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What drew me to the study of computation and randomness

I think mathematical ability manifests itself in many different ways1. In
particular, mathematicians can be drawn to space and geometry, can have
strong analytic intuition, can be drawn to formalism, they can be drawn to
counting arguments, etc. There is definitely no unique type of mathemati-
cian. Maybe those mathematicians who are drawn to algorithmic thinking
have found a home in computer science. For myself, I have always found
myself drawn to thinking algorithmically. As a student, I recall studying
algebra. Naturally, we would be prescribed problems to solve and sit exams.
Usually, I would find that instead of some short elegant proof I would grind
out some longer, but more basic often algorithmic version. Likely this re-
flected lack of study, as I was pretty lazy as an undergraduate, so I had not
read the notes mostly! Even when studying analysis, I saw this as an algo-
rithmic game in that given ε, somehow I would try to compute δ, viewing
this as a game of us versus an opponent.

In my honours year2, at Queensland University, I recall studying Szmielew’s
decision procedure for the elementary theory of abelian groups and the word
problem for groups. After this I moved to Monash to work on effective al-
gebra which was very fashionable at the time. In effective or computable
algebra, one tries to understand the effective content of mathematics. This
is the extent to which mathematics can be made algorithmic. One imagines
the data as being presented in some computable fashion, and then asks for
the extent to which aspects or processes of the data can be made computable.

A nice illustrative example from combinatorics is Dilworth’s decomposi-
tion theorem. The classical version says that if the size of the largest an-
tichain in a partially ordered set is k, then the partially ordered set can be
expressed as the union of k linearly ordered chains. The computable version
asks whether this can be done computably. To wit, given a computable par-
tially ordered set, (P,≤) (meaning that the domain is computable and the
relation ≤ is computable), can we decompose this into k computable chains?

1In the following I have sort of combined the questions into a long essay. I have also
made several comments which would have references, but I refer to the Downey-Hirschfeldt
monograph as a suitable source for references.

2The British system has three years of undergraduate study for a degree and then one
more year called the honours year, where if you achieve first class or second upper honours,
you can then move directly on to do a Ph.D.
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Kierstead showed that the answer is no, but we can always decompose into
f(w) = 5w−1

4 many computable chains, using an online algorithm. For those
of you looking for a nice problem, figure out what the correct bound is. We
have this exponential upper bound, but don’t even have polynomial lower
bounds for f(w).

What we have learned

Computability theory allows one to calibrate how difficult computational
tasks are. To do this structures like the degrees of unsolvability (and various
other hierarchies) were invented by Post, Turing and others. Here A and
B have the same degree of unsolvability if using A as read only memory
we can compute membership of B with an algorithm, (so that A ≤T B)
and conversely (so that B ≤T A). These equivalence classes partition the
world into collections of equicomputability. There is a basic spine generated
by the halting problem which, in data n,m, asks if there is an algorithm
that decides if the n’th algorithm halts on input m. A fundamental result
is that the halting problem is algorithmically unsolvable, and this gives rise
to a hierarchy, the degree of the halting problem, called 0′, the degree of
the halting problem if I give you the halting problem as read only memory,
called 0′′, and so on.

As an illustration, the problem of deciding if a Diophantine equation
in many variables with integer coefficients has a positive rational zero is
famously known to be of degree 0′. Similarly, the word problem for finitely
presented groups asks : what is the algorithmic complexity the complexity of
determining whether two words are equal in a given finitely presented group.
This is also of degree 0′. My favourite example is Conway’s generalization
of Collatz functions. Recall that the Collatz function is f(x) = x

2 if x is
even and f(x) = 3x + 1 if x is odd. Then a famous conjecture is that if
you look at the iterates f(x), f(f(x)), . . . then the sequence returns to 1
eventually. Conway asked what about if we choose a set of rational numbers
〈q1, . . . , qn〉 and looked at a similar problem but with congruences chosen via
these rationals. That is, define f〈q1, . . . , qn〉(x) = qm · x if x ≡ m mod n,
and choose the rationals so that the result is a integer whenever x is an
integer. Then what can be predicted about the sequence for this f and a
given x? Conway showed that we can choose a finite set of rationals so
that this simulates precisely the action of a given algorithm. Each of these
results is proven by a similar kind of simulation and hence we see that these
disparate areas of mathematics can simulate computation.

The reader might note that I was a bit sloppy in that I defined the halt-
ing problem when the definition seems to depend on the coding of the pro-
grammes. This turns out to be of no consequence, since we can show that
all reasonable versions of the problem are the same up to a very strong
simulation, called an m-reduction.

