Minimal weak truth table degrees and computably enumerable Turing degrees

Rod Downey
Keng Meng Ng
Reed Solomon

May 9, 2017

Chapter 1

Introduction

Computability theorists have studied many different reducibilities between sets of natural numbers including one reducibility $\left(\leq_{1}\right)$, many-one reducibility $\left(\leq_{m}\right)$, truth table reducibility $\left(\leq_{t t}\right)$, weak truth table reducibility $\left(\leq_{w t t}\right)$ and Turing reducibility $\left(\leq_{T}\right)$. One motivation for studying strong reducibilities (i.e. reducibilities stronger than Turing reducibility) stems from internal questions within computability theory associated with varying the access mechanism to the oracle. For example, before Post's Problem for the Turing degrees was solved, Post [29] solved it for the many-one degrees and the truth table degrees using an analysis of the connections between m-completeness and immunity and between $t t$-completeness and hyperimmunity. As another example, Nerode [24] characterized the connection between $\leq_{t t}$ and \leq_{T} using partial recursive functionals which are total on all oracles.

A second motivation for studying strong reducibilities is that most natural reducibilities arising in classical mathematics tend to be stronger than Turing reducibility. Abstract algebra provides many examples of this phenomena. In combinatorial group theory, the word problem is one reducible to the conjugacy problem. In field theory, Frohlich and Shepherdson [11] proved that the root set R_{F} of a computable field F is Turing equivalent to the splitting set S_{F} of F. Miller [22] sharpened this result to show that while $S_{F} \leq_{1} R_{F}$, it is possible to have $R_{F} \not Z_{1} S_{F}$. Steiner [37] strengthened Miller's negative result by constructing a computable field F for which $R_{F} \not \mathbb{Z}_{w t t} S_{F}$. For vector spaces, Downey and Remmel [8] proved that if V is an enumerable subspace of V_{∞}, then the degrees of the computably enumerable (c.e.) bases of V are precisely the weak truth table degrees below the degree of V.

Examples also abound outside of algebra. In differential geometry, wttreducibility proved fundamental in the work of Nabutovsky and Weinberger [23], as studied by Csima [4] and Soare [35]. In algorithmic randomness, Downey, LaForte and Terwijn [7, 9] showed that presentations of halting probabilities coincide with ideals in the c.e. wtt-degrees, and Reimann and Slaman (e.g. [31]) demonstrated that truth table degrees are precisely the correct notion for studying randomness notions for continuous measures.

A final motivation is a technical one: results about strong reducibilities and their interactions with Turing reducibility can lead to significant insight into the structure of (for example) the Turing (T-)degrees. A good example is the first paper of Ladner and Sasso [20] in which they construct locally distributive parts of the c.e. T-degrees using the $w t t$-degrees (via contiguous degrees) and their interactions with the T-degrees. Extensions of this concept resulted in the first naturally definable antichain by Cholak, Downey and Walk [1] and similar definability results from Downey, Greenberg and Weber [6]. These definability results are actively being extended via notions of wtt-reducibility by Downey and Greenberg [5].

For general information concerning these reducibilities, we refer the reader to the survey article by Odifreddi [26] as well as the books by Rogers [30], Odifreddi [27] and Soare [34].

Our main concern here is the interaction of minimality and enumerability, two of the most basic concepts in classical computability. Constructions of minimal degrees are typically effective forcing arguments of one kind or another and such constructions are relatively incompatible with building effective objects. For example, by the Sacks Splitting Theorem, no c.e. T-degree can be a minimal T-degree. On the other hand, it is known that there can be c.e. sets of minimal m-degree (for example, Lachlan [18]) and of minimal $t t$-degree (for example, Fejer and Shore [10]). Since $w t t$-reducibility is intermediate between $\leq_{t t}$ and \leq_{T}, it is natural to wonder what happens there. Again, the Sacks Splitting Theorem shows that the $w t t$-degree of a c.e. set cannot be a minimal wtt-degree, but this leaves open the intriguing possibility that a set with minimal $w t t$-degree might sit inside a c.e. T-degree. This question served as our primary motivation. Before we present our results, we discuss the history and motivation in more detail.

Whether minimal degrees exist is a basic question in any degree structure. Frequently, a positive answer to this algebraic question leads to a negative answer to the logical question of whether the first order theory (in the language of a partial order or an upper semi-lattice) is decidable. Spector [36] proved the existence of a minimal T-degree using a forcing argument with perfect trees. This type of construction eventually led to Lachlan's proof [16] that every countable distributive lattice can be embedded as an initial segment of the T-degrees and hence that the structure of the T-degrees (as an upper semi-lattice) is undecidable. Furthermore, the method of forcing with perfect closed sets is now a mainstay in set theory.

Spector's construction uses a $\mathbf{0}^{\prime \prime}$ oracle to construct a sequence of total trees which force T-minimality and hence gives a Δ_{3}^{0} minimal T-degree. Because the trees are total, his construction also gives a minimal $w t t$-degree and a minimal $t t$-degree. Sacks [32] strengthened Spector's theorem to show that there are Δ_{2}^{0} minimal T-degrees by using a $\mathbf{0}^{\prime}$ oracle to define a sequence of partial recursive trees which force T-minimality. Because these trees are partial, his construction does not immediately give either a minimal $w t t$-degree or a minimal $t t$-degree. The use of an oracle in the construction of a minimal T-degree can be completely removed with a full approximation argument and such arguments can be used
to build minimal T-degrees in a variety of contexts such as below any noncomputable c.e. T-degree (Yates [38]) or below any high $\Delta_{2}^{0} T$-degree (Cooper [3], later generalized by Jockusch [14] to any T-degree which is GH_{1}). This technique also uses partial trees and hence does not automatically produce minimal $w t t$ or $t t$-degrees.

The other classical theme for the present work is that of enumerability and specifically the c.e. sets. For strong reducibilities such as \leq_{1}, \leq_{m} and $\leq_{t t}$, the techniques for building minimal degrees and c.e. degrees can be combined. Lachlan proved that there is a c.e. minimal 1-degree ([17]) and a c.e. minimal m-degree $([18])$. That is, there is a set A with minimal m-degree such that $A \equiv{ }_{m} W_{e}$ for some c.e. set W_{e}. In the 1-degrees and the m-degrees, the property of being c.e. is closed downwards and therefore, to build such minimal degrees, it suffices to make them minimal within the c.e. 1-degrees or within the c.e. m degrees. Marchenkov [21] proved that c.e. minimal tt-degrees exist, although the first direct construction of such a degree was given by Fejer and Shore [10].

As remarked earlier, for weaker reducibilities such as \leq_{T} and $\leq_{w t t}$, the techniques for constructing minimal degrees and c.e. degrees do not mix. Sacks [33] proved that the c.e. T-degrees are dense and Ladner and Sasso [20] proved that the c.e. wtt-degrees are dense. So, in addition to there being no minimal T or $w t t$-degrees, there are no c.e. minimal T or $w t t$-covers. However, it is possible to get some positive results concerning the relationship between minimal T degrees and c.e. T-degrees. For example, Yates [38] used a full approximation argument together with c.e. permitting to show that in the T-degrees, every noncomputable c.e. set bounds a minimal T-degree.

We look at Yates' Theorem from a different perspective. Instead of looking at whether noncomputable c.e. sets bound minimal degrees, we look at whether sets with minimal degree can bound noncomputable c.e. sets or can even be of c.e. degree. By the results mentioned above, if we work entirely within the T-degrees or the $w t t$-degrees, this is not possible, but it becomes nontrivial if more than one reducibility is involved. Although a minimal $w t t$-degree \mathbf{d} cannot $w t$-bound a noncomputable c.e. set, we look at what \mathbf{d} bounds under Turing reducibility. Specifically, if A is a Δ_{2}^{0} set with minimal $w t t$-degree, can there be a noncomputable c.e. set B such that $B \leq_{T} A$? Can we make $B \equiv_{T} A$? Our main theorems give a positive answer to the first question and a negative answer to the second question.

Theorem 1.1. There is a Δ_{2}^{0} set A and a noncomputable c.e. set B such that A has minimal wtt degree and $B \leq_{T} A$.
Theorem 1.2. No c.e. Turing degree can contain a set which is wtt-minimal.
In addition, we show that the sets A realizing Theorem 1.1 cannot be close to $\mathbf{0}^{\prime}$ in the sense that they cannot compute a promptly simple set.

Theorem 1.3. Let V be a promptly simple c.e. set and let A be a Δ_{2}^{0} set such that $A \geq_{T} V$. There exists a c.e. set B such that $0<_{T} B \leq_{w t t} A$.

In his injury-free solution to Post's Problem, Kuc̆era [15] proved that if Y is a Δ_{2}^{0} set of diagonally noncomputable Turing degree, then there is a promptly
simple c.e. set $V \leq_{T} Y$. Therefore, we have the following corollary to Theorem 1.3 .

Corollary 1.4. Let A be a Δ_{2}^{0} set such that there is a diagonally noncomputable function $f \leq_{T} A$. There exists a c.e. set B such that $0<_{T} B \leq_{w t t} A$.

If A has Martin-Löf Turing degree or PA Turing degree, then there is a diagonally noncomputable function $f \leq_{T} A$. Therefore, we obtain similar corollaries for such sets. Chapter 4 of Nies [25] has a thorough discussion of these notions including generalizations of Kučera's result for $w t t$-reductions.

Our main results take place within the Δ_{2}^{0} sets. In the case of Theorem 1.1, this follows from the fact that full approximation arguments naturally produce Δ_{2}^{0} sets. In the case of Corollary 1.4, we do not know if the hypothesis that A is Δ_{2}^{0} can be weakened. It cannot be removed entirely because there are diagonally noncomputable functions of hyperimmune-free Turing degree and such degrees cannot bound noncomputable c.e. degrees.

We feel that the proof of Theorem 1.1 is of significant technical interest. The proof combines a full approximation argument to make $A w t t$-minimal with permitting to build the noncomputable c.e. set B such that $B \leq_{T} A$. Because of the complexity of the interactions between the $w t t$-minimality strategies and the permitting strategies, we need to use a Δ_{3}^{0} method with linking in our tree of strategies to control the construction of the partial computable trees in the full approximation argument. The kind of inductive considerations needed for the construction of the Turing reduction somewhat resemble the methods used by Lachlan [19] in embedding nondistributive lattice in the c.e. degrees. Such techniques have hitherto never been used in a full approximation argument, which is why we will slowly work up to the full details. In Chapter 2, we give an informal sketch of the construction method for Theorem 1.1 and in Chapter 3 , we present the full construction and prove it succeeds.

In Chapter 4, we prove Theorems 1.2 and 1.3 giving two different limitations on the set A in Theorem 1.1. Our proof of Theorem 1.2 is nonuniform and in Section 4.1 we prove this nonuniformity is necessary. In Section 4.2, we isolate a technical approximation condition, called an almost c.e. approximation, and we prove that if A has an almost c.e. approximation, then A is not $w t t$-minimal. In Section 4.3, we finish the proof of Theorem 1.3 by showing that if A has c.e. Turing degree but does not have an almost c.e. approximation, then A is not $w t t$-minimal. Finally, we prove Theorem 1.3 in Section 4.4.

Most of our terminology is standard and follows Soare [34]. For example, we use φ_{e} and W_{e} to denote the e-th partial computable function and the e th computably enumerable set respectively. If Γ is a Turing reduction, we use $\Gamma_{s}^{A}(x)$ or $\Gamma^{A}(x)[s]$ to denote the result of running Γ for s steps with oracle A, and assume this computation only queries the oracle about numbers below s.

We use α, β, γ and δ to denote finite binary strings and λ to denote the empty string. We use $|\alpha|$ to denote the length of $\alpha, \alpha * \beta$ to denote the concatenation of α and $\beta, \alpha * i$ to denote $\alpha *\langle i\rangle$, and α^{\prime} to denote α with its last element removed. We write $\alpha \subseteq \beta$ to indicate that α is an initial segment of β and
$\alpha \subseteq X$ to denote that α is an initial segment of the set X viewed as an infinite binary string. $X \upharpoonright n$ denotes the finite string $\langle X(0), \ldots, X(n)\rangle$.

The proof of Theorem 1.1 uses a full approximation argument for which Posner [28] provides an excellent introduction. The proof of Theorem 1.3 relies on basic results about promptly simple sets which can be found in Chapter XIII of Soare [34].

Finally, we use $[e]$ for the $e^{t h}$ weak truth table reduction. To be more specific, this reduction is given by a pair $e=\langle i, j\rangle$ where i is the index of a Turing functional Φ_{i} and j is the index of a partial computable function φ_{j}. We compute $[e]^{A}(n)$ by first calculating $\varphi_{j}(0), \ldots, \varphi_{j}(n)$. If any of these computations diverge, so does $[e]^{A}(n)$. If all of these computations converge, then we calculate $\Phi_{i}^{A}(n)$. If this computation converges and never queries the oracle about a number $x>\varphi_{j}(n)$, then we set $[e]^{A}=\Phi_{i}^{A}(n)$. Otherwise, $[e]^{A}(n)$ diverges.

Chapter 2

Informal Construction

In this section, we present an informal description of the construction used to prove Theorem 1.1. For convenience, we restate the theorem below.

Theorem 1.1. There is a Δ_{2}^{0} set A and a noncomputable c.e. set B such that A has minimal wtt-degree and $B \leq_{T} A$.

Throughout this chapter, we will introduce various pieces of terminology in an intuitive way and the formal definitions will appear in Chapter 3. We assume familiarity with full approximation arguments as in Posner [28] and with the notation for computable trees used in minimal degree constructions as in Chapter VI of Soare [34]. In particular, a tree T is a computable function $T: 2^{<\omega} \rightarrow 2^{<\omega}$ such that $T(\alpha * 0)$ and $T(\alpha * 1)$ are incomparable extensions of $T(\alpha)$ with $T(\alpha * 1)$ to the left of $T(\alpha * 0)$. The nodes $T_{s}(\alpha)$ for small values of α in a tree T_{s} defined at stage s during the construction will do work towards meeting a minimality requirement while nodes $T_{s}(\alpha)$ for large values of α will be defined trivially by $T_{s}(\alpha * i)=T_{s}(\alpha) * i$.

Recall that $[e]$ denotes the $e^{t h} w t t$-reduction while φ_{e} denotes the $e^{t h}$ Turingreduction. We use λ to denote the empty string and α^{\prime} to denote the string obtained from α by removing the last element. Whenever we define a number to be large or the length of a string to be long, we mean for it to be larger than (or longer than) any number or string used in the construction so far.

To make A have minimal $w t t$-degree, we meet

$$
R_{e}:[e]^{A} \text { total } \Rightarrow A \leq_{w t t}[e]^{A} \text { or }[e]^{A} \text { is computable. }
$$

To make B noncomputable, we satisfy

$$
P_{e}: B \neq \overline{W_{e}}
$$

We also need to meet the global requirements that B is c.e. and $B \leq_{T} A$ by a Turing reduction Γ which we build.

We use a full approximation argument to satisfy the R_{e} requirements. To meet a single R_{e} requirement, we build a sequence of computable trees $T_{e, s}$ on
which we attempt to find [e]-splittings. A node $T_{e, s}(\alpha)$ is said to $[e]$-split if there is an $x \leq s$ such that

$$
[e]_{s}^{T_{e, s}(\alpha * 0)}(x) \downarrow \neq[e]_{s}^{T_{e, s}(\alpha * 1)}(x) \downarrow
$$

We say that the number x is a splitting witness for the node $T_{e, s}(\alpha)$. A node which $[e]$-splits is said to be in the high $[e]$-state and a node which does not [e]-split is said to be in the low [e]-state.

In addition, we define the current path A_{s} which represents our approximation to A at the beginning of stage s. During stage s, strategies will be allowed to alter the path A_{s} as part of their action. Therefore, in the full construction A_{s} really has two subscripts $A_{\eta, s}$ where η was the last strategy to act. For simplicity of notation right now, we omit the second subscript. We also occasionally leave off the stage number subscripts, especially in our diagrams where they cause unnecessary clutter. In general, if the current path A_{s} goes through a node $T_{e, s}(\alpha)$, then it also goes through $T_{e, s}(\alpha * 0)$ unless some strategy has actively moved the path to go through $T_{e, s}(\alpha * 1)$.

We make two significant modifications to a typical full approximation argument. First, rather than look for $[e]$-splits for every node, we only look for $[e]$-splits along the current path. To be more specific, suppose $T_{e, s}(\alpha)$ has been defined and we are trying to define $T_{e, s}(\alpha * i)$ for $i=0,1$. If $T_{e, s}(\alpha) \subseteq A_{s}$, then we look for extensions τ_{0} and τ_{1} which $[e]$-split and such that either τ_{0} or τ_{1} is on A_{s}. If we find such strings, then we define $T_{e, s}(\alpha * i)=\tau_{i}$. Otherwise we define $T_{e, s}(\alpha * i)$ as they were defined at stage $s-1$ (if these nodes are still available) and if not, we extend $T_{e, s}(\alpha)$ trivially (that is, we take the first available extension strings). If $T_{e, s}(\alpha)$ is not on the current path, then we define $T_{e, s}(\alpha * i)$ as they were defined on $T_{e, s-1}$ (if possible) and otherwise define them by taking the first available extensions.

The second important modification is that we will occasionally move the current path A_{s} for the sake of a P requirement. (See Figure 2.1.) When a requirement moves the current path, it may challenge R_{e} to prove that [e] is total on some finite set X_{e} of number using oracles on the new current path. In this situation, $[e]$ has converged on all the numbers in X_{e} using oracles from the old current path. As long as there is a number $x \in X_{e}$ for which $[e]$ does not see an oracle along the new current path which makes $[e]$ converge on x, R_{e} remains in a nontotal state and we define $T_{e, s}$ trivially. (That is, we attempt to keep the nodes of $T_{e, s}$ as they were at the last stage and take the first possible extensions when this is not possible.) If R_{e} remains in a nontotal state forever, then $[e]^{A}$ is not total and R_{e} is satisfied.

The current path A_{s} settles down on larger and larger initial segments as the construction proceeds and gives us A in the limit. Furthermore, nodes $T_{e, s}(\alpha)$ which are on A reach pointwise limits and final $[e]$-states. At the end of the construction, we are in one of three situations. Either R_{e} is eventually in a permanent nontotal state, the nodes $T_{e, s}(\alpha)$ along A are eventually in the high state or there is a string α such that $T_{e, s}(\alpha)$ is on A and all extensions of $T_{e, s}(\alpha)$ are permanently in the low state. If R_{e} is permanently in the nontotal

Figure 2.1: When the current path moves from $T_{e}(\sigma * 0)$ to $T_{e}(\sigma * 1)$, we challenge R_{e} to verify that it converges on all elements of $X_{e}=\{x \mid$ $[e]_{s}^{\tau}(x)$ converges for some $\left.\tau \supseteq T_{e}(\sigma * 0)\right\}$ using oracles along the new current path $A^{\text {new }}$.
state, then we win R_{e} because $[e]^{A}$ is not total. If the nodes along A are each eventually in the high state, then $A \leq_{w t t}[e]^{A}$. If sufficiently long nodes along A are eventually always in the low state, then $[e]^{A}$ is computable.

The basic idea of these computation lemmas is as in a typical full approximation argument. For the low state case, we show that once we see $[e]^{T_{e, s}(\alpha)}(x)$ converge at a stage s for some node $T_{e, s}(\alpha)$ on the current path, then this computation is equal to $[e]^{A}(x)$. As usual, this equality follows (for sufficiently long nodes $T_{e, s}(\alpha)$) because if not, we would later have the option of using $T_{e, s}(\alpha)$ and the node along A which gives the correct computation for $[e]^{A}(x)$ to make $T_{e, t}\left(\alpha^{\prime}\right)$ high splitting (where $t>s$ is a stage at which the correct computation appears).

For the high case, we can define A inductively using $[e]^{A}$ because the computations of $[e]^{A}$ tell us which half of each high split A eventually has to pass through. In general, this computation procedure gives a T-reduction $A \leq_{T}[e]^{A}$ and not a $w t t$-reduction $A \leq_{w t t}[e]^{A}$. To achieve a $w t t$-reduction, we incorporate stretching. (Stretching is also used by P strategies as described below.) Before describing the stretching procedure, we give the algorithm for determining the computable use for the wtt-reduction and then explain how to alter the construction so that this use function works.

To compute the use $u(m)$ of the reduction $A \leq_{T}[e]^{A}$ (and show it is a $w t t-$ reduction) on a number m proceed as follows. Wait for a stage s and a node $T_{e, s}(\alpha) \subseteq A_{s}$ such that $T_{e, s}(\alpha)$ is in the high state and $\left|T_{e, s}(\alpha)\right|>m$. Define $u(m)$ to be the maximum of the splitting witnesses that R_{e} has seen in the construction so far.

The apparent problem with this definition is that the current path may move below $T_{e, s}(\alpha)$ at a later stage $t>s$ and along the new current path, there may not be a node of length $>m$ which is high splitting. To handle this potential problem, we redefine our trees by stretching each time we move the current path. (See Figure 2.2.) Suppose the current path moves from $T_{e, t}(\beta * 0) \subsetneq T_{e, t}(\alpha)$ to $T_{e, t}(\beta * 1)$ at stage t (for the sake of some lower priority requirement). Because $T_{e, s}(\beta) \subsetneq T_{e, s}(\alpha)$ and $T_{e, s}(\alpha)$ is high splitting, we know that $T_{e, s}(\beta)$ is high splitting (and is still high splitting at stage t). We let $\beta_{e, H}$ be the shortest node along the new current path such that $T_{e, t}\left(\beta_{e, H}\right)$ is not high splitting. (In other words, $T_{e, t}\left(\beta_{e, H}^{\prime}\right)$ is the longest node on the new current path which is high

Figure 2.2: If $T_{e}(\alpha)$ is high splitting and the current path moves from $T_{e}(\beta * 0)$ to $T_{e}(\beta * 1)$, then we stretch $T_{e}^{\text {old }}\left(\beta_{e, H}\right)$ to have value $T_{e}^{\text {new }}\left(\beta_{e, H}\right)$ such that $\left|T_{e}^{\text {new }}\left(\beta_{e, H}\right)\right|>\left|T_{e}(\alpha)\right|>m$.
splitting so $\beta \subseteq \beta_{e, H}^{\prime} \subsetneq \beta_{e, H}$.) Because we only look for new high splits along the current path and because either $\beta_{e, H}^{\prime}=\beta$ (so $T_{e, s}\left(\beta_{e, H}^{\prime}\right)$ is high splitting) or $\beta \subsetneq \beta_{e, H}^{\prime}$ (so $T_{e, t}\left(\beta_{e, H}^{\prime}\right)$ is not on the current path and cannot change from low to high splitting between stages s and $t), T_{e, s}\left(\beta_{e, H}^{\prime}\right)$ must have been high splitting at stage s. Therefore, the splitting witness for $T_{e, t}\left(\beta_{e, H}^{\prime}\right)$ is less than the purported use $u(m)$.

Redefine $T_{e, t}\left(\beta_{e, H}\right)$ so that it extends its old value, it has long length and is along the current path. (That is, its new length is longer than any number used so far in the construction and in particular is longer than m. For strings α such that $\beta_{e, H} \subsetneq \alpha$, extend the definition of $T_{e, t}$ trivially.) We refer to this redefinition process as stretching and say that the node $T_{e, t}\left(\beta_{e, H}\right)$ is stretched. The node $T_{e, t}\left(\beta_{e, H}^{\prime}\right)$ is not changed by this process and it remains in the high state with the same splitting witness (which is less than $u(m)$).

Assume that the current path does not move below $T_{e, t}\left(\beta_{e, H}^{\prime}\right)$ after stage t. In this case, the reduction $A \leq_{T}[e]^{A}$ uses the witness for the high split at $T_{e, t}\left(\beta_{e, H}^{\prime}\right)$ to tell us that A passes through $T_{e, t}\left(\beta_{e, H}\right)$ (which has length $>m$) since this node remains on the current path forever and hence is on A. However, this splitting witness is less than the purported use $u(m)$ for $A \leq_{T}[e]^{A}$, so $u(m)$ is correct. If the current path does move below $T_{e, t}\left(\beta_{e, H}^{\prime}\right)$ after stage t, then we repeat this stretching procedure at the next place where the current path moves. As long as such movement of the current path occurs only finitely often, we have the desired $w t t$-reduction.

To see that stretching does not interfere with the pointwise convergence of nodes along A, notice that a node is only stretched when the current path is moved and that node is the shortest node along the new current path which is not high splitting. Therefore, once a node becomes high splitting it is not
stretched again. Since the current path will settle down on longer and longer segments, we will show that stretching only causes a finite disruption in the definition of the nodes along A. There are more subtle issues with stretching when multiple R strategies are involved and we address these below.

The basic strategy for meeting one P_{e} requirement (in the presence of a single R_{e} requirement of higher priority which is defining $T_{e, s}$) is to pick a node $T_{e, s}(\alpha)$ such that $T_{e, s}(\alpha * 0) \subset A_{s}$ at which to diagonalize and a large witness x with which to diagonalize. Since we have not yet put x into B, we define $\Gamma^{T_{e, s}(\alpha * 0)}(x)=0$. (Recall that Γ is the reduction we build to witness $B \leq_{T} A$.) We wait for x to enter W_{e}. If this never happens, then we never put x into B and we win P_{e}. If x does enter W_{e} at some later stage t, then we try to put x into B. (If the node $T_{e, s}(\alpha * 0)$ ever changes because of a new $[e]$-split, then we initialize this P_{e} strategy and start over with a new large witness x. In the full construction, we will have different P_{e} strategies guessing what the final state of the R_{e} strategy is.)

Before putting x into B, we need to get permission from A by changing A below the use of the computation $\Gamma^{T_{e, t}(\alpha * 0)}(x)=0$ which we defined at stage s. We would like to move the current path A_{t} from $T_{e, t}(\alpha * 0) \subseteq A_{t}$ to $T_{e, t}(\alpha * 1) \subseteq A_{t}$, declare $\Gamma^{T_{e, t}(\alpha * 1)}(x)=1$ and put x into B. However, there is a potential problem with this strategy. If the current path A_{u}, for some $u>t$, is ever moved so that $T_{e, t}(\alpha * 0) \subseteq A_{u}$ again, then we will have $\Gamma^{A_{u}}(x)=0$ (by our definition that $\Gamma^{T_{e, t}(\alpha * 0)}(x)=0$) and $x \in B$. Since B must be c.e., we cannot remove x from B. Therefore, before we can put x into B, we must forbid the cone above $T_{e, t}(\alpha * 0)$ in the sense that we promise never to move the current path A_{u} for $u \geq t$ back to this cone again. If $T_{e, t}(\alpha)$ is in the high state, then this strategy is fine because there is no reason to look at nodes above $T_{e, t}(\alpha * 0)$ for a potential high split of $T_{e, t}(\alpha)$ since this node is already in the high state. Furthermore, we can tell from $[e]^{A}$ that $T_{e, t}(\alpha * 1) \subseteq A$ as opposed to $T_{e, t}(\alpha * 0) \subseteq A$.

However, there is a problem if $T_{e, t}(\alpha)$ is in the low state. If the true final state of R_{e} is low, then to compute $[e]^{A}(y)$ for any value y, we look for a node $T_{e, v}(\beta)$ on the current path in the low state such that $[e]^{T_{e, v}(\beta)}(y)$ converges and declare this to be the value of $[e]^{A}(y)$. This computation will be correct since otherwise we could put up another high split. However, if the node $T_{e, v}(\beta)$ happens to be in a cone like $T_{e, t}(\alpha * 0)$ which is later forbidden, then it is possible that $[e]^{A}(y)$ has a different value and the forbidding process restricts us from putting up the new high splitting. Therefore, in this case, we do not want to rule out the possibility of using nodes above $T_{e, t}(\alpha * 0)$ to make $T_{e, t}(\alpha)$ high splitting at a later stage unless we have further evidence that $T_{e, t}(\alpha)$ should be in the low state. To accomplish this, we start a low challenge procedure to check that to the best of our knowledge, $T_{e, t}(\alpha)$ should be in the low state.

For the low challenge procedure, we let X_{e} be the finite set of numbers y for which we have seen $[e]$ convergence using a node above $T_{e, t}(\alpha * 0)$ as the oracle but we have not seen $[e]$ convergence using $T_{e, t}(\alpha)$ as the oracle. We move the current path A_{t} from $T_{e, t}(\alpha * 0)$ to $T_{e, t}(\alpha * 1)$ and declare the cone above $T_{e, t}(\alpha * 0)$ to be frozen. (See Figure 2.3.) This means that we no longer look at

Figure 2.3: If $T_{e}(\alpha)$ is in the low state and we move the current path from $T_{e}(\alpha * 0)$ to $T_{e}(\alpha * 1)$ for the sake of P_{e}, then we freeze the cone above $T_{e}(\alpha * 0)$ until we have seen identical computations on all the elements of X_{e} using oracles along the new current path $A^{\text {new }}$. The auxiliary diagonalization node $T_{e}(\sigma)$ for P_{e} is chosen so that its length is greater than the use for any $[e]$ computation on an element in X_{e}.
computations involving nodes in this cone as oracles. P_{e} challenges R_{e} to verify that $T_{e, t}(\alpha)$ should be in the low state by providing computations along the new current path which agree with the computations from the old current path for all the numbers in X_{e}. We also pick a large auxiliary diagonalization spot $T_{e, t}(\sigma)$ with $T_{e, t}(\sigma * 0)$ on the (new) current path such that $T_{e, t}(\alpha * 1) \subsetneq T_{e, t}(\sigma)$. We define $\Gamma^{T_{e, t}(\sigma * 0)}(x)=0$ since x has not yet been enumerated into B.

This auxiliary diagonalization spot is chosen to have length larger than the use of any of the computations for numbers in X_{e}. Since we are working with $w t t$-computations, R_{e} is only concerned with nodes on the current path below $T_{e, t}(\sigma)$ as oracles for the $[e]$ computations on numbers from X_{e}. Furthermore, while R_{e} is waiting for verification that $T_{e, t}(\alpha)$ really should be in the low state, it can suspend building T_{e} any further. That is, with the current path running through $T_{e, t}(\sigma * 0), R_{e}$ thinks that $[e]^{A}$ will not be total until it actually sees computations involving all the numbers in X_{e}.

If R_{e} sees a computation at stage $u>t$ on some element of X_{e} using an oracle on the current path which differs from the computation using the oracle above $T_{e, t}(\alpha * 0)$, then it unfreezes the cone above $T_{e, u}(\alpha * 0)$ (which is the same as $T_{e, t}(\alpha * 0)$ since R_{e} does not change T_{e} while it is low challenged) and it uses this computation to put $T_{e, u}(\alpha)$ in the high state. In this case, we initialize the P_{e} strategy and let it work with a new large witness x^{\prime} at the same node $T_{e, u}(\alpha)$. (In the full construction, we will actually have a separate P_{e} strategy guessing that the final R_{e} state is high.) Since this node now has the high state, we know that we will win P_{e} with this new witness x^{\prime} (either because x^{\prime} never enters W_{e} or because x^{\prime} does enter W_{e} and we can immediately diagonalize since $T_{e, u}(\alpha)$
is now in the high state).
If R_{e} sees computations at stage $u>t$ using oracles along the current path for all the numbers in X_{e} and they agree with the computations using oracles above $T_{e, t}(\alpha * 0)$, then R_{e} has met the low challenge and it is safe to forbid the cone above $T_{e, u}(\alpha * 0)$ because we have identical computations in a nonforbidden part of the tree. That is, any future high splitting which might want to use a node above $T_{e, u}(\alpha * 0)$ can use a node above $T_{e, u}(\alpha * 1)$ instead which gives the same computation. To perform the diagonalization in this case, we use the auxiliary split $T_{e, u}(\sigma)$. We move the current path from $T_{e, u}(\sigma * 0)$ to $T_{e, u}(\sigma * 1)$, declare the cones above $T_{e, u}(\alpha * 0)$ and $T_{e, u}(\sigma * 0)$ to be forbidden, put x into B, and declare $\Gamma^{T_{e, u}(\sigma * 1)}(x)=1$. The forbidding action is allowed for $T_{e, u}(\alpha * 0)$ because we have identical computations for all numbers in X_{e} above $T_{e, u}(\alpha * 1)$ and it is allowed for $T_{e, u}(\sigma * 0)$ because the length of this node was chosen large. That is, when we chose $T_{e, t}(\sigma)$, we had not looked at any computations above this node and because $T_{e, t}(\sigma)$ has length greater than the [e] use for any number in X_{e}, we never need to look at computations above this node when verifying the lowness. Therefore, we are not committed to any computations above $T_{e, u}(\sigma * 0)$ at the time it is forbidden.

Finally, we might never see convergence on some number in X_{e} using any node above $T_{e, t}(\alpha * 1)$ (and below $\left.T_{e, t}(\sigma)\right)$ on the current path. In this case, R_{e} remains in the nontotal state forever and is won trivially because $[e]^{A}$ is not total. Furthermore, we can start a different version of the P_{e} strategy which guesses that R_{e} never meets the low challenge and which picks its own node above $T_{e, t}(\sigma * 0)$ at which to diagonalize and its own large witness with which to diagonalize. It gets to diagonalize immediately if it ever sees its witness enter W_{e}. Immediate forbidding is allowed for this strategy since the R_{e} strategy has not looked at any computations above $T_{e, t}(\sigma * 0)$.

This completes the informal description of the interaction between a single R strategy and a single P strategy. The interaction is significantly more complicated when multiple R strategies are involved. Before illustrating this interaction, we describe the tree of strategies used to control the full construction. An R_{e} strategy η has three possible outcomes: H, L, and N. We use the H (high) outcome whenever η finds a new high split along the current path. All strategies extending this outcome believe that the final $[e]$-state along A will be high. Each strategy μ with $\eta * H \subseteq \mu$ defines a large number p_{μ} and does not begin to act until the tree $T_{\eta, s}$ being built by η has the high state along the current path up to level p_{μ}. We use the N (nontotal) outcome whenever η has been challenged to verify its lowness and has not yet seen computations on all numbers in the set X_{η} it has been challenged to verify. All strategies extending this outcome believe that $[e]^{A}$ will not be total and hence they ignore the strategy R_{e} when making calculations about which action to take. We use the L (low) outcome whenever neither of the other two applies. Strategies extending this outcome think that $[e]^{A}$ may be total, but that the final $[e]$-state along A will be the low state. These outcomes are ordered in terms of priority with H the highest priority and N the lowest priority. (That is, $\eta * H$ is to the left of $\eta * L$ which is to the left of $\eta * N$.)

