent interest.

2. The proof

Theorem 2.1. k-Vertex Cover is in Logspace+Advice.

Proof. The algorithm is based on Buss kernelization. An outline of the
algorithm is given as follows:

Input: a graph G and parameter k

1. computer the number n of vertices of G;
1

2 LIMING CAI, JIANER CHEN, ROD DOWNEY, AND MIKE FELLOWS

2. identify the set L of vertices of degree larger than k in G;
3. If |L| > k then stop (no solution) else k1 = k − |L|;
4. identify the set S of vertices of positive degree in the graph G \ L;
5. If |S| > 2k21 (which implies that the number of edges in G \L is larger

than k21), then stop (no solution);
6. Construct the graph G′ that is G\L with all degree-0 vertices removed;
7. Decide if the graph G′ has a vertex cover of at most k1 vertices.

We assume that the graph G is given in an adjacency list (the algorithm
can be modified for the representation of adjacency matrices). Thus, the
graph G is given as a list

v1 : w1,1, . . . , w1,s1 ; v2 : w2,1, . . . , w2,s2 , . . . , vn : wn,1, . . . , wn,sn ,

where for each i, wi,1, . . ., wi,si are the neighbors of vi. Without loss of
generality, we simply assume that the vertices of G are named by the integers
1, 2, . . ., n.

Thus, the input (G, k) is given in the input tape of a Turing machine M ,
and we are going to describe how M uses O(log n) + f(k) space to decide if
there is a vertex cover of at most k vertices for the graph G. For this, we
describe how each step of the algorithm above is implemented in the Turing
machine M .

A. Step 1. Counting the number n of vertices in G can be easily done in
space O(log n).We save the integer n in the worktape, using O(log n) space.

B. Steps 2-3. We can easily compute, in space O(log n), the degree of a
vertex by counting the number of neighbors of the vertex, given the adja-
cency list representation of G. Thus, computing the number |L| of vertices
of degree larger than k can be done in O(log n + log k) space. Note that we
do not store the set L in the worktape.

C. Steps 4-5. Checking if a vertex vi has a positive degree in the graph
G \ L, i.e., if vi is in the set S, can be done in O(log n + log k) space, as
follows. Look at the adjacency list of vi in G, which is vi : wi,1, . . . , wi,si .
First check that si ≤ k, then for each j, check if wi,j is of degree ≤ k in G by
checking the adjacency list for the vertex wi,j . The vertex vi is in the set S
if and only if si ≤ k and at least one of the neighbors of vi is also of degree
≤ k. Thus, we can identify all vertices in S (note that we do not store the
set S in the worktape). So computing the number k2 = |S| can be done in
O(log n + log k) space.

D. Step 6. After having the number k2 = |S|, which is bounded by 2k21 ≤ 2k2

if we reach step 6, we rename the vertices in S as u1, . . ., uk2 , where for each
h, uh is encoded using O(log k) space (e.g., uh can be simply the integer
h), and uh is the h-th vertex in S following the vertex order given in the
adjacency list of G. By C above, in space O(log n + log k), we can check if
a vertex of G is in the set S. Thus, for each vertex uh in S, we can find the
corresponding vertex vt in G, and vice versa, in O(log n + log k) space, For
example, for the vertex uh in S, we simply scan the adjacency list of G, and

ADVICE CLASSES OF PARAMETERIZED COMPLEXITY-CORRIGENDUM 3

identify and count the vertices in S, until we encounter the h-th one, which
will be the vertex in G that corresponds to uh in S. For the other direction,
given a vertex vt in G, we scan the adjacency list of G to find the rank h of
vt in the set S, for which the vertex uh is the corresponding vertex in S.

Now we are ready to construct the graph G′ in step 6. For each h,
1 ≤ h ≤ k2, we first find the vertex vt in the adjacency list of G that
corresponding to uh in S. Now by scanning the adjacency list for vt in G,
we will find all vertices in S that are adjacent to vt. For each of them,
we find the corresponding vertex uj in S, and add an edge [uh, uj] in the
adjacency list for uh for the graph G′. Thus, identifying each edge in the
graph G′ takes O(log n+ log k) space. Since each vertex uh of G′ is encoded
using O(log k) bits while the graph G′ has no more than 2k2 vertices thus
no more than 4k4 edges, the entire graph G′ can be stored in the worktape
using space O(k4 log k).

E. Step 7. Since the graph G′ has its size bounded by a function of k, step
7 will derive a decision in space bounded by a function f(k) of k.

Summarizing the above discussion gives an algorithm of space O(log n) +
f(k) for the Vertex Cover problem.

3. Other claims in [1]

In Theorem (2.4) of [1], it is claimed that the problems Restricted
Alternating Hitting Set, Weight ≤ k q-CNF Sat, Planar Domi-
nating Set are all in Logspace+Advice.

At this stage, we don’t know if these statements are correct:
In the case of Restricted Alternating Hitting Set, the Vertex

Cover methods above will work in the case k1 = 2, and hence the simpler
Alternating Vertex Cover is indeed in Logspace+Advice, using our
method and a bit of counting. For k1 > 2 the problem concerns hypergraphs
and there is no longer a high degree rule, like in the Buss’ kernel. The same
problem applies for Weight ≤ k q-CNF Sat (q fixed), which is again about
q-hypergraphs. In the case of Planar Dominating Set, the kernelization
is quite complex, so it is not completely clear that local methods like ours
will work. All of these seem nice problems.

Due to the celebrated of Reingold we know that graph conectivity is in
Logspace, so Theorem (2.7) can now be improved to say k-Leaf Spanning
Tree is in (uniform) Logspace+Advice.

�

References

[1] L. Cai, J. Chen, R. Downey, and M. Fellows, Advice Classes of Parameterized
Complexity Ann. Pure and Applied Logic, 84 (1997), 119-138.

[2] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuck,
M. Pilipczuck and S. Saurabh), Parameterized Algorithms Springer 2015, ISBN
978-3-319-21274-6, pp. 3-555.

4 LIMING CAI, JIANER CHEN, ROD DOWNEY, AND MIKE FELLOWS

[3] R. Downey and M. Fellows, Fundamentals of Parameterized Complexity, Springer-
Verlag, 2013, texts in computer science, ISBN 978-1-4471-5559-1, xxx+763 pages.

Department of Computer Science, University of Georgia, Athens, GA 30602, USA

E-mail address: cai@cs.uga.edu

Texas A&M University Department of Computer Science College Station Texas 77843-3112,

USA

E-mail address: chen@cse.tamu.edu

School of Mathematics and Statistics, Victoria University, PO Box 600,
Wellington, New Zealand

E-mail address: rod.downey@vuw.ac.nz

Department of Informatics, University of Bergen, Postboks 7803 5020 Bergen,

Norway

E-mail address: Michael.Fellows@uib.no