Problems can be very much harder than the halting problem. At a far
extreme, there is a notion called analytic where the core problem is not



COMPUTABILITY, ALGORITHMIC RANDOMNESS AND COMPLEXITY 3

asking if there is some stage where a computation halts, but whether there
is a function F : A→ B where for all n some computable relation for F (n)
holds. A classic example of this is isomorphism between structures. Using
computability theory we can show that certain problems are as hard as the
hardest analytic problems, and hence there cannot be a set of invariants to
simplify the problem in the way that, for instance, dimension is an invariant
for vector space isomorphism. Recently, Montalbán and I used this method
to show that the isomorphism problem for torsion free abelian groups is
analytic complete, and hence no reasonable set of invariants (in the sense of
simplifying the problem) can exist for this problem.

For my own interests, behind all of this is a preference for studying fun-
damental logical questions about mathematics. This again is something I
seem to have been drawn to from an early age. At high school I was able to
study logic and philosophy as that was available in Queensland.

Actually, I believe that our working arena for all mathematics is com-
putable mathematics in the sense that any function which occurs in “real
life” likely will be computable. By the same token, one definition of a con-
tinuous function is one that is computable relative to some A. Thus com-
putability is the study of continuity! Of course in the “really real” world, we
“really” only deal with finite things, and these are abstracted to methods
allowing us to analyze them. So number theory advanced when it was con-
verted into analysis. We regard things as continuous to enable tools from
continuous mathematics to attack them. Certainly being infinite is often a
great approximation to the finite! Computation is at the core of a lot of
mathematics.

Anyway, I have worked in and about these areas for the last three decades.
A some stage I became very interested in computer science, and in that
time developed parameterized complexity (a kind of complexity we feel is
more attuned to practical computation) with Mike Fellows. At the same
time I was working through Li and Vitányi’s proofs of lower bounds for
computability results using Kolmogorov complexity. For example the proof
that two tapes have more power than one tape on a Turing machine. I really
understood these proofs only very formally and put them on my large pile
of “must look at again at some stage”.

In January 2000, Denis Hirschfeldt and I organized a conference at Kaik-
oura, a small town on the east coast of the south island of New Zealand.
This was under the auspices of the Marsden Fund for basic science of New
Zealand. What we did was to bring in several overseas experts to speak
about recent developments in mathematics in short graduate level courses.
The resulting volume is called Aspects of Complexity and contains a num-
ber of fine short courses in and about complexity, and is inexpensive! This
method being a great initiative of the founder of the NZIMA, Sir Vaughan
Jones, whose overall goal was to raise the standard of New Zealand mathe-
matics. At the Kaikoura meeting, there were some very illuminating lectures
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by Lance Fortnow on Kolmogorov complexity, and I came back with some
fire in my belly to know some more.

At more or less the same time, one of my ex-postdocs, Richard Coles,
was working at Auckland with Cris Calude. Coles visited me and asked
me one of Cris’s questions. The question was whether the Solovay degrees
of halting probabilities were dense. What does this question mean? Well,
in algorithmic randomness the halting problem is replaced by the halting
probability. The halting problem is the collection of indices of programmes
that halt. For a prefix-free machine (as discussed a little later), the domain of
the machine is a prefix free subset of the collection of finite strings, and thus
considered as a collection of cylinders will have measure under the uniform
measure. Instead of the haling set, we have the halting probability which can
be considered as the sum of the probabilities that the machine halts over all
strings. We will discuss more on this topic in a little bit. Solovay reducibility
is a continuous version ofm-reducibility. The technical question was whether
the resulting degree structure was a dense partial ordering. Hirschfeldt, Nies
and I began to think about this question in depth, and eventually solve the
question. At the same time, we were began a lot of background reading, as
questions lead to other questions and we really knew little about the area.
In doing so, we discovered a large, and for us hitherto unknown, body of
work on algorithmic randomness. As Denis and I say in the introduction
to our book: “We also found that, while there is a truly classic text about
general Kolmogorov Complexity, namely Li and Vitányi (book), most of
the questions we were interested in either were open, were exercises in Li
and Vitányi with difficulty ratings of about 40-something (out of 50), or
necessitated an archaeological dig into the depths of a literature with few
standards in notation or terminology, littered with relentless re-discovery
of theorems and a significant amount of unpublished material. Particularly
noteworthy amongst the unpublished material was the aforementioned set
of notes by Solovay, which contained absolutely fundamental results about
Kolmogorov complexity in general, and about initial segment complexities
of reals in particular. As our interests broadened, we also became aware of
seminal results from Stuart Kurtz’s PhD Dissertation, which, like Solovay’s
results, seemed unlikely to ever be published in a journal.”

Anyway, about this time, we were able to prove a number of results in and
around trying to understand what it meant to calibrate randomness, and
begin the work on K-triviality. As our knowledge grew, we became aware
of other work of Kučera and early work of Levin, Schnorr and Chaitin,
with particularly attractive popular works by Chaitin. Perhaps foolishly,
Hirschfeldt and I then decided to write a book organizing this material. We
estimated that it would take 2-3 years.