A P_{e} strategy η has two possible outcomes, S and W. The S outcome is used when P_{e} has already been satisfied by a diagonalization. Otherwise, we use the W outcome. The S outcome has higher priority than the W outcome. (That is, $\eta * S$ is to the left of $\eta * W$.) The action of a P_{e} strategy is finitary, while the action of an R_{e} strategy is infinitary.

Formally, the tree of strategies is defined by induction, with the empty string λ being the only R_{0} strategy. If η is an R_{e} strategy, then $\eta * H, \eta * L$ and $\eta * N$ are P_{e} strategies. If η is a P_{e} strategy, then $\eta * W$ and $\eta * S$ are R_{e+1} strategies. To make the notation more uniform, we use $[\eta]$ and W_{η} to denote [e] and W_{e} if η is an R_{e} or P_{e} strategy. We let $T_{\eta, s}$ denote the tree build at stage s by an R strategy η. Furthermore, we use the term true path to refer to the eventual true path through the tree of strategies. We use the term current path to denote the current approximation A_{s} to the set A.

To illustrate the remaining features of the construction, we consider four R strategies $\mu_{i}, 0 \leq i \leq 3$ and one P strategy η. Assume that the priorities are $\mu_{0}<\mu_{1}<\mu_{2}<\mu_{3}<\eta$, and that $\mu_{1}=\mu_{0} * L, \mu_{2}=\mu_{1} * H, \mu_{3}=\mu_{2} * L$, and $\eta=\mu_{3} * H$. We consider the action of η. During this example, we assume that we never move to the left of these strategies in the tree of strategies and thus these strategies are never initialized. In particular, neither μ_{0} nor μ_{2} finds a new high split during our discussion.

Since η thinks the final state along A will be $\langle L, H, L, H\rangle$, there is no reason for η to pick a node at which to diagonalize that does not have this state. When η is first eligible to act, it picks a large number p_{η}. During each later stage at which η is eligible to act, η checks if the node $T_{\mu_{3}, s}(\alpha)$ along the current path with $|\alpha|=p_{\eta}$ has state $\langle L, H, L, H\rangle$. Until this occurs, η does not pick a node at which to diagonalize or a witness with which to diagonalize.

If η is on the true path, then eventually there will be such a node $T_{\mu_{3}, s}(\alpha)$. At this stage, η sets $\alpha_{\eta}=\alpha$ and picks a large witness x_{η} with which to diagonalize. η begins to wait for x_{η} to enter W_{η} (while keeping x_{η} out of B) and η defines $\Gamma^{T_{\mu_{3}, s}\left(\alpha_{\eta} * 0\right)}\left(x_{\eta}\right)=0$. If x_{η} eventually enters W_{η}, then η begins a verification procedure to put x_{η} into B.

Assume x_{η} enters W_{η} at stage s. η moves the current path from $T_{\mu_{3}, s}\left(\alpha_{\eta} * 0\right)$ to $T_{\mu_{3}, s}\left(\alpha_{\eta} * 1\right)$ and freezes the cone above $T_{\mu_{3}, s}\left(\alpha_{\eta} * 0\right) . \eta$ would like to put x_{η} into B, define $\Gamma^{T_{\mu_{3}, s}\left(\alpha_{\eta} * 1\right)}\left(x_{\eta}\right)=1$ and forbid the cone above $T_{\mu_{3}, s}\left(\alpha_{\eta} * 0\right)$. There are two issues that need to be addressed before forbidding this cone. First, because we have moved the current path, we need to perform stretching for the sake of the strategies μ_{1} and μ_{3} which are in the high state in order to ensure that the set A has minimal $w t t$-degree. This issue is easy to address and does not stop us from immediately forbidding this cone. The second issue is more serious. The action of forbidding this cone is fine for μ_{1} and μ_{3} since $T_{\mu_{3}, s}\left(\alpha_{\eta}\right)$ is in the high μ_{1} and μ_{3} states. However, since $T_{\mu_{3}, s}\left(\alpha_{\eta}\right)$ is in the low μ_{0} and μ_{2} states, we cannot do this forbidding before finding identical computations (to the computations they have already seen) for these strategies along the new current path.

We begin with the issue of redefining the trees $T_{\mu_{i}, s}$ by stretching. First, we let $\beta_{\mu_{0}, L}$ and $\beta_{\mu_{2}, L}$ denote the strings such that the current path just moved

Figure 2.4: When we move the current path from $T_{\mu_{3}}\left(\alpha_{\eta} * 0\right)$ to $T_{\mu_{3}}\left(\alpha_{\eta} * 1\right)$ for the sake of the P strategy η, we freeze the cone above $T_{\mu_{3}}\left(\alpha_{\eta} * 0\right)$ and stretch the trees $T_{\mu_{i}}, 0 \leq i \leq 3$. In this figure, δ is equal to $T_{\mu_{1}}^{\text {new }}\left(\beta_{\mu_{1}, H}\right), T_{\mu_{2}}^{\text {new }}(\beta)$, $T_{\mu_{3}}^{\text {new }}\left(\beta_{\mu_{3}, H}\right)$ and $T_{\mu_{0}}\left(\sigma_{1}\right)$.
from $T_{\mu_{i}, s}\left(\beta_{\mu_{i}, L} * 0\right)$ to $T_{\mu_{i}, s}\left(\beta_{\mu_{i}, L} * 1\right)$ (for $\left.i=0,2\right)$. Second, we let $\beta_{\mu_{1}, H}$ be the shortest string such that $T_{\mu_{1}, H}\left(\beta_{\mu_{1}, H}\right)$ is on the new current path and $T_{\mu_{1}, s}\left(\beta_{\mu_{1}, H}\right)$ is in the low μ_{1} state. Hence, $T_{\mu_{1}, s}\left(\beta_{\mu_{1}, H}^{\prime}\right)$ is the longest node on the new current path which has state $\langle L, H\rangle$. Similarly, we define $\beta_{\mu_{3}, H}$ to be the shortest string such that $T_{\mu_{3}, s}\left(\beta_{\mu_{3}, H}\right)$ is on the new current path and has state $\langle L, H, L, L\rangle$. In other words, $T_{\mu_{3}, s}\left(\beta_{\mu_{3}, H}^{\prime}\right)$ is the longest node on the new current path with state $\langle L, H, L, H\rangle$. Notice that $T_{\mu_{3}, s}\left(\beta_{\mu_{3}, H}\right) \subsetneq T_{\mu_{1}, s}\left(\beta_{\mu_{1}, H}\right)$. Finally, let δ be a string with long length such that δ is on all of these trees and is on the new current path. Since δ has long length, our trees will have been defined trivially above δ in the sense that if $\delta \subseteq T_{\mu_{i}, s}(\alpha)$, then $T_{\mu_{i}, s}(\alpha * j)=T_{\mu_{i}, s}(\alpha) * j$. Therefore, in the redefinition process described below, the new versions of each tree will be subtrees of the old versions.

We redefine these trees by stretching. (See Figure 2.4. The node $T_{\mu_{0}}\left(\sigma_{1}\right)$ is introduced after the definition for stretching.) For μ_{0}, let $T_{\mu_{0}, s}$ remain the same. For μ_{1}, let $\hat{T}_{\mu_{1}}=T_{\mu_{1}, s}$ and we redefine $T_{\mu_{1}, s}$. For any node α such that $\alpha \subsetneq \beta_{\mu_{1}, H}$ or α is incomparable with $\beta_{\mu_{1}, H}$, let $T_{\mu_{1}, s}(\alpha)=\hat{T}(\alpha)$ (and this node retains its previous state). Redefine $T_{\mu_{1}, s}\left(\beta_{\mu_{1}, s}\right)=\delta$ and extend this definition trivially above here. That is, if $\beta_{\mu_{1}, H} \subseteq \alpha$ and $T_{\mu_{1}, s}(\alpha)$ has been defined, then set $T_{\mu_{1}, s}(\alpha * i)=T_{\mu_{1}, s}(\alpha) * i$ (and has all low states). Notice that the new definition of $T_{\mu_{1}, s}\left(\beta_{\mu_{1}, H}\right)$ extends the old definition (since both the old value of $T_{\mu_{1}, s}\left(\beta_{\mu_{1}, H}\right)$ and δ are on the new current path), so $T_{\mu_{1}, s}\left(\beta_{\mu_{1}, s}^{\prime}\right)$ is still in the high μ_{1} state.

For μ_{2}, let β denote the string such that $T_{\mu_{2}, s}(\beta)$ is equal to the value of
$T_{\mu_{1}, s}\left(\beta_{\mu_{1}, H}\right)$ before it was redefined by stretching. We set $\hat{T}_{\mu_{2}}=T_{\mu_{2}, s}$ and redefine $T_{\mu_{2}, s}$ as follows. For $\alpha \subsetneq \beta$ or α incomparable with β, set $T_{\mu_{1}, s}(\alpha)=$ $\hat{T}_{\mu_{2}}(\alpha)$ (that is, leave these nodes unchanged). Redefine $T_{\mu_{2}, s}(\beta)=\delta$ and extend the definition of $T_{\mu_{2}, s}$ trivially above here. For μ_{3}, we follow essentially the same procedure as for μ_{1}. Set $\hat{T}_{\mu_{3}}=T_{\mu_{3}, s}$. For $\alpha \subsetneq \beta_{\mu_{3}, H}$ and α incomparable with $\beta_{\mu_{3}, H}$, define $T_{\mu_{3}, s}(\alpha)=\hat{T}_{\mu_{3}}(\alpha)$. Redefine $T_{\mu_{3}, s}\left(\beta_{\mu_{3}, H}\right)=\delta$ and extend the definition trivially above here. Notice that the new value of $T_{\mu_{3}, s}\left(\beta_{\mu_{3}, H}\right)$ extends the old value of this node, so $T_{\mu_{3}, s}\left(\beta_{\mu_{3}, H}^{\prime}\right)$ still has state $\langle L, H, L, H\rangle$.

This completes the redefinition of these trees by stretching. The important properties to note are that each tree (except $T_{\mu_{0}, s}$) has a unique node along the new current path that is stretched, these nodes are all stretched to the same value (that is $T_{\mu_{1}, s}\left(\beta_{\mu_{1}, H}\right)=T_{\mu_{2}, s}(\beta)=T_{\mu_{3}, s}\left(\beta_{\mu_{3}, H}\right)=\delta$) and the longest nonstretched node on each tree retains its old state.

We turn to the issue of verifying lowness for μ_{0} and μ_{2}. As with the case of a single P strategy, we must calculate the sets $X_{\mu_{0}}$ and $X_{\mu_{2}}$ on which these strategies need to verify computations. The set $X_{\mu_{0}}$ is calculated as before: it contains all numbers y such that μ_{0} has seen [μ_{0}] converge on y with an oracle extending $T_{\mu_{0}, s}\left(\beta_{\mu_{0}, L} * 0\right)$ but not with $T_{\mu_{0}, s}\left(\beta_{\mu_{0}, L}\right)$ as an oracle. (Recall that $\beta_{\mu_{0}, L}$ marks the place on $T_{\mu_{0}, s}$ above which the current path just moved.) The set $X_{\mu_{2}}$ has to be calculated slightly differently by taking into account the states of the nodes extending $T_{\mu_{2}, s}\left(\beta_{\mu_{2}, L} * 0\right)$. Let γ be the string such that $T_{\mu_{2}, s}(\gamma)=T_{\mu_{3}, s}\left(\alpha_{\eta}\right)$. Because μ_{2} sees the state of $T_{\mu_{2}, s}(\gamma)$ as $\langle L, H, L\rangle$, when μ_{2} looks for a high splitting for this node, it only looks at extensions of $T_{\mu_{2}, s}(\gamma)$ which have high μ_{1} state. Therefore, we define $X_{\mu_{2}}$ to be all y such that μ_{2} has seen a computation on y using an oracle above $T_{\mu_{2}, s}\left(\beta_{\mu_{2}, L} * 0\right)$ which has high μ_{1} state and has not seen a computation on y using $T_{\mu_{2}, s}\left(\beta_{\mu_{2}, L}\right)$ as the oracle. (Notice that the node $T_{\mu_{2}, s}\left(\beta_{\mu_{2}, s}\right)$ and the tree above $T_{\mu_{2}, s}\left(\beta_{\mu_{2}, L} * 0\right)$ are not effected by the stretching procedure.) These are the numbers for which μ_{2} has to verify its lowness.

If both $X_{\mu_{0}}=\emptyset$ and $X_{\mu_{2}}=\emptyset$, then η has permission from all of the R strategies μ_{i} for $i=0,1,2,3$ to immediately put x_{η} into B and forbid $T_{\mu_{3}, s}\left(\alpha_{\eta} *\right.$ $0)$. (It has permission from μ_{1} and μ_{3} because $T_{\mu_{3}, s}\left(\alpha_{\eta}\right)$ is high μ_{1} and μ_{3} splitting and it has permission from μ_{0} and μ_{2} because there are no numbers on which these strategies need to verify their lowness.) Assume this is not the case so that some verification of lowness for either μ_{0} or μ_{2} (or both) is required. We split into the cases when $X_{\mu_{2}}=\emptyset$ and when $X_{\mu_{2}} \neq \emptyset$. Handling these cases requires the introduction of links into our tree of strategies.

First, assume that $X_{\mu_{2}}=\emptyset$ and $X_{\mu_{0}} \neq \emptyset$. In this case, η has permission from μ_{1}, μ_{2} and μ_{3} to forbid the cone above $T_{\mu_{3}, s}\left(\alpha_{\eta} * 0\right)$ and only has to wait for μ_{0} to verify the computations on numbers in $X_{\mu_{0}} . \eta$ defines σ_{1} to be the string such that $T_{\mu_{0}}\left(\sigma_{1}\right)=\delta$ (where δ is the string used in the stretching process as shown in Figure 2.4) and defines $\Gamma^{T_{\mu_{0}, s}\left(\sigma_{1} * 0\right)}\left(x_{\eta}\right)=0$. (We need this Γ computation to be defined since we have not yet placed x_{η} into B and we do not know ahead of time whether μ_{0} will eventually verify the computations on numbers in $X_{\mu_{0}}$.) η places a link from μ_{0} to η, challenges μ_{0} to verify its lowness and passes the
set $X_{\mu_{0}}$ and the string $\beta_{\mu_{0}, L}$ to μ_{0}.
At future stages, μ_{0} checks whether there are computations with oracles above $T_{\mu_{0}, s}\left(\beta_{\mu_{0}, L} * 1\right)$ for all the numbers in $X_{\mu_{0}}$ which agree with the computations with oracles above $T_{\mu_{0}, s}\left(\beta_{\mu_{0}, L} * 0\right)$. Because [μ_{0}] is a wtt procedure and because δ was chosen to have long length, μ_{0} never has to look at strings longer than $T_{\mu_{0}, s}\left(\sigma_{1}\right)=\delta$ for these computations. If μ_{0} ever finds a disagreeing computation, it can put up a new high split, take outcome $\mu_{0} * H$ and initialize the attempted diagonalization by η. (By our assumption for this informal description, this situation does not occur.) If μ_{0} eventually finds identical computations for all the numbers in $X_{\mu_{0}}$, then instead of taking outcome $\mu_{0} * L$, it travels the link to η. Until such a stage arrives, μ_{0} takes outcome $\mu_{0} * N$ and strategies extending $\mu_{0} * N$ define their trees higher up on $T_{\mu_{0}, s}$ so that they do not interfere with any of the nodes mentioned so far. Also, if μ_{0} takes outcome N at every future stage, then $\left[\mu_{0}\right]^{A}$ is not total because it diverges on at least one number in $X_{\mu_{0}}$. Therefore, assume that we eventually travel the link from μ_{0} to η.

When we travel the link from μ_{0} to η at stage $t>s, \eta$ acts as follows. It moves the current path from $T_{\mu_{0}, t}\left(\sigma_{1} * 0\right)$ to $T_{\mu_{0}, t}\left(\sigma_{1} * 1\right)$ (these nodes are the same as they were at the end of stage s since all the action of strategies extending $\mu_{0} * N$ takes place with longer nodes), it forbids the cone above $T_{\mu_{0}, s}\left(\alpha_{\eta} * 0\right)$ (since η has μ_{0} permission to forbid this cone and it previously had permission from μ_{i} for $1 \leq i \leq 3$), it forbids the cone above $T_{\mu_{0}, t}\left(\sigma_{1} * 0\right)$ (which is allowed by μ_{0} since μ_{0} did not need to look in this cone to verify its computations on numbers in $X_{\mu_{0}}$ and is allowed by μ_{i} for $1 \leq i \leq 3$ since $T_{\mu_{0}, s}\left(\sigma_{1}\right)=\delta$ was defined to have long length and only strategies extending $\mu_{0} * N$ have been eligible to act between stages s and t, so none of the strategies μ_{i} for $0 \leq i \leq 3$ have looked at any computations in this cone) and it puts x_{η} into B. Because the only computations of the form $\Gamma^{\gamma}\left(x_{\eta}\right)=0$ are $\gamma=T_{\mu_{3}, t}\left(\alpha_{\eta} * 0\right)=T_{\mu_{3}, s}\left(\alpha_{\eta} * 0\right)$ and $\gamma=T_{\mu_{0}, t}\left(\sigma_{1} * 0\right)=T_{\mu_{0}, s}\left(\sigma_{1} * 0\right)$, we have forbidden all strings which define a Γ computation on x_{η} to be equal to $0 . \eta$ picks a large number k and defines $\Gamma^{\gamma}\left(x_{\eta}\right)=1$ for all strings γ of length k which do not extend $T_{\mu_{3}, s}\left(\alpha_{\eta} * 0\right)$ or $T_{\mu_{0}, s}\left(\sigma_{0} * 0\right)$. Therefore, $\Gamma^{A}\left(x_{\eta}\right)=1$ and η has won its requirement.

Next, we consider the case when $X_{\mu_{2}} \neq \emptyset$. In this case, at stage s, η defines σ_{1} to be the string such that $T_{\mu_{2}, s}\left(\sigma_{1}\right)=\delta$ (where δ is the string used in the stretching process at stage s as shown in Figure 2.4) and defines $\Gamma^{T_{\mu_{2}, s}\left(\sigma_{1} * 0\right)}\left(x_{\eta}\right)=0 . \eta$ places the link from μ_{2} to η. We challenge μ_{0} and μ_{2} to verify their lowness (and pass them the strings $\beta_{\mu_{0}, L}$ and $\beta_{\mu_{2}, L}$ and the sets $X_{\mu_{0}}$ and $X_{\mu_{2}}$ respectively). We challenge μ_{1} to verify its highness and define $x_{\mu_{1}}=x_{\eta}$. The meaning and purpose of this high challenge has not come up yet and will be explained below. Since μ_{1} is an R strategy, it does not keep a value $x_{\mu_{1}}$ for the purposes of diagonalization. However, as we shall see, μ_{1} may need to take over the Γ definition of x_{η} temporarily and hence it needs to retain this value as a parameter.

Consider how the construction proceeds after stage s. Until μ_{0} verifies its lowness, it takes outcome $\mu_{0} * N$ and the strategies extending $\mu_{0} * N$ work higher on the trees and do not effect the nodes defined above. Assume that μ_{0} eventually meets its low challenge at stage $s_{0}>s$.

At s_{0}, μ_{0} takes outcome $\mu_{0} * L$ and μ_{1} becomes eligible to act for the first time since stage $s . \mu_{1}$ needs to verify that $T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H}\right)$ should be in the high [μ_{1}] state. (Because strategies containing $\mu_{0} * N$ work higher on the trees, we have $T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H}\right)=T_{\mu_{1}, s}\left(\beta_{\mu_{1}, H}\right), T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H} * i\right)=T_{\mu_{1}, s}\left(\beta_{\mu_{1}, H} * i\right)$ for $i=0,1$ and the current path still goes through $T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H} * 0\right)$. For the rest of this informal explanation, we take it for granted that strategies to the right of the μ_{i} or η strategies do not cause any of the named nodes defined by these strategies to change and do not cause the current path to move below any of these nodes.)

The point of verifying that $T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H}\right)$ is in the high μ_{1} state is that μ_{2} eventually needs to verify that it is in the low state by finding computations for each number in $X_{\mu_{2}}$ using oracles along the current path which are in the high μ_{1} state. The length of $T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H}\right)$ was stretched at stage s, so it has length longer that the $\left[\mu_{2}\right]$ use of any number in $X_{\mu_{2}}$. But, we need this node to be in the high μ_{1} state in order to use it as a potential oracle for these [μ_{2}] computations on $X_{\mu_{2}}$.
μ_{1} begins to look for a high splitting for $T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H}\right)$. Because $T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{0}, H}^{\prime}\right)$ is already high μ_{1} splitting, $T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H}\right)$ is the first node on the current path which is not high μ_{1} splitting. Until μ_{1} finds a potential high split for this node, it takes outcome $\mu_{1} * L$.

Suppose μ_{1} eventually finds a pair of strings τ_{0} and τ_{1} which could give a high splitting for $T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H}\right)$ with either τ_{0} or τ_{1} on the current path. (Recall that we only look for new splittings for which half of the splitting lies on the current path. If τ_{0} and τ_{1} have this property, then either one or both satisfy $T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H} * 0\right) \subseteq \tau_{i}$ since this node remains on the current path.) Consider the action that η eventually wants to take if this entire verification procedure stated by η comes to a conclusion. η wants to move the current path from the node $T_{\mu_{2}, s}\left(\sigma_{1} * 0\right)=T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H} * 0\right)$ to the node $T_{\mu_{2}, s}\left(\sigma_{1} * 1\right)=T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H} * 1\right)$ and forbid the cone above $T_{\mu_{2}, s}\left(\sigma_{1} * 0\right)$ before enumerating x_{η} into B (because we are committed to $\left.\Gamma^{T_{\mu_{2}, s}\left(\sigma_{1} * 0\right)}\left(x_{\eta}\right)=0\right)$. Therefore, if we define a new high splitting for $T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H}\right)$ at stage $s_{1}>s_{0}$, we want the values of $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * i\right)$ to satisfy the condition

$$
T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H} * i\right) \subseteq T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * i\right)
$$

for $i=0,1$. If the potential splitting pair τ_{0} and τ_{1} satisfies this condition, then we use them to make $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H}\right)$ high splitting and take outcome $\mu_{1} * H$. In this case, we say that μ_{1} has met its high challenge.

However, it may not be the case that τ_{0} and τ_{1} satisfy this condition. It is possible that when we find these nodes τ_{0} and τ_{1} at stage $s_{1}>s_{0}$, both nodes extend $T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H} * 0\right)$. In this case, we want to press μ_{1} to find an appropriate half for the high splitting which extends $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * 1\right)=T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H} * 1\right)=$ $T_{\mu_{2}, s}\left(\sigma_{1} * 1\right)$. Because we have two different computations using oracles extending $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * 0\right)=T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H} * 0\right)$, this pressing amounts to forcing μ_{1} to find any oracle extending $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * 1\right)$ which gives a convergent computation with the splitting witness $w_{\mu_{1}}$ for the μ_{1} splitting strings τ_{0} and τ_{1}. (The splitting witness $w_{\mu_{1}}$ is the number on which the [μ_{1}] computations using

Figure 2.5: This figure represents our actions at stage s_{1} when μ_{1} finds a potential high split using nodes τ_{0} and τ_{1} extending $T_{\mu_{1}}\left(\beta_{\mu_{1}, H} * 0\right)$. For ease of notation, we have used β in place of $\beta_{\mu_{1}, H}$.
oracles τ_{0} and τ_{1} differ.) If μ_{1} finds such a computation using a node extending $T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H} * 1\right)$, then it can use this node together with one of τ_{0} or τ_{1} to get a high splitting for $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H}\right)$ which has the required property above.

To accomplish this goal, μ_{1} moves the current path from $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * 0\right)$ to $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * 1\right)$ and freezes the cone above $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * 0\right)$. (See Figure 2.5.) Because μ_{1} has moved the current path, it redefines the trees $T_{\mu_{0}, s_{1}}$ and $T_{\mu_{1}, s_{1}}$ by stretching. As before, we set $\beta_{\mu_{0}, L}$ to be the string such that the current path just moved from $T_{\mu_{0}, s_{1}}\left(\beta_{\mu_{0}, L} * 0\right)$ to $T_{\mu_{0}, s_{1}}\left(\beta_{\mu_{0}, L} * 1\right)$. Because $\mu_{0} * L \subseteq \mu_{1}$, the tree $T_{\mu_{0}, s_{1}}$ remains the same. To redefine $T_{\mu_{1}, s_{1}}$, set $\hat{T}_{\mu_{1}}=T_{\mu_{1}, s_{1}}$. For α such that $\alpha \subsetneq \beta_{\mu_{1}, H} * 1$ or α is incomparable with $\beta_{\mu_{1}, H} * 1$, define $T_{\mu_{1}, s_{1}}(\alpha)=\hat{T}_{\mu_{1}}(\alpha)$ (that is, leave these nodes unchanged). Redefine $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * 1\right)$ to have long length and lie on the new current path (and hence the new definition of $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * 1\right)$ extends the old definition). Extend the definition of $T_{\mu_{1}, s_{1}}$ trivially above this node.

Between the time μ_{0} met its original low challenge at stage s_{0} and the stage s_{1} at which μ_{1} finds the potential high split, μ_{0} may have looked at computations involving oracles above $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * 0\right)$. Because we may or may not ever unfreeze the cone above this node, μ_{0} needs to verify these computations along the new current path. Therefore, μ_{1} issues a low challenge to μ_{0} to verify the computations it has seen in this frozen cone.
μ_{1} defines the set $X_{\mu_{0}}$ of numbers on which μ_{0} has seen computations using oracles extending $T_{\mu_{0}, s_{1}}\left(\beta_{\mu_{0}, L} * 0\right)$ but not using $T_{\mu_{0}, s_{1}}\left(\beta_{\mu_{0}, L}\right)$ as an oracle. It passes this set $X_{\mu_{0}}$ and the string $\beta_{\mu_{0}, L}$ to μ_{0} and challenges μ_{0} to verify its

Figure 2.6: This figure represents our action at stage s_{2} when μ_{1} begins the process to forbid the cone above $T_{\mu_{1}}\left(\beta_{\mu_{1}, H} * 1 * 0\right)$ to eliminate the Γ definition using this node as the oracle. For ease of notation, we have used β in place of $\beta_{\mu_{1}, H}$.
lowness on these numbers. Furthermore, because μ_{1} has moved the current path away from the node $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * 0\right)=T_{\mu_{2}, s}\left(\sigma_{1} * 0\right)$ which was used by η in the Γ definition on x_{η}, μ_{1} needs to take over the Γ definition of x_{η}. When μ_{1} was challenged to verify its highness, we set $x_{\mu_{1}}=x_{\eta}$, so μ_{1} defines $\Gamma^{T_{\mu_{1}, s_{1}}\left(\beta_{\left.\mu_{1}, H * 1 * 0\right)}\right.}\left(x_{\mu_{1}}\right)=0$. Once it makes this definition, μ_{1} ends the stage. However, we do not want to allow μ_{1} to initialize η, so μ_{1} only initializes the strategies of lower priority than $\mu_{1} * L$, including $\mu_{1} * L$.

To see how the construction proceeds from here, assume that μ_{0} eventually meets the low challenge issued by μ_{1} and takes outcome $\mu_{0} * L$ so that μ_{1} is later eligible to act again. Because the length of $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * 1\right)$ was stretched when μ_{1} redefined the trees at stage s_{1}, it has length longer than the use of the $w t t$ computation $\left[\mu_{1}\right]$ on the splitting witness $w_{\mu_{1}}$ for τ_{0} and τ_{1}. Therefore, once μ_{1} is eligible to act again, it checks if the $\left[\mu_{1}\right]$ computation on $w_{\mu_{1}}$ with oracle $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * 1\right)$ converges. Until it sees this convergence, it takes outcome $\mu_{1} * N$.

Figure 2.7: This figure represents the situation at stage s_{3} when μ_{1} returns the current path to $T_{\mu_{1}}\left(\beta_{\mu_{1}, H} * 0\right)$ and meets its high challenge by putting $T_{\mu_{1}}\left(\beta_{\mu_{1}, H}\right)$ into the high μ_{1} state. For ease of notation, we have used β in place of $\beta_{\mu_{1}, H}$.

If this computation never converges, then $\left[\mu_{1}\right]^{A}$ will not be total. Therefore, assume that this computation does eventually converge at stage $s_{2}>s_{1}$. In this case, μ_{1} wants to use the node $T_{\mu_{1}, s_{2}}\left(\beta_{\mu_{1}, H} * 1\right)$ and either τ_{0} or τ_{1} to make $T_{\mu_{1}, s_{2}}\left(\beta_{\mu_{1}, H}\right)$ high μ_{1} splitting. To do this, it needs to unfreeze the cone above $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * 0\right)$ that was frozen at stage s_{1} and it will let the current path return to passing through $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * 0\right)$. However, when we perform this action, we don't want to leave the extra $x_{\mu_{1}}=x_{\eta}$ computation $\Gamma^{T_{\mu_{1}, s_{2}}\left(\beta_{\mu_{1}, H} * 1 * 0\right)}\left(x_{\mu_{1}}\right)=0$ unforbidden because it could cause us problems if η eventually enumerates x_{η} into B. Therefore, before moving the current path back to $T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H} * 0\right), \mu_{1}$ begins a verification procedure to forbid the cone above $T_{\mu_{1}, s_{2}}\left(\beta_{\mu_{1}, H} * 1 * 0\right)$.

The R strategy μ_{1} acts as though it were a P strategy with only one low R strategy of higher priority. (See Figure 2.6.) That is, it moves the current path from $T_{\mu_{1}, s_{2}}\left(\beta_{\mu_{1}, H} * 1 * 0\right)$ to $T_{\mu_{1}, s_{2}}\left(\beta_{\mu_{1}, H} * 1 * 1\right)$. μ_{1} redefines $T_{\mu_{0}, s_{2}}$ and $T_{\mu_{1}, s_{2}}$ by stretching essentially as before: it defines $\beta_{\mu_{0}, L}$ and $X_{\mu_{0}}$, leaves $T_{\mu_{0}, s_{2}}$ the same and stretches $T_{\mu_{1}, s_{2}}\left(\beta_{\mu_{1}, H} * 1 * 1\right)$ to have long length. μ_{1} calculates the set $X_{\mu_{0}}$
of numbers which μ_{0} has seen converge with an oracle above $T_{\mu_{0}, s_{2}}\left(\beta_{\mu_{0}, L} * 0\right)$ but not with $T_{\mu_{0}, s_{2}}\left(\beta_{\mu_{0}, L}\right)$ as oracle. It defines $\Gamma^{T_{\mu_{1}, s_{2}}\left(\beta_{\mu_{1}, H} * 1 * 1 * 0\right)}\left(x_{\mu_{1}}\right)=0$ and issues a low challenge to μ_{0} with $\beta_{\mu_{0}, L}$ and $X_{\mu_{0}}$. Because $T_{\mu_{1}, s_{2}}\left(\beta_{\mu_{1}, H} * 1 * 1\right)$ is redefined to have long length, μ_{0} does not need to look above this node for any computations on the numbers in $X_{\mu_{0}}$. Therefore, if this low challenge is met at $s_{3}>s_{2}, \mu_{1}$ forbids the cone above $T_{\mu_{1}, s_{2}}\left(\beta_{\mu_{1}, H} * 1 * 0\right.$) (since μ_{0} has verified the computations that used oracles above this node), forbids the cone above $T_{\mu_{1}, s_{2}}\left(\beta_{\mu_{1}, H} * 1 * 1 * 0\right)$ (since μ_{0} did not look at any computations above this cone), unfreezes the cone above $T_{\mu_{1}, s_{3}}\left(\beta_{\mu_{1}, H} * 0\right)$ and uses $T_{\mu_{1}, s_{3}}\left(\beta_{\mu_{1}, H} * 1\right)$ together with either τ_{0} or τ_{1} to make $T_{\mu_{1}, s_{3}}\left(\beta_{\mu_{1}, H}\right)$ have high μ_{1} state. The current path $A_{s_{3}}$ also returns to passing through $T_{\mu_{1}, s_{3}}\left(\beta_{\mu_{1}, H} * 0\right)$ now that this node is unfrozen. (See Figure 2.7.) μ_{1} has met its high challenge and takes outcome $\mu_{1} * H$.

It might seem that there are too many μ_{0} low challenges by μ_{1}. However, the first μ_{0} low challenge issued by μ_{1} at stage s_{1} is because we cannot know whether μ_{1} will ever see [μ_{1}] converge on $w_{\mu_{1}}$ with oracle $T_{\mu_{1}, s_{2}}\left(\beta_{\mu_{1}, H} * 1\right)$. If this computation never converges, then the cone above $T_{\mu_{1}, s_{2}}\left(\beta_{\mu_{1}, H} * 0\right)$ in never unfrozen and so is essentially forbidden despite never being officially forbidden. Therefore, the first μ_{0} low challenge by μ_{1} at stage s_{1} is to account for this possibility. The second μ_{0} low challenge issued by μ_{1} at s_{2} is to allow the cone above $T_{\mu_{1}, s_{2}}\left(\beta_{\mu_{1}, H} * 1 * 0\right)$ to be forbidden to remove the potentially damaging Γ computation on $x_{\mu_{1}}$ using this oracle.