So here we are nearly a decade down the track, and the book is just
finished at the time of my writing this article. This is not simply laziness on
our part, but also because there has been an explosion of results in this area,
notably by lots of my postdocs such as Barmpalias, Bienvenu, Greenberg,
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Griffiths, Hirschfeldt, LaForte, Miller, Montalbán, Yu, and by other gifted
authors including Kučera, Muchnik, Nies, Reimann, Shen, Slaman, Stephan,
and Vereshchagin (and many others) and this necessitated endless re-writes.

Randomness is important in calculation and the like, but for me the fasci-
nation lies in the intuition that something fundamental is going on here. It
is a striking fact that something, a string say, which is algorithmically ran-
dom (meaning that it passes a bunch of computable tests) will act in some
mathematical situation like the expected statistical outcome. Why should
this be? Well, if the situation is normal then it will be computable, and
hence if it did not act in the expected way, the very computational nature
of the situation would allow us to compress the string, and hence it would
not be random.

Personally, I am not driven by the thought that the material might be use-
ful, but to try to understand what randomness means. I deal with question
like: When is one real or string more random than another? How powerful
as computational resources are randomness sources? If one string is more
random than another how does that align to computational power? What
does independence mean? What happens if we vary the machines? What
are the correct notions of compressibility? These all seem fundamental and
my intuition tells me they are important.

The Downey-Hirschfeldt Monograph

I have been asked to try to summarize what is in the Downey-Hirschfeldt
book. The paragraph above is a good beginning.

The tools we will use will be based around computability theory. So we
begin with a condensed course in “advanced computability theory” where
we develop the tools we will need. The idea is that we will study algorithmic
randomness. The theme of the book is that for such a notion of randomness,
there are three natural approaches. In some sense they all derived from the
intuition of von Mises. In a remarkable early paper von Mises argued that
if we had a random real α = a0a1 . . . (which we will consider as an infinite
sequence of 0’s and 1’s) then by the law of large numbers the first n bits
of α, α � n should contain as many 0’s as 1’s as n → ∞. Moreover, if we
selected n bits ai0 , . . . , ain−1 , with i0 < i1 < · · · < in−1, then also we ought
to have as many 0’s as 1’s. What selections should be possible? Well, if
we are interested in algorithmic randomness then presumably the correct
notion of selection should be more or less computable selection. It is impor-
tant to realize that von Mises intuition was well before the development of
computability theory, and hence the notion of using computable selections
was due to Church many years later. Unfortunately, in its classic formu-
lation, Ville showed that no collection of selection functions (computable
or not) would suffice to characterize a reasonable notion of randomness as
there would be natural effective statistical tests failed by some real, random
relative to the selection functions.
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Now we return to the three approaches. The first approach is the statis-
tical one due to Martin-Löf. This views statistical tests as null sets (sets
of measure 0), and asks that a real be random iff it avoids all effective null
sets.

The second approach to defining randomness observes that if a string
has patterns then that allows for compression of the string by a programme
that exploits the patterns. This is the way commercial compression packages
work. Kolmogorov defined a string σ to be random relative to a machine M
if the shortest M -programme to generate σ has length |σ| or longer. The
Kolmogorov complexity CM of a string σ relative to M is the length of the
shortest M -programme for σ. It turns out that there is a universal M for
the definition in the sense that for any other M̂ there is a fixed constant c,
and any σ, CM̂ (σ) ≤ CM (σ) + c. For such M , we write C for CM . Now
the second approach asks that a real be random iff all its initial segments
are incompressible. Unfortunately, using Kolmogorov’s definition, no real
is random since all will have C-compressible initial segments. The problem
is that C does not really capture one of the key intuitions of the notion of
information content. Namely, if M(τ) = σ our intuition is that the bits of
τ encode the information of the bits of σ. Thus |τ | should be a reasonable
notion of the information content of σ, and the shortest τ would give the
Kolmogorov complexity of σ. But, plainly τ gives more information than
just the bits of τ , it gives also the length of τ as well. That is we get the
bits of τ and some kind of termination symbol saying that that is the end of
the programme. First Levin and then a little later Chaitin suggested ways
around this. Perhaps the most popular method is to use machines which act
like telephone numbers3: no programme is a prefix of another, and this gives
a notion called prefix-free Kolmogorov complexity which we denote by K. It
is also possible to use “continuous” complexity (of various types) where now
if τ extends τ̂ , then M(τ) should extend M(τ̂). This notion gives rise to
several notions of complexity depending on the notion of allowable machine,
and two main complexity are called Km and KmP , monotone and process
complexity.

Anyway our story has a happy ending, since for any of these notions, α
is Martin-Löf random iff the all of the initial segments of α are random as
strings. Even here we see the emergence another theme of the book: What
are the appropriate measures of information content, and how do they relate.
For example, we include the difficult proofs that for strings σ,

K(σ) = C(σ) + C(C(σ)) +O(C(C(C(σ)))),

and that this C(3)(σ) is sharp in the sense that it cannot be replaced by

O(C(4)(σ)). This remarkable result is due to Solovay and no proof of it has
appeared in print. We include many results about the relationships of the

3Well, more or less. I know that in the US 0 is the operator, and 011 is the international
prefix access code, but the spirit is correct.



COMPUTABILITY, ALGORITHMIC RANDOMNESS AND COMPLEXITY 7

differing complexities, and see how it emerges that differing complexities can
be appropriate for differing notions of randomness.

The final approach is the closest in spirit to von Mises. What we will do
is bet on the “next bit” of α from α � n. Clearly, if α is random, if we use
some kind of effective betting strategy, we should not be able to win infinite
winnings. With the correct notion of effective betting, it turns out that we
get the same notion of randomness. The notion of effective betting is one
which corresponds to being effectively approximable from below.

Schnorr proved this coincidence of randomness notions, but then pointed
out that if we were to intuitively think of effective betting strategies surely
we would simply bet and then not later change our minds and maybe bet
more, etc. This critique led to the development of other natural notions
of effective randomness, such as computable, partial computable, weak and
Schnorr randomness. I won’t go into details (buy the book!), but these
notions have complex interrelationships particularly when we look at them
in relation to Turing degrees. For example, for a certain class of degrees
with, in a quantifiable sense, little computational power, they all coincide;
whereas in ones with high computational power they all separate.

Already we see the emergence of another theme. The computational com-
plexity of a random set can affect its level of randomness and conversely. A
classic illustration of this is Ω , the universal halting probability (the mea-
sure of the domain of a universal prefix-free machine). As shown by Chaitin,
we know that this has very high computational power, like the halting prob-
lem and in a very compressed form. This fact does not accord with our
intuition that random reals should have feeble computational power, in that
whilst they might have lots of “information” none of it is usable.

What we now know in a very precise way is why this is all true. The
following is a colourful way to think of this. Think of trying to pass a
stupidity test. There are two ways to do this. One is to be the genuine
article, but the other is to be so smart that you know the correct answers to
appear stupid. We know that if we soup-up the randomness by asking that
the real be (weakly) random given the halting problem as an oracle, then
the computational power of the random real is very much weaker in many
quantifiable ways. Moreover, Frank Stephan showed that random reals come
in two varieties. There are those with very low computational power (in the
sense that they cannot compute what is called a PA degree) which are the
typical ones, and those that have some power in this sense, and all of these
are the “false” randoms living above the halting problem. That is, almost all
random reals have very little computational power and those that do are not
very random, and all are basically the halting problem (or more) compressed.
These PA degrees are those that are degrees of models of Peano arithmetic
have remarkable interactions with random degrees, a fact first realized by
Antońın Kuč era. One recent gem is the result of Barmpalias, Lewis and Ng
who showed that every PA degree is the join of two random degrees.
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A great part of the middle of the book looks at interactions of notions
of randomness and notions of computational power. It has become clear
that what are called domination properties are key notions. For example
consider the class of degrees a which have the property that every function f
computed by a should be dominated by a computable function. This would
seem a class of almost computable degrees with low computational power in
some sense. But they can be random. And, indeed, for such degrees weak,
computable, Martin-Löf and even weak randomness relative to the halting
problem all coincide!

There are many such investigations. For example, the power to compute
a PA degree is related to the initial segment complexity by looking at the
growth rate of the initial segment complexity.

One striking phenomenon was the analysis of the K-trivial degrees. It is
an old result of Chaitin, building on work of Loveland that α is computable
iff C(α � n) ≤ C(1n) +O(1), giving an information-theoretical definition of
computability. Solovay showed that there are noncomputable reals β with
K(β � n) ≤ K(1n) + O(1). Thus the characterization of computability fails
for prefix-free complexity. Such reals β are called K-trivial. They have
remarkable properties. I am sure that this class is explored by Nies in his
contribution, which is highly apt as many of the basic properties of this class
were discovered by Nies and his co-authors. They are very easy to construct,
and give natural solutions to Post’s problem. They lead us to explore notions
of lowness. For example it can be shown that α is K-trivial iff α is low for
K in the sense that it does not compress anything: Kα(x) = K(x) + O(1)
for all x. This is the tip of the iceberg. There are also many other lowness
notions we explore. These ideas are also explored in Nies’ recent monograph
called Computability and Randomness.

We also include analyses along the themes of calibrating randomness by
various pre-orderings. Solovay reducibility is one, but you could ask that
α ≤ β if the initial segment complexities align in some way. For example,
we can define α ≤K β iff K(α � n) ≤ K(β � n) +O(1). It makes sense that
if a real is random iff K(α � n) ≥ n − O(1) for all n, then the pre-ordering
above should define some notion of relative randomness. Indeed we now
know, that ≤ K can also be used to define higher levels of randomness such
as randomness relative to the halting set and its iterates. You can also try
to calibrate relative randomness according to derandomization power. Now
α ≤LR β if everything β makes non-random is also made nonrandom by
α. How do such measures relate to each other and how do they relate to
computational complexity? Myriad questions suggest themselves and there
have been a lot of deep and unexpected results proven here.