Summing up the action for μ_{1} which is challenged high, μ_{1} meets its high challenge (in one of the two ways described above) by eventually finding a high splitting for $T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H}\right)=T_{\mu_{1}, s_{1}}\left(\beta_{\mu_{1}, H}\right)$ at some stage $s_{3} \geq s_{1}$ such that $T_{\mu_{1}, s_{0}}\left(\beta_{\mu_{1}, H} * i\right) \subseteq T_{\mu_{1}, s_{3}}\left(\beta_{\mu_{1}, H} * i\right)$ for $i=0$, 1. If it fails to find such a splitting, then it is either because μ_{0} failed to meet some low challenge (in which case either we win the μ_{0} requirement because $\left[\mu_{0}\right]^{A}$ is not total or else μ_{0} finds a high split, takes outsome $\mu_{0} * H$ and initializes μ_{1}) or because μ_{1} failed to find an appropriate "second half" to a potential high split (in which case we win μ_{1} because $\left[\mu_{1}\right]^{A}$ is not total). Furthermore, the current path at stage s_{3} goes through $T_{\mu_{1}, s_{3}}\left(\beta_{\mu_{1}, H} * 0\right)$ and the computations $\Gamma^{T_{\mu_{3}, s}\left(\alpha_{\eta} * 0\right)}\left(x_{\eta}\right)=0$ (defined by η when it originally chose x_{η}) and $\Gamma^{T_{\mu_{1}, s}\left(\beta_{\mu_{1}, H} * 0\right)}\left(x_{\eta}\right)=\Gamma^{T_{\mu_{2}, s}\left(\sigma_{1} * 0\right)}\left(x_{\eta}\right)=0$ (defined by η at stage s when it started the verification procedure to put x_{η} into B) are the only Γ computations on x_{η} which are not forbidden at stage s_{3}. Finally, the node $T_{\mu_{1}, s_{3}}\left(\beta_{\mu_{1}, H}\right)=T_{\mu_{1}, s}\left(\beta_{\mu_{1}, H}\right)$ has not changed since being stretched by η at stage s when η began its diagonalization process and is now in the high μ_{1} state.

At stage s_{3}, μ_{2} is eligible to act for the first time since stage $s . \mu_{2}$ begins to verify its lowness as challenged by η at stage s. The current path still runs through $T_{\mu_{3}, s}\left(\alpha_{\eta} * 1\right)$ (where it was moved at stage s) through $T_{\mu_{1}, s_{3}}\left(\beta_{\mu_{1}, H}\right)$ and $T_{\mu_{1}, s_{3}}\left(\beta_{\mu_{1}, H} * 0\right)$. (Of course, μ_{3} has not been eligible to act since stage s.) We now have permission from μ_{0}, μ_{1} and μ_{3} to forbid the cone above $T_{\mu_{3}, s}\left(\alpha_{\eta} * 0\right)$ and only need to obtain μ_{2} permission by verifying its computations on the numbers in $X_{\mu_{2}}$ along the current path using oracles in the high μ_{1} state (since $T_{\mu_{3}, s}\left(\alpha_{\eta}\right)$ was already in the high μ_{1} state at stage s. Because the length of
$T_{\mu_{1}, s}\left(\beta_{\mu_{1}, H}\right)=T_{\mu_{1}, s_{3}}\left(\beta_{\mu_{1}, H}\right)$ was stretched at stage s when $X_{\mu_{2}}$ was defined by η and because this node is now in the high μ_{1} state, μ_{2} does not need to look at any computations using oracles which extend this node. Furthermore, at stage s, η defined σ_{1} so that $T_{\mu_{2}, s}\left(\sigma_{1}\right)=T_{\mu_{1}, s}\left(\beta_{\mu_{1}, H}\right)$. Therefore $T_{\mu_{2}, s_{3}}\left(\sigma_{1}\right)=T_{\mu_{2}, s}\left(\sigma_{1}\right)$ and μ_{2} does not need to look at any computations using oracles above $T_{\mu_{2}, s_{3}}\left(\sigma_{1}\right)$.

Until μ_{2} sees the correct computations on these numbers using an oracle along the current path, it takes outcome $\mu_{2} * N$. If there is a number in $X_{\mu_{2}}$ for which μ_{2} never sees a correct computation, then $\left[\mu_{2}\right]^{A}$ is not total and we win requirement μ_{2}. If there is a number in $X_{\mu_{2}}$ for which μ_{2} sees a computation which does not agree with the computation along the old current path that ran through $T_{\mu_{3}, s}\left(\alpha_{\eta} * 0\right)$, then μ_{2} can use this computation to define a new μ_{2} high splitting, take outcome $\mu_{2} * H$ and initialize η. Therefore, assume that μ_{2} eventually verifies these computations at a stage $s_{4}>s_{3}$.

In this case, μ_{2} follows the link to η. (Recall that when η started the diagonalization process at stage s, it placed a link from μ_{2} to η.) η now has permission from $\mu_{i}, 0 \leq i \leq 3$ to forbid the cone above $T_{\mu_{3}, s}\left(\alpha_{\eta} * 0\right)$. However, before placing x_{η} in B, η also needs to worry about the computation $\Gamma^{T_{\mu_{2}, s}\left(\sigma_{1} * 0\right)}\left(x_{\eta}\right)=0$ that it defined at stage s after moving the current path. Therefore, μ_{2} moves the current path from $T_{\mu_{2}, s_{4}}\left(\sigma_{1} * 0\right)=T_{\mu_{1}, s_{4}}\left(\beta_{\mu_{1}, H} * 0\right)$ to $T_{\mu_{2}, s_{4}}\left(\sigma_{1} * 1\right)=T_{\mu_{1}, s_{4}}\left(\beta_{\mu_{1}, H} * 1\right)$, redefines $T_{\mu_{i}, s_{4}}$ for $0 \leq i \leq 2$ by stretching and freezes the cone above $T_{\mu_{2}, s_{4}}\left(\sigma_{1} * 0\right)$.

Because $T_{\mu_{1}, s_{4}}\left(\beta_{\mu_{1}, H}\right)$ is already in the high $\left[\mu_{1}\right]$ state, η has permission from μ_{1} to forbid the cone above $T_{\mu_{2}, s_{4}}\left(\sigma_{1} * 0\right)$. Because we have not considered μ_{3} since stage s when η originally began its diagonalization procedure, μ_{3} has not seen any computations in this cone and hence η has permission from μ_{3} to forbid this cone. Because $T_{\mu_{2}, s_{4}}\left(\sigma_{1}\right)=T_{\mu_{2}, s_{3}}\left(\sigma_{1}\right)=T_{\mu_{2}, s}\left(\sigma_{1}\right), \mu_{2}$ did not look at any computations in the cone above $T_{\mu, s_{4}}\left(\sigma_{1} * 0\right)$ when it verified its computations on $X_{\mu_{2}}$ and hence has seen no computations in this cone. Therefore, η has permission from μ_{2} to forbid this cone. However, μ_{0} may have seen computations using oracles in the cone above $T_{\mu_{2}, s_{4}}\left(\sigma_{1} * 0\right)$ between stage s_{0} when μ_{0} verified its lowness and stage s_{4}. Therefore, η still needs μ_{0} permission to forbid this cone.

To obtain this permission, η defines $\beta_{\mu_{0}, L}$ to be the string such that the current path moves from $T_{\mu_{0}, s_{4}}\left(\beta_{\mu_{0}, L} * 0\right)$ to $T_{\mu_{0}, s_{4}}\left(\beta_{\mu_{0}, L} * 1\right)$ and defines $X_{\mu_{0}}$ to be the set of all numbers y such that μ_{0} has seen a computation on y using an oracle extending $T_{\mu_{0}, s_{4}}\left(\beta_{\mu_{0}, L} * 0\right)$ but not using oracle $T_{\mu_{0}, s_{4}}\left(\beta_{\mu_{0}, L}\right) . \eta$ issues a low challenge to μ_{0} with $X_{\mu_{0}}$. The action proceeds just as in the case when $X_{\mu_{0}} \neq \emptyset$ and $X_{\mu_{2}}=\emptyset$. That is, η sets up another Γ definition on x_{η} using a long string on $T_{\mu_{0}, s_{4}}$, places a link from μ_{0} to η and waits for μ_{0} to verify its lowness. When this occurs, η has the last remaining permission to forbid the cone above $T_{\mu_{2}, s_{4}}\left(\sigma_{1} * 0\right)$ and it has the permission to forbid the new Γ computation on x_{η} since μ_{0} does not need to look above this large node to verify its computations and none of μ_{i} for $1 \leq i \leq 3$ is eligible to act and to look at any computations in this cone while μ_{0} is verifying its lowness. Therefore, when μ_{0} verifies its lowness, η can safely place x_{η} into B, forbid the remaining Γ computations on x_{η} (including $T_{\mu_{3}, s}\left(\alpha_{\eta} * 0\right)$), pick a large number k and define $\Gamma^{\gamma}\left(x_{\eta}\right)=1$ for
all strings γ of length k which are not forbidden. After performing this action, η has won its requirement.

Chapter 3

Formal construction

This chapter is devoted to giving the formal construction for Theorem 1.1. We begin with some notational conventions. We use the letters η, ν and μ to refer to R and P strategies and we use $\alpha, \beta, \gamma, \delta, \sigma$ and τ to denote finite binary strings. λ denotes the empty string and for any nonempty string α, α^{\prime} denotes the string formed by removing the last element of α. For uniformity of presentation, we regard λ^{\prime} and $\lambda^{\prime \prime}$ as a special symbols distinct from λ and set $T_{\lambda^{\prime \prime}, s}$ to be an identity tree for all s.

In the tree of strategies as defined in the last chapter, λ is an R_{0} strategy. In general, an R_{e} strategy η has successors $\eta * H, \eta * L$ and $\eta * N$ ordered left to right by $\eta * H<_{L} \eta * L<_{L} \eta * N$. A P_{e} strategy μ has successors $\mu * S$ and $\mu * W$ ordered left to right by $\mu * S<_{L} \mu * W$. If μ is a P_{e} strategy, then μ^{\prime} is an R_{e-1} strategy and μ will attempt to do its diagonalization on the tree $T_{\mu^{\prime}, s}$ built by μ^{\prime}. If η is an R_{e} strategy, then $\eta^{\prime \prime}$ is an R_{e-1} strategy and η will attempt to build its tree $T_{\eta, s}$ as a subtree of the tree $T_{\eta^{\prime \prime}, s}$ built by $\eta^{\prime \prime}$. Because we use the extra symbol $\lambda^{\prime \prime}$ and assume that $T_{\lambda^{\prime \prime}, s}$ is the identity tree for all s, we can treat the highest priority R strategy λ as any other strategy.

The current path $A_{\eta, s}$ at stage s is defined by induction on the sequence of strategies η which are eligible to act at stage s. When η begins its action at stage s, it uses the current path $A_{\eta^{\prime}, s}$ and it may move this path during its action. (The strategy λ works with the current path $A_{\lambda^{\prime}, s}$ defined to be the final version of the current path from stage $s-1$. As above, this convention allows us to treat λ as any other strategy.) $A_{\eta, s}$ denotes the current path at the end of η 's action. (Typically, the current path is the rightmost path through $T_{\eta, s}$ which does not pass through any frozen or forbidden nodes.)

Each R_{e} requirement η keeps several pieces of information. $G_{\eta} \in\{H, L, N\}^{e}$ represents η 's fixed guess at the final $(e-1)$ state along A in $T_{\eta, s}$. For each $i<e$ there is a unique R_{i} strategy $\mu \subseteq \eta . G_{\eta}(i) \in\{H, L, N\}$ is defined such that $\mu * G_{\eta}(i) \subseteq \eta$. Typically, if η is eligible to act at stage s, η defines a tree $T_{\eta, s}$. Each node $T_{\eta, s}(\alpha)$ is assigned an e-state $U\left(T_{\eta, s}(\alpha)\right) \in\{H, L\}^{e+1}$ (called the η state of $T_{\eta, s}(\alpha)$) which is defined by induction as in a standard full approximation argument. The $\eta^{\prime \prime}$ state of a node $T_{\eta, s}(\alpha)$ is defined to be the
$(e-1)$ state of $T_{\eta^{\prime \prime}, s}(\gamma)$ where γ is such that $T_{\eta^{\prime \prime}, s}(\gamma)=T_{\eta, s}(\alpha)$. We make some technical comments below on comparing e-states of the form $U\left(T_{\eta, s}(\alpha)\right)$ (which cannot contain the letter N) and e-states of the form G_{ν} (which can contain the letter N).

We will abuse terminology by using the phrase "the η state of $T_{\eta, s}(\alpha)$ " to refer to the η state as defined above (for example when comparing the η state to G_{μ} for some μ extending η) and to refer to whether or not $T_{\eta, s}(\alpha)$ is η high splitting (for example when saying that $T_{\eta, s}(\alpha)$ has the high or low η state). It will be clear from context which of these meanings is intended.

The second parameter for an R_{e} strategy η is $p_{\eta} \in \mathbb{N}$. This parameter denotes the level on the $\eta^{\prime \prime}$ tree at which we start building T_{η}. Before defining $T_{\eta, s}$, we wait for a string α such that $|\alpha|=p_{\eta}, U\left(T_{\eta^{\prime \prime}, s}(\alpha)\right)=G_{\eta}$ (ignoring for the moment the fact that G_{η} may contain the letter N), and $T_{\eta^{\prime \prime}, s}(\alpha)$ is on the current path. When we find such a string, we set the parameter $\alpha_{\eta}=\alpha$ and begin to define $T_{\eta, s}$ by setting $T_{\eta, s}(\lambda)=T_{\eta^{\prime \prime}, s}\left(\alpha_{\eta}\right)$.

If η is challenged low, then it is given a finite set X_{η} of numbers on which it is waiting for convergence and a string $\beta_{\eta, L}$ such that it is looking for convergence above either $T_{\eta, s}\left(\beta_{\eta, L} * 0\right)$ or $T_{\eta, s}\left(\beta_{\eta, L} * 1\right)$ depending on which strategy challenged η to verify its lowness.

If η is challenged high, then η is given a string $\beta_{\eta, H}$ and a number x_{η}. The string $\beta_{\eta, H}$ determines the node $T_{\eta, s}\left(\beta_{\eta, H}\right)$ which η needs to verify is high splitting and the number x_{η} is the number on which η may need to define Γ computations higher on the tree if it has to move the current path while verifying its highness. In addition, η may define a number w_{η} on which the $[\eta]$ computations disagree for potential splitting strings τ_{0} and τ_{1} while it attempts to find an appropriate string τ_{2} so that the two halves of the new high split will extend $T_{\eta, s}\left(\beta_{\eta, H} * 0\right)$ and $T_{\eta, s}\left(\beta_{\eta, H} * 1\right)$.

Each P_{e} requirement η also keeps several pieces of information. G_{η} is η 's fixed guess at the final e-state and it is defined as in the R_{e} case. η defines a number p_{η} and a string α_{η} as in the R_{e} case and attempts to do its diagonalization at the node $T_{\eta^{\prime}, s}\left(\alpha_{\eta}\right) . \eta$ also choses a large witness x_{η} with which it attempts to diagonalize.

During the construction, strategies may freeze or forbid certain nodes. We use the term active to refer to a node which is neither frozen nor forbidden and the term inactive to refer to a node that is either frozen or forbidden. We adopt the following conventions concerning inactive nodes. If α is declared frozen or forbidden, then so are all extensions of α. If $\alpha * 0$ and $\alpha * 1$ are both inactive, then so is α. We never search for splits in the part of the tree which is inactive. After the construction, we verify that the current path is always infinite.

Before giving our methods for defining trees, we make one comment on comparing e-state strings. If η is an R_{e} strategy, then the e-state for a node $T_{\eta, s}(\alpha)$ is denoted $U\left(T_{\eta, s}(\alpha)\right)$ and is a string $\tau \in\{H, L\}^{e+1}$. If $\tau=U\left(T_{\eta, s}(\alpha)\right)$ and a lower priority strategy μ is comparing τ and G_{μ}, then for all i such that $G_{\mu}(i)=N, \mu$ treats τ as though $\tau(i)=N$. That is, μ is guessing that the R_{i} strategy of higher priority is not total and hence has no interest in the i component of any e-state string. In other words, when comparing e-state strings,
μ ignores the entries for which μ is guessing nontotality. Although we continue to use the standard notations $=,<$, and $>$ for comparing e-state strings, they always have this addition meaning in the context of a strategy μ.

We also need to clarify the definition for a number to be large or a string to be long. During this construction, each tree $T_{\eta, s}$ which is defined at stage s is a total function from $2^{<\omega}$ to $2^{<\omega}$. When we define a number to be large, we want to say that it is larger than any number we have looked at in a meaningful way in the construction. Therefore, we define a number n to be large to mean that n is larger than any parameter defined so far in the construction and larger than any string used as an oracle in any computation looked at so far in the construction. We say that a string is long if its length is large.

We have three basic ways of defining the tree $T_{\eta, s}$ from $T_{\eta^{\prime \prime}, s}$. In all cases, η will already have defined its parameters p_{η} and α_{η}. First, we define $T_{\eta, s}$ trivially from $T_{\eta^{\prime \prime}, s}$ as follows. Let $T_{\eta, s}(\lambda)=T_{\eta^{\prime \prime}, s}\left(\alpha_{\eta}\right)$ and continue by induction. Assume that $T_{\eta, s}(\beta)=T_{\eta^{\prime \prime}, s}(\gamma)$ has been defined. If there is a most recent stage $t<s$ at which η defined $T_{\eta, t}$ and η has not been initialized since t, then we attempt to keep $T_{\eta, s}$ the same as it was at stage t. If $T_{\eta, s}(\beta)=T_{\eta, t}(\beta)$ and for $i \in\{0,1\}, T_{\eta, t}(\beta * i)$ is still on $T_{\eta^{\prime \prime}, s}$, then set $T_{\eta, s}(\beta * i)=T_{\eta, t}(\beta * i)$ and $U\left(T_{\eta, s}(\beta)\right)=U\left(T_{\eta, t}(\beta)\right)$. If any of those conditions fails or there is not such stage t, then set $T_{\eta, s}(\beta * i)=T_{\eta^{\prime \prime}, s}(\gamma * i)$ and $U\left(T_{\eta, s}(\beta)\right)=U\left(T_{\eta^{\prime \prime}, s}(\gamma)\right) * L$.

We sometimes define a subtree of $T_{\eta, s}$ trivially by following the same algorithm above an already defined node. If $T_{\eta, s}(\beta)$ has already been defined, then defining $T_{\eta, s}$ trivially above $T_{\eta, s}(\beta)$ means to use the above algorithm to define $T_{\eta, s}(\delta)$ for all $\beta \subset \delta$.

Second, we may define $T_{\eta, s}$ by searching for active splittings on $T_{\eta^{\prime \prime}, s}$. Set $T_{\eta, s}(\lambda)=T_{\eta^{\prime \prime}, s}\left(\alpha_{\eta}\right)$ and proceed by induction. Assume that $T_{\eta, s}(\beta)=T_{\eta^{\prime \prime}, s}(\gamma)$ has been defined.

If $T_{\eta, s}(\beta) \subseteq A_{\eta^{\prime}, s}$ and has $\eta^{\prime \prime}$ state G_{η}, then we look for an appropriate splitting extension with half of the split lying on $A_{\eta^{\prime}, s}$. Check for active nodes τ_{0} and τ_{1} on $T_{\eta^{\prime \prime}, s}$ such that

1. $\left|\tau_{0}\right|,\left|\tau_{1}\right| \leq s$ with τ_{0} to the right of τ_{1},
2. $T_{\eta^{\prime \prime}, s}(\gamma) \subseteq \tau_{0}, \tau_{1}$,
3. either $\tau_{0} \subseteq A_{\eta^{\prime}, s}$ or $\tau_{1} \subseteq A_{\eta^{\prime}, s}$,
4. $U\left(\tau_{0}\right)=U\left(\tau_{1}\right)=G_{\eta}$, and
5. there is an $x \leq s$ such that $[\eta]_{s}^{\tau_{0}}(x) \downarrow \neq[\eta]_{s}^{\tau_{1}}(x) \downarrow$.

If there exist such sequences, then take the first pair found, set $T_{\eta, s}(\beta * i)=\tau_{i}$ and set $U\left(T_{\eta, s}(\beta)\right)=G_{\eta} * H$. (We assume that once η has chosen such a pair, it continues to chose the same pair at future stages as long as the pair remains on $T_{\eta^{\prime \prime}}$.) In all other cases, define $T_{\eta, s}$ trivially above $T_{\eta, s}(\beta)$.

Third, a strategy η may redefine trees $T_{\mu, s}$ for R strategies $\mu \subsetneq \eta$ by stretching. η could be an R or a P strategy, but in either case, η will have just moved the current path. Let δ be a string of long length such that $T_{\lambda^{\prime \prime}, s}(\delta)$ is on the
new current path. (Recall that $T_{\lambda^{\prime \prime}, s}$ is the identity tree, so $T_{\lambda^{\prime \prime}, s}(\delta)=\delta$.) In particular, because δ is chosen large, this node is on all of the trees $T_{\nu, s}$ for R strategies $\nu \subseteq \eta$ and this node is in the low ν state for all such ν. Furthermore, the current path goes through $T_{\lambda^{\prime \prime}, s}(\delta * 0)=\delta * 0$.

For each R strategy μ such that $\mu * L \subseteq \eta$ or $\mu * N \subseteq \eta$, let $\beta_{\mu, L}$ be the string such that η moved the current path from $T_{\mu, s}\left(\beta_{\mu, L} * 0\right)$ to $T_{\mu, s}\left(\beta_{\mu, L} * 1\right)$ or from $T_{\mu, t}\left(\beta_{\mu, L} * 1\right)$ to $T_{\mu, t}\left(\beta_{\mu, L} * 0\right)$. The procedure for redefining trees by stretching splits into two cases.

The first case is when there are no R strategies μ such that $\mu * H \subseteq \eta$. In this case, each tree $T_{\mu, s}$ remains the same and the stretching procedure has no effect. (The point in that since there are no high splitting nodes, we do not need the stretching procedure to help us define a wtt computation of the form $A \leq_{w t t}[\mu]^{A}$ for any of these strategies μ at the end of the construction. Therefore, the stretching will not be necessary in this case.)

The second case is when there is at least one R strategy μ such that $\mu * H \subseteq \eta$. Let $\mu_{0} \subseteq \mu_{1} \subseteq \cdots \subseteq \mu_{k} \subseteq \eta$ be the R strategies such that $\mu_{j} * H \subseteq \eta$. Let $\beta_{\mu_{j}, H}$ be the longest string such that $T_{\mu_{j}, s}\left(\beta_{\mu_{j}, H}\right)$ is on the new current path and $U\left(T_{\mu_{j}, s}\left(\beta_{\mu_{j}, H}^{\prime}\right)\right)=G_{\mu_{j}} * H$. That is, $T_{\mu_{j}}\left(\beta_{\mu_{j}, H}\right)$ is the first node on the new current path with state $G_{\mu_{j}} * L$. Because $U\left(T_{\mu_{j}, s}\left(\beta_{\mu_{j}, H}\right)\right)=G_{\mu_{j}} * L$, we have

$$
T_{\mu_{k}, s}\left(\beta_{\mu_{k}, H}\right) \subseteq T_{\mu_{k-1}, s}\left(\beta_{\mu_{k-1}, H}\right) \subseteq \cdots \subseteq T_{\mu_{0}, s}\left(\beta_{\mu_{0}, H}\right) \subseteq \delta
$$

We want to redefine the trees $T_{\nu, s}$ for R strategies $\nu \subsetneq \eta$ such that the node $T_{\mu_{j}, s}\left(\beta_{\mu_{j}, H}\right)$ is stretched to have value $T_{\lambda^{\prime \prime}, s}(\delta)$. The redefinition of $T_{\nu, s}$ splits into three subcases.

First, if $\nu \subsetneq \mu_{0}$, then $T_{\nu, s}$ remains the same. Second, if $\nu=\mu_{j}$, the let $\hat{T}_{\mu_{j}}=T_{\mu_{j}, s}$ and we redefine $T_{\mu_{j}, s}$ as follows. For all α such that $\alpha \subsetneq \beta_{\mu_{j}, H}$ or α is incomparable with $\beta_{\mu_{j}, H}$, set $T_{\mu_{j}, s}(\alpha)=\hat{T}_{\mu_{j}}(\alpha)$ and let $U\left(T_{\mu_{j}, s}(\alpha)\right)=$ $U\left(\hat{T}_{\mu_{j}}(\alpha)\right)$. Define $T_{\mu_{j}, s}\left(\beta_{\mu_{j}, H}\right)=T_{\lambda^{\prime \prime}, s}(\delta)$ and $U\left(T_{\mu_{j}, s}\left(\beta_{\mu_{j}, H}\right)\right)=$ all low states. Continue the definition of $T_{\mu_{j}, s}$ trivially from $\hat{T}_{\mu_{j}}$ above $T_{\mu_{j}, s}\left(\beta_{\mu_{j}}, H\right)$. Notice that $T_{\mu_{j}, s}\left(\beta_{\mu_{j}, H} * 0\right)=\delta * 0$ and so the current path runs through this node.

The third subcase is quite similar to the second subcase with a slight change in notation. If none of the first two subcases applies, let $j \leq k$ be the greatest number such that $\mu_{j} \subseteq \nu$. Set $\hat{T}_{\nu}=T_{\nu, s}$ and let β be the string such that $\hat{T}_{\nu}(\beta)=$ the value of $T_{\mu_{j}, s}\left(\beta_{\mu_{j}, H}\right)$ before it was redefined by stretching. For all α such that $\alpha \subsetneq \beta$ or α is incomparable with β, set $T_{\nu, s}(\alpha)=\hat{T}_{\nu}(\alpha)$ and $U\left(T_{\nu, s}(\alpha)\right)=U\left(\hat{T}_{\nu}(\alpha)\right)$. Define $T_{\nu, s}(\beta)=T_{\lambda^{\prime \prime}, s}(\delta)$ and $U\left(T_{\nu, s}(\beta)\right)=$ all low states. Continue the of $T_{\nu, s}$ trivially from \hat{T}_{ν} above this node. This completes the definition of redefining trees by stretching.

The construction proceeds in stages with the action at each stage s directed by the tree of strategies. At stage 0 , we begin with the current path $A_{0}=$ $A_{\lambda^{\prime}, 0}=\emptyset$ and let λ be eligible to act. At the beginning of stage $s>0$, we define the current path A_{s} and $A_{\lambda^{\prime}, s}$ so that $A_{s}=A_{\lambda^{\prime}, s}=A_{\nu, s-1}$ where ν is the last strategy which was eligible to act at stage $s-1$. We let λ be eligible to act to start stage s. When a strategy η acts at stage s, it may move the current
path by explicitly defining $A_{\eta, s}$ from $A_{\eta^{\prime}, s}$. If it does not explicitly define a new current path, then $A_{\eta, s}=A_{\eta^{\prime}, s}$. (That is, the current path does not change.) Similarly, any parameters not explicitly redefined or canceled by initialization are assumed to retain their previous values. We proceed according to the action of the strategies until a strategy explicitly ends the stage. When a strategy η ends a stage, it will either initialize all lower priority strategies or it will initialize all strategies of lower priority than $\eta * L$ (including $\eta * L$). When a strategy is initialized, all of its parameters are canceled and become undefined. If the strategy η is eligible to act at stage s, then s is called an η stage.

We need to clarify the definition of the functional Γ. We make new definitions for Γ at the end of each stage s after we have initialized the appropriate strategies. For each $x \leq s$ such that x is not currently equal to x_{η} for some P strategy η and such that $x \notin B_{s}$, set $\Gamma^{Y}(x)=0$ for all sets Y. If $x=x_{\eta}$ for for some P strategy η, then the construction takes care of the definition of Γ on x.

Action for a P strategy η :

Case 1. η has not acted before or has been initialized since its last action. Define p_{η} large, end the stage and initialize all lower priority strategies.

Case 2. p_{η} is defined but α_{η} is not defined. Let α be the unique string such that $|\alpha|=p_{\eta}$ and $T_{\eta^{\prime}, s}(\alpha) \subseteq A_{\eta^{\prime}, s}$. Check if $U\left(T_{\eta^{\prime}, s}(\alpha)\right)=G_{\eta}$. If not, then end the stage now and initialize the lower priority strategies. If so, define $\alpha_{\eta}=\alpha$, define x_{η} to be large and set $\Gamma^{T_{\eta^{\prime}, s}\left(\alpha_{\eta} * 0\right)}\left(x_{\eta}\right)=0$. End the stage now and initialize all lower priority strategies. (After the construction we verify that $T_{\eta^{\prime}, s}\left(\alpha_{\eta} * 0\right) \subseteq A_{\eta^{\prime}, s}=A_{\eta, s}$ and that this node remains on the current path at future η stages unless η is initialized or η moves the current path in the verification procedure called in Case 3 below.)

Case 3. α_{η} and x_{η} are defined. Check if $x_{\eta} \in W_{\eta}$. If not, then let $\eta * W$ be eligible to act. If so, begin a verification procedure with $\sigma_{0}=\alpha_{\eta}$. (The verification procedure is described after the description of the action for an R strategy.) At each subsequent η stage until the verification procedure concludes, the verification procedure will end the stage and initialize the lower priority strategies. (If η is on the true path, then the action of the verification procedure will be finitary.)

Case 4. The verification procedure called in Case 3 ends at this stage. Forbid all cones that were η frozen by the verification procedure. Put x_{η} into B. Let n be a large number. For all strings γ of length n which are not η forbidden, define $\Gamma^{\gamma}\left(x_{\eta}\right)=1$. Declare η satisfied and take outcome $\eta * S$. At future η stages, take outcome $\eta * S$.

Action for an R strategy η :

Case 1. η has not acted before or has been initialized since the last time it acted. In this case, define p_{η} large, end the stage and initialize all strategies of lower priority.

Case 2. η has defined p_{η} but not α_{η}. Let α be the unique string such that $|\alpha|=p_{\eta}$ and $T_{\eta^{\prime \prime}, s}(\alpha) \subseteq A_{\eta^{\prime}, s}$. If $U\left(T_{\eta^{\prime \prime}, s}(\alpha)\right)=G_{\eta}$ then define $\alpha_{\eta}=\alpha$. Otherwise, leave α_{η} undefined. In either case, end the stage and initialize all
lower priority strategies.
Case 3. α_{η} is defined and η is not challenged. Define $T_{\eta, s}$ by setting $T_{\eta, s}(\lambda)=T_{\eta^{\prime \prime}, s}\left(\alpha_{\eta}\right)$ and searching for active splittings. If η finds a new high splitting along the current path, then let $\eta * H$ act. Else, let $\eta * L$ act.

Case 4. η was challenged high at stage $t<s$. At stage t, η was given a number x_{η} and a string $\beta_{\eta, H}$ such that $U\left(T_{\eta, t}\left(\beta_{\eta, H}^{\prime}\right)\right)=G_{\eta} * H$ and $T_{\eta, t}\left(\beta_{\eta, H}\right)$ was stretched at the end of stage t (and hence has all low states at the end of stage t). Let γ denote the string such that at stage t we had $T_{\eta, t}\left(\beta_{\eta, H}\right)=$ $T_{\eta^{\prime \prime}, t}(\gamma)$. After the construction, we verify the following properties. $T_{\eta^{\prime \prime}, s}(\gamma)=$ $T_{\eta^{\prime \prime}, t}(\gamma)=T_{\eta, t}\left(\beta_{\eta, H}\right), U\left(T_{\eta^{\prime \prime}, s}(\gamma)\right)=G_{\eta}$ and $T_{\eta^{\prime \prime}, s}(\gamma * 0) \subseteq A_{\eta^{\prime}, s}$. At each η stage u such that $t<u<s, T_{\eta, u}$ was defined trivially from $T_{\eta^{\prime \prime}, u}$. If $u<v$ are η stages such that $t<u<v<s$, then $T_{\eta, t}\left(\beta_{\eta, H}\right)=T_{\eta, u}\left(\beta_{\eta, H}\right)=T_{\eta, v}\left(\beta_{\eta, H}\right)$ and for $i \in\{0,1\}, T_{\eta, t}\left(\beta_{\eta, H} * i\right) \subseteq T_{\eta, u}\left(\beta_{\eta, H} * i\right)=T_{\eta, v}\left(\beta_{\eta, H} * i\right)$. Because η was defined trivially at any such stage u, we also have that $T_{\eta, u}\left(\beta_{\eta, H} * i\right)=$ $T_{\eta^{\prime \prime}, u}(\gamma * i)$. Finally, when η was challenged high, the challenging strategy defined $\Gamma^{T_{\eta, t}\left(\beta_{\eta, H} * 0\right)}\left(x_{\eta}\right)=0$.

This case splits into the two subcases below. It is possible that η has also been challenged low at some stage after t and before the current stage. If this has occurred, then η must be in Subcase 4A.

Subcase 4A: η has not yet found a potential high splitting for $T_{\eta, t}\left(\beta_{\eta, H}\right)$. Check if there are active strings τ_{0} and τ_{1} on $T_{\eta^{\prime \prime}, s}$ (with τ_{0} to the right of τ_{1}) such that $T_{\eta^{\prime \prime}, s}(\gamma)=T_{\eta, t}\left(\beta_{\eta, H}\right) \subseteq \tau_{0}, \tau_{1}, U\left(\tau_{0}\right)=U\left(\tau_{1}\right)=G_{\eta}, \exists w_{\eta}\left([\eta]_{s}^{\tau_{0}}\left(w_{\eta}\right) \downarrow \neq\right.$ $\left.[\eta]_{s}^{\tau_{1}}\left(w_{\eta}\right) \downarrow\right)$ and either $\tau_{0} \subseteq A_{\eta^{\prime}, s}$ or $\tau_{1} \subseteq A_{\eta^{\prime}, s}$. If not and η is also low challenged, proceed to Case 5 below. If not and η is not low challenged, then define $T_{\eta, s}$ trivially from $T_{\eta^{\prime \prime}, s}$ and take outcome $\eta * L . \eta$ remains high challenged. If there are such strings τ_{0} and τ_{1}, then fix τ_{0}, τ_{1} and w_{η}, and consider the following two subcases of Subcase 4A. (Because the current path goes through $T_{\eta^{\prime \prime}, s}(\gamma * 0)$ and $T_{\eta, t}\left(\beta_{\eta, H} * 0\right) \subseteq T_{\eta^{\prime \prime}, s}(\gamma * 0)$, we have that either $T_{\eta, t}\left(\beta_{\eta, H} * i\right) \subseteq \tau_{i}$ for $i=0,1$ or $T_{\eta, t}\left(\beta_{\eta, H} * 0\right) \subseteq \tau_{0}, \tau_{1}$. Therefore, the two cases below suffice.)

Subcase $4 \mathbf{A}(\mathbf{i}): \tau_{0}$ and τ_{1} satisfy $T_{\eta, t}\left(\beta_{\eta, H} * i\right) \subseteq \tau_{i}$. Define $T_{\eta, s}$ from $T_{\eta^{\prime \prime}, s}$ by searching for splittings, using τ_{0} and τ_{1} as the successors of $T_{\eta, s}\left(\beta_{\eta, H}\right) . \eta$ is no longer challenged high and $\eta * H$ is the next strategy eligible to act. Notice that we have $T_{\eta, t}\left(\beta_{\eta, H} * i\right) \subseteq T_{\eta, s}\left(\beta_{\eta, H} * i\right)$.

Subcase $\mathbf{4 A}(\mathbf{i i}): T_{\eta, t}\left(\beta_{\eta, H} * 0\right) \subseteq \tau_{0}, \tau_{1}$. Define $T_{\eta, s}$ trivially from $T_{\eta^{\prime \prime}, s}$. Freeze the cone above $T_{\eta, t}\left(\beta_{\eta, H} * 0\right)$ and move the current path to be the rightmost active path through $T_{\eta, s}\left(\beta_{\eta, H} * 1\right)$.

Redefine the trees $T_{\mu, s}$ for $\mu \subsetneq \eta$ by stretching. Furthermore, stretch $T_{\eta, s}\left(\beta_{\eta, H} * 1\right)$ to have the same long length as the other stretched nodes. (That is, set $\hat{T}=T_{\eta, s}$ and redefine $T_{\eta, s}$ as follows. For all α such that $\alpha \subsetneq \beta_{\eta, H} * 1$ or α is incomparable to $\beta_{\eta, H} * 1$, set $T_{\eta, s}(\alpha)=\hat{T}(\alpha)$ and $U\left(T_{\eta, s}(\alpha)\right)=U(\hat{T}(\alpha))$. Define $T_{\eta, s}\left(\beta_{\eta, H} * 1\right)=T_{\lambda^{\prime \prime}, s}(\delta)$ (where δ is as in the stretching process just completed) and $U\left(T_{\eta, s}\left(\beta_{\eta, H} * 1\right)\right)=$ all low states. Extend the definition of $T_{\eta, s}$ trivially from \hat{T} above this node.) Define $\Gamma^{T_{\eta, s}\left(\beta_{\eta, H} * 1 * 0\right)}\left(x_{\eta}\right)=0$.

For each R strategy μ such that $\mu * L \subseteq \eta$, define X_{μ} to be the finite set of all x for which μ has seen $[\mu]^{\tau}(x)$ converge for some τ on $T_{\mu, s}$ such that
$U(\tau)=G_{\mu}$ and $T_{\mu, s}\left(\beta_{\mu, L} * 0\right) \subseteq \tau$ but μ has not seen $[\mu]_{s}^{T_{\mu, s}\left(\beta_{\mu, L}\right)}(x)$ converge. ($\beta_{\mu, L}$ is defined by the stretching process in the previous paragraph.) For all μ with $\mu * L \subseteq \eta$, pass X_{μ} and $\beta_{\mu, L}$ to μ and challenge μ low. For all μ such that $\mu * H \subseteq \eta$, challenge μ high, pass $\beta_{\mu, H}$ to μ and set $x_{\mu}=x_{\eta}$. ($\beta_{\mu, H}$ is defined by the stretching process in the previous paragraph.) End the stage and initialize all strategies of lower priority than $\eta * L$ including $\eta * L$. At the next η stage (unless η has been initialized), η will act in Subcase 4B below.

Subcase 4B. At the previous η stage, η acted in Subcase 4A(ii) or η acted in this subcase and did not call a verification procedure. Let $u<s$ denote the stage at which η acted in Subcase $4 \mathrm{~A}(\mathrm{ii})$. Define $T_{\eta, s}$ trivially from $T_{\eta^{\prime \prime}, s}$. After the construction, we verify that $T_{\eta, s}\left(\beta_{\eta, H} * 1\right)=T_{\eta, u}\left(\beta_{\eta, H} * 1\right)$ and this string has state $G_{\eta} * L$. Furthermore, $T_{\eta, u}\left(\beta_{\eta, H} * 1 * i\right) \subseteq T_{\eta, s}\left(\beta_{\eta, H} * 1 * i\right)$ and the current path goes through $T_{\eta, s}\left(\beta_{\eta, H} * 1 * 0\right)$. Because $T_{\eta, u}\left(\beta_{\eta, H} * 1\right)$ was stretched at stage $u, T_{\eta, s}\left(\beta_{\eta, H} * 1\right)$ has length longer than the $[\eta]$ use on w_{η} (which is the splitting witness for τ_{0} and τ_{1} from Subcase A). Check if $[\eta]_{s}^{T_{\eta, s}\left(\beta_{\eta, H} * 1\right)}\left(w_{\eta}\right)$ converges. If not, let $\eta * N$ act. If so, call a verification procedure with $\sigma_{0}=\beta_{\eta, H} * 1$. At subsequent η stages until the verification procedure finishes, it will end the stage and initialize strategies of lower priority than $\eta * L$ including $\eta * L$.

When the verification procedure finishes (abusing notation, at stage s), unfreeze the cone above $T_{\eta, t}\left(\beta_{\eta, H} * 0\right)$ (which was frozen in Subcase 4A(ii)). This action unfreezes the strings τ_{0} and τ_{1} from Subcase $4 \mathrm{~A}(\mathrm{ii})$. Set $\hat{\tau}$ to be either τ_{0} or τ_{1}, depending on which gives the computation that differs from the computation given by $T_{\eta, u}\left(\beta_{\eta, H} * 1\right)$ on w_{η}. Move the current path to be the rightmost active path through $\hat{\tau}$. Forbid all remaining η frozen cones. Define $T_{\eta, s}$ by searching for splitting, taking $T_{\eta, s}\left(\beta_{\eta, H} * 1\right)=T_{\eta, u}\left(\beta_{\eta, H} * 1\right)$ and $T_{\eta, s}\left(\beta_{\eta, H} * 0\right)=\hat{\tau}$ to make $T_{\eta, s}\left(\beta_{\eta, H}\right)$ high splitting. When this definition is complete, redefine the trees $T_{\mu, s}$ for $\mu \subsetneq \eta * H$ by stretching. (Notice that we stretch $T_{\eta, s}$ as part of this stretching process.) Let $\eta * H$ act and η is no longer challenged high.

Case 5. η was challenged low at stage $t<s$ and passed the set X_{η} and a string $\beta_{\eta, L}$. If $X_{\eta}=\emptyset$, then take outcome $\eta * L$ and η is no longer low challenged. If $X_{\eta} \neq \emptyset$, then proceed as follows.
η was challenged low either by a verification procedure or by an R strategy acting in Subcase $4 \mathrm{~A}(\mathrm{ii})$ of its high challenge. In either case, $\beta_{\eta, L}$ is such that the current path was moved from $T_{\eta, t}\left(\beta_{\mu, L} * 0\right)$ to $T_{\mu, t}\left(\beta_{\mu, L} * 1\right)$ and the cone above $T_{\eta, t}\left(\beta_{\eta, L} * 0\right)$ was frozen at stage t by the challenging strategy. After the construction, we verify the following properties. If γ is such that $T_{\eta^{\prime \prime}, t}(\gamma)=$ $T_{\eta, t}\left(\beta_{\eta, L}\right)$, then $T_{\eta^{\prime \prime}, s}(\gamma)=T_{\eta^{\prime \prime}, t}(\gamma)$. If u is an η stage such that $t<u<s$, then $T_{\eta, t}\left(\beta_{\eta, L}\right)=T_{\eta, u}\left(\beta_{\eta, L}\right)$ and $T_{\eta, t}\left(\beta_{\eta, L} * i\right)=T_{\eta, u}\left(\beta_{\eta, L} * i\right)$ for $i \in\{0,1\}$. (To be precise, when η was challenged low at stage t, it is possible that the challenging strategy stretched the node $T_{\eta, t}\left(\beta_{\eta, L} * 1\right)$. Therefore, the reference to this node is to the stretched version, if such stretching took place.) Finally, the current path continues to run through $T_{\eta, u}\left(\beta_{\eta, L} * 1\right)$.

By the definition of X_{η}, for each $x \in X_{\eta}$, there is a corresponding string γ_{x} on $T_{\eta, t}$ such that $T_{\eta, t}\left(\beta_{\eta, L} * 0\right) \subseteq \gamma_{x}$ and $[\eta]_{t}^{\gamma_{x}}(x)$ converges. Consider all nodes
δ such that $T_{\eta^{\prime \prime}, s}(\delta)$ is on the current path, $T_{\eta, t}\left(\beta_{\eta, L} * 1\right) \subseteq T_{\eta^{\prime}, s}(\delta),\left|T_{\eta^{\prime \prime}, s}(\delta)\right|$ is greater than any of the $[\eta]$ uses for $x \in X_{\eta}$ and $U\left(T_{\eta^{\prime \prime}, s}(\delta)\right)=G_{\eta}$. If there is no such δ, then define $T_{\eta, s}$ trivially from $T_{\eta^{\prime \prime}, s}$ and take outcome $\eta * N$. Otherwise, let δ_{η} denote the shortest length such δ.

Consider each $x \in X_{\eta}$ in sequential order and check whether $[\eta]_{s}^{T_{\eta^{\prime \prime}, s}\left(\delta_{\eta}\right)}(x)$ converges. If not, then define $T_{\eta, s}$ trivially from $T_{\eta^{\prime \prime}, s}$ and take outcome $\eta * N$. If this computation does converge, then check whether it equals $[\eta]^{\gamma_{x}}(x)$. If so, then consider the next value in X_{η}. If not, then unfreeze all cones frozen by the challenging strategy, so in particular γ_{x} is unfrozen. Define $T_{\eta, s}$ from $T_{\eta^{\prime \prime}, s}$ by searching for splittings. γ_{x} and $T_{\eta^{\prime \prime}, s}\left(\delta_{\eta}\right)$ will give a new high split on $T_{\eta, s}$ so take outcome $\eta * H$. (In this case, since the strategy which challenged η extends $\eta * L$, it will be initialized at the end of the stage.) If all of the elements of X_{η} have convergent computations which agree with their γ_{x} computations, then define $T_{\eta, s}$ trivially from $T_{\eta^{\prime \prime}, s}$, declare the low challenge met and take outcome $\eta * L$ unless the challenging strategy established a link from η in which case follow the link.

Verification Procedure.

A verification procedure can be called either by a P strategy η or by an R strategy η acting in Subcase 4B of the high challenge. In either case, when η first calls the verification procedure, it has just defined a string σ_{0} and it has a witness x_{η}. (The string σ_{0} should contain a subscript indicating that it is part of a verification procedure called by η, but we omit this extra piece of notation.)

The verification procedure acts in cycles, beginning with the $0^{\text {th }}$ cycle. When the $n^{\text {th }}$ cycles starts, we will have defined the string σ_{n}. If $n \geq 1$, then we will have followed a link from the strategy μ_{n-1} to η such that $\mu_{n-1} * L \subseteq \eta$ and μ_{n-1} is the lowest priority strategy challenged low by η at the $(n-1)^{\text {st }}$ cycle. (When the verification procedure is first called, we begin with σ_{0} and have not followed any link. To make the notation uniform, we set $\mu_{-1}=\eta$ and treat the $0^{\text {th }}$ cycle like any other cycle.) The following is the action for the $n^{\text {th }}$ cycle of this verification procedure.

At the start of the $n^{\text {th }}$ cycle, the current path goes through $T_{\mu_{n-1}, s}\left(\sigma_{n} * 0\right)$ and the node $T_{\mu_{n-1}, s}\left(\sigma_{n} * 1\right.$) is active. (If $n=0$ and the verification procedure was called by a P strategy μ_{-1}, then we need to replace $T_{\mu_{-1}, s}$ by $T_{\mu_{-1}^{\prime}, s}$. Similar comments apply throughout the rest of this procedure. If $n \geq 1$, then μ_{n-1} is an R strategy, so no such replacement is necessary.) Furthermore, if $n \geq 1$ and $t<s$ is the stage at which the $(n-1)^{\text {st }}$ cycle started, then $T_{\mu_{n-1}, s}\left(\sigma_{n}\right)=T_{\mu_{n-1}, t}\left(\sigma_{n}\right)$ and $T_{\mu_{n-1}, t}\left(\sigma_{n} * i\right) \subseteq T_{\mu_{n-1}, s}\left(\sigma_{n} * i\right)$ for $i=0,1$. During the $(n-1)^{\text {st }}$ cycle, we defined $\Gamma^{T_{\mu_{n-1}, t}\left(\sigma_{n} * 0\right)}\left(x_{\eta}\right)=0$. If $n=0$, then we have already defined $\Gamma^{T_{\mu_{-1}, s}\left(\sigma_{0} * 0\right)}\left(x_{\eta}\right)=0$. (We verify all of these properties after the construction.)

Move the current path from $T_{\mu_{n-1}, s}\left(\sigma_{n} * 0\right)$ to be the rightmost active path through $T_{\mu_{n-1}, s}\left(\sigma_{n} * 1\right)$. If $n=0$, then declare $T_{\mu_{-1}, s}\left(\sigma_{0} * 0\right)$ to be η frozen and if $n \geq 1$, then declare $T_{\mu_{n-1}, t}\left(\sigma_{n} * 0\right)$ to be η frozen. (That is, we freeze the string that was used in the Γ definition on x_{η}.) For strategies $\mu \subsetneq \mu_{n-1}$, redefine the trees by stretching. For each R strategy μ such that $\mu * L \subseteq \mu_{n-1}$, define
X_{μ} to be the finite set of numbers x such that μ has seen $[\mu]^{\gamma}(x)$ converge for some γ on $T_{\mu, s}$ such that $T_{\mu, s}\left(\beta_{\mu, L} * 0\right) \subseteq \gamma, U(\gamma)=G_{\mu} * L$ and μ has not seen $[\mu]^{T_{\mu, s}\left(\beta_{\mu, L}\right)}(x)$ converge. ($\beta_{\mu, L}$ is defined by the stretching process.) If all the X_{μ} sets are empty, then the verification procedure is complete and we return to the action of the strategy that called the verification procedure.

If some $X_{\mu} \neq \emptyset$, then set μ_{n} to be the lowest priority strategy such that $X_{\mu} \neq \emptyset$. (After the construction, we verify that $\mu_{n} \subsetneq \mu_{n-1}$.) Let σ_{n+1} denote the node such that $T_{\mu_{n}, s}\left(\sigma_{n+1}\right)$ was redefined to be equal to $T_{\lambda^{\prime \prime}, s}(\delta)$ by the stretching procedure in the previous paragraph. (That is, $T_{\mu_{n}, s}\left(\sigma_{n+1}\right)$ is the least node along the new current path in $T_{\mu_{n}, s}$ which was stretched.) Because of the stretching, the length of $T_{\eta, s}\left(\sigma_{n+1}\right)$ is large, the current path goes through $T_{\mu_{n}, s}\left(\sigma_{n+1} * 0\right)$ and $T_{\mu_{n}, s}\left(\sigma_{n+1} * 1\right)$ is active. Define $\Gamma^{T_{\mu_{n}, s}\left(\sigma_{n+1} * 0\right)}\left(x_{\eta}\right)=0$.

Place a link from μ_{n} to η. For all ν such that $\nu * L \subseteq \mu_{n} * L$, challenge ν low and pass $\beta_{\nu, L}$ and X_{ν} to ν. For all ν such that $\nu * H \subseteq \mu_{n}$, challenge ν high, pass $\beta_{\nu, H}$ to ν and set the witness $x_{\nu}=x_{\eta}$. ($\beta_{\nu, H}$ was defined by the stretching process above.) If η is an R strategy, initialize all strategies of lower priority than $\eta * L$ including $\eta * L$. If η is a P strategy, then initialize all lower priority strategies. End the stage. When η is next eligible to act, we begin the $(n+1)^{\text {st }}$ cycle of the verification procedure and check if the verification procedure is now complete or if we need to go through the whole $(n+1)^{\text {st }}$ cycle.

This completes the description of the construction. Before we begin the sequence of lemmas to prove the construction succeeds, we point out several features of the construction which the reader can check by observation. First, the places where we may find new high splittings are Case 3, Subcases 4A(i) and 4B, and Case 5 of an R strategy. In Cases 3, $4 \mathrm{~A}(\mathrm{i})$ and 5 , one half of the new high split is already on the current path. In Subcase 4B, we explicitly move the current path so that one half of the new high split (namely $\hat{\tau}$) lies on the new current path. Therefore, the only time the current path moves is when we explicitly move it. (That is, we are not in the typical situation of a full approximation argument in which the current approximation to the set being constructed is defined to be the rightmost path through the tree. In that setting, the current approximation is implicitly changed by the addition of new high splits.)

Second, the movement of the current path is only caused by a verification procedure or by a high challenged R strategy acting in Subcase 4A(ii) or 4B. Whenever we explicitly move the current path in one of these cases, we also stretch nodes along the new current path. Furthermore, these are the only times when we stretch nodes.

Third, if a node becomes frozen at a stage s, then some strategy must have moved the current path below this node. This property follows because the only time nodes are frozen is in Subcase 4 A (ii) of a high challenge and in a verification procedure.

Fourth, links are only established by a verification procedure and these procedures are only called by P strategies acting in Case 3 of the P action and by high challenged R strategies acting in Subcase 4B of a high challenge.

Finally, the only time new challenges are issued is by a verification procedure
or by a high challenged R strategy acting in Subcase 4 A (ii). In either of these cases, the strategy issuing the new challenges ends the current stage. This fact implies that at any given stage, at most one strategy can issue new challenges.

We say that the current path moves below a node $T_{\eta, s}(\alpha)$ if there is a string $\beta \subseteq \alpha$ such that either $T_{\eta, s}(\beta) \subseteq A_{\eta, s}$ but $T_{\eta, s}(\beta) \nsubseteq A_{\mu, t}$, or $T_{\eta, s}(\beta) \nsubseteq A_{\eta, s}$ but $T_{\eta, s}(\beta) \subseteq A_{\mu, t}$ for some strategy μ and stage $t \geq s$ (with $\eta \subseteq \mu$ if $t=s$). We say that the current path moves below level l of $T_{\eta, s}$ if the current path moves below $T_{\eta, s}(\alpha)$ for some string α of length l.

We present the series of lemmas to prove that our construction succeeds. We begin with some terminology and properties of the links. If there is a link between strategies ν and $\hat{\nu}$ such that $\nu \subsetneq \mu \subsetneq \hat{\nu}$, we say that the link jumps over μ. If $\mu * L \subseteq \hat{\nu}$, then we say the link lands above $\mu * L$. If $\mu * H \subseteq \hat{\nu}$, then we say the link lands above $\mu * H$. The idea is that a link which jumps over μ and lands above $\mu * L$ (or $\mu * H$) gives a way for a strategy extending $\mu * L$ (or $\mu * H)$ to be eligible to act without μ acting. The following lemma says that if μ is low challenged, then there cannot be a link jumping over μ and landing above $\mu * L$.

Lemma 3.1. The following situation cannot occur at any stage: μ has been challenged low by $\hat{\mu}$ and there is a link from ν to $\hat{\nu}$ such that $\nu \subsetneq \mu$ and $\mu * L \subseteq \hat{\nu}$.

Proof. Because μ is challenged low by $\hat{\mu}$, we have $\mu * L \subseteq \hat{\mu}$. Because the link between ν and $\hat{\nu}$ can only be established when $\hat{\nu}$ challenges ν low, we have $\nu * L \subseteq \hat{\nu}$. Furthermore, $\nu \subsetneq \mu \subseteq \hat{\nu}$ and $\nu * L \subsetneq \hat{\nu}$ together imply that $\nu * L \subseteq \mu$ and hence $\nu * L \subseteq \hat{\mu}$.

For a contradiction, assume that $\hat{\mu}$ challenges μ low at stage s and before this low challenge is removed (either by being met or by $\hat{\mu}$ being initialized) there is a link between ν and $\hat{\nu}$ (which may already be present at stage s). Furthermore, we can assume without loss of generality that μ is such that no strategy $\eta \subsetneq \mu$ is ever in the situation of being challenged low with a link jumping over η and landing above $\eta * L$. (If there were such an η, we consider it instead of μ.) In particular, there is never a situation in which ν is challenged low with a link jumping over ν and landing above $\nu * L$. We will refer to this assumption as our wlog assumption about ν. (This assumption is really about μ but we will only apply it in this special case concerning $\nu \subsetneq \mu$.)

First, we show that this situation cannot occur if $\hat{\nu} \neq \hat{\mu}$. Consider when the link from ν to $\hat{\nu}$ is established. It cannot have been established at stage s since at any given stage, at most one strategy issues new low challenges. Since we assume $\hat{\mu}$ challenges μ at stage s and $\hat{\nu} \neq \hat{\mu}$, we cannot also have $\hat{\nu}$ issuing low challenges and establishing a link at stage s.

Assume that the link from ν to $\hat{\nu}$ is established at $u<s$ and hence ν is challenged low by $\hat{\nu}$ at stage $u<s$. In this case, consider how $\hat{\mu}$ comes to be eligible to act at stage s. If s is a ν stage, then the only possible outcomes for ν are $\nu * H$ and $\nu * N$ since ν cannot meet its low challenge at s without following (and hence removing) the link. Because $\nu * L \subseteq \hat{\mu}$, there must be a link jumping over ν and landing above $\nu * L$ at stage s while ν remains low challenged. However, this contradicts our wlog assumption about ν.

Assume that the link from ν to $\hat{\nu}$ is established at $u>s$ and that u is the first stage at which a link jumping over μ and landing above $\mu * L$ is established. Because u is a $\hat{\nu}$ stage and there is no link already jumping over μ and landing above $\mu * L, u$ must also be a μ stage. However, this is impossible since the only possible outcomes for μ are $\mu * H$ and $\mu * N$ unless μ meets the low challenge issued by $\hat{\mu}$ to μ at stage s. This completes the proof that we cannot have $\hat{\nu} \neq \hat{\mu}$.

Second, we show that we cannot have $\hat{\mu}=\hat{\nu}$. Assume $\hat{\mu}=\hat{\nu}$. Then $\hat{\mu}$ must issue the low challenges to both ν and μ. Consider when $\hat{\mu}$ issues the low challenge to ν and establishes the link from ν to $\hat{\nu}=\hat{\mu}$.

Assume the link from ν to $\hat{\mu}$ is established before stage s. In this case, by our wlog assumption about ν, there cannot be a link jumping over ν and landing above $\nu * L$ at stage s. Therefore, since s is a $\hat{\mu}$ stage and $\nu * L \subseteq \hat{\mu}, s$ must also be a ν stage. At stage s, ν either takes outcome $\nu * H$ or $\nu * N$ (in which case $\hat{\mu}$ cannot act at stage s) or ν follows the link to $\hat{\mu}$ (in which case the link is removed before $\hat{\mu}$ challenges μ low). All cases lead to a contradiction.

Assume the link from ν to $\hat{\mu}$ is established at stage s. Then ν must be the lowest priority strategy such that $\hat{\mu}$ calculates $X_{\nu} \neq \emptyset$. Then $\hat{\mu}$ only challenges a strategy γ low at stage s if $\gamma * L \subseteq \hat{\mu}$ and $\gamma \subseteq \nu$. This contradicts the fact that $\hat{\mu}$ challenges μ low at stage s since $\nu \subsetneq \mu$.

Assume the link from ν to $\hat{\mu}$ is established at stage $t>s$ and t is the first stage after s at which such a link is established. t must be a $\hat{\mu}$ stage. If t is a μ stage, then either we take outcome $\mu * H$ or $\mu * N$ (which contradicts the fact that t is a $\hat{\mu}$ stage) or we follow the link from μ to $\hat{\mu}$ and remove the low challenge to μ (which contradicts the fact that μ is still low challenged when the link from ν to $\hat{\nu}$ is established). Therefore, t cannot be a μ stage and so there must be a link jumping over μ and landing above $\mu * L$ established before stage t by some strategy other than $\hat{\mu}$. In the first case, we showed that this situation is impossible.

A case analysis similar to the one for Lemma 3.1 proves the following lemma.
Lemma 3.2. If μ is challenged high, then there cannot be a link jumping over μ and landing above $\mu * H$.

Lemma 3.3. If η is challenged low, then no strategy μ with $\eta * L \subseteq \mu$ is eligible to act until the low challenge has been met or is cancelled by initialization.

Proof. Assume that η is challenged low by $\hat{\eta}$ at stage s (and hence $\eta * L \subseteq \hat{\eta}$). At every η stage until the low challenge is met, η takes either outcome $\eta * H$ (which causes $\hat{\eta}$ to be initialized and the low challenge to be removed) or outcome $\eta * N$. Therefore, the only way for a strategy μ with $\eta * L \subseteq \mu$ to be eligible to act while η remains low challenged is to have a link jumping over η and landing above $\eta * L$. Such a link contradicts Lemma 3.1.

Lemma 3.4. A strategy μ can be challenged low by at most one strategy at a time.

Proof. Assume that μ is challenged low by $\hat{\mu}$ at stage s. The only strategies $\hat{\nu}$ which can challenge μ low satisfy $\mu * L \subseteq \hat{\nu}$. By Lemma 3.3, no such strategy is eligible to act after stage s and before the low challenge issued by $\hat{\mu}$ is met or cancelled by initialization.

Essentially the same proofs as for Lemmas 3.3 and 3.4 establish the following two lemmas.

Lemma 3.5. If η is challenged high by $\hat{\eta}$, then no strategy μ with $\eta * H \subseteq \mu$ is eligible to act until the high challenge has been met or is cancelled by initialization.

Lemma 3.6. A strategy μ can be challenged high by at most one strategy at a time.

It is possible for a strategy η to be challenged both high and low at the same time. However, if η is challenged high at stage s_{0} by $\hat{\eta}$, then $\eta * H \subseteq \hat{\eta}$ so any low challenges to η issued before stage s_{0} are removed by initialization at stage s_{0}. (Also, there is no link jumping over η and landing above $\eta * L$ at the end of stage s_{0}.) As long as η acts in Subcase 4A of the high challenge and fails to find a potential split, it takes outcome $\eta * L$. A strategy μ with $\eta * L \subseteq \mu$ could challenge η low. Suppose this happens at stage $s_{1}>s_{0}$. At s_{1}, η must still be acting in Subcase 4 A of the high challenge and not finding a potential high split. If η ever finds such a potential high split, then it acts either in Subcase $4 \mathrm{~A}(\mathrm{i})$ or $4 \mathrm{~A}(\mathrm{ii})$. In either of these cases, μ (which issued the low challenge to η) will be initialized. Furthermore, if η continues to act in Subcase $4 B$ of the high challenge, then it does not take outcome $\eta * L$ and hence cannot be challenged low again until it is either initialized or meets its high challenge. The conclusion of this observation is that η can only be both high and low challenged if the high challenge comes first and the low challenge comes while η is still acting in Subcase 4A of the high challenge and has not yet found a potential high split. Therefore, in our construction, we gave all the necessary instructions for handling a strategy which is both high and low challenged.

Lemma 3.7. If η calls a verification procedure, no strategy μ with $\eta \subsetneq \mu$ is eligible to act until the verification procedure is met or is cancelled by initialization.

Proof. Assume that η calls a verification procedure at stage $s . \eta$ will end every stage after s at which it is eligible to act until it is either initialized or the verification procedure is met. Therefore, it suffices to show that there are no links jumping over η at the end of stage s. If η is a P strategy, then η initializes all lower priority requirements at stage s and hence there are no links jumping over η at the end of stage s.

If η is an R strategy, then η must be acting in Subcase 4B of a high challenge and the verification procedure called by η initializes all strategies below $\eta * L$ at s. Therefore it suffices to show that there is no link at stage s between strategies ν and $\hat{\nu}$ where $\nu * L \subseteq \eta$ and $\eta * H \subseteq \hat{\nu}$. Suppose there is such a link. Since η ends
stage s and does not take outcome $\eta * H$ until after the verification procedure for the high challenge is met, the link must have been established before stage s. This means that ν is low challenged by $\hat{\nu}$ before stage s. Consider how η is eligible to act at stage s. There cannot be a link jumping over ν and landing above $\nu * L$ at stage s by Lemma 3.1, so s must be a ν stage. ν either takes outcome $\nu * H$ or $\nu * N$ (contradicting the fact that s is an η stage) or η meets the low challenge and follows the link which jumps over η (again contradiction the fact that s is an η stage).

Lemma 3.8. If η is challenged high, then this high challenge is part of a series of high challenges started by some P strategy $\hat{\eta}$. Furthermore, if η moves the current path from $T_{\eta, s}(\gamma * 0)$ to $T_{\eta, s}(\gamma * 1)$ or from $T_{\eta, s}(\gamma * 1)$ to $T_{\eta, s}(\gamma * 0)$ during this series of challenges as part of either Subcase $4 A$ (ii) or Subcase $4 B$ (including any verification procedures called by this subcase) of the high challenge, then $|\gamma|>p_{\hat{\eta}}$.

Proof. Suppose that η is challenged high by η_{0} at s_{0}, so $\eta * H \subseteq \eta_{0}$. If η_{0} is a P strategy, then $\hat{\eta}=\eta_{0}$. Otherwise, η_{0} is an R strategy which is challenging η high as part of its own high challenge. Therefore, η_{0} must have been high challenged by some η_{1} at $s_{1}<s_{0}$, so $\eta_{0} * H \subseteq \eta_{1}$ and hence $\eta * H \subseteq \eta_{1}$. If η_{1} is a P strategy, then $\hat{\eta}=\eta_{1}$. Otherwise, we repeat the argument just given. It is clear that tracing this sequence of high challenges back in time must yield a P strategy $\hat{\eta}=\eta_{n}$ such that $\eta * H \subseteq \hat{\eta}$ and $\hat{\eta}$ issued its original challenges at stage s_{n}.

When $\hat{\eta}$ issues its challenges at stage s_{n}, it moves the current path from $T_{\hat{\eta}^{\prime}, s_{n}}\left(\alpha_{\hat{\eta}} * 0\right)$ to $T_{\hat{\eta}^{\prime}, s_{n}}\left(\alpha_{\hat{\eta}} * 1\right)$. The string $\alpha_{\hat{\eta}}$ has length $p_{\hat{\eta}}$. Therefore, for any R strategy $\mu \subseteq \hat{\eta}$, if γ_{μ} is such that $T_{\mu, s_{n}}\left(\gamma_{\mu}\right)=T_{\hat{\eta}^{\prime}, s_{n}}\left(\alpha_{\hat{\eta}}\right)$, then $\left|\gamma_{\eta}\right|>p_{\hat{\eta}}$. Also, if μ (with $\mu * H \subseteq \hat{\eta}$) is high challenged during the sequence of high challenges initiated by the action of $\hat{\eta}$ and μ moves the current path at stage $s>s_{n}$ due to its action in Subcase 4A(ii) or Subcase 4B of the high challenge, then this movement occurs above the place where $\hat{\eta}$ originally moved the path. The statement of the lemma follows.

Lemma 3.9. Let η be a strategy such that η defines p_{η} at stage t. Unless η is initialized, the current path cannot move below level $p_{\eta}+1$ of the tree defined by η^{\prime} (if η is a P strategy) or by $\eta^{\prime \prime}$ (if η is an R strategy) before η defines α_{η}.

Proof. The analysis is the same regardless of whether η is a P or R strategy, with only a change in notation between whether η works on the tree built by η^{\prime} or $\eta^{\prime \prime}$. Rather than repeating the argument twice, we give the proof in the case when η is a P strategy.

Assume that no strategy initializes η after stage t and before η defines α_{η}. Since no strategy to the left of η in the tree of strategies can act without initializing η, we can assume no such strategy moves the current path before η defines α_{η}. At stage t, η initializes all strategies of lower priority, hence these strategies work at or above level $p_{\eta}+1$ in the tree defined by η^{\prime} and cannot move the current path below level $p_{\eta}+1$ of the tree defined by η^{\prime}. Furthermore,
by Lemma 3.8, no R strategy $\nu \subseteq \eta$ can move the path below this level because of a series of challenges started by a P strategy of lower priority than η. We are left to consider the other possible actions of strategies ν such that $\nu \subseteq \eta$ at the stages before η defines α_{η}.

We split the proof into two cases based on the ways that the current path can be moved after t and before η defines α_{η}. First, the current path could be moved by a P strategy $\nu \subseteq \eta$ which calls a verification procedure in Case 3 of the P action. In this case, ν initializes all lower priority strategies including η contrary to our assumption.

Second, the current path could be moved by a high challenged R strategy $\nu \subseteq$ η acting in Subcase 4A(ii) or 4B of the high challenge (including the verification procedure called by Subcase 4B). Let $\hat{\nu}$ denote the P strategy which called the verification procedure starting the sequence of high challenges that led to this high challenge to ν. As mentioned above, $\hat{\nu}$ must have higher priority than η, so either $\hat{\nu} \subseteq \eta$ or $\hat{\nu}<_{L} \eta$. If $\hat{\nu}$ starts this sequence of challenges at a stage $\geq t$, then η is initialized when $\hat{\nu}$ acts contrary to our assumption.

If $\hat{\nu}$ starts the sequence of challenges at a stage $<t$, the since $\hat{\nu}$ has not completed its verification procedure, we must have $\hat{\nu}<_{L} \eta$ by Lemma 3.7. Because a high challenged strategy in this sequence of high challenges only moves the current path when it issues new high challenges in Subcase 4A(ii) or 4B of the high challenge, we can assume that ν is already high challenged at stage t. (Otherwise, tracing backwards in time from the stage at which ν is high challenged after t, we can find an R strategy which is high challenged at stage t in this sequence of high challenges and which later moves the current path to issue new high challenges to continue this sequence leading to the high challenge of ν. We work with this strategy instead.) We must have either $\nu * H \subseteq \eta$ or $\nu * H<_{L} \eta$. If $\nu * H \subseteq \eta$, then by Lemma 3.5, η is not eligible to act until the high challenge is met or removed by initialization, so η is not eligible to act at stage t contrary to our assumption. If $\nu * H<_{L} \eta$, then η has lower priority than $\nu * L$ and hence is initialized when ν moves the current path by acting in Subcase 4 A (ii) or 4 B of the high challenge contrary to our assumption.