The last part of our monograph is devoted to looking at other related
ideas. For example, in the same way that classical Hausdorff and other di-
mensions refine measure 0, we can look at effective versions following the
lead of Jack Lutz. We have a long section devoted to understanding algorith-
mic dimensions. For example, we address questions like: I have some source
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of partial randomness, say a real of dimension 1
2 , and ask can I extract a real

of dimension 1 from this by some effective means? This question has a beau-
tiful negative answer by Joe Miller, and we include this and other related
results in and around partial randomness as defined via notions of effective
dimension like Hausdorff, packing, box counting and the like. We even in-
clude Lutz’s notion of dimension for finite strings. Additionally, we look at
the notion of the halting probability as an operator, showing that almost
every random real is a halting probability relative to some oracle. This is a
contrast to Stephan’s result that suggests that halting probabilities should
be rare as they have high computational power. The reconciliation is that
relativization here does not involve coding. Finally we look at fundamental
sets like the collection of non-random strings and ask what kind of compu-
tational power these sets of strings have as oracles, according to differing
access mechanisms. Such results have impact in complexity theory as they
seem related to separation questions of complexity classes following the work
of Allender and his co-authors. The biggest part of the story missing in our
book is the part of the randomness story low down in classes like EXP or
the like. There simply was not space.

What we left out, and would have liked to include

Actually one reviewer asked us to give an account of what we did not
include in the 870 or so pages which constitute the book. I did prepare
an account and sent it to Denis, but in the end we decided that we did
not have enough time to polish the material4. However, I will list what I
had proposed below, and it should give you a perhaps idiosyncratic view
of areas of randomness I would like to explore, and see not covered by our
monograph.

The concept of randomness has held a central place in mathematics and
computer science in recent years. Whilst Hirschfeldt and I feel somewhat
(completely?) inadequate in our knowledge of all of the recent develop-
ments we offer a few. In most cases, there is, as yet, no applications to
or of algorithmic randomness. In most practical applications of random-
ness in algorithms, it seems that only weak random sources seem to suffice
in practice. For example, the advent of the Metropolis-Hastings algorithm
in Markov Chain Monte Carlo algorithms has revolutionized Bayesian sta-
tistics in recent years, and is now the mainstay of applications of statical
applications in science. A comprehensive account of these applications to
wildly diverse areas of mathematics can be found in Diaconis (Bulletin of
the AMS article), and it would take another monograph to describe appli-
cations of this methodology to physics and biology. There is certainly no
current work in algorithmic randomness trying to speak to this material and
it would rather nice to see such a development.

4For a mixed metaphor, we needed to kill the albatross.
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In number theory, Terry Tao and others have made profound advances in
the theory of distribution of the primes by the hypothesis that the primes
are random. Now of course the primes are not random, but the intuition of
generations of number theorists is that they are random enough, once you
discount all the obvious facts about them. For instance, long ago van der
Waerden proved that if you two colour the integers then one or the other
colour will have arbitrarily long arithmetical progressions. In a very deep
advance, Szemeredi proved that “random-ish” or “big” sets, sets of positive
upper density5, have arbitrarily long arithmetical progressions. Now all
known proofs of this fact filter through a lemma which says that either a
big set resembles a random set, or it is highly structured and in either case
there will be long arithmetical progressions.

Using this idea, based in and around Szemeredi’s techniques and their
heirs, Green and Tao proved that the primes contain arbitrarily long arith-
metical progressions. An abstract view of this methodology is provided by
the Dense Model Theorem of Green, Tao and Ziegler; with an interesting
view being presented by Trevisan, Tulsiani, and Vadhan in the Proceedings
of the Annual Conference on Computational Complexity, 2009. It would
be extremely interesting to try to make all of this precise, but the mathe-
matics seems very deep. A very readable discussion of this can be found in
Tao’s talk at the Madrid International Conference of Mathematicians, and
his “blog book”.

In some sense we have seen similar ideas applied in combinatorial group
theory where people have looked at average and generic case behaviour of
decision problems for groups. That is for generic complexity, we can look at
algorithmic which give correct answers on a positive upper density version
(usually density 1) of finitely generated groups. In generic case complexity,
we ask that the algorithm only be partial, always give the correct answer,
and halt with upper density 1. The original work can be found in a paper
in the Journal of Algebra by Myasnikov, Kapovich, Schupp and Shpilrain.
A typical theorem says that in a given finitely presented group, the word
problem is linear time generically computable. This accords strongly with
computer experiments. Much of this work relies on the fact that almost all
groups are hyperbolic as shown by Gromov. Such groups are “almost free”
in the sense of the work of Martin Bridson, and the logic has been analysed
by the wonderful work of Sela. A small amount of the computability here
has been developed. The general theory of such structures remains to be
developed.