Lemma 3.10. Assume a P strategy η defines α_{η} at stage s. Then $T_{\eta^{\prime}, s}\left(\alpha_{\eta}\right)$, $T_{\eta^{\prime}, s}\left(\alpha_{\eta} * 0\right)$ and $T_{\eta^{\prime}, s}\left(\alpha_{\eta} * 1\right)$ are all active at stage s and the current path runs through $T_{\eta^{\prime}, s}\left(\alpha_{\eta} * 0\right)$. If η is an R strategy that defines α_{η} at stage s, then the same statement is true when $\eta^{\prime \prime}$ is substituted for η^{\prime}.

Proof. As in the proof of Lemma 3.9, we give the proof in the case when η is a P strategy. Let $t<s$ be the stage such that η defined p_{η} at t and η is not initialized between defining p_{η} at t and defining α_{η} at s. Let α be the string such that $|\alpha|=p_{\eta}$ and $T_{\eta, t}(\alpha) \subseteq A_{\eta^{\prime}, t}$. Because p_{η} is defined large and $T_{\eta^{\prime}, t}(\alpha)$ is active (as it is on the current path), $T_{\eta, t}(\alpha * 0) \subseteq A_{\eta^{\prime}, t}$ and both $T_{\eta, t}\left(\alpha_{\eta} * 0\right)$ and $T_{\eta, t}\left(\alpha_{\eta} * 1\right)$ are active. By Lemma 3.9, the current path does not change below level $p_{\eta}+1$ in the tree defined by η^{\prime} between stages t and s. Therefore, when η defines α_{η}, we still have $T_{\eta, s}(\alpha) \subseteq A_{\eta^{\prime}, s}$ and hence $\alpha_{\eta}=\alpha$. Furthermore, $T_{\eta^{\prime}, s}(\alpha * 0)=T_{\eta^{\prime}, s}\left(\alpha_{\eta} * 0\right)$ is still on the current path (and hence is still active)
and $T_{\eta^{\prime}, s}(\alpha * 1)=T_{\eta^{\prime}, s}\left(\alpha_{\eta} * 1\right)$ is still active (because nodes can only become inactive when the current path moves below them).

The analysis given in Lemma 3.9 can be applied in a more general context. We say that a node $T_{\eta, s}(\alpha)$ effects initialization if any number defined to be large after $T_{\eta, s}(\alpha)$ is defined has to be larger than the length of $T_{\eta, s}(\alpha)$. That is, either $T_{\eta, s}(\alpha)$ (or any longer node) has been used as an oracle for a computation viewed in the construction or some parameter has been defined which is larger than $T_{\eta, s}(\alpha)$. We will only apply Lemmas 3.11 and 3.12 in situations in which α is equal to some parameter in the construction such as α_{η} or $\beta_{\eta, H}$.

Lemma 3.11. Let η be an R strategy, s be an η stage and α be a string such that $T_{\eta, s}(\alpha)$ is defined and effects initialization. For each ν such that $\nu * H \subseteq \eta$, let γ_{ν} be such that $T_{\nu, s}\left(\gamma_{\nu}\right)=T_{\eta, s}(\alpha)$. Assume that for all $\gamma \subsetneq \gamma_{\nu}, T_{\nu, s}(\gamma)$ is high ν splitting. Then, for all η stages $u \geq s, T_{\eta, u}(\alpha)=T_{\eta, s}(\alpha)$ unless η is initialized, η finds a new high split below $T_{\eta, s}(\alpha)$ or some strategy μ such that $\eta \subseteq \mu$ moves the current path below $T_{\eta, s}(\alpha)$ at a stage t such that $s \leq t<u$. Furthermore, if $T_{\eta, s}(\alpha) \subseteq A_{\eta, s}$, then $T_{\eta, s}(\alpha)$ remains on the current path unless η is initialized or some strategy μ such that $\eta \subseteq \mu$ moves the current path below $T_{\eta, s}(\alpha)$ at a stage t such that $s \leq t$.

Proof. Unless η is initialized, the value of $T_{\eta, s}(\alpha)$ can only change if some R strategy $\mu \subseteq \eta$ finds a new high split below $T_{\eta, s}(\alpha)$ at a future stage or if $T_{\eta, s}(\alpha)$ changes values due to stretching. By the hypotheses, no strategy $\nu \subsetneq \eta$ can find a new high split below this node without moving the path in the tree of strategies to the left of η and initializing η. Therefore, only η can change the value of this node by finding a new high split. The value of the node can only be changed by stretching if the current path moves below this node. Hence, we can finish the proof by giving an analysis of which strategies μ can move the current path below this node without initializing η. This analysis is similar to the one given in the proof of Lemma 3.9.

First, if $\mu<_{L} \eta$, then μ cannot act without initializing η, so we can assume no such strategy moves the current path below $T_{\eta, s}(\alpha)$. Second, if $\eta<_{L} \mu$, then μ is initialized at stage s, so it works higher on the trees than $T_{\eta, s}(\alpha)$ at future stages. Therefore, no such strategy can cause the path to move below $T_{\eta, s}(\alpha)$ and by Lemma 3.8, no R strategy $\nu \subsetneq \eta$ can cause the current path to move below $T_{\eta, s}(\alpha)$ because of a series of high challenges initiated by μ such that $\eta<_{L} \mu$.

Third, suppose $\mu \subsetneq \eta$ moves the current path below $T_{\eta, s}(\alpha)$ at a stage $t>s$. Let $\hat{\mu}$ denote the P strategy which initiates the series of challenges leading to μ moving the current path. (As noted at the end of the previous paragraph, we know that $\hat{\mu}$ is not to the right of η in the tree of strategies.) If $\hat{\mu} \subseteq \eta$, then because s is an η stage, Lemma 3.7 implies that $\hat{\mu}$ must initiate this series of challenges after stage s. However, in this case, $\hat{\mu}$ initializes η when it calls its verification procedure to initiate the series of challenges. If $\hat{\mu}<_{L} \eta$, then $\hat{\mu}$ must initiate its series of challenges before stage s and as in the proof of Lemma 3.9, we can assume that μ is challenged high at stage s. We split into the cases when
$\mu * H \subseteq \eta$ and when $\mu * H<_{L} \eta$. In the first case, Lemma 3.5 contradicts the fact that s is an η stage. In the second case, η has lower priority than $\mu * L$ and hence is initialized when μ moves the current path in either Subcase 4A(ii) or 4 B of the high challenge.

We now know that we cannot have $\eta<_{L} \hat{\mu}, \hat{\mu} \subseteq \eta$ or $\hat{\mu}<_{L} \eta$. It remains to consider the case when $\eta \subsetneq \hat{\mu}$. If $\hat{\mu}$ issues its challenges after stage s, then $\hat{\mu}$ moves the current path after stage s when it issues these challenges (and before μ moves the current path). Therefore, we have met the conditions of the lemma in this case. Otherwise, $\hat{\mu}$ calls its verification procedure and issues its first challenges before stage s. In this case, since μ is high challenged in the series of challenges started by $\hat{\mu}$, we have $\mu * H \subsetneq \hat{\mu}$. Together with the case assumption that $\mu \subsetneq \eta \subseteq \hat{\mu}$, we have $\mu * H \subseteq \eta$. Since s is an η stage, μ cannot be high challenged at stage s by Lemma 3.5. We can assume that μ is the first strategy such that $\mu \subsetneq \eta$ to move the current path below $T_{\eta, s}\left(\alpha_{\eta}\right)$ after stage s. There must be a ν such that ν is high challenged at s (in the series started by $\hat{\mu}$) and such that ν issues high challenges after stage s which lead to the high challenge of μ. By the comments above, we know that $\eta \subseteq \nu$. Therefore, when ν issues its high challenges after stage s (and before μ moves the current path), ν moves the current path below $T_{\eta, s}\left(\alpha_{\eta}\right)$. Therefore, the conditions of the lemma are true in this case as well.

Lemma 3.12. Let η be an R strategy, s be an η stage and α be a string such that $T_{\eta, s}(\alpha)$ is defined, effects initialization, has $\eta^{\prime \prime}$ state G_{η} and may or may not be η high splitting. For all η stages $u \geq s, T_{\eta, u}(\alpha)=T_{\eta, s}(\alpha)$ unless η is initialized, η finds a new high split below $T_{\eta, s}(\alpha)$ or some strategy μ such that $\eta \subseteq \mu$ moves the current path below $T_{\eta, s}(\alpha)$ at a stage t such that $s \leq t<u$. Furthermore, if $T_{\eta, s}(\alpha) \subseteq A_{\eta, s}$, then $T_{\eta, s}(\alpha)$ remains on the current path unless η is initialized or some strategy μ such that $\eta \subseteq \mu$ moves the current path below $T_{\eta, s}(\alpha)$ at a stage t such that $s \leq t$.

Proof. This lemma follows immediately from Lemma 3.11.
Lemma 3.13. Assume that an R strategy η defines α_{η} at stage t. Unless η is initialized, $T_{\eta^{\prime \prime}, u}\left(\alpha_{\eta}\right)=T_{\eta^{\prime \prime}, t}\left(\alpha_{\eta}\right) \subseteq A_{\eta^{\prime \prime}, u}$ for all η stages $u>t$.

Proof. When η defines α_{η} at stage t, we have $U\left(T_{\eta^{\prime \prime}, t}\left(\alpha_{\eta}\right)\right)=G_{\eta}$. We apply Lemma 3.12 to this node to show that it cannot change after stage t unless η is initialized. By Lemma 3.12, the only R strategy which could change the value of this node by finding a new high splitting is $\eta^{\prime \prime}$. However, if $\eta^{\prime \prime} * H \subseteq \eta$, then this node is already $\eta^{\prime \prime}$ high splitting as are the nodes below it on $T_{\eta^{\prime \prime}, t}$. If $\eta^{\prime \prime} * H<_{L} \eta$, then η is initialized when $\eta^{\prime \prime}$ finds a new high split below this node. Therefore, unless η is initialized, the value of $T_{\eta^{\prime \prime}, t}\left(\alpha_{\eta}\right)$ does not change due to finding a new high splitting.

Next, we consider how $T_{\eta^{\prime \prime}, t}\left(\alpha_{\eta}\right)$ could change values after t because of stretching. If this nodes changes values because of stretching, then the current path must move below it. Therefore, we can finish the proof by showing that the current path cannot be moved below $T_{\eta^{\prime \prime}, t}\left(\alpha_{\eta}\right)$ without initializing η.

By Lemma 3.12, unless $\eta^{\prime \prime}$ (and hence η) is initialized or a strategy μ with $\eta^{\prime \prime} \subseteq \mu$ moves the current path below $T_{\eta^{\prime \prime}, t}\left(\alpha_{\eta}\right), T_{\eta^{\prime \prime}, t}\left(\alpha_{\eta}\right)$ remains on the current path. At stage t, η initializes all lower priority strategies, so each strategy μ such that $\eta \subsetneq \mu$ works with strings which are too long to move the current path below $T_{\eta^{\prime \prime}, t}\left(\alpha_{\eta}\right)$. If η moves the current path, then it does so above $T_{\eta^{\prime \prime}, t}\left(\alpha_{\eta}\right)$ (since η defines $T_{\eta, t}(\lambda)=T_{\eta^{\prime \prime}, s}\left(\alpha_{\eta}\right)$ and η only moves the current path on its own tree) and not below $T_{\eta^{\prime \prime}, s}\left(\alpha_{\eta}\right)$. If η^{\prime} moves the current path, then because η^{\prime} is a P strategy, it initializes η.

It remains to consider the case when $\eta^{\prime \prime}$ moves the current path below $T_{\eta^{\prime \prime}, t}\left(\alpha_{\eta}\right)$ after stage t. Suppose $\eta^{\prime \prime}$ moves the current path after stage t because it is high challenged in a series of challenges started by some P strategy $\hat{\mu}$ with $\eta^{\prime \prime} * H \subseteq \hat{\mu}$. If the high challenge issued to $\eta^{\prime \prime}$ occurs before stage t, then $\eta^{\prime \prime} * H<_{L} \eta$ by Lemma 3.5 and the fact that t is an η stage. Therefore, η is initialized when $\eta^{\prime \prime}$ moves the current path as part of its high challenge. If the high challenge is issued after stage t, then we break into cases depending on whether $\eta \subsetneq \hat{\mu}$ or $\hat{\mu}=\eta^{\prime}$. (Since $\hat{\mu}$ is a P strategy and $\eta^{\prime \prime} \subseteq \hat{\mu}$, these are the only possibilities.) In the former case, the path is moved above $T_{\eta^{\prime \prime}, t}\left(\alpha_{\eta}\right)$ and in the later case, η is initialized when $\hat{\mu}$ initiates the series of challenges by calling a verification procedure.

Lemma 3.14. Assume that a P strategy η defines α_{η} at stage t.

1. Unless η is initialized, $T_{\eta^{\prime}, u}\left(\alpha_{\eta}\right)=T_{\eta^{\prime}, t}\left(\alpha_{\eta}\right) \subseteq A_{\eta, u}$ for all η stages $u \geq t$.
2. Unless η is initialized or calls a verification procedure, $T_{\eta^{\prime}, u}\left(\alpha_{\eta} * i\right)=$ $T_{\eta^{\prime}, t}\left(\alpha_{\eta} * i\right)$ for $i=0,1$ and these nodes remain active at all η^{\prime} stages $u \geq t$ and $T_{\eta, u}\left(\alpha_{\eta} * 0\right) \subseteq A_{\eta, u}$.

Proof. We first establish Property 1. Because $U\left(T_{\eta^{\prime}, t}\left(\alpha_{\eta}\right)\right)=G_{\eta}$, we can apply Lemma 3.12 to $T_{\eta^{\prime}, t}\left(\alpha_{\eta}\right)$. The value of this node can only change if η^{\prime} is initialized, if η^{\prime} finds a new high split below this node, or if some strategy μ such that $\eta^{\prime} \subseteq \mu$ moves the current path below this node. We consider each of these cases separately.

First, if η^{\prime} is initialized, then so is η. Second, assume that η^{\prime} finds a new high split below $T_{\eta^{\prime}, t}\left(\alpha_{\eta}\right)$ after stage $t . T_{\eta^{\prime}, t}\left(\alpha_{\eta}\right)$ must not be η^{\prime} high splitting at stage t, so because $U\left(T_{\eta^{\prime}, t}\left(\alpha_{\eta}\right)\right)=G_{\eta}$, we must have $\eta^{\prime} * L \subseteq \eta$ or $\eta^{\prime} * N \subseteq \eta$. Therefore, η is initialized when η^{\prime} finds the new high split. Third, assume that some μ with $\eta^{\prime} \subseteq \mu$ moves the current path below $T_{\eta^{\prime}, t}\left(\alpha_{\eta}\right)$. Because η initializes all lower priority strategies at stage t, μ must be equal to either η or η^{\prime}. (If μ is to the left of η, then η would be initialized when μ acts to move the current path.) Suppose $\mu=\eta$. In this case, μ only moves the current path above $T_{\eta^{\prime}, t}\left(\alpha_{\eta}\right)$. Suppose $\mu=\eta^{\prime}$. In this case, since η^{\prime} is an R strategy, it only moves the current path during a high challenge. Suppose $\hat{\eta}$ issues the high challenge to η^{\prime}, so $\eta^{\prime} * H \subseteq \hat{\eta}$. If $\eta^{\prime} * H$ is to the left of η, then η is initialized when η^{\prime} moves the current path. If $\eta^{\prime} * H=\eta$, then η initialized $\hat{\eta}$ at stage t and hence any movement in the current path caused by a series of challenges initialized by $\hat{\eta}$ is above $T_{\eta^{\prime}, t}\left(\alpha_{\eta}\right)$. This completes the proof of Property 1.

To establish Property 2, we cannot necessarily apply Lemma 3.12 since we don't know what the states of $T_{\eta^{\prime}, t}\left(\alpha_{\eta} * i\right)$ are. However, we claim that we can use Lemma 3.11. To see this fact, we split into two cases. If there is no strategy ν such that $\nu * H \subseteq \eta$, then we can apply Lemma 3.12 (since G_{η} contains all low states) and the argument is just as before. Otherwise, fix ν to be the lowest priority strategy such that $\nu * H \subseteq \eta$ and let γ_{ν} be such that $T_{\nu, t}\left(\gamma_{\nu}\right)=T_{\eta^{\prime}, t}\left(\alpha_{\eta}\right)$. Since $T_{\nu, t}\left(\gamma_{\nu}\right)$ is high ν splitting and none of the strategies between ν and η are in the high state, we have $T_{\eta^{\prime}, t}\left(\alpha_{\eta} * i\right)=T_{\nu, t}\left(\gamma_{\nu} * i\right)$. Since the ν state of $T_{\nu, t}\left(\gamma_{\nu}\right)$ is $G_{\nu} * H$, we have the hypotheses for Lemma 3.11. The rest of the proof of Property 2 is a similar case analysis to the analysis in the proof of Property 1, except we use Lemma 3.11 in place of Lemma 3.12.

We now consider the action of strategies which are high challenged or which call a verification procedure. Let η be a strategy and s be a stage such that η is either challenged high at s or η begins a verification procedure at stage s. Assume that η is not initialized before the challenge or verification is met (if it is ever met) and that every strategy $\nu * L \subseteq \eta$ (or $\nu * H \subseteq \eta$) which is low (respectively high) challenged eventually meets its challenge. Furthermore, assume that η is eligible to act infinitely often after stage s (or at least until the challenge is met or the verification is complete). We prove the following two lemmas simultaneously by induction on the length of η under these conditions.
Lemma 3.15. Let η be a strategy that calls a verification procedure at stage s under these conditions. Let t_{0} be the stage at which η calls its verification procedure with σ_{0} and let t_{n} denote the stage at which we return to the verification procedure for the $n^{\text {th }}$ time (and start the $n^{\text {th }}$ cycle). In the following two properties, we work with the notation σ_{n} and μ_{n} as in the description of a verification procedure, we set $\mu_{-1}=\eta$ and we work with the notation as though η is an R strategy. (If η is a P strategy, we need to replace $T_{\mu_{-1}}$ by $T_{\mu_{-1}^{\prime}}$ and $G_{\mu_{-1}} * L$ by $G_{\mu_{-1}}$.)

1. When the verification procedure is called at stage t_{0}, we have $T_{\mu_{-1}, t_{0}}\left(\sigma_{0} *\right.$ $0) \subseteq A_{\mu_{-1}, t_{0}}, T_{\mu_{-1}, t_{0}}\left(\sigma_{0} * 1\right)$ is active, $\Gamma^{T_{\mu_{-1}, t_{0}}\left(\sigma_{0} * 0\right)}\left(x_{\eta}\right)=0$ and $U\left(T_{\mu_{-1}, t_{0}}\left(\sigma_{0}\right)\right)=G_{\mu_{-1}} * L$.
2. For $n \geq 1$, when we follow the link from μ_{n-1} to η at stage t_{n} and begin the $n^{\text {th }}$ cycle, we have the following properties: $T_{\mu_{n-1}, t_{n-1}}\left(\sigma_{n}\right)=T_{\mu_{n-1}, t_{n}}\left(\sigma_{n}\right)$, $U\left(T_{\mu_{n-1}, t_{n}}\left(\sigma_{n}\right)\right)=G_{\mu_{n-1}} * L, T_{\mu_{n-1}, t_{n-1}}\left(\sigma_{n} * i\right) \subseteq T_{\mu_{n-1}, t_{n}}\left(\sigma_{n} * i\right)$ for $i=0,1, T_{\mu_{n-1}, t_{n}}\left(\sigma_{n} * 0\right) \subseteq A_{\mu_{n-1}, t_{n}}$ and $T_{\mu_{n-1}, t_{n}}\left(\sigma_{n} * 1\right)$ is active.
Furthermore, there are only finitely many cycles before the verification procedure is complete. When the verification procedure is complete, all the strings γ such that the verification procedure defined $\Gamma^{\gamma}\left(x_{\eta}\right)=0$ are currently η frozen.
Lemma 3.16. Assume that η is high challenged at stage s under the conditions given above.
3. Unless η is initialized or meets its challenge, $T_{\eta, s}\left(\beta_{\eta, H}\right)$ remains the same and on the current path at future η stages.
4. At the first η stage $s_{0}>s, U\left(T_{\eta, s_{0}}\left(\beta_{\eta, H}\right)\right)=G_{\eta} * L$ and $T_{\eta, s}\left(\beta_{\eta, H} * i\right) \subseteq$ $T_{\eta, s_{0}}\left(\beta_{\eta, H} * i\right)$ for $i=0,1$. The nodes remain the same and active with $T_{\eta, s_{0}}\left(\beta_{\eta, H} * 0\right)$ on the current path at future η stages unless η acts to change them.
5. One of the following must occur.
(a) At all future η stages, η acts in Subcase $4 A$ without finding a potential high splitting. In this case, at every future η stage, η either takes outcome $\eta * L$ or acts as in a low challenged case if it is later challenged low.
(b) η eventually acts in Subcase $4 A(i)$ and wins the high challenge.
(c) There is an η stage $s_{1}>s_{0}$ at which η acts in Subcase 4A(ii). At the next η stage $s_{2}>s_{1}, U\left(T_{\eta, s_{2}}\left(\beta_{\eta, H} * 1\right)\right)=G_{\eta} * L$ and this node remains unchanged and on the current path at future η stages unless η acts to change this. Furthermore, $T_{\eta, s_{1}}\left(\beta_{\eta, H} * 1 * i\right) \subseteq T_{\eta, s_{2}}\left(\beta_{\eta, H} * 1 * i\right)$ for $i=0,1$ and both of these nodes are active. These nodes also remain the same with $T_{\eta, s_{2}}\left(\beta_{\eta, H} * 1 * 0\right)$ on the current path at future η stages unless η acts to change this. Either η takes outcome $\eta * N$ at all future η stages or η eventually meets its high challenge.
6. If η meets the high challenge at $s_{3}>s$, then $T_{\eta, s}\left(\beta_{\eta, H}\right)=T_{\eta, s_{3}}\left(\beta_{\eta, H}\right)$, $U\left(T_{\eta, s_{3}}\left(\beta_{\eta, H}\right)\right)=G_{\eta} * H$ and $T_{\eta, s}\left(\beta_{\eta, H} * i\right) \subseteq T_{\eta, s_{3}}\left(\beta_{\eta, H} * i\right)$ for $i=0,1$. Furthermore, all strings γ such that η defined $\Gamma^{\gamma}\left(x_{\eta}\right)=0$ in Subcase $4 A($ ii $)$ or in a verification procedure called in Subcase $4 B$ are forbidden.

We prove Lemmas 3.15 and 3.16 simultaneously by induction on the length of η. We begin with Lemma 3.16. Let $\hat{\eta}$ be the strategy which challenges η high at stage s. When $\hat{\eta}$ issues the challenge, it moves the current path and stretches $T_{\eta, s}\left(\beta_{\eta, H}\right)$ to have large length and to have all low states. Furthermore, $T_{\eta, s}\left(\beta_{\eta, H}\right)$ and $T_{\eta, s}\left(\beta_{\eta, H} * 0\right)$ are on the current path and $T_{\eta, s}\left(\beta_{\eta, H} * 1\right)$ is active. $\hat{\eta}$ also challenges each strategy ν such that $\nu * H \subseteq \eta$ high (and by induction Lemma 3.16 applies to these strategies). For each such strategy $\nu, T_{\nu, s}\left(\beta_{\nu, H}\right)$ is stretched and is equal to $T_{\eta, s}\left(\beta_{\eta, H}\right)$.

Consider Property 1 in Lemma 3.16 and consider the value of $T_{\eta, s}\left(\beta_{\eta, H}\right)$ after it is stretched. For each ν such that $\nu * H \subseteq \eta, T_{\nu, s}\left(\beta_{\nu, H}\right)=T_{\eta, s}\left(\beta_{\eta, H}\right)$. Furthermore, $T_{\nu, s}\left(\beta_{\nu, H}^{\prime}\right)$ is high ν splitting. Therefore, we can apply Lemma 3.11 to $T_{\eta, s}\left(\beta_{\eta, H}\right)$. $T_{\eta, s}\left(\beta_{\eta, H}\right)$ can only change if η is initialized, η finds a new high split below $T_{\eta, s}\left(\beta_{\eta, H}\right)$ or some μ with $\eta \subseteq \mu$ moves the current path below $T_{\eta, s}\left(\beta_{\eta, H}\right)$. Because $T_{\eta, s}\left(\beta_{\eta, H}^{\prime}\right)$ is already high η splitting, η does not find new high splits below $T_{\eta, s}\left(\beta_{\eta}\right)$. Because all strategies to the right of $\eta * H$ are initialized at stage s when η is high challenged, the only $\mu \neq \eta$ with $\eta \subseteq \mu$ which can move the current path below $T_{\eta, s}\left(\beta_{\eta, H}\right)$ satisfy $\eta * H \subseteq \mu$. However, none of these strategies are eligible to act until η meets the high challenge or is initialized. Finally, η only moves the current path above $T_{\eta, s}\left(\beta_{\eta, H}\right)$ during the high challenge. Therefore, we have established Property 1.

Consider Property 2 in Lemma 3.16. By the next η stage $s_{0}>s$ each strategy ν with $\nu * H \subseteq \eta$ has met its high challenge. By Property 4 of Lemma 3.16, we have $T_{\nu, s}\left(\beta_{\nu, H} * i\right) \subseteq T_{\nu, s_{0}}\left(\beta_{\nu, H} * i\right)$ and $U\left(T_{\nu, s_{0}}\left(\beta_{\nu, H}\right)\right)=G_{\nu} * H$. Also, if ν is such that $\nu * L \subseteq \eta$ or $\nu * N \subseteq \eta$, then ν cannot have found a new high split along the current path without initializing η, so ν does not change the values of nodes along the current path. Therefore, $U\left(T_{\eta, s_{0}}\left(\beta_{\eta, H}\right)\right)=G_{\eta} * L$ and $T_{\eta, s}\left(\beta_{\eta, H} * i\right) \subseteq T_{\eta, s_{0}}\left(\beta_{\eta, H} * i\right)$.

We also have the hypotheses for Lemma 3.11 for $T_{\eta, s_{0}}\left(\beta_{\eta, H} * i\right)$ since for any $\nu * H \subseteq \eta$ we have $T_{\nu, s_{0}}\left(\beta_{\nu, H}\right)$ is high ν splitting. Therefore, no strategy $\nu \subsetneq \eta$ can change the values of $T_{\eta, s_{0}}\left(\beta_{\eta, H} * i\right)$ for $i=0,1$ or move the current path from $T_{\eta, s_{0}}\left(\beta_{\eta, H} * 0\right)$ at any η stage after s_{0} without initializing η. Furthermore, until η meets its high challenge, it takes either outcome $\eta * L$ or $\eta * N$. Since all of the strategies of lower priority than $\eta * L$ (including $\eta * L$) were initialized at stage s, they all work higher on the trees than these nodes and hence cannot move the current path below any of these nodes. Therefore, unless η moves the current path, both $T_{\eta, s_{0}}\left(\beta_{\eta, H} * 0\right)$ and $T_{\eta, s_{0}}\left(\beta_{\eta, H} * 1\right)$ remain active with $T_{\eta, s_{0}}\left(\beta_{\eta, H} * 0\right)$ on the current path at future η stages. Hence, we have established Property 2.

Once we begin Subcase 4A of the high challenge, one of three things must happen. Either we never find a potential high split or we eventually find a potential high split and act in either Subcase $4 \mathrm{~A}(\mathrm{i})$ or $4 \mathrm{~A}(\mathrm{ii})$. If we never find a potential high split, then at every future η stage, we either take outcome $\eta * L$ (if η is not also low challenged) or we act as in the low challenge case (if η is also low challenged). This establishes Property 3(a). If we ever act in Subcase 4A(i), then the high challenge is met and we clearly meet the conditions of Property 4 of Lemma 3.16. This establishes Property 3(b).

Consider what happens if η acts in Subcase 4A(ii) at some stage $s_{1}>s_{0}$. In this case, η moves the current path from $T_{\eta, s_{1}}\left(\beta_{\eta, H} * 0\right)$ to $T_{\eta, s_{1}}\left(\beta_{\eta, H} * 1\right)$ and stretches $T_{\eta, s_{1}}\left(\beta_{\eta, H} * 1\right) . \quad \eta$ defines $\Gamma^{T_{\eta, s_{1}}\left(\beta_{\eta, H} * 1 * 0\right)}\left(x_{\eta}\right)=0$ and performs the various calculations to issue its challenges. We can apply the same arguments used to establish Properties 1 and 2 in Lemma 3.16 to $T_{\eta, s_{1}}\left(\beta_{\eta, H} * 1\right)$ to get the following properties: $T_{\eta, s_{1}}\left(\beta_{\eta, H} * 1\right)$ doesn't change after this stage; at the next η stage $s_{2}>s_{1}, U\left(T_{\eta, s_{2}}\left(\beta_{\eta, H} * 1\right)\right)=G_{\eta} * L, T_{\eta, s_{1}}\left(\beta_{\eta, H} * 1 * i\right) \subseteq T_{\eta, s_{2}}\left(\beta_{\eta, H} * 1 * i\right)$, these nodes remain active and these nodes will not change unless η later changes them in Subcase 4B. Also, the current path runs through $T_{\eta, s_{2}}\left(\beta_{\eta, H} * 1 * 0\right)$ and it will continue to run through this node unless η changes this in Subcase 4B.
η acts in Subcase 4 B at the next η stage s_{2} and begins to wait for $[\eta]^{T_{\eta, s_{2}}\left(\beta_{\eta, H} * 1\right)}\left(w_{\eta}\right)$ to converge. (Because $T_{\eta, s_{1}}\left(\beta_{\eta, H} * 1\right)$ was stretched, the length of $T_{\eta, s_{2}}\left(\beta_{\eta, H} * 1\right)$ is longer than the use of $[\eta]$ on w_{η}.) If this computation never converges, then at all future η stages, η takes outcome $\eta * N$. If this does eventually converge at stage $t_{0} \geq s_{2}$, then η calls a verification procedure with $\sigma_{0}=\beta_{\eta, H} * 1$. Notice that we have $\Gamma^{T_{\eta, t_{0}}\left(\sigma_{0} * 0\right)}\left(x_{\eta}\right)=0$, the current path runs through $T_{\eta, t_{0}}\left(\sigma_{0} * 0\right), T_{\eta, t_{0}}\left(\sigma_{0} * 1\right)$ is active and $U\left(T_{\eta, t_{0}}\left(\sigma_{0}\right)\right)=G_{\eta} * L$ when the verification procedure is called. (These facts verify Property 1 in Lemma 3.15 in the case when η is a high challenged R strategy calling a verification procedure.) Technically, in our induction, we now need to show that Lemma 3.15 holds. We do this below without assuming anything except the properties
just listed. Given that Lemma 3.15 holds for η, we know that it terminates after finitely many stages. When it terminates at stage s_{3}, η declares the high challenge won and takes outcome $\eta * H$.

We need to see that the conditions in Property 4 hold in this case. The cone above $T_{\eta, s_{1}}\left(\beta_{\eta, H} * 0\right)$ (which has remained frozen since stage s_{1}) is unfrozen and η uses $T_{\eta, s_{3}}\left(\beta_{\eta, H} * 1\right)=T_{\eta, s_{2}}\left(\beta_{\eta, H} * 1\right)$ and either τ_{1} or τ_{0} (in the notation from the construction case for a high challenged strategy) to make $T_{\eta, s_{3}}\left(\beta_{\eta, H}\right)$ high splitting. By Property $1, T_{\eta, s}\left(\beta_{\eta, H}\right)=T_{\eta, s_{3}}\left(\beta_{\eta, H}\right)$. By Property 2 and the fact that η just found a high split for $T_{\eta, s_{3}}\left(\beta_{\eta, H}\right)$, we have $U\left(T_{\eta, s_{3}}\left(\beta_{\eta, H}\right)\right)=G_{\eta} * H$. Since $T_{\eta, s}\left(\beta_{\eta, H} * 1\right) \subseteq T_{\eta, s_{1}}\left(\beta_{\eta, H} * 1\right)=T_{\eta, s_{3}}\left(\beta_{\eta, H} * 1\right)$ and $T_{\eta, s_{2}}\left(\beta_{\eta} * 0\right) \subseteq \tau_{0}, \tau_{1}$ (and the cone above $T_{\eta, s_{2}}\left(\beta_{\eta} * 0\right)$ has not changed since it was frozen at stage $\left.s_{2}\right), T_{\eta, s}\left(\beta_{\eta, H} * i\right) \subseteq T_{\eta, s_{3}}\left(\beta_{\eta, H} * i\right)$ for $i=0,1$.

Finally, all definitions of the form $\Gamma^{\gamma}\left(x_{\eta}\right)=0$ made by η are either made by the verification procedure (in which case they are currently η frozen by Lemma 3.15) or made by the action of η in Subcase $4 \mathrm{~A}(\mathrm{ii})$. The only definition made in Subcase $4 \mathrm{~A}(\mathrm{ii})$ is for $\gamma=T_{\eta, s_{1}}\left(\beta_{\eta} * 1 * 0\right)$. Since this node was frozen when the verification procedure was called with $\sigma_{0}=\beta_{\eta} * 1$, the oracle string used in each Γ definition made for x_{η} by η in meeting its high challenge is frozen when the verification procedure ends. Therefore, all of these oracle strings are forbidden by η in Subcase 4B when the verification procedure ends. The conditions of Property 4 are met and we have completed the proof of Lemma 3.16.