It is clear that it all seems related to Ergodic Theory, certainly in the
case of additive number theory and Ramsey Theory. This insight was first
realized by Furstenberg. One can obtain things like van der Waerden’s
Theorem using methods from ergodic theory which clearly can be viewed as
involving randomness. A good discussion of this can be found in in the work

5That is sets of integers A such that limn→∞
{z:z∈A∧z≤n}

n
> 0.
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of Avigad. There has been some work quantifying the amount of randomness
needed for the Ergodic Theorem to work by Reimann and by Hoyrup and
Rojas. It seems that it is sensitive to the formulation, and either involves
Schnorr randomness or 2-randomness.

Again the harmononious interactions within mathematics are revealed
in that the Tao work and the Ergodic Theorem are related to results in
analysis, such as the Lebesgue theorem saying that monotone functions are
differentiable almost everywhere as articulated by Tao in his blog. The con-
structivist, Oswald Demuth, had a programme where he argued that random
functions should behave well. Theorems such as the Lebesgue theorem beg
for analysis in terms of algorithmic randomness, and recently Demuth’s pro-
gramme has been extended Brattka, Miller and Nies. They show that the
level of randomness needed to obtain differentiability of a computable con-
tinuous function on the reals is precisely computable randomness. That is,
every computable continuous function of bounded variation on the real inter-
val is differentiable at each computably random point, and conversely there
are computable monotone continuous functions on the interval differentiable
only at the computably random points.

Notice that to even state such theorems we need the language of com-
putable analysis. To treat such interesting results would have required
Hirschfeldt and I to to develop quite a bit of computable analysis. Certainly
to develop at least as much as long initial segments of the classic books of
Albeth, Pour-El and Richards or Weihrauch. It is interesting that our orig-
inal work in the area of algorithmic randomness appeared in computable
analysis conferences, yet so far there have not been many applications to
analysis. It seems that Demuth’s programme has a number of significant
implications for computable analysis, and believe there will be a lot more
work in this area. The fact that it connects to ergodic theory is the icing on
the cake. Perhaps also related is the recent work of Braverman and Yam-
polsky on computability and Julia sets. Again in that work left c.e. reals
play a prominent role, and hence it is all related to algorithmic randomness.
We can only say that we did not have enough space to treat such material
properly. Similar comments apply to applying algorithmic randomness to
fundamental concepts of physics. A very nice recent example is the work
of Kjos-Hanssen and Nerode, and Kjos-Hanssen and Gács on Brownian mo-
tion and thermodynamics. Again not only would Hirschfeldt and I have
needed to develop the computable analysis, additionally we would be forced
to develop some more high powered probability theory. All of this would
clearly have taken many pages to develop and Hirschfeldt and I leave this
to Volume 2 (joke).

In our book we treat algorithmic randomness on Cantor space. This is
measure-theoretically identical with the real interval, but not homeomor-
phic to it. A great omission is the treatment of other spaces, particularly
non-compact spaces. In the case of the reals, we have a natural measure we
can use, namely Weiner measure. But in more general cases, the situation
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is reasonably murky. Again a rigorous development requires a substantial
amount of analysis and computable analysis. It would go significantly be-
yond the scope of the book. Very recent work of Hoyrup, Rojas and Gács
bases the whole thing on what are called Scott domains. This is another
area which is ready for development.

As a ”big picture” view of algorithmic randomness in more general spaces,
it seems that analogs of the basic results seem to work. As a ”big picture”
view, it seems that analogs of the basic results seem to work. These re-
sults include existence of uniform tests, neutral measures, conservation of
randomness. The article of Gács 2005 Theoretical Computer Science article
has a good overview of the history. At Gács homepage there is a treatment
of this material in a set of online lecture notes.

Given the focus within our book on the interactions of randomness and
computability, Cantor space is a very natural domain. Even in the case of
Cantor space, there is more to be said in terms of non-uniform measures. We
allude to some of this when we discuss the work of Levin, Kautz, Reimann
and Slaman. But the recent deep work of Reimann and Slaman on never
continuously random reals would need a substantial treatment of set theory
to do them justice and so in our book Denis and I only state some results,
and but do prove some of those that don’t need overtly set-theroretical
methods. This is deep and important work I think.

In computational complexity theory there has been a number of major
developments regarding randomness6. To even state the results would need
quite a bit of development and we will give a breezy overview, referring the
reader to the (mildly) cited works for more details. referring the reader to
the cited works for more details. To treat these applications would need at
least another book. One strand began with the work of Valiant-Vazirani
who showed that Satisfiability reduces to Unique Satisfiability (i.e.
at most one satisfying assignment) under randomized polynomial time re-
ductions. This attractive theorem led to Toda’s Theorem showing that P#P

contains the polynomial time hierarchy. Here #P is the counting analog of
NP where we count the number accepting paths in a polynomial time Tur-
ing machine. Toda’s Theorem states that if we can have the advice of such
a counting oracle, then we can solve any problem in the polynomial time
hierarchy. All known proofs of Toda’s Theorem work through the operator
BP, which is the probability version of NP, namely that most paths lead to
the correct answer.

Another strand leads to two important generalizations of the notion of
“proof”: interactive proofs and probabilistically checkable proofs. NP can
be viewed as the class of sets A such that a prover can provide a short
“proof of membership” for any element of A, which can be verified deter-
ministically. A more general notion arises if one allows the verifier to be a

6I thank Eric Allender for some thoughts and corrections in this account
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probabilistic process; allowing this probabilistic verifier to hold a conversa-
tion with the prover (and allowing the verifier to be convinced by statistical
evidence) leads to interactive proofs (and the class IP consisting of those
languages where the prover can convince the verifier about membership).
Initially, people suspected that IP would be a “small” augmentation to NP
(for instance, there are oracles relative to which IP does not contain coNP by
results of Fortnow and Sipser), and thus it came as a surprise when Babai,
Fortnow, Lund, and Nisan showed that IP contains P#P (and hence contains
the polynomial hierarchy, by Toda’s theorem). Shamir subsequently showed
that IP is equal to PSPACE. The key step in the proof is to translate a
PSPACE problem into a problem about polynomials over a finite field (via
a process called arithmetization). The point of the large field is that two
polynomials can intersect only rarely if they are not identical.

In an IP protocol, the prover is allowed to give different responses to
identical queries from the verifier, along different computation paths. In the
so-called multi-prover interactive proof model (MIP), this power is essen-
tially taken away; this actually results in a more powerful system. Babai,
Fortnow, and Lund showed that MIP = NEXP. This is extremely counter-
intuitive, because it means that an exponential-size proof can be verified
by a probabilistic verifier who has only enough time to ask about a small
part of the proof. The next step (in some sense, a “minimization” of the
MIP=NEXP characterization) was an analogous characterization of NP in
terms of Probabilistically Checkable Proofs; this is known as the PCP the-
orem of Arora, Safra, and Arora, Lund, Motwani, Sudan, Szegedy, and it is
recognized as one of the crowning achievements of computational complex-
ity theory (even thought it is only really a reduction!). The PCP Theorem
states, roughly, that any problem in NP has a proof which is polynomial in
length and can be verified in polynomial time with arbitrary high accuracy
by checking a constant number of bits and running a logarithmic number
of random tests on the proof. Stated another way, this says that any proof
can be encoded efficiently in such a way, so that a referee need not read the
entire proof, but can simply pick, say, 15 random bits in the paper and see
if these bits satisfy some local consistency condition, and certify the proof
as “correct” if no error is detected in these 15 bits; no correct proof will
be rejected in this way, and the probability that an incorrect proof is ac-
cepted is less than the probability that an incorrect proof is accepted in the
traditional method of journal refereeing.

The use of randomness has seen a lot of work to try to understand how
it is possible to get sources of randomness. One idea is to take some weak
source and try to extract nearly true randomness from it, or to extend the
length of the source whilst still hoping to have the output “look random”.
This is an area of much deep work and Hirschfeldt and I briefly touch on this
material when we look at packing and Hausdorff dimensions. The methods



14 ROD DOWNEY

here are very sophisticated and again would need a lot of deep mathemat-
ics developed to treat them properly. Proper utilization of pseudo-random
sources is especially important in cryptography.

Much work in probabilistic algorithms is centered on tasks for which we
we have randomized algorithms, such as deciding polynomial identities, but
for which we have absolutely no idea how to construct deterministic poly-
nomial time algorithms. However, recently it has become apparent that
perhaps this is merely because of our lack of brain power, rather than be-
cause deterministic algorithms are inherently weaker. That is, it is widely
believed that BPP=P. Namely anything we have a randomized polynomial
time algorithm for can actually be derandomized. This has happened in
the case of primality testing, where the Solovay-Strassen algorithm gave a
randomized algorithm for primality and subsequently Agrawal, Kayal, and
Saxena gave a deterministic algorithm. Now it it is widely believed that not
only is Satisfiability hard, but very hard, in that it requires circuits of
nearly exponential size (that is, for each input length, it is conjectured that
the smallest circuit computing the function correctly for that input length
has size 2εn for some ε > 0. Remarkably, Impagliazzo and Wigderson have
shown that if there is any problem in Dtime(2n) (such as Satisfiability
that requires circuits of size 2εn then P=BPP; that is, all probabilistic algo-
rithms can be derandomized.. Again it is not clear what the intuition really
is connecting nonuniform complexity and randomness. Again this is way,
way beyond the present book and we refer to Kozen’s book for basic mate-
rial and Wigderson’s article in the proceedings of the Madrid International
Congress of Mathematicians for an excellent overview.

Another nice application of the ideas of effective measure in computational
complexity comes from the work of Lutz and his co-workers. The idea here
is that if we believe, say, that P6=NP then we should quantify how big P is
within NP. Using these ideas, those authors have shown that various measure
theoretical hypotheses on the structure of complexity classes in terms of
small or large measure have significant consequences for separations. Here
we refer to Lutz’s or Hitchcock’s web page for references and more details.