Consider Lemma 3.15. To see that Property 1 holds at stage t_{0}, we need to consider separately the cases when the verification procedure is called by an R strategy in Subcase 4B of a high challenge and when the verification procedure is called by a P strategy. If η is an R strategy acting in Subcase 4B, then we have verified these properties above. If η is a P strategy acting in Case 3, then $\sigma_{0}=\alpha_{\eta}$ and $\mu_{-1}^{\prime}=\eta^{\prime}$. By Lemma 3.14, $T_{\eta^{\prime}, t_{0}}\left(\alpha_{\eta} * 0\right)=T_{\eta^{\prime}, t_{0}}\left(\sigma_{0} * 0\right)$ is on the current path and $T_{\eta^{\prime}, t_{0}}\left(\alpha_{\eta} * 1\right)=T_{\eta^{\prime}, t_{0}}\left(\sigma_{0} * 1\right)$ is active when the verification procedure is called. When α_{η} was chosen at $u<t_{0}, U\left(T_{\eta^{\prime}, u}\left(\alpha_{\eta}\right)\right)=G_{\eta}$. If any higher priority strategy found a new high split to raise the state of some string below this node after u, then η would have been initialized and α_{η} would have been redefined. Therefore, $U\left(T_{\eta^{\prime}, t_{0}}\left(\alpha_{\eta}\right)\right)=G_{\eta}$. Finally, when α_{η} was defined at stage $u<t_{0}, \eta$ picked x_{η} and defined $\Gamma^{T_{\eta^{\prime}, u}\left(\alpha_{\eta} * 0\right)}\left(x_{\eta}\right)=0$. Because $T_{\eta^{\prime}, u}\left(\alpha_{\eta} * 0\right)=T_{\eta^{\prime}, t_{0}}\left(\alpha_{\eta} * 0\right)$, we have all the required properties of $\sigma_{0}=\alpha_{\eta}$ at stage t_{0}. This establishes Property 1.

At stage t_{0}, the verification procedure moves the current path from $T_{\mu_{-1}, t_{0}}\left(\sigma_{0} * 0\right)$ to $T_{\mu_{-1}, t_{0}}\left(\sigma_{0} * 1\right)$ and freezes the cone above $T_{\mu_{-1}, t_{0}}\left(\sigma_{0} * 0\right)$. It redefines $T_{\nu, t_{0}}$ for $\nu \subseteq \mu_{-1}$ by stretching and defines X_{ν} for $\nu * L \subseteq \mu_{-1}$. Assume that not all of the X_{ν} are empty. (That is, the verification procedure does not end at this stage.) We define μ_{0} to be the least priority strategy such that $X_{\mu_{0}} \neq \emptyset$ and define σ_{1} so that $T_{\mu_{0}, t_{0}}\left(\sigma_{1}\right)$ is the least node along the current path on $T_{\mu_{0}, t_{0}}$ which was stretched. Because the length of $T_{\mu_{0}, t_{0}}\left(\sigma_{1}\right)$ is long and $T_{\mu_{0}, t_{0}}\left(\sigma_{1}\right)$ is active, the current path runs through $T_{\mu_{0}, t_{0}}\left(\sigma_{1} * 0\right)$ and $T_{\mu_{0}, t_{0}}\left(\sigma_{1} * 1\right)$ is active. We place a link from μ_{0} to η, define $\Gamma^{T_{\mu_{0}, t_{0}}\left(\sigma_{1} * 0\right)}\left(x_{\eta}\right)=0$ and issue the appropriate challenges. The stage ends and either all lower priority strategies are initialized (if η is a P strategy) or all strategies of lower priority than $\eta * L$
are initialized (if η is an R strategy).
Consider the action of the R strategies $\nu \subseteq \mu_{0}$ between stages t_{0} and t_{1}. If $\nu * H \subseteq \mu_{0}$, then ν is challenged high at stage t_{0} and $\beta_{\nu, H}$ is such that $T_{\nu, t_{0}}\left(\beta_{\nu, H}\right)=T_{\mu_{0}, t_{0}}\left(\sigma_{1}\right)$ (since σ_{1} is the stretched node of $T_{\mu_{0}, t_{0}}$). By our assumption, ν meets its high challenge at some stage $u>t_{0}$. By Lemma 3.16, $U\left(T_{\nu, u}\left(\beta_{\nu, H}\right)\right)=G_{\nu} * H$ and $T_{\nu, t_{0}}\left(\beta_{\nu, H} * i\right) \subseteq T_{\nu, u}\left(\beta_{\nu, H} * i\right)$.

If $\nu * L \subseteq \eta$ and $\nu \subseteq \mu_{0}$, then by our assumption, ν eventually meets its low challenge. At each ν stage u at which ν is still low challenged, it defines $T_{\nu, u}$ trivially from $T_{\nu^{\prime \prime}, u}$. Furthermore, at stages u after ν has met its low challenge, it defines $T_{\nu, u}$ by searching for high splittings and failing to find them. Therefore, it does not change any values on $T_{\nu, u}$.

If $\nu * N \subseteq \eta$, then ν must have been high or low challenged before stage t_{0} by a strategy to the left of η in the tree of strategies. ν cannot meet this challenge without initializing η, and therefore ν must take outcome $\nu * N$ at every ν stage between t_{0} and t_{1}. Hence, it defines $T_{\nu, u}$ trivially from $T_{\nu^{\prime \prime}, u}$ at each ν stage u between t_{0} and t_{1}.

When μ_{0} meets its low challenge and follows the link back to η, we have the following properties. $T_{\mu_{0}, t_{1}}\left(\sigma_{1}\right)=T_{\mu_{0}, t_{0}}\left(\sigma_{1}\right)$ since the current path has not moved below here and no R strategy has found a high split below here. Each ν such that $\nu * H \subseteq \mu_{0}$ has found a ν high split for $T_{\nu, t_{0}}\left(\beta_{\nu}\right)=T_{\mu_{0}, t_{0}}\left(\sigma_{1}\right)$ and no ν such that $\nu * L \subseteq \mu_{0}$ or $\nu * N \subseteq \mu_{0}$ has found a new high split below this node or changed the values of its nodes below here. Hence, $U\left(T_{\mu_{0}, t_{1}}\left(\sigma_{1}\right)\right)=G_{\mu_{0}} * L$. Furthermore, since the high splits found by strategies such that $\nu * H \subseteq \mu_{0}$ have the property that $T_{\nu, t_{0}}\left(\beta_{\nu, H} * i\right) \subseteq T_{\nu, u}\left(\beta_{\nu, H} * i\right)$ when they are found at stage u and since the current path does not move below these nodes before stage t_{1} (by a case analysis as in the proof of Lemma 3.11), we have that $T_{\mu_{0}, t_{0}}\left(\sigma_{1} * i\right) \subseteq$ $T_{\mu_{0}, t_{1}}\left(\sigma_{1} * i\right)$, that these nodes are still active and that $T_{\mu_{0}, t_{1}}\left(\sigma_{1} * 0\right)$ is still on the current path. Therefore, we have established Property 2 of Lemma 3.15 in the case when $n=1$. Applying this reasoning inductively gives the full version of Property 2.

It remains to see that the verification procedure only acts finitely often before ending. For $n \geq 1$, consider the definition of μ_{n} at stage t_{n}. Because we follow a link from μ_{n-1} to η at stage t_{n} and because this link is established at stage t_{n-1}, none of the strategies ν such that $\mu_{n-1} \subsetneq \nu$ and $\nu * L \subseteq \eta$ is eligible to act between stages t_{n-1} and t_{n}. Therefore, none of these strategies has seen any new computations and $X_{\nu}=\emptyset$ for all of these strategies.

Furthermore, we claim that $X_{\mu_{n-1}}=\emptyset$ at stage t_{n}. To see this fact, we need to distinguish $X_{\mu_{n-1}}$ as defined during the $(n-1)^{\text {st }}$ cycle, which we denote $X_{\mu_{n-1}}^{\prime}$, and $X_{\mu_{n-1}}$ as defined during this $n^{\text {th }}$ cycle, which we denote $X_{\mu_{n-1}}$. $T_{\mu_{n-1}, t_{n-1}}\left(\sigma_{n}\right)$ was stretched at stage t_{n-1} so it has length longer than the $\left[\mu_{n-1}\right]$ use of any number $x \in X_{\mu_{n-1}}^{\prime}$. Therefore, μ_{n-1} never looks above this node for computations on elements of $X_{\mu_{n-1}}^{\prime}$ between stages t_{n-1} and $t_{n} . \beta_{\mu_{n-1}, L}$ is defined at stage t_{n} to be such that when the verification procedure moves the current path from $T_{\mu_{n-1}, t_{n}}\left(\sigma_{n} * 0\right)$ to $T_{\mu_{n-1}, t_{n}}\left(\sigma_{n} * 1\right)$, it moves from $T_{\mu_{n-1}, t_{n}}\left(\beta_{\mu_{n-1}, L} * 0\right)$ to $T_{\mu_{n-1}, t_{n}}\left(\beta_{\mu_{n-1}, L} * 1\right)$. Therefore, $\beta_{\mu_{n-1}, L}$ is defined at stage t_{n} to be equal to σ_{n}. Because $T_{\mu_{n-1}, t_{n-1}}\left(\sigma_{n}\right)=T_{\mu_{n-1}, t_{n}}\left(\sigma_{n}\right)=$
$T_{\mu_{n-1}, t_{n}}\left(\beta_{\mu_{n-1}, L}\right), \mu_{n-1}$ has never looked at computations using oracles above $T_{\mu_{n-1}, t_{n}}\left(\beta_{\mu_{n-1}, L}\right)$. It follows that $X_{\mu_{n-1}}$ is defined to be \emptyset at stage t_{n} and hence $\mu_{n} \subsetneq \mu_{n-1}$. Therefore, we can only return to the verification procedure finitely often before it discovers that all $X_{\mu}=\emptyset$ and ends.

Finally, we need to check that all Γ definitions made by the verification procedure are frozen when the procedure terminates. In the $n^{\text {th }}$ cycle, η defines $\Gamma^{T_{\mu_{n}, t_{n}}\left(\sigma_{n+1} * 0\right)}\left(x_{\eta}\right)=0$. In the $(n+1)^{\text {st }}$ cycle, η moves the current path from $T_{\mu_{n}, t_{n+1}}\left(\sigma_{n+1} * 0\right)$ to $T_{\mu_{n}, t_{n+1}}\left(\sigma_{n+1} * 1\right)$. Since $T_{\mu_{n}, t_{n+1}}\left(\sigma_{n+1}\right)=T_{\mu_{n}, t_{n}}\left(\sigma_{n+1}\right)$ and $T_{\mu_{n}, t_{n}}\left(\sigma_{n+1} * i\right) \subseteq T_{\mu_{n}, t_{n+1}}\left(\sigma_{n+1} * i\right)$ for $i=0,1$, the node $T_{\mu_{n}, t_{n}}\left(\sigma_{n+1} * 0\right)$ is frozen by η. Therefore, at the start of the $(n+1)^{\text {st }}$ cycle, the Γ definition made by the verification procedure in the $n^{\text {th }}$ cycle is frozen. This completes the proof of Lemma 3.15.

Having gained some understanding of strategies which are challenged high, we turn to strategies η which are challenged low. Assume η is challenged low by $\hat{\eta}$. This could happen either because $\hat{\eta}$ calls a verification procedure or because $\hat{\eta}$ is challenged high and acting in Subcase $4 \mathrm{~A}(\mathrm{ii})$. We begin with the case when $\hat{\eta}$ calls a verification procedure. Assume that η is challenged low by $\hat{\eta}$ at stage s as part of the $n^{\text {th }}$ cycle of a verification procedure. By setting $\mu_{-1}=\hat{\eta}$ and imagining a "trivial link" from μ_{-1} to $\hat{\eta}$, we can treat the $0^{\text {th }}$ cycle with the same notation as the $n^{\text {th }}$ cycle. In this situation, we have just followed a link from μ_{n-1} to $\hat{\eta}$ and $\hat{\eta}$ moves the current path from $T_{\mu_{n-1}, s}\left(\sigma_{n} * 0\right)$ to $T_{\mu_{n-1}, s}\left(\sigma_{n} * 1\right)$. By the proof of Lemma 3.15, we know $U\left(T_{\mu_{n-1}, s}\left(\sigma_{n}\right)\right)=G_{\mu_{n-1}} * L$. (Technically, if $\hat{\eta}$ is a P strategy and $n=0$, then we have $U\left(T_{\mu_{-1}^{\prime}, s}\left(\sigma_{0}\right)\right)=G_{\mu_{-1}}$ instead. This minor change in notation is the only difference between $\hat{\eta}$ being a P or R strategy and it does not effect the argument below.) Because $\hat{\eta}$ challenges η low during this cycle, we know $\eta \subseteq \mu_{n}$ and $\eta * L \subseteq \hat{\eta}$. $\beta_{\eta, L}$ is defined such that the current path just moved from $T_{\eta, s}\left(\beta_{\eta, L} * 0\right)$ to $T_{\eta, s}\left(\beta_{\eta, L} * 1\right)$. $\hat{\eta}$ also redefines the tree $T_{\eta, s}$ by stretching. In the argument below, we consider the trees before they are stretched by $\hat{\eta}$ and we make comments at the end of the proof to take into account the effect of stretching.

Lemma 3.17. Under these circumstances, $U\left(T_{\eta, s}\left(\beta_{\eta, L}\right)\right)=G_{\eta} * L$, even after $\hat{\eta}$ performs its stretching.

Proof. We split into two cases: when there is an R strategy ν such that $\nu * H \subseteq$ μ_{n-1} and when there is no such strategy. If there is no R strategy ν with $\nu * H \subseteq \mu_{n-1}$, then G_{η} contains only low states, so $U\left(T_{\eta, s}\left(\beta_{\eta, L}\right)\right)=G_{\eta} * L$.

Assume there is a strategy ν such that $\nu * H \subseteq \mu_{n-1}$. In this case, we first need a better understanding of where exactly the current path moves. Let ν be the lowest priority R strategy such that $\nu * H \subseteq \mu_{n-1}$. Consider an R strategy $\hat{\nu}$ such that $\nu * H \subseteq \hat{\nu} \subseteq \mu_{n-1}$ and how $\hat{\nu}$ defines its trees at $\hat{\nu}$ stages before μ_{n-1} follows its link at stage s. Because ν is the lowest priority strategy with $\nu * H \subseteq \mu_{n-1}$, we know that either $\hat{\nu} * N \subseteq \mu_{n-1}$ or $\hat{\nu} * L \subseteq \mu_{n-1}$. If $\hat{\nu} * N \subseteq \hat{\eta}$, then $T_{\hat{\nu}, s}$ is defined trivially from $T_{\hat{\nu}^{\prime \prime}, s}$ because trees are always defined trivially when a strategy takes the N outcome. If $\hat{\nu} * L \subseteq \hat{\eta}$, then $\hat{\nu}$ cannot have found a new high splitting along the current path, so $\hat{\nu}$ searches for new high splits
and defines $T_{\hat{\nu}, s}$ trivially when it doesn't find any. Therefore, all trees $T_{\hat{\nu}, s}$ for $\nu * H \subseteq \hat{\nu} \subseteq \mu_{n-1}$ are defined trivially.

Let γ be such that $T_{\nu, s}(\gamma)=T_{\mu_{n-1}, s}\left(\sigma_{n}\right)$. Because all the trees between $\nu * H$ and μ_{n-1} are defined trivially, $T_{\mu_{n-1}, s}\left(\sigma_{n} * i\right)=T_{\nu, s}(\gamma * i)$. Because $U\left(T_{\mu_{n-1}, s}\left(\sigma_{n}\right)\right)=G_{\mu_{n-1}} * L$ and $\nu * H \subseteq \mu_{n-1}$, we know that $U\left(T_{\nu, s}(\gamma)\right)=$ $G_{\nu} * H$. Let $t \leq s$ be the ν stage at which $T_{\nu, t}(\gamma)$ becomes ν high splitting. Because we chose high splitting extensions for $T_{\nu, t}(\gamma)$ at stage t, the $\nu^{\prime \prime}$ state of each $T_{\nu, t}(\gamma * i)$ is G_{ν}. A case analysis using Lemma 3.11 shows that the values of $T_{\nu, t}(\gamma), T_{\nu, t}(\gamma * 0)$ and $T_{\nu, t}(\gamma * 1)$ do not change and the current path does not move below these nodes after ν 's action at stage t and before we follow the link from μ_{n-1} to $\hat{\eta}$ at stage s. Therefore, when we follow the link from μ_{n-1} to $\hat{\eta}$ at stage s, we have that the $\nu^{\prime \prime}$ state of each $T_{\nu, s}(\gamma * i)$ is G_{ν} (and they may or may not be ν high splitting).

At stage $s, \hat{\eta}$ moves the current path from $T_{\mu_{n-1}, s}\left(\sigma_{n} * 0\right)$ to $T_{\mu_{n-1}, s}\left(\sigma_{n} * 1\right)$ and hence from $T_{\nu, s}(\gamma * 0)$ to $T_{\nu, s}(\gamma * 1) . \beta_{\eta, L}$ is defined such that the current path just moved from $T_{\eta, s}\left(\beta_{\eta, L} * 0\right)$ to $T_{\eta, s}\left(\beta_{\eta, L} * 1\right)$.

We break into cases depending on whether $\nu * H \subseteq \eta$ or $\eta \subsetneq \nu$. (Notice that $\eta \neq \nu$ since $\nu * H \subseteq \hat{\eta}$ and $\eta * L \subseteq \hat{\eta}$.) If $\nu * H \subseteq \eta$, then since all the trees between $\nu * H$ and μ_{n-1} are defined trivially at stage $s, \beta_{\eta, L}$ is such that $T_{\nu, s}(\gamma)=T_{\eta, s}\left(\beta_{\eta, L}\right)$ and $T_{\nu, s}(\gamma * i)=T_{\eta, s}\left(\beta_{\eta, L} * i\right)$. Because there are no high states between ν and η (since ν was lowest priority strategy with $\nu * H \subseteq \mu_{n-1}$), $U\left(T_{\eta, s}\left(\beta_{\eta, L}\right)\right)=G_{\eta} * L$ as required.

If $\eta \subsetneq \nu$, then we may have $T_{\nu, s}(\gamma) \subsetneq T_{\eta, s}\left(\beta_{\eta, L}\right)$ because $T_{\nu, s}(\gamma)$ is ν high splitting. However, we do have that $T_{\eta, s}\left(\beta_{\eta, L} * i\right) \subseteq T_{\nu, s}(\gamma * i)$ since γ and $\beta_{\eta, L}$ are such that the current path just moved from $T_{\nu, s}(\gamma * 0)$ to $T_{\nu, s}(\gamma * 1)$ and from $T_{\eta, s}\left(\beta_{\eta, L} * 0\right)$ to $T_{\eta, s}\left(\beta_{\eta, L} * 1\right)$. Because $U\left(T_{\nu, s}(\gamma)\right)=G_{\nu} * H$, the $\nu^{\prime \prime}$ states of $T_{\nu, s}(\gamma * i)$ are G_{ν} and $\eta \subsetneq \nu$, it follows that $U\left(T_{\eta, s}\left(\beta_{\eta, L}\right)\right)=G_{\eta} * L$ as required.

Finally, when $\hat{\eta}$ redefines the trees by stretching in the verification procedure, it may be that $T_{\eta, s}\left(\beta_{\eta, L} * 1\right)$ is stretched. However, if it is stretched, then it is the least node on $T_{\eta, s}$ which is stretched, so the stretched value of this node extends the prestretched value. Hence the state of $T_{\eta, s}\left(\beta_{\eta, L}\right)$ remains the same. (It is important that we considered the state of $T_{\nu, s}(\gamma * 1)$ before it is potentially stretched. $T_{\nu, s}(\gamma * 1)$ may be the least node of $T_{\nu, s}$ which is changed by stretching, in which case, $U\left(T_{\nu, s}(\gamma * 1)\right)$ has all low states after it is redefined.)

A similar argument proves the same statement in the case when η is challenged low by a strategy $\hat{\eta}$ which is acting in Subcase 4A(ii) of a high challenge.

Lemma 3.18. Assume η is challenged low at stage s by a strategy $\hat{\eta}$ which is acting in Subcase $4 A($ ii $)$ of a high challenge. Then $U\left(T_{\eta, s}\left(\beta_{\eta, L}\right)\right)=G_{\eta} * L$.

Lemma 3.19. Assume that η is low challenged by $\hat{\eta}$ at stage s. Unless η is initialized, we have the following properties.

1. At least until η meets its low challenge, $T_{\eta, s}\left(\beta_{\eta, L}\right)$ remains unchanged at future η stages. $T_{\eta, s}\left(\beta_{\eta, L} * 1\right)$ may be stretched at stage s, but then remains unchanged and on the current path at future η stages.
2. Either η takes $\eta * N$ at every future η stage or η eventually meets the low challenge or η finds a new high split using a number from X_{η}.

Proof. Property 2 follows immediately by inspecting the action of a low challenged strategy. We show Property 1. By Lemmas 3.17 and 3.18, $U\left(T_{\eta, s}\left(\beta_{\eta, L}\right)\right)=G_{\eta} * L$. By the definition of $\beta_{\eta, L}$, the current path just moved to $T_{\eta, s}\left(\beta_{\eta, L} * 1\right)$ and this node may have been stretched. Consider which strategies could change $T_{\eta, s}\left(\beta_{\eta, L} * 1\right)$ or move the current path below this node without initializing η. Obviously nothing to the left of η can cause these changes and because all strategies to the right of η are initialized by $\hat{\eta}$ when η is challenged, they work higher on the trees. The only strategies ν with $\eta \subsetneq \nu$ which are eligible to act before η meets its challenge satisfy $\eta * N \subseteq \nu$. Since $\eta * L \subseteq \hat{\eta}$, these strategies are initialized by $\hat{\eta}$ at stage s and work higher on the trees.

Consider a strategy $\nu \subsetneq \eta$. If ν is a P strategy, then it initializes all lower priority strategies including η when it moves the current path. If ν is an R strategy and $\nu * L \subseteq \eta$ or $\nu * N \subseteq \eta$, then ν cannot find high splits below $T_{\eta, s}\left(\beta_{\eta, L}\right)$ or move the current path without initializing η. If $\nu * H \subseteq \eta$, then $T_{\eta, s}\left(\beta_{\eta, L}\right)$ is already ν high splitting since $U\left(T_{\eta, s}\left(\beta_{\eta, L}\right)\right)=G_{\eta} * L$. Therefore, any new high splits would be above this node. Furthermore, ν is challenged high by $\hat{\eta}$ at stage s so if it moves the current path, it does so from $T_{\nu, s}\left(\beta_{\nu, H} * 0\right)$ to $T_{\nu, s}\left(\beta_{\nu, H} * 1\right)$. Because $\nu * H \subseteq \hat{\eta}, T_{\nu, s}\left(\beta_{\nu, H}\right)$ was stretched at stage s and so $T_{\eta, s}\left(\beta_{\eta, L} * 1\right) \subseteq T_{\nu, s}\left(\beta_{\nu, H}\right)$. Therefore, any movement of the path caused by ν will not effect $T_{\eta, s}\left(\beta_{\eta, L} * 1\right)$. This establishes Property 1.

We define the true path in the tree of strategies as usual: an R_{e} or P_{e} strategy η is on the true path if and only if η is the leftmost strategy acting for R_{e} or P_{e} which is eligible to act infinitely often. We next show that various properties hold of strategies on the true path and that the true path is infinite.

Lemma 3.20. Assume that η is on the true path.

1. η is initialized only finitely often.
2. If η is never initialized after stage t, then for all $\mu * L \subseteq \eta$, μ meets all low challenges issued after t and for all $\mu * H \subseteq \eta, \mu$ meets all high challenges issued after t.
3. p_{η} and α_{η} are eventually permanently defined. Furthermore, if they are permanently defined at stage s, then $T_{\eta^{\prime \prime}, s}\left(\alpha_{\eta}\right)$ (if η is an R strategy) or $T_{\eta^{\prime}, s}\left(\alpha_{\eta}\right)$ (if η is a P strategy) has reached a limit and is on the current path at all future stages. Therefore, $T_{\eta, s}(\lambda)$ reaches its limit at stage s.
4. η has a successor on the true path.

Proof. We proceed by induction on the length of η. Let s be an η stage such that no strategy $\mu \subsetneq \eta$ is initialized after s, both p_{μ} and α_{μ} are permanently defined before stage s and no strategy to the left of η in the tree of strategies is eligible to act after s.

To prove Property 1, we examine how strategies $\nu \subsetneq \eta$ could end a stage after s and initialize η. If $\nu \subsetneq \eta$ is a P strategy, then ν only ends a stage and initializes lower priority strategies when it acts in Case 1 or Case 2 or calls a verification procedure in Case 3 . Since p_{ν} and α_{ν} are permanently defined by stage s, ν does not act in either Case 1 or 2 after stage s. Since s is an η stage, ν cannot be in the middle of a verification procedure at stage s (by Lemma 3.7). Suppose η calls a verification procedure after stage s. This means ν has not yet reached Case 4 of the P action at stage s, so $\nu * W \subseteq \eta$. Applying Property 2 of Lemma 3.20 inductively to ν and using the fact that ν is not initialized after stage s, we conclude from Lemma 3.15 that this verification procedure eventually ends and ν acts in Case 4 of the P action. After this stage, ν takes outcome $\nu * S$ contradicting the fact that no strategy to the left of η acts after stage s. Therefore, ν does not initialize η after stage s.

If $\nu \subsetneq \eta$ is an R strategy, then ν only ends a stage and initializes lower priority strategies when it acts in Case 1 or Case 2 or Subcases 4A(ii) or 4B of the high challenge R action. As above, ν does not act in Case 1 or Case 2 after stage s. When ν acts in Subcase 4A(ii) (and later in Subcase 4B) of a high challenge, it initializes all strategies of lower priority than $\nu * L$ (including $\nu * L$). Therefore, if $\nu * H \subseteq \eta$, then η is not initialized by ν after stage s. Otherwise, suppose $\nu * L \subseteq \eta$ or $\nu * N \subseteq \eta$ and consider what happens when ν acts in one of these subcases. Suppose ν acts in Subcase 4 A (ii) after stage $s . \nu$ initializes η and ends the stage. Applying Property 2 of Lemma 3.20 inductively to ν and using the fact that ν is not initialized after s, we conclude from Lemma 3.16 that ν either takes outcome $\nu * N$ at all future stages (and hence does not initialize η again) or ν eventually calls a (finitary) verification procedure in Subcase 4B and wins the high challenge. However, in the latter case, ν takes outcome $\nu * H$ which moves the path in the tree of strategies to the left of η after stage s contrary to our assumption. Therefore, after stage s, ν initializes η at most once. This completes the proof of Property 1.

We show Property 2 by induction on μ. Assume that $\mu * L \subseteq \eta$. We inductively apply Property 2 in Lemma 3.20 together with Property 2 in Lemma 3.19 to μ. If μ is challenged low after stage s, then either μ eventually meets this challenge or at all future μ stages μ takes outcome $\mu * N$. Because there cannot be a link jumping over $\mu * L$ while μ is low challenged, the latter situation contradicts the fact that η is on the true path.

Assume that $\mu * H \subseteq \eta$ and μ is challenged high after stage s. We inductively apply Property 2 of Lemma 3.20 together with Lemma 3.16 to μ. If μ fails to meet the high challenge, then either μ never finds a potential high split in Subcase 4A or it eventually acts in Subcase 4A(ii). If μ eventually acts in Subcase 4A(ii) but does not meet the high challenge, then μ remains high challenged forever and takes outcome $\mu * N$ at every future μ stage. Since there are no links jumping over $\mu * H$ while μ is high challenged, this contradicts the fact that η is on the true path. If μ never finds a potential high split in Subcase 4 A , then at every future μ stage either μ takes outcome $\mu * L$ (if μ is not also low challenged) or μ acts as in the low challenge case. If μ acts in the low challenge case, it cannot find a new high split (since otherwise it would have
found it when it looked in Subcase 4A in the high challenge action) so it either takes outcome $\mu * L$ or $\mu * N$. Since it is impossible for μ to take outcome $\mu * H$ in this situation and since there are no links jumping over $\mu * H$ when μ is high challenged, this contradicts the fact that η is on the true path. This completes the proof of Property 2.

To see Property 3 , notice that p_{η} is permanently defined at the first η stage after which η is never initialized again. η now begins to look for a node α of length p_{η} such that $T_{\eta^{\prime \prime}, s}(\alpha)$ (if η is an R strategy) or $T_{\eta^{\prime}, s}(\alpha)$ (if η is a P strategy) is on the current path and has state G_{η}. Because p_{η} is defined to be large, this node starts out with all low states. If G_{η} contains all low states, we pick α_{η} at the next η stage. Otherwise, G_{η} has at least one high state, so η ends the stage and tries again at each subsequent η stage. Each strategy ν such that $\nu * H \subseteq \eta$ finds a new high split along the current path each time it takes outcome $\nu * H$. Therefore, each time η is eligible to act, the state of some node on the current path has increased. Since η is eligible to act infinitely often and p_{η} does not change, η must eventually see a suitable node on the current path with state G_{η} and define α_{η}. The rest of Property 3 follows by Lemmas 3.13 and 3.14. This completes the proof of Property 3.

Finally, we verify Property 4. Assume s is an η stage such that η has permanently defined p_{η} and α_{η} by stage s. If η is a P strategy, then η defines x_{η} permanently at the same stage as it defines α_{η}. Either x_{η} eventually enters W_{η} after stage s or it does not. If x_{η} never enters W_{η}, then η takes outcome $\eta * W$ at every future η stage, so $\eta * W$ is on the true path. If x_{η} eventually enters W_{η}, then η calls a verification procedure at the next η stage. By Lemma 3.15 and Property 2 of Lemma 3.20, this verification procedure is finite. When it ends, η acts in Case 4 of the P strategy and takes outcome $\eta * S$. At every future η stage, η takes outcome $\eta * S$, so $\eta * S$ is on the true path.

Assume that η is an R strategy. After stage s, η never acts in Cases 1 or 2 for an R strategy. Therefore, the only times that η ends a stage after s is when η acts in Subcase 4A(ii) or in a verification procedure called by Subcase 4B of a high challenge. We split into three cases depending on whether η is challenged infinitely often or finitely often and whether it meets the last high challenge (if it is challenged high only finitely often).

First, suppose that there is a stage $t>s$ after which η is never challenged high and that η has met its last high challenge by stage t. Because the only times that η can end the stage are during a high challenge, η will take one of its three outcomes at every η stage after t. Because η is eligible to act infinitely often, at least one of its successors must be eligible to act infinitely often. The leftmost such outcome is on the true path.

Second, suppose that η is challenged high infinitely often. Let $t_{1}<t_{2}<\cdots$ denote the stages after s at which some strategy issues a high challenge to η. Because η can be high challenged by at most one strategy at a time, η must either meet the high challenge issued at t_{i} before t_{i+1} or the challenge issued at t_{i} must be removed by initialization before stage t_{i+1}. Let $\hat{\eta}$ be the strategy that issues the high challenge at stage t_{i}. We know $\eta * H \subseteq \hat{\eta}$ and no strategy ν with $\eta * H \subseteq \nu$ is eligible to act until η meets the challenge or it is removed by
initialization. Because of these facts and because $\eta * H$ is the left most outcome of η, the only strategies that could remove the challenge by initialization are those of higher priority than η.

Suppose ν has higher priority than η and ν initializes $\hat{\eta}$. If ν is to the left of η or $\nu \subsetneq \eta$ is a P strategy, then ν also initializes η contrary to assumption. If $\nu \subseteq \eta$ is an R strategy, then (since ν doesn't act in Cases 1 or 2 after stage $s), \nu$ acts in either Subcase 4A(ii) or 4B of a high challenge and initializes all strategies of lower priority than $\nu * L$. Therefore, $\hat{\eta}$ has lower priority than $\nu * L$. Because $\nu \subseteq \eta \subseteq \hat{\eta}$, we must have either $\nu * L \subseteq \hat{\eta}$ or $\nu * N \subseteq \hat{\eta}$. Putting together the facts that $\nu \subseteq \eta, \eta * H \subseteq \hat{\eta}$ and either $\nu * L \subseteq \hat{\eta}$ or $\nu * N \subseteq \hat{\eta}$ implies that either $\nu * L \subseteq \eta$ or $\nu * N \subseteq \eta$. Therefore, when ν initializes $\hat{\eta}$, it also initializes η contrary to our assumption. Hence, the challenge issued by $\hat{\eta}$ cannot be removed by initialization after stage s, so η must meet each of these high challenges. When η meets a high challenge, it takes outcome $\eta * H$. Therefore, $\eta * H$ is eligible to act infinitely often. Since $\eta * H$ is the leftmost outcome of η, it must be on the true path.

Third, suppose that η is only challenged high finitely often after s but it fails to meet the last high challenge. Let $t>s$ be the stage at which this last high challenge is issued. We split into cases depending on how η acts while trying (and failing) to meet this high challenge. η either acts in Subcase 4A at every future η stage (and fails to find a potential high split) or η eventually acts in Subcase 4A(ii). (η cannot act in Subcase 4A(i) since it would win the high challenge in that subcase.) If η ever acts in Subcase $4 \mathrm{~A}(\mathrm{ii})$, then by Lemma $3.16, \eta$ must either win the high challenge or take outcome $\eta * N$ at every future η stage. Since η does not win the challenge, $\eta * N$ is on the true path.

Suppose η never finds a potential high split in Subcase 4A of the high challenge. At every η stage after t, η either takes outcome $\eta * L$ or acts as a low challenged strategy (if η is also low challenged). The only possible outcomes for a low challenged strategy are L and N. Therefore, at every future η stage, η either takes outcome $\eta * L$ or $\eta * N$, so one of these must be on the true path.

Lemma 3.21. $A=\lim _{s} A_{s}$ is a Δ_{2}^{0} set.
Proof. Let $\eta_{0} \subseteq \eta_{1} \subseteq \eta_{2} \subseteq \cdots$ be the sequence of R strategies on the true path and let $s_{0}<s_{1}<s_{2}<\cdots$ be a sequence of stages such that for all k, s_{k} is an η_{k} stage by which $\alpha_{\eta_{k}}$ has been permanently defined. By Lemma 3.20, $T_{\eta_{k}, s_{k}}(\lambda)=T_{\eta_{k}^{\prime \prime}, s_{k}}\left(\alpha_{\eta_{k}}\right)$ has reached its limit and is contained in the current path at all future stages. Therefore, A is determined up to the length of this node at stage s_{k}.