There are myriad other applications in computational complexity, not
the least of which are those where combinatorial arguments are replaced
by Kolmogorov complexity ones. For instance, constructing “hard” inputs
on which any simple algorithm must make an error can be difficult, but
frequently it is easier to show that all simple algorithms must make an error
on random inputs. I think the intuition here is the following: We have some
algorithm we wish to show has certain behaviour. We use that fact that a
string of high Kolmogorov complexity should behave in the expected way as
the process is algorithmic. If it did not then it could be compressed.

For example, we can use this idea to prove worst case running times
for various sorting algorithms, or to prove the Hastad switching lemma.
There are many, many applications of this form as can bee seen in in Li
and Vitányi’s book. Li and Vitányi’s book is also an excellent source of



COMPUTABILITY, ALGORITHMIC RANDOMNESS AND COMPLEXITY 15

other applications of Kolmogorov complexity to things like thermodynamics,
computational learning theory, inductive inference, biology and the like.
Again Hirschfeldt and I though this was beyond our ken and space or time
available.

Another area we did not develop is the time and space bounded versions.
This goes back to work of Levin on Kt complexity, and we refer to the
excellent surveys of Allender here for more details and to Li and Vitányi’s
book for background and historical results.

We remark that Vitányi and other authors have used the notion of Kol-
mogorov complexity to explore the common information between strings in
analysis of things in real life. For example in computational biology to try
to compare two phylogenetic trees we would invent metrics such as what is
called Maximum Parsimony, and Maximum Likelihood. The idea is to
replace this with a more general measure of normalized relative Kolmogorov
complexity. Of course this is great, except that computing the complexi-
ties is undecidable as we see in the present book. I applications the idea
has been to use commercial text compression packages like GZIP and see
what happens. Vitányi and his co-authors have has some success with music
evolution. Again more works need to be done.

Finally while Hirschfeldt and I did develop some aspects of the Kol-
mogorov complexity of finite strings they were in support of our aims. It
is certainly the case that there is a lot more, especially from the Moscow
school flowing from the students of Kolmogorov. We can only point at the
work of Shen, Muchnik, Vereshchagin, Uspenskii, Zimand and others.

The most important open problems

What we have is a vast enterprise devoted to the themes above. The pic-
ture is still emerging with a number of very interesting technical questions
still open. For example, if we allow “nonmonotonic” betting strategies, does
computable randomness in this new sense coincide with Martin-Löf random-
ness? Is even a little bias allowable, etc? By this I mean suppose that I have
a betting strategy which at some stage might favour some side, and if so
is then committed to favouring that side. Is the resulting notion of ran-
domness the same as Martin-Löf randomness7? As mentioned above, what
about extensions to non-compact spaces such as the work of Peter Gács,
and how should we understand independence as suggested by seminal works
of Levin? (Actually, even reading some of those early works of Levin is
challenging enough.) There are many questions in and around randomness,
independence, computability and you should look at the survey of Miller
and Nies or at either Nies’ or our book here. Of course there are fundamen-
tal questions in complexity such as the conjecture that BPP = P . That

7The point here is that the usual proof that approximable effective betting strategies
gives the same randomness as the Martin-Löf definition allows us first to favour σ0 and
the perhaps later we might choose to favour σ1.
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is, there are a host of algorithms which efficiently solve problems using ran-
domness as a resource. It seems that all of these can be derandomized, or
at least that is the current thinking of people working in complexity. How
should this be proven? What are the languages efficiently reducible to the
collection of non-random strings. We know it contains PSPACE but is the
intersection of such languages the same? Is the definition even machine in-
dependent? There are a host of questions, and I would hope they would be
articulated by other contributors to this volume.

The prospects for progress

In the future I would hope that this machinery would see applications in
our understanding of things like physics and other sciences, as well as other
parts of mathematics. We live in a world where most processes are finite
and their approximations are computable. Thus the notion of expectation
aligns itself to Kolmogorov complexity, as we mentioned in the beginning.
Thus, one would think that algorithmic randomness should be an excel-
lent approximation to “true” randomness whatever that means, quantum
or otherwise. Surely we could use algorithmic randomness to better under-
stand physical processes. As mentioned above, Kjos-Hanssen and Nerode
have some initial forays on this in Brownian motion. There is also work
by people like Vitányi and his group on things like phylogeny and sequence
matching using approximations to Kolmogorov complexity as a measure of
common information rather than using things like minimum distance etc.
The idea is that rather than figuring out the best metric to see how sim-
ilar two things are, use the fact that something like a normalized version
of the relative Kolmogorov complexity is a universal notion of information
distance. The problem, of course, is that it is not computable. But we might
be able to use compression algorithms like ZIP or the like to approximate.
This method apparently works well for evolution of music. Even biological
processes would seem to need randomness to understand them. But here I
am into the world of wild speculation. Information is everywhere, and we
are developing tools to try to understand it. I think the future of this area
is fascinating.
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