We know that for an R strategy η on the true path, $T_{\eta, s}(\lambda)$ reaches a limit. We need to show that various other nodes also approach limits.

Lemma 3.22. Let η be an R strategy with $\eta * H$ on the true path. Let t be a stage such that α_{η} is defined permanently by stage t (and hence η is not initialized after t). For any α and any $s>t$, if $U\left(T_{\eta, s}(\alpha)\right)=G_{\eta} * H$ and $T_{\eta, s}(\alpha)$ becomes high splitting at stage s, then $T_{\eta, s}(\alpha)$ has reached a limit.

Proof. By Lemma 3.12, $T_{\eta, s}(\alpha)$ can only change if it is stretched because the current path is moved below $T_{\eta, s}(\alpha)$ by a strategy μ such that $\eta \subseteq \mu$. However, if any such strategy moves the current path below $T_{\eta, s}(\alpha)$ at stage $u \geq s$ and redefines $T_{\eta, u}$ by stretching, then the least stretched node on $T_{\eta, u}$ has state G_{η} * L. Since $T_{\eta, s}(\alpha)$ already has state $G_{\eta} * H$, it cannot be changed by stretching.

Lemma 3.23. Let η be an R strategy on the true path. There is a sequence of strings α_{j} and η stages t_{j} indexed by $j \in \omega$ such that $\alpha_{0}=\lambda, \alpha_{j+1}$ is either $\alpha_{j} * 0$ or $\alpha_{j} * 1, T_{\eta, t_{j}}\left(\alpha_{j}\right)$ has reached its limit denoted by $T_{\eta}\left(\alpha_{j}\right), U\left(T_{\eta, t_{j}}\left(\alpha_{j}\right)\right)$ is either $G_{\eta} * L$ or $G_{\eta} * H, T_{\eta, t_{j}}\left(\alpha_{j}\right) \subseteq A_{\eta, t_{j}}$ and the current path never moves below $T_{\eta, t_{j}}\left(\alpha_{j}\right)$ after stage t_{j}. (Hence $T_{\eta, t_{j}}\left(\alpha_{j}\right)=T_{\eta}\left(\alpha_{j}\right) \subseteq$ A.) In addition, the following properties hold.

1. $U\left(T_{\eta, s}\left(\alpha_{j}\right)\right)$ may change at a later stage $s>t_{j}$, but it reaches a limit denoted by $U\left(T_{\eta}\left(\alpha_{j}\right)\right)$ which is either $G_{\eta} * L$ or $G_{\eta} * H$. Furthermore both successor nodes $T_{\eta, s}\left(\alpha_{j} * i\right)$ eventually reach limits.
2. If $\eta * H$ is on the true path, then $U\left(T_{\eta}\left(\alpha_{j}\right)\right)=G_{\eta} * H$.
3. If $\eta * L$ is on the true path, then there is an n such that $U\left(T_{\eta}\left(\alpha_{j}\right)\right)=G_{\eta} * L$ for all $j \geq n$.
4. If $\eta * N$ is on the true path, then there is a stage t such that $T_{\eta, s}$ is defined trivially from $T_{\eta^{\prime \prime}, s}$ at all η stages $s>t$.

Proof. The proof proceeds by induction on η and for each fixed η by induction on j. Let t_{0} be a stage such that α_{η} is permanently defined by stage t_{0} and such that if $\eta * L$ (or $\eta * N$) is on the true path, then $\eta * H$ (respectively $\eta * H$ and $\eta * L)$ is never eligible to act after stage t_{0}. By Lemma 3.20, $T_{\eta, t_{0}}(\lambda)=$ $T_{\eta^{\prime \prime}, t_{0}}\left(\alpha_{\eta}\right) \subseteq A_{\eta, t_{0}}$ has reached its limit, $U\left(T_{\eta, t}(\lambda)\right)=G_{\eta}$ (and may or may not be high $[\eta]$ splitting), and the current path never moves below this node after stage t_{0}. Therefore, the statement in the main body of the lemma is true when $j=0$. Assume by induction that $T_{\eta, t_{j}}\left(\alpha_{j}\right)$ satisfies the conditions in the main body of the lemma. We need to show that Properties 1-4 hold as well.

Before proving these properties, consider what changes can take place in $T_{\eta, t_{j}}$ after stage t_{j}. No R strategy of higher priority can find a new high splitting at or below $T_{\eta, t_{j}}\left(\alpha_{j}\right)$. Therefore, these strategies do not cause a change in $T_{\eta, t_{j}}\left(\alpha_{j} * i\right)$ after stage t_{j}. Consider how the current path could move below $T_{\eta, t_{j}}\left(\alpha_{j} * i\right)$ after stage t_{j} (which must occur if these nodes change value because of stretching). Let $\hat{\eta}$ be a P strategy which initiates a series of challenges (via a verification procedure) that cause the current path to move below $T_{\eta, t_{j}}\left(\alpha_{j} * i\right)$ after stage t_{j}. We split into cases depending on whether $\hat{\eta}$ calls its verification procedure at a stage $<t_{j}$ or $\geq t_{j}$.

Assume $\hat{\eta}$ calls its verification procedure before stage t_{j}. We further split into cases depending on the relative positions of η and $\hat{\eta}$ in the tree of strategies. If $\eta<_{L} \hat{\eta}$, then since t_{j} is an η stage, $\hat{\eta}$ is initialized at the end of stage t_{j} and its series of challenges is removed by initialization. If $\hat{\eta} \subsetneq \eta$, then η is not
eligible to act until the verification procedure is complete. In this case, since t_{j} is an η stage, the verification procedure must be complete by stage t_{j} and hence there are no challenges left to move the path. If $\eta \subseteq \hat{\eta}$, then all the challenges issued to strategies $\nu \subsetneq \eta$ in the series initiated by $\hat{\eta}$ before t_{j} have been met (again since t_{j} is an η stage). Therefore, we only need to consider the action of strategies ν such that $\eta \subseteq \nu \subseteq \hat{\eta}$ after stage t_{j} (which we handle in a separate case below).

Finally, assume that $\hat{\eta}<_{L} \eta$. In this case, let ν be the highest priority strategy currently challenged in the series of challenges initiated by $\hat{\eta}$. In ν is challenged low, then $\nu * L \subseteq \hat{\eta}$. Since t_{j} is an η stage, we cannot have $\nu * L \subseteq \eta$. Therefore, η is to the right of $\nu * L$ in the tree of strategies. If ν ever meets its low challenge or finds a new high split using a number from X_{ν}, then ν will move the path in the tree of strategies to the left of η after stage t_{j}, contrary to our assumption. Therefore, this low challenge is never met or removed by initialization, so the series of challenges issued by $\hat{\eta}$ never moves the current path after t_{j}. If ν is challenged high, then $\nu * H \subseteq \hat{\eta}$. Again, because t_{j} is an η stage, η must have lower priority than $\nu * L$. Therefore, if ν ever moves the path in either Subcase 4A(ii) or 4B of the high challenge, it initializes η after t_{j} contrary to assumption.

We now have established that if $\hat{\eta}$ starts a series of challenges before t_{j} that has not terminated by t_{j} and this series of challenges causes the current path to move below $T_{\eta, t_{j}}\left(\alpha_{j} * i\right)$ after stage t_{j}, then some strategy ν such that $\eta \subseteq \nu$ must move the current path. On the other hand, if $\hat{\eta}$ does not start its series of challenges until after t_{j} and this series of challenges moves the current path below $T_{\eta, t_{j}}\left(\alpha_{j} * i\right)$ after stage t_{j}, then $\hat{\eta}$ itself moves the current path below $T_{\eta, t_{j}}\left(\alpha_{j} * i\right)$ after t_{j}. The key point is that in either case, if the current path is moved below $T_{\eta, t_{j}}\left(\alpha_{j} * i\right)$ at a future stage $t \geq t_{j}$, then the movement is caused by a strategy ν such that $\eta \subseteq \nu$ and hence the current path is moved on the tree $T_{\eta, t}$ at this future stage t. Because the current path runs through $T_{\eta, t_{j}}\left(\alpha_{j}\right)$ permanently after stage t_{j}, the only places where this movement can take place are from $T_{\eta, t}\left(\alpha_{j} * 0\right)$ to $T_{\eta, t}\left(\alpha_{j} * 1\right)$ or from $T_{\eta, t}\left(\alpha_{j} * 1\right)$ to $T_{\eta, t}\left(\alpha_{j} * 0\right)$. Because the value of $T_{\eta, t_{j}}\left(\alpha_{j}\right)$ does not change after stage t_{j}, the least nodes which could be stretched in either of these cases are $T_{\eta, t}\left(\alpha_{j} * 1\right)$ (in the first case) and $T_{\eta, t}\left(\alpha_{j} * 0\right)$ (in the second case). However, in either of these cases, the stretched value of $T_{\eta, t}\left(\alpha_{j} * i\right)$ extends the prestretched value. Therefore, the state of $T_{\eta, t_{j}}\left(\alpha_{j}\right)$ cannot be lowered because of stretching.

Consider Property 1. By the comments in the previous paragraph, the state of $T_{\eta, t_{j}}\left(\alpha_{j}\right)$ cannot be lowered because of stretching. Therefore, if η eventually finds a high split for $T_{\eta, t_{j}}\left(\alpha_{j}\right)$, then the final state of this node is $G_{\eta} * H$ and otherwise the final state is $G_{\eta} * L$. Furthermore, the current path can only move between $T_{\eta, t}\left(\alpha_{j} * 0\right)$ and $T_{\eta, t}\left(\alpha_{j} * 1\right)$ finitely many times after t_{j}. (Roughly, it can move back and forth between these nodes at most once for each strategy ν which is high challenged at $t \geq t_{j}$ and has $\beta_{\nu, H}$ defined so that $T_{\eta, t}\left(\alpha_{j}\right)=T_{\nu, t}\left(\beta_{\nu, H}\right)$.) Therefore, each of the nodes $T_{\eta, t_{j}}\left(\alpha_{j} * i\right)$ can be changed at most finitely often because of stretching and at most once by η finding a new high splitting after stage t_{j}. Hence, there is a stage $s_{0}>t_{j}$ at which these nodes have reached their
limits and the current path does not move again below them. Set $\alpha_{j+1}=\alpha_{j} * 0$ or $\alpha_{j} * 1$ depending on which one the current path goes through permanently. Since Lemma 3.23 applies inductively to the R strategies $\subsetneq \eta$, the state of $T_{\eta, s}\left(\alpha_{j+1}\right)$ must eventually reach $G_{\eta} * L$ at some later stage and we set t_{j+1} equal to this stage. Notice that the hypotheses for the main body of Lemma 3.23 are now satisfied for $j+1$.

Consider the case when $\eta * H$ is on the true path. Because $\eta * H$ is eligible to act infinitely often and each time $\eta * H$ is eligible to act η finds a new high splitting along the current path, η must eventually find a high splitting for $T_{\eta, t_{j}}\left(\alpha_{j}\right)$. This establishes Property 2.

Consider the case when $\eta * L$ is on the true path. By our assumption, η never takes outcome $\eta * H$ after stage t_{0}. Therefore, η never finds a new high split along the current path after this stage. Therefore, the only high splits which occur in the trees $T_{\eta, s}$ for $s \geq t_{0}$ are the ones that are already present at stage t_{0}. This fact implies Property 3 .

Consider the case when $\eta * N$ is on the true path. By our assumption on stage t_{0} in the first paragraph of this proof, η never takes outcome $\eta * L$ or $\eta * H$ after t_{0}. Therefore, Property 4 follows from the fact that whenever η takes outcome $\eta * N$, it defines $T_{\eta, s}$ trivially from $T_{\eta^{\prime \prime}, s}$.

We turn to checking that Γ^{A} is defined correctly so that $\Gamma^{A}=B$. First, we verify that $\Gamma^{A}(x)=1$ if and only if $x \in B$, and (after an additional technical lemma), we check that if $x \notin B$, then $\Gamma^{A}(x)=0$. Note that x is enumerated into B if and only if $x=x_{\eta}$ for a P strategy η which acts in Case 4.

Lemma 3.24. For all $x, \Gamma^{A}(x)=1$ if and only if $x=x_{\eta}$ for some P strategy x which reaches Case 4 of its action and hence $x \in B$.

Proof. Case 4 of a P strategy is the only place where computations of the form $\Gamma^{\gamma}(x)=1$ are defined. Therefore, if $\Gamma^{A}(x)=1$, then $x=x_{\eta}$ for some P strategy η which acts in Case 4.

For the other direction, assume that η is a P strategy which acts in Case 4 with x_{η} at stage s. To get to Case $4, \eta$ must have called a verification procedure at some stage $t<s$ which finished at stage s. When the verification procedure is called, the only Γ definition for x_{η} is $\Gamma^{T_{\eta, t}\left(\alpha_{\eta} * 0\right)}\left(x_{\eta}\right)=0 . \eta$ sets $\sigma_{0}=\alpha_{\eta}$ when it calls the verification procedure, so this procedure freezes $T_{\eta, t}\left(\alpha_{\eta} * 0\right)$. Because the verification procedure eventually finishes, all of the challenges issued by this procedure must be met (and all the challenges they issue must be met, etc.) so Lemma 3.15 applies. Therefore, at stage s, all strings γ such that $\Gamma^{\gamma}\left(x_{\eta}\right)=0$ are frozen by the verification procedure. η forbids all of these frozen strings, so the current path will never again pass through any of these strings. Furthermore, it picks a large value n and defines $\Gamma^{\gamma}\left(x_{\eta}\right)=1$ for all strings γ of length n which have not been forbidden by η. Whatever A turns out to be, it must contain one of these strings and therefore $\Gamma^{A}\left(x_{\eta}\right)=1$ as required.

Lemma 3.25. Let η be a P strategy which initiates a series of challenges by calling a verification procedure. If ν is an R strategy which is challenged high in
this series of challenges at stage s and ν is passed x_{ν} and $\beta_{\nu, H}$, then $x_{\nu}=x_{\eta}$ and $\Gamma^{T_{\nu, s}\left(\beta_{\nu, H} * 0\right)}\left(x_{\nu}\right)=0$.

Proof. We proceed by induction on the depth in the series of challenges. That is, a strategy challenged high by η is challenged at depth 1 . If $\hat{\nu}$ is challenged high at depth n by η and ν is challenged high by $\hat{\nu}$, then ν is challenged at depth $n+1$.

The base case is when ν is challenged high by the $n^{\text {th }}$ cycle in the verification procedure called by η. In this case, (following the notation of the verification procedure) η defines $\Gamma^{T_{\mu_{n}, t_{n}}\left(\sigma_{n+1} * 0\right)}\left(x_{\eta}\right)=0$ and passes $x_{\nu}=x_{\eta}$ and $\beta_{\nu, H}$ to ν. Because $\beta_{\nu, H}$ is the least node which is stretched on $T_{\nu, t_{n}}$ in this cycle, we have $T_{\nu, t_{n}}\left(\beta_{\nu, H} * 0\right)=T_{\mu_{n}, t_{n}}\left(\sigma_{n+1} * 0\right)$. Hence the result holds for this high challenge.

For the induction case, assume that $\hat{\nu}$ has been high challenged in the series of challenges (say at stage u) and $\hat{\nu}$ challenges ν high. By induction, $x_{\hat{\nu}}=x_{\eta}$ and $\Gamma^{T_{\hat{\nu}, u}\left(\beta_{\hat{\nu}, H} * 0\right)}\left(x_{\hat{\nu}}\right)=0$. Let s_{0} be the next $\hat{\nu}$ stage after it is challenged high. By Lemma 3.16, $T_{\hat{\nu}, u}\left(\beta_{\hat{\nu}, H} * 0\right) \subseteq T_{\hat{\nu}, s_{0}}\left(\beta_{\hat{\nu}, H} * 0\right)$, so $\Gamma^{T_{\hat{\nu}, s_{0}}\left(\beta_{\hat{\nu}, H} * 0\right)}\left(x_{\hat{\nu}}\right)=0$. In order to challenge ν high, $\hat{\nu}$ must act in Subcase 4A(ii) at a stage $s_{1}>s_{0}$. When $\hat{\nu}$ challenges ν high, it moves the current path to $T_{\hat{\nu}, s_{1}}\left(\beta_{\hat{\nu}, H} * 1\right)$, stretches the trees and defines $\Gamma^{T_{\hat{\nu}, s_{1}}\left(\beta_{\hat{\nu}, H} * 1 * 0\right)}\left(x_{\hat{\nu}}\right)=0$. It sets $x_{\nu}=x_{\hat{\nu}}=x_{\eta}$ and passes $\beta_{\nu, H}$ to ν. Because $\beta_{\nu, H}$ is the least node on $T_{\nu, s_{2}}$ which is stretched, we have $T_{\nu, s_{2}}\left(\beta_{\nu, H} * 0\right)=T_{\hat{\nu}, s_{2}}\left(\beta_{\hat{\nu}, H} * 1 * 0\right)$. Hence the result holds for this high challenge.

If all the challenges issued by $\hat{\nu}$ at s_{2} are met, then $\hat{\nu}$ begins to act in Subcase 4B of the high challenge. Suppose $\hat{\nu}$ calls a verification procedure at stage s_{3}. A similar argument shows that the high challenges issued by each of the cycles of the verification procedure have the required properties. Because a high challenged strategy $\hat{\nu}$ only issues more high challenges through Subcase 4 A (ii) and 4B, this step completes the proof.

Lemma 3.26. For all x, if $x \notin B$, then $\Gamma^{A}(x)=0$.
Proof. As noted before Lemma $3.24, x \in B$ if and only if $x=x_{\eta}$ for a P strategy η which reaches Case 4 of the P action. Therefore, if $x \notin B$, either x is never equal to x_{η} for a P strategy η or x is equal to x_{η} for some P strategy η but η is initialized before reaching Case 4 or x is permanently equal to x_{η} for a P strategy η but η never reaches Case 4 .

First, suppose that x is never equal to x_{η}. At the end of stage x, we define $\Gamma^{Y}(x)=0$ for all Y. Second, suppose $x=x_{\eta}$ but η is initialized at stage s after $x_{\eta}=x$ is defined. Without loss of generality, assume $s \geq x$. At the end of stage s, η is initialized so x is not longer of the form x_{η}. Therefore, we define $\Gamma^{Y}(x)=0$ for all Y. It is clear that in either of these cases, $\Gamma^{A}(x)=0$.

Third, suppose that x_{η} is defined to be x at stage s, η is never initialized after stage s and η never reaches Case 4 . In this case, α_{η} is permanently defined at stage s and we set $\Gamma^{T_{\eta^{\prime}, s}\left(\alpha_{\eta} * 0\right)}(x)=0$. By Lemma 3.10, $T_{\eta^{\prime}, s}\left(\alpha_{\eta} * 0\right)$ is on the current path. We split into two subcases. For the first subcase, suppose η never calls a verification procedure. By Lemma 3.14, $T_{\eta^{\prime}, s}\left(\alpha_{\eta} * 0\right)$ remains on the current path forever, so $\Gamma^{A}(x)=0$.

For the other subcase, suppose that η does call a verification procedure with $\sigma_{0}=\alpha_{\eta}$ in Case 3 of the P action. Because η does not reach Case 4, this verification procedure does not finish but also does not end because of initialization. Therefore, some challenge in the series of challenges initiated by η is never met. We need to examine which strategies can move the current path below $T_{\eta^{\prime}, s}\left(\alpha_{\eta} * 0\right)$ and check that each time the current path is moved by a strategy challenged in this series of challenges, the strategy moving the current path makes new Γ definition for $x_{\eta}=x$ which remains on the current path unless another strategy which is also challenged in the series of challenges initiated by η moves the current path later. The last such strategy to move the current path will put up a Γ definition for $x_{\eta}=x$ using an oracle string which remains on the current path forever and hence is an initial segment of A.

When η calls the verification procedure in Step 3 of a P action at stage t_{0} (to follow the notation of the verification procedure) with the witness x_{η}, no strategy to the left of η is ever eligible to act again since we assume this verification procedure is not removed by initialization. By Lemma 3.7, no strategy μ such that $\eta \subsetneq \mu$ is eligible to act after t_{0} since we assume this procedure is never completed. Also, η initializes all strategies of lower priority, so they work higher on the trees.

If $\mu \subseteq \eta$ is a P strategy, then μ cannot move the current path without initializing η contrary to our assumption. An R strategy μ with μ with $\mu * L \subseteq \eta$ or $\mu * N \subseteq \eta$ does not move the current path, so we are left to consider R strategies μ with $\mu * H \subseteq \eta$.

If $\mu * H \subseteq \eta$, then μ could move the current path in Subcase $4 \mathrm{~A}($ ii) or 4 B of a high challenge issued in the series of challenges initiated by η. In this case, when μ moves the current path, it initializes all strategies of lower priority than $\mu * L$ (including $\mu * L$). Therefore, these strategies are again forced to work higher on the tree than the new Γ definitions set up by μ (which we will examine below) and so they cannot move the path below the oracle string used by μ in its new Γ definition. Finally, notice that by Lemma 3.25, $x_{\mu}=x_{\eta}$ so the Γ definitions made by μ are for x_{η}.

We split the remainder of the proof into two cases which correspond to the two ways the current path can be moved below a string used as a Γ definition on x_{η}. Because one of the cycles in the verification procedure called by η does not end, we assume it is the $n^{\text {th }}$ cycle. (We follow the notation of the verification procedure and the notation used in Lemma 3.15. In particular, we assume this $n^{\text {th }}$ cycle starts at stage t_{n} by following a link from μ_{n-1} and that it defines μ_{n} and continues the verification procedure.) The first case is when η moves the current path in the $n^{\text {th }}$ cycle but none of the strategies it challenges high move the current path after stage t_{n}. The second case is when at least one of the high challenged strategies such that $\nu * H \subseteq \mu_{n}$ does move the current path in Subcase 4 A (ii) or 4 B of the high challenge.

First, suppose that in the $n^{\text {th }}$ cycle of the verification procedure called by η, none of the R strategies challenged high move the current path. For the $n^{\text {th }}$ cycle, η defines $\Gamma^{T_{\mu_{n}, t_{n}}\left(\sigma_{n+1} * 0\right)}\left(x_{\eta}\right)=0$ and initializes all lower priority strategies. We claim that the current path continues to go through $T_{\mu_{n}, t_{n}}\left(\sigma_{n+1} *\right.$
$0)$ at all future stages (and hence $\Gamma^{A}\left(x_{\eta}\right)=0$). The strategies to the left of η are never able to act after stage t_{n} (since they would initialize η), the strategies ν such that $\nu \subseteq \mu_{n}$ do not move the current path by assumption and the strategies ν such that $\mu_{n} * N \subseteq \nu$ or ν is to the right of μ_{n} in the tree of strategies are initialized at stage t_{n} by η and hence work higher on the trees than $T_{\mu_{n}, t_{n}}\left(\sigma_{n+1} * 0\right)$. Furthermore, because the $n^{\text {th }}$ cycle for η never ends, one of the strategies $\nu \subseteq \mu_{n}$ never meets its low or high challenge. Therefore, the only strategies eligible to act after stage t_{n} are to the right of μ_{n}, satisfy $\nu \subseteq \mu_{n}$ or satisfy $\mu_{n} * N \subseteq \nu$ (since if μ_{n} ever took outcome $\mu_{n} * L$, it would follow the link back to η ending the $n^{\text {th }}$ cycle). None of these strategies move the current path below $T_{\mu_{n}, t_{n}}\left(\sigma_{n+1} * 0\right)$, so it remains on the current path forever.

Second, suppose that some strategy ν which is high challenged in the series of challenges initiated by η does move the current path. By Lemma 3.25, when ν is challenged high at stage $t \geq t_{n}$, then $\Gamma^{T_{\nu, t}\left(\beta_{\nu, H} * 0\right)}\left(x_{\nu}\right)=0$ and $x_{\nu}=x_{\eta}$. (Remember that ν is challenged high in the series of challenges initiated by η, so it may not have been directly challenged high by η.) Whenever ν acts to move the current path, it puts up a new Γ definition for x_{ν}.

In particular, if ν acts in Subcase $4 \mathrm{~A}(i i)$ at stage $s_{1}>t$, it defines $\Gamma^{T_{\nu, s_{1}}\left(\beta_{\nu, H} * 1 * 0\right)}\left(x_{\eta}\right)=0$ and issues high challenges to μ such that $\mu * H \subseteq \nu$. If one of these high challenged strategies μ moves the current path, it takes over the Γ definition on $x_{\mu}=x_{\nu}=x_{\eta}$. If we return to ν at stage $s_{2}>s_{1}$, then by Lemma 3.16, $T_{\nu, s_{1}}\left(\beta_{\nu, H} * 1 * 0\right) \subseteq T_{\nu, s_{2}}\left(\beta_{\nu, s_{2}} * 1 * 0\right), T_{\nu, s_{2}}\left(\beta_{\nu, H} * 1 * 0\right)$ is on the current path and it remains on the current path unless ν calls a verification procedure in Subcase 4B of the high challenge. Therefore, if ν never calls this verification procedure, the computation $\Gamma^{T_{\nu, s_{2}}\left(\beta_{\nu, H} * 1 * 0\right)}\left(x_{\nu}\right)=0$ implies that $\Gamma^{A}\left(x_{\eta}\right)=0$ as required.

Suppose ν does call a verification procedure in Subcase 4B of its high challenge. This verification procedure takes over the Γ definitions on x_{ν}. Either some cycle of this verification procedure doesn't finish or the verification procedure does finish. In the former case, suppose the $n^{\text {th }}$ cycle is started but not finished. If none of the strategies challenged high by this cycle move the current path, then the argument given above in the similar case for η tells us that the Γ definition made by ν for x_{ν} in the $n^{\text {th }}$ cycle implies $\Gamma^{A}\left(x_{\nu}\right)=\Gamma^{A}\left(x_{\eta}\right)=0$ as required. If one of the strategies challenged high by the $n^{\text {th }}$ cycle in $\nu^{\text {'s }}$ verification procedure does move the current path, then it takes over the Γ definition on x_{ν} (and we repeat this argument for that strategy).

Finally, consider the latter case in the previous paragraph: the verification procedure called by ν ends and ν meets its high challenge at stage $s_{3}>s_{2}$. In this case, the current path is moved to pass through $T_{\nu, s_{3}}\left(\beta_{\nu, H} * 0\right)$. By Lemma $3.16, T_{\nu, t}\left(\beta_{\nu, H} * 0\right) \subseteq T_{\nu, s_{3}}\left(\beta_{\nu, H} * 0\right)$ (recall that t was the stage at which ν was challenged high), so we have $\Gamma^{T_{\nu, s_{3}}\left(\beta_{\nu, H} * 0\right)}\left(x_{\nu}\right)=0$. The string $T_{\nu, s_{3}}\left(\beta_{\nu, H} * 0\right)$ remains on the current path unless another strategy moves the current path below this node. However, ν takes outcome $\nu * H$ at stage s_{3}, so it initializes all strategies to the right of $\nu * H$ and none of these strategies can move the current path below this node. If ν is the last strategy which is high challenged in the series of challenges initiated by η and which moves the current path, then
$T_{\nu, s_{3}}\left(\beta_{\nu, H} * 0\right)$ remains on the current path forever and we have $\Gamma^{A}\left(x_{\nu}\right)=0$ as required. Otherwise, the next strategy which is in this series and which moves the current path takes over the Γ definition on x_{η}. The last such strategy to move the current path leaves a Γ definition on x_{η} for which the oracle string remains on the current path forever.

We get the following result as an immediate consequence of Lemmas 3.24 and 3.26.

Lemma 3.27. $\Gamma^{A}=B$, so $B \leq_{T} A$.
Lemma 3.28. All P requirements are met, so B is a noncomputable c.e. set.
Proof. Fix a P requirement and let η be the strategy on the true path for this requirement. Let x_{η} be the final witness for η and assume it is defined by stage s. If $x_{\eta} \notin W_{\eta}$, then η takes outcome $\eta * W$ at every η stage after s and η never acts in Step 4 of the P action. Therefore, $x_{\eta} \notin B$ and P is won.

If $x_{\eta} \in W_{\eta}$, then there is an η stage after s at which η calls the verification procedure in Step 3. By Lemma 3.15, this procedure ends after finitely many η stages so η eventually reaches Step 4 and enumerates x_{η} into B winning P.

To complete our proof, we give the computation lemmas showing that A has minimal wtt degree.

Lemma 3.29. If $\eta * N$ is on the true path, then $[\eta]^{A}$ is not total.
Proof. Fix an η stage s such that η takes outcome $\eta * N$ at every η stage after s. Because η takes outcome $\eta * N$ at stage s, either η is acting in Subcase 4B of a high challenge or η is low challenged. We consider each of these possibilities separately.

Assume that η has been high challenged by $\hat{\eta}$ before stage s and that η acts in Subcase 4B of the high challenge for the first time at stage s. At the previous η stage $t<s, \eta$ must have acted in Subcase 4A(ii) of the high challenge and defined the parameter w_{η}. As in the proof of Lemma 3.16, $T_{\eta, s}\left(\beta_{\eta, H} * 1 * 0\right) \subseteq A_{\eta, s}$ and the length of this node is longer than the use of $[\eta]$ on w_{η}. The current path is not moved below $T_{\eta, s}\left(\beta_{\eta, H} * 1 * 0\right)$ unless η moves it because it sees $[\eta]^{T_{\eta, s}\left(\beta_{\eta, H} * 1 * 0\right)}\left(w_{\eta}\right)$ converge. However, if η sees this computation converge, it moves the current path and takes outcome $\eta * H$, contrary to our assumption. Therefore, η never sees this computation converge and the current path never moves below $T_{\eta, s}\left(\beta_{\eta, H} * 1 * 0\right)$. Because the use of $[\eta]$ on w_{η} is less than the length of $T_{\eta, s}\left(\beta_{\eta, H} * 1 * 0\right)$ and this node remains forever on the current path, we have that $[\eta]^{A}\left(w_{\eta}\right)$ diverges and hence $[\eta]^{A}$ is not total.

Assume that η is low challenged by $\hat{\eta}$ at stage $t<s$ and s is the first η stage after t. By Lemma 3.19 (and because η never meets this low challenge), $T_{\eta, s}\left(\beta_{\eta, L} * 1\right)$ remains on the current path forever. By Lemma 3.23, there is a stage $u>s$ and a string γ such that $\beta_{\eta, L} * 1 \subseteq \gamma, T_{\eta, u}(\gamma)$ has reached its limit, $U\left(T_{\eta, u}(\gamma)\right)=G_{\eta} * L, T_{\eta, u}(\gamma) \subseteq A$ and the length of $T_{\eta, u}(\gamma)$ is longer than the [η] use of any number in X_{η}. If $[\eta]^{T_{\eta, u}(\gamma)}(x)$ converges for each $x \in X_{\eta}$, then
eventually η sees these computations and either meets its low challenge (taking outcome $\eta * L$) or finds a new high split (taking outcome $\eta * H$). Either option violates our assumptions and hence there must be at least one number $x \in X_{\eta}$ for which $[\eta]^{T_{\eta, u}(\gamma)}(x)$ diverges. Because $T_{\eta, u}(\gamma) \subseteq A$ and the length of $T_{\eta, u}(\gamma)$ is longer than the $[\eta]$ use of each $x \in X_{\eta}$, there must be at least one number $x \in X_{\eta}$ for which $[\eta]^{A}(x)$ diverges. Therefore, $[\eta]^{A}$ is not total.

Lemma 3.30. Let η be an R strategy such that $\eta * L$ is on the true path. If $[\eta]^{A}$ is total, then $[\eta]^{A}$ is computable.

Proof. Let s be a stage such that α_{η} is permanently defined by s and η never takes outcome $\eta * H$ after s. By Lemma 3.20 (since $\eta * L$ is never initialized after s), η meets all low challenges issued after stage s. Furthermore, if $\mu * L \subseteq \eta$, then μ meets all low challenges after stage s and if $\mu * H \subseteq \eta$, then μ meets all high challenges after s.

To calculate $[\eta]^{A}(x)$, let $t_{0}>s$ be an η stage and let γ_{0} be a string such that η takes outcome $\eta * L$ at $t_{0}, T_{\eta, t_{0}}\left(\gamma_{0}\right) \subseteq A_{\eta, t_{0}}, U\left(T_{\eta, t_{0}}\left(\gamma_{0}\right)\right)=G_{\eta} * L$ and $[\eta]_{t_{0}}^{T_{\eta, t_{0}}\left(\gamma_{0}\right)}(x)$ converges. (Such t_{0} and η_{0} must exist by Lemma 3.23 since $[\eta]^{A}$ is total.) We claim that $[\eta]^{A}(x)=[\eta]_{t_{0}}^{T_{\eta, t_{0}}\left(\gamma_{0}\right)}(x)$.

To prove the claim, we need to examine how the current path could be moved below $T_{\eta, t_{0}}\left(\gamma_{0}\right)$. Suppose μ moves the current path below this node after stage t_{0}. We cannot have $\mu<_{L} \eta$ (since these do not act after stage s), $\eta<_{L} \mu$ or $\eta * N \subseteq \mu$ (since these strategies are initialized at t_{0}). Suppose $\mu \subsetneq \eta . \mu$ cannot be a P strategy, since it would initialize η when it moved the path. If μ is an R strategy, then it can only move the current path when it is high challenged. If $\mu * L \subseteq \eta$ or $\mu * N \subseteq \eta$, then μ would initialize η when it moved the current path. Therefore, assume $\mu * H \subseteq \eta$. By Lemma 3.2, μ is not high challenged when η acts at stage t_{0}. Therefore, it must become high challenged later before moving the current path. However, if γ_{μ} is such that $T_{\mu, t_{0}}\left(\gamma_{\mu}\right)=T_{\eta, t_{0}}\left(\gamma_{0}\right)$, then $T_{\mu, t_{0}}\left(\gamma_{\mu}\right)$ is already μ high splitting. Therefore, any movement of the current path by μ in a high challenge would be above this node. It follows that no strategy $\mu \subsetneq \eta$ moves the current path below this node after stage t_{0}.

We also cannot have $\mu=\eta$ since η can only be high challenged by strategies extending $\eta * H$ and no such strategy is eligible to act after stage s. Therefore, the only strategies μ which could move the current path below $T_{\eta, t_{0}}\left(\gamma_{0}\right)$ after stage t_{0} satisfy $\eta * L \subseteq \mu$.

Let μ be the first strategy which causes such a movement in the current path below $T_{\eta, t_{0}}\left(\gamma_{0}\right)$ after stage t_{0} and let $u_{1}>t_{0}$ be the stage at which it moves the current path. To be specific with our notation, we assume that μ is a P strategy which is just calling a verification procedure. However, similar arguments handle the cases when μ is an R strategy acting in Subcase 4A(ii) or 4B of a high challenge and when μ is either a P or R strategy which is returning to a previously called verification procedure.

In this situation, μ moves the current path from $T_{\mu^{\prime}, u_{1}}\left(\alpha_{\mu} * 0\right)$ to $T_{\mu^{\prime}, u_{1}}\left(\alpha_{\mu} * 1\right)$ and defines $\beta_{\eta, L}$ to be the string such that the current path moved from $T_{\eta, u_{1}}\left(\beta_{\eta, L} * 0\right)$ to $T_{\eta, u_{1}}\left(\beta_{\eta, L} * 1\right)$. Because this movement is below $T_{\eta, t_{0}}\left(\gamma_{0}\right)$,
we have $T_{\eta, u_{1}}\left(\beta_{\eta, L} * 0\right) \subseteq T_{\eta, t_{0}}\left(\gamma_{0}\right)$. If $[\eta]^{T_{\eta, u_{1}}\left(\beta_{\eta, L}\right)}(x)$ converges, then we must have $[\eta]^{T_{\eta, u_{1}}\left(\beta_{\eta, L}\right)}(x)=[\eta]^{T_{\eta, t_{0}}\left(\gamma_{0}\right)}(x)$ and hence this movement of the current path does not effect our computation procedure. Therefore, assume that $[\eta]^{T_{\eta, u_{1}}\left(\beta_{\eta, L}\right)}(x)$ diverges. In this case, $x \in X_{\eta}$, so μ challenges η low and any link which is placed by μ is from a strategy ν such that $\eta \subseteq \nu$.

By the comments in the first paragraph of this proof, the challenges issued by μ to higher priority strategies than η are eventually met and η eventually meets the low challenge. Let $t_{1}>u_{1}$ be the stage at which η meets this low challenge. At this stage, η has found a string γ_{1} such that $T_{\eta, t_{1}}\left(\gamma_{1}\right) \subseteq A_{\eta, t_{1}}$, $U\left(T_{\eta, t_{1}}\left(\gamma_{1}\right)\right)=G_{\eta} * L$ and $[\eta]_{t_{1}}^{T_{\eta, t_{1}}\left(\gamma_{1}\right)}(x)$ converges and is equal to $[\eta]_{t_{0}}^{T_{\eta, t_{0}}\left(\gamma_{0}\right)}(x)$. We can now repeat this argument. Let μ_{2} be the first strategy which moves the current path below $T_{\eta, t_{1}}\left(\gamma_{1}\right)$ at some stage $u_{2} \geq t_{1}$. μ_{2} must satisfy $\eta * L \subseteq \mu_{2}$. Just as above, there would be a stage $t_{2}>t_{1}$ and a string γ_{2} such that $T_{\eta, t_{2}}\left(\gamma_{2}\right)$ is on the new current path $A_{\eta, t_{2}}, U\left(T_{\eta, t_{2}}\left(\gamma_{2}\right)\right)=G_{\eta} * L$ and $[\eta]_{t_{2}}^{T_{\eta, t_{2}}\left(\gamma_{2}\right)}(x)$ converges and is equal to $[\eta]_{t_{1}}^{T_{\eta, t_{1}}\left(\gamma_{1}\right)}(x)=[\eta]_{t_{0}}^{T_{\eta, t_{0}}\left(\gamma_{0}\right)}(x)$. Because $[\eta]$ is a $w t t$ procedure and because the current path settles down on longer and longer initial segments, these path movements below the use of $[\eta]$ on x can only happen finitely often. Therefore, by induction we get that $[\eta]_{t_{0}}^{T_{\eta, t_{0}}\left(\gamma_{0}\right)}(x)=[\eta]^{A}(x)$.

Lemma 3.31. Let η be an R strategy such that $\eta * H$ is on the true path. If $[\eta]^{A}$ is total, then $A \leq_{w t t}[\eta]^{A}$.

Proof. Fix η such that $\eta * H$ is on the true path and $[\eta]^{A}$ is total. Let s_{λ} be a stage such that $T_{\eta, s_{\lambda}}(\lambda)$ has reached its final value (and hence η is never initialized after s_{λ}) and $U\left(T_{\eta, s_{\lambda}}(\lambda)\right)=G_{\eta} * H$. We have $T_{\eta, s_{\lambda}}(\lambda) \subseteq A_{\eta, s_{\lambda}}$. By Lemma 3.20, $T_{\eta, s_{\lambda}}(\lambda)$ has reached its final value and $T_{\eta, s_{\lambda}}(\lambda)=T_{\eta}(\lambda) \subseteq A$. We define a Turing procedure Δ_{η}^{X} for any oracle X, show that if $X=[\eta]^{A}$, then $\Delta_{\eta}^{X}=A$, and finally show that Δ_{η} has computably bounded use for any oracle and hence is a $w t t$ procedure.

Fix any oracle set X. We define Δ_{η}^{X} by defining a (possibly finite) sequence of strings $\lambda=\sigma_{0} \subseteq \sigma_{1} \subseteq \cdots$ and stages $s_{\lambda}=t_{0}<t_{1}<\cdots$ using oracle questions answered by X. At each stage t_{i} we will have the following properties: $T_{\eta, t_{i}}\left(\sigma_{i}\right) \subseteq A_{\eta, t_{i}}$ and $U\left(T_{\eta, t_{i}}\left(\sigma_{i}\right)\right)=G_{\eta} * H$ (and hence $T_{\eta, t_{i}}\left(\sigma_{i}\right)$ has reached its final value by Lemma 3.22). The comments in the first paragraph explain why these properties hold for σ_{0} and t_{0}. Once σ_{i} and t_{i} are calculated, let $l_{i}=$ the length of $T_{\eta, t_{i}}\left(\sigma_{i}\right)$ and set $\Delta_{\eta}^{X} \upharpoonright l_{i}=T_{\eta, t_{i}}\left(\sigma_{i}\right)$.

Assume we have used X to calculate σ_{i} and t_{i}. Because $U\left(T_{\eta, t_{i}}\left(\sigma_{i}\right)\right)=G_{\eta} *$ H, there is a splitting witness x_{i} such that $[\eta]_{t_{i}}^{T_{\eta, t_{i}}\left(\sigma_{i} * 0\right)}\left(x_{i}\right)$ and $[\eta]_{t_{i}}^{T_{\eta, t_{i}}}\left(\sigma_{i} * 1\right)\left(x_{i}\right)$ converge and are unequal. Check which computation agrees with $X\left(x_{i}\right)$ and set $\sigma_{i+1}=\sigma_{i} * 0$ or $\sigma_{i} * 1$ so that $[\eta]_{t_{i}}^{T_{\eta, t_{i}}\left(\sigma_{i+1}\right)}\left(x_{i}\right)=X\left(x_{i}\right)$. Wait for a stage t_{i+1} such that $T_{\eta, t_{i+1}}\left(\sigma_{i+1}\right) \subseteq A_{\eta, t_{i+1}}$ and $U\left(T_{\eta, t_{i+1}}\left(\sigma_{i+1}\right)\right)=G_{\eta} * H$. If we never see such a stage, then Δ_{η}^{X} diverges on all inputs $\geq l_{i}$. If we do see such a stage, then let $l_{i+1}=$ the length of $T_{\eta, t_{i+1}}\left(\sigma_{i+1}\right)$ and set $\Delta_{\eta}^{X} \upharpoonright l_{i+1}=T_{\eta, t_{i+1}}\left(\sigma_{i+1}\right)$. This completes the description of Δ_{η}.

Next, we check that if $X=[\eta]^{A}$, then $\Delta_{\eta}^{X}=A$. To prove this fact, we show by induction on i that σ_{i} exists and $T_{\eta, t_{i}}\left(\sigma_{i}\right) \subseteq A$. When $i=0$, this is clear. Assume that σ_{i} is defined and $T_{\eta, t_{i}}\left(\sigma_{i}\right) \subseteq A$. Let x_{i} be a number such that $[\eta]^{T_{\eta, t_{i}}\left(\sigma_{i} * 0\right)}\left(x_{i}\right)$ and $[\eta]_{t_{i}}^{T_{\eta} t_{i}\left(\sigma_{i} * 1\right)}\left(x_{i}\right)$ converge and are unequal. By Lemma 3.22 and the proof of Lemma 3.23, we know that $T_{\eta, t_{i}}\left(\sigma_{i}\right)$ has reached its final value. Furthermore, we know that the values of $T_{\eta, t_{i}}\left(\sigma_{i} * 0\right)$ and $T_{\eta, t_{i}}\left(\sigma_{i} * 1\right)$ can change at most finitely often after stage t_{i}, that these changes are due to stretching, and that the stretched values of these nodes always extended their prestretched values. Therefore, one of the strings $T_{\eta, t_{i}}\left(\sigma_{i} * 0\right)$ or $T_{\eta, t_{i}}\left(\sigma_{i} * 1\right)$ has to be an initial segment of A and because $X=[\eta]^{A}, \sigma_{i+1}$ must be defined such that $T_{\eta, t_{i}}\left(\sigma_{i+1}\right) \subseteq A$. Eventually, the current path has to run through $T_{\eta, t_{i}}\left(\sigma_{i+1}\right)$ (although this node may have been stretched by the time it does) and because $\eta * H$ is on the true path, there must be a stage $t_{i+1}>t_{i}$ such that $T_{\eta, t_{i}}\left(\sigma_{i+1}\right) \subseteq T_{\eta, t_{i+1}}\left(\sigma_{i+1}\right) \subseteq A_{\eta, t_{i+1}}$ and $U\left(T_{\eta, t_{i+1}}\left(\sigma_{i+1}\right)\right)=G_{\eta} * H$. Therefore, we eventually define t_{i+1} and have $T_{\eta, t_{i+1}}\left(\sigma_{i+1}\right) \subseteq A$ as required.

Finally, we show that the use of Δ_{η} is computably bounded for all oracles and hence it is a $w t t$ procedure. To bound the use of this procedure on input m, calculate as follows. Wait for a stage $t \geq s_{\lambda}$ such that $t>m$ and there is a string σ such that $T_{\eta, t}(\sigma) \subseteq A_{\eta, t}, U\left(T_{\eta, t}(\sigma)\right)=G_{\eta} * H, T_{\eta, t}(\sigma)$ becomes high splitting at t and the length of $T_{\eta, t}(\sigma)$ is greater than m. (Because $[\eta]^{A}$ is total and $\eta * H$ is on the true path such a pair σ and t must exist.) Let k be the maximum of all $[\eta]$ high splitting witnesses seen by η during the course of the construction up to stage t. We claim that the use of Δ_{η} on input m for any oracle X is bounded by k.

To prove our claim, let X be any oracle and let σ_{i} and t_{i} be the last pair defined by the procedure Δ_{η}^{X} by the stage t indicated above for use calculation on m. (Because σ_{0} and t_{0} are defined at stage s_{λ} and $t \geq s_{\lambda}, i \geq 0$ is defined.) Let x_{i} be the splitting witness for this pair of strings, let σ_{i+1} be either $\sigma_{i} * 0$ or $\sigma_{i} * 1$ depending on which gives the computation that agrees with $X\left(x_{i}\right)$ and let l_{i} denote the length of $T_{\eta, t_{i}}\left(\sigma_{i}\right)$. Because the string σ_{i} is defined by stage t, we know $k \geq x_{i}$. Furthermore, all the splitting witnesses which have been used to determine σ_{i} are $\leq k$. If $m<l_{i}$, then Δ_{η}^{X} has already converged on m and has use $\leq k$ since the splitting witnesses (which are the only values of X which we consult) are all $\leq k$.

Assume $m \geq l_{i}$. First, we claim that at stage $t, U\left(T_{\eta, t}\left(\sigma_{i+1}\right)\right)=G_{\eta} * L$. This follows because we only look for high splits along the current path. Therefore, if $U\left(T_{\eta, t}\left(\sigma_{i+1}\right)\right)=G_{\eta} * H$, then at some stage u between t_{i} and t, we had $T_{\eta, u}\left(\sigma_{i+1}\right) \subseteq A_{\eta, u}$ and it became high splitting. However, in this case, $t_{i+1}=$ $u \leq t$, contradicting the fact that t_{i+1} is not yet defined at stage t.

Second, we claim that at stage $t, T_{\eta, t}\left(\sigma_{i+1}\right)$ is not on the current path. This follows because at stage t, we just found that a new node $T_{\eta, t}(\sigma)$ on the current path which is high splitting. Furthermore, $T_{\eta, t}(\sigma)$ has length $>m$. Hence $T_{\eta, t}(\sigma)$ is not equal to $T_{\eta, t}\left(\sigma_{i}\right)$ (which has length $\leq m$), so $t>t_{i}$. Thus, if $T_{\eta, t}\left(\sigma_{i+1}\right)$ were along the current path as well, then it would be high splitting and we would have defined t_{i+1} by stage t.

Therefore, we know that at stage $t, T_{\eta, t}\left(\sigma_{i+1}\right)$ is not on the current path and it has state $G_{\eta} * L$. There are now two possibilities. First, it is possible that there is never a stage t_{i+1}. In this case, Δ_{η}^{X} never consults the oracle again (and so has use bounded by k) and diverges on m. Second, it is possible that there is a stage $t_{i+1}>t$. In this case, some P or R strategy must move the current path so that it passes through $T_{\eta, t}\left(\sigma_{i+1}\right)$ at a stage $u>t$. Because t is an η stage at which η takes outcome $\eta * H$, all strategies to the right of $\eta * H$ in the tree of strategies are initialized at t and work higher on the trees. By Lemma 3.2, if $\nu * H \subseteq \eta$, then ν is not high challenged at stage t. Therefore, the first strategy to move the current path so that it passes through $T_{\eta, t}\left(\sigma_{i+1}\right)$ must satisfy $\eta * H \subseteq \mu$. Let $u>t$ be the stage when μ moves the current path. Because $\eta * H \subseteq \mu, U\left(T_{\eta, u}\left(\sigma_{i}\right)\right)=G_{\eta} * H$ and $T_{\eta, u}\left(\sigma_{i+1}\right)=G_{\eta} * L$ (before it is stretched), $T_{\eta, u}\left(\sigma_{i+1}\right)$ is stretched to have long length when μ moves the current path. In particular, $T_{\eta, u}\left(\sigma_{i+1}\right)$ has length longer than m. Therefore, when $T_{\eta, u}\left(\sigma_{i+1}\right)$ later reaches state $G_{\eta} * H$ and t_{i+1} is defined, we set $l_{i+1}=$ the length of $T_{\eta, t_{i+1}}\left(\sigma_{i+1}\right)$, so $l_{i+1}>m$ and $\Delta_{\eta}^{X} \upharpoonright l_{i+1}=T_{\eta, t_{i+1}}\left(\sigma_{i+1}\right)$. Furthermore, we know that $T_{\eta, t_{i+1}}\left(\sigma_{i} * 0\right)$ extends $T_{\eta, t_{i}}\left(\sigma_{i} * 0\right)$ and $T_{\eta, t_{i+1}}\left(\sigma_{i} * 1\right)$ extends $T_{\eta, t_{i}}\left(\sigma_{i} * 1\right)$. Therefore, $x_{i} \leq k$ is still a splitting witness for these two nodes. Hence, we do not need any more of the oracle X to calculate $\Delta_{\eta}^{X} \upharpoonright l_{i+1}$. This completes the proof that the use is bounded by k.

This concludes the proof of the main theorem, Theorem 1.1.

Chapter 4

Limiting results

In this chapter, we prove Theorems 1.2 and 1.3 giving limitations on possible extensions of Theorem 1.1. For convenience, we restate these theorems here.

Theorem 1.2. No c.e. Turing degree can contain a set of which is wtt-minimal.
Theorem 1.3. Let V be a promptly simple c.e. set and let A be a Δ_{2}^{0} set such that $A \geq_{T} V$. There exists a c.e. set B such that $0<_{T} B \leq_{w t t} A$.

To prove Theorem 1.2, we need to show that for any set A of c.e. degree, there is a set B such that $\emptyset<_{T} B<_{w t t} A$. In Section 4.1, we prove that such a set B cannot be obtained uniformly from A. In Section 4.2, we prove Theorem 1.2 under the assumption that A has an almost c.e. approximation (which is defined in that section) and we develop a closely related method for approximating general sets of c.e. Turing degree. We complete the proof of Theorem 1.2 in Section 4.3 and we prove Theorem 1.3 in Section 4.4.

4.1 Uniformity issues

Consider how we might try to alter the proof of Theorem 1.1 to make the set A have c.e. Turing degree. As before we build A via a Δ_{2}^{0} approximation A_{s} and our R requirements (to make A have minimal $w t t$ degree) remain the same.

To ensure that A has c.e. Turing degree, we build a modulus function for A. Recall that a total function f is a modulus function for a Δ_{2}^{0} approximation A_{s} to A if the following condition holds for every x.

$$
\forall s \geq f(x) \forall y \leq x\left(y \in A_{s} \Leftrightarrow y \in A\right)
$$

In other words, the Δ_{2}^{0} approximation has settled to its limiting values on all numbers up to x by stage $f(x)$. By the Modulus Lemma, A has c.e. Turing degree if and only if there is a Δ_{2}^{0} approximation A_{s} to A such that A can compute a modulus for this approximation. Therefore, rather than directly constructing a c.e. set B as in the proof of Theorem 1.1, we can build a Turing
functional Φ such that Φ^{A} is a modulus function for our approximation A_{s}. To ensure that A is not computable, we need to satisfy diagonalization requirements P_{e} for each index e (described below).

We begin with a proposition that says we can carry out such a construction as long as we consider only a single R requirement. The proof of this proposition is similar to (but considerably simpler than) the proof of Theorem 1.1, so we merely sketch the argument. To simplify the technical details in this sketch, we will be somewhat informal about the diagonalization requirements P_{e}. We view P_{e} as requiring that we respond to some Σ_{1}^{0} event dictated by W_{e} (namely a designated witness entering W_{e}) by moving the approximation A_{s} at a predetermined place. More formally, we would define an auxiliary c.e. set B and a Turing functional Γ such that $\Gamma^{A}=B$ and our requirement P_{e} would be $B \neq \overline{W_{e}}$. To avoid complicated our sketch with standard details for constructing Γ and B, we limit our P_{e} strategies to moving the current path and forbidding cones.

Proposition 4.1. For any wtt-functional $[e]$, we can build a non-computable set A of c.e. Turing degree such that if $[e]^{A}$ is total, then either $[e]^{A}$ is computable or $[e]^{A} \geq_{w t t} A$.

Proof. We build a computable approximation A_{s} to A and a Turing functional Φ such that Φ^{A} is a modulus function for this approximation. Because we are only concerned with the R requirement given by $[e]$, we build a single sequence of computable trees $T_{e, s}$ and hence we drop the index e on these trees. To build T_{s}, we attempt to find $[e]$-splits along the current path A_{s} and we will use stretching when we need to verify computations through low challenges. As usual, we obtain $A \leq_{w t t}[e]^{A}$ if the nodes of T_{s} along A_{s} are all eventually in the high state, while $[e]^{A}$ will be computable if sufficiently long nodes remain in the low state permanently.

Later, we will want to use the fact that this construction is uniform in the index e. To ensure this uniformity, we need to allow parts of the trees T_{s} to be in a non-total state while we wait for low challenges to be met.

The basic strategy for P_{e} is to choose a node α such that $T_{s}(\alpha)$ and $T(\alpha * 0)$ are on the current path and a large diagonalizing witness x. If x later enters W_{e}, P_{e} would like to move the current path from $T_{s}(\alpha * 0)$ to $T_{s}(\alpha * 1)$ and forbid the cone above $T_{s}(\alpha * 0)$ so that this movement is permanent. If $T_{s}(\alpha)$ is in the high $[e]$-state, then there is no problem with immediately forbidding $T_{s}(\alpha * 0)$ as there is only one R requirement. However, if $T_{s}(\alpha)$ is in the low [e]-state, then we would like to stretch $T_{s}(\alpha * 1)$ to have length longer than any oracle $T_{s}(\beta)$ with $\alpha * 0 \subseteq \beta$ used in a computation $[e]^{T_{s}(\beta)}(y)$ we have seen so far and challenge P_{e} to verify these computations using the new value of $T_{s}(\alpha * 1)$ as the oracle. (Below, we refer to this process simply as stretching $T_{s}(\alpha * 1)$.) There are three possible outcomes: we verify all of the previous computations allowing the construction to continue in the low state using $T_{s}(\alpha * 1)$ in place of $T_{s}(\alpha * 0)$ giving us permission to forbid $T_{s}(\alpha * 0)$, we find a computation allowing us to put up a new high split and make progress towards making the sequence of trees high splitting (and hence abandon this attempt at satisfying
P_{e}), or we have some computation which is never verified ensuring that $[e]^{A}$ is not total as long as $T_{s}(\alpha * 1)$ remains on the current path.

The basic strategy for defining Φ^{A} is to choose strings δ such that $T_{s}(\delta)$ is on the current path A_{s} and define $\Phi^{T_{s}(\delta)}\left(\left|T_{s}\left(\delta^{\prime}\right)\right|\right)=s$ at stage s. This definition makes a promise that if $T_{s}(\delta)$ is an initial segment of A, then the approximation to A never changes below $\left|T_{s}\left(\delta^{\prime}\right)\right|$ after stage s. In other words, if we ever move the current path away from $T_{s}\left(\delta^{\prime}\right)$ at a future stage, then $T_{s}(\delta)$ must be immediately forbidden. For this strategy to succeed, we need to eventually choose strings δ of arbitrarily long length for which we make such definitions and $T_{s}(\delta)$ is an initial segment of A.

There is a significant conflict between the strategies for P_{e} and for defining Φ^{A}. Suppose P_{e} has chosen a node α with $T_{s}(\alpha)$ in the low state and would like to diagonalize at $T_{s}(\alpha)$ if x later enters W_{e}. While waiting for x to enter W_{e}, we need to make definitions for Φ^{A} involving strings δ extending $\alpha * 0$. For example, we may define $\Phi^{T_{s_{0}}(\alpha * 0 * 0)}\left(\left|T_{s_{0}}(\alpha * 0)\right|\right)=s_{0}$ at some stage $s_{0}>s$. If x enters W_{e} at stage $s_{1}>s_{0}$ (with $T_{s_{1}}(\alpha)$ still in the low state), then P_{e} wants to move the current path from $T_{s_{1}}(\alpha * 0)$ to $T_{s_{1}}(\alpha * 1)$ and freeze (but not forbid) $T_{s_{1}}(\alpha * 0)$. Until the low challenge is met, we cannot forbid $T_{s_{1}}(\alpha * 0)$ because we may need to use an extension of $T_{s_{1}}(\alpha * 0)$ as half of a new high split if we get a different computation using (the stretched) $T_{s_{1}}(\alpha * 1)$ as oracle. However, as soon as we move the current path away from $T_{s_{1}}(\alpha * 0)=T_{s_{0}}(\alpha * 0)$, the promise accompanying the definition of $\Phi^{T_{s_{0}}(\alpha * 0 * 0)}\left(\left|T_{s_{0}}(\alpha * 0)\right|\right)=s_{0}$ requires us to immediately forbid $T_{s_{0}}(\alpha * 0 * 0)=T_{s_{1}}(\alpha * 0 * 0)$. But, we may well have seen computations using oracles extending $T_{s_{0}}(\alpha * 0 * 0)$ so we are prohibited from forbidding this node until the computations are verified.

To solve this conflict, we modify the P_{e} strategy to issue a sequence of low challenges allowing it to move the current path at a decreasing sequence of nodes eventually culminating in moving the current path at the diagonalizing node. Let s be a stage at which P_{e} sees its witness x_{e} enter W_{e} and wants to move the current path from $T_{s}\left(\alpha_{e} * 0\right)$ to $T_{s}\left(\alpha_{e} * 1\right)$ where $T_{s}\left(\alpha_{e}\right)$ is in the low state. For $k \leq s$, let γ_{k} be the string of length k such that $T_{s}\left(\gamma_{k}\right)$ is on the current path A_{s}. For simplicity of notation, we assume $\gamma_{k}=0^{k}$ and we assume that we have not looked at any computations using an oracle extending $T_{s}\left(\gamma_{s}\right)$. Some of these strings γ_{k} may have been used to make Φ definitions of the form $\Phi^{T_{s}\left(\gamma_{k+1}\right)}\left(\left|T_{s}\left(\gamma_{k}\right)\right|\right)=\Phi^{T_{s}\left(\gamma_{k} * 0\right)}\left(\left|T_{s}\left(\gamma_{k}\right)\right|\right) \leq s$. Again, to simplify the notation, assume that strings of the form $\gamma_{2 \ell}$ have been used in the Φ definitions and that the stage s is even. Throughout the description below, we assume no new high splits are found below $T_{s}\left(\alpha_{e}\right)$ and so all the nodes mentioned retain their values unless they are stretched.
P_{e} begins by stretching $T_{s}\left(\gamma_{s-2} * 1\right)$ and moving the current path from $T_{s}\left(\gamma_{s-2} * 0\right)=T_{s}\left(\gamma_{s-1}\right)$ to (the stretched) $T_{s}\left(\gamma_{s-2} * 1\right)$. Since s is even, we have defined $\Phi^{T_{s}\left(\gamma_{s}\right)}\left(\left|T_{s}\left(\gamma_{s-1}\right)\right|\right)=s$, and hence must forbid $T_{s}\left(\gamma_{s}\right)$. However, this action is fine because we have not seen any computations using oracles extending $T_{s}\left(\gamma_{s}\right)$. Notice that $T_{s}\left(\gamma_{s-2} * 0\right)=T_{s}\left(\gamma_{s-1}\right)$ is not forbidden because $T_{s}\left(\gamma_{s-2} * 0 * 1\right)=T_{s}\left(\gamma_{s-1} * 1\right)$ remains a viable extension of this node.
P_{e} challenges $[e]^{T_{s}\left(\gamma_{s-2} * 1\right)}$ to verify all of the computations which used oracles
extending $T_{s}\left(\gamma_{s-2} * 0\right)=T_{s}\left(\gamma_{s-1}\right)$. Because $T_{s}\left(\gamma_{s-2} * 1\right)$ was stretched, we do not need to look at any oracles extending $T_{s}\left(\gamma_{s-2} * 1\right)$ during this verification process. Furthermore, we set $\Phi^{T_{s}\left(\gamma_{s-2} * 1 * 0\right)}\left(\left|T_{s}\left(\gamma_{s-2} * 1\right)\right|\right)=s$ to make progress on the definition of Φ^{A}. While waiting for these computations to converge, we launch versions of each P requirement to work in the cone above $T_{s}\left(\gamma_{s-2} * 1 * 0\right)$. Because these versions of the P requirements can assume $[e]^{A}$ will be partial (as we haven't verified the low challenge yet), they can immediately forbid nodes when they need to diagonalize. Therefore, if the low challenge is not met, $[e]^{A}$ will be partial and we will still guarantee that A is not computable and Φ^{A} is a modulus function (as we also continue to make definitions for Φ^{A} above $\left.T_{s}\left(\gamma_{s-2} * 1\right)\right)$.

Assume that the low challenge is eventually met at stage $s_{1}>s$. At this point, all of the computations which used oracles extending $T_{s}\left(\gamma_{s-2} * 0\right)$ are now held by $T_{s_{1}}\left(\gamma_{s-2} * 1\right)$ and therefore, we have permission to forbid $T_{s}\left(\gamma_{s-2} * 0\right)=T_{s_{1}}\left(\gamma_{s-2} * 0\right)=T_{s_{1}}\left(\gamma_{s-1}\right) . P_{e}$ now moves the current path for the second time as follows. We stretch $T_{s_{1}}\left(\gamma_{s-3} * 1\right)=T_{s}\left(\gamma_{s-3} * 1\right)$ to have long length and move the current path from $T_{s}\left(\gamma_{s-3} * 0\right)=T_{s}\left(\gamma_{s-2}\right)$ to $T_{s}\left(\gamma_{s-3} * 1\right)$. (These nodes have retained their values at s_{1} except for the stretching.) Because $\Phi^{T_{s}\left(\gamma_{s-2} * 1 * 0\right)}\left(\left|T_{s}\left(\gamma_{s-2} * 1\right)\right|\right)=s$ and we moved the path below $T_{s}\left(\gamma_{s-2} * 1\right)$, this action requires us to forbid the cone above $T_{s}\left(\gamma_{s-2} * 1 * 0\right)$ which is allowed because we did not look at any computations in this cone during the low challenge. However, the node $T_{s}\left(\gamma_{s-2} * 1\right)$ remains viable and since it holds the computations originally obtained above $T_{s}\left(\gamma_{s-2} * 0\right)=T_{s}\left(\gamma_{s-1}\right)$, we can forbid the cone above $T_{s}\left(\gamma_{s-1}\right)$ as well.

We now issue the second low challenge for $[e]^{T_{s_{1}}\left(\gamma_{s-3} * 1\right)}$ to verify the computations which have been obtained using oracles extending $T_{s_{1}}\left(\gamma_{s-3} * 0\right)=$ $T_{s}\left(\gamma_{s-2}\right)$. The argument repeats exactly as above. Because $T_{s_{1}}\left(\gamma_{s-3} * 1\right)$ was stretched, we do not need to look at computations involving nodes extending $T_{s_{1}}\left(\gamma_{s-3} * 1\right)$ during the verification. We define $\Phi^{T_{s_{1}}\left(\gamma_{s-3} * 1 * 0\right)}\left(\left|T_{s_{1}}\left(\gamma_{s-3} * 1\right)\right|\right)=$ s_{1} to extend the definition of Φ^{A}. Each P strategy will start a version working in the cone above $T_{s_{1}}\left(\gamma_{s-3} * 1 * 0\right)$ assuming that the low challenge is never verified. If we never verify the low computations, then we win because $[e]^{A}$ is partial and we still ensure A is not computable and Φ^{A} is a modulus function. If the low challenge is met at $s_{2}>s_{1}$, then we have permission to forbid $T_{s}\left(\gamma_{s-2}\right)=T_{s_{2}}\left(\gamma_{s-2}\right)$ as the computations are now held by $T_{s_{1}}\left(\gamma_{s-3} * 1\right)$.

The pattern now repeats, but there is one final comment to make about this process. We stretch $T_{s_{2}}\left(\gamma_{s-4} * 1\right)=T_{s}\left(\gamma_{s-4} * 1\right)$ and move the current path from $T_{s_{2}}\left(\gamma_{s-4} * 0\right)=T_{s}\left(\gamma_{s-3}\right)$ to (the stretched) $T_{s_{2}}\left(\gamma_{s-4} * 1\right)$. Because s was an even stage, $s-2$ is even and hence at stage s, we had already defined $\Phi^{T_{s}\left(\gamma_{s-2}\right)}\left(\left|T_{s}\left(\gamma_{s-3}\right)\right|\right) \leq s$. Therefore, moving the path away from $T_{s}\left(\gamma_{s-3}\right)$ requires us to immediately forbid $T_{s}\left(\gamma_{s-2}\right)$. However, we have just obtained permission to forbid $T_{s}\left(\gamma_{s-2}\right)$. In general, our method of working down the current path in this inductive manner is set up to give us permission to forbid the strings required by the definitions of Φ.

Continuing in this manner and using the fact that α_{e} is one of the γ_{k} nodes (and assuming the low challenges are all met), we eventually arrive at a stage u
such that (our stretched) $T_{u}\left(\alpha_{e} * 0 * 1\right)$ holds all of the computations originally seen with oracles extending $T_{s}\left(\alpha_{e} * 0 * 0\right)$. At this point, we have solved our original conflict as we have permission to stretch $T_{u}\left(\alpha_{e} * 1\right)=T_{s}\left(\alpha_{e} * 1\right)$, move the current path from $T_{u}\left(\alpha_{e} * 0\right)=T_{s}\left(\alpha_{e} * 0\right)$ to $T_{u}\left(\alpha_{e} * 1\right)$ and immediately forbid $T_{u}\left(\alpha_{e} * 0 * 0\right)=T_{s}\left(\alpha_{e} * 0 * 0\right)$. We issue one last low challenge for $[e]^{T_{u}\left(\alpha_{e} * 1\right)}$ to verify the computations using oracles extending $T_{u}\left(\alpha_{e} * 0\right)=T_{s}\left(\alpha_{e} * 0\right)$. If this low challenge is never met, our construction succeeds because of the versions of P strategies working above $T_{u}\left(\alpha_{e} * 1\right)$ under the assumption that $[e]^{A}$ is partial, and if the low challenge is met, we win P_{e} by forbidding $T_{s}\left(\alpha_{e} * 0\right)$.

This completes our informal description of a P_{e} strategy which guesses T_{s} is eventually permanently in the low state. As there are no additional conflicts, it is straightforward to turn this description into a formal argument.

Corollary 4.2. There is no wtt-functional [e] such that for every noncomputable set A of c.e. Turing degree, $[e]^{A}$ is total and $\emptyset<_{T}[e]^{A}<_{w t t} A$.

By Corollary 4.2, we cannot use a single $w t t$-procedure to uniformly produce witnesses to Theorem 1.2. However, we could ask about other forms of uniformity. Is there is a method of indexing sets of c.e. Turing degree and a partial computable function f such that for a noncomputable set A with index e (in our indexing method), we are guaranteed that $f(e)$ is defined and $\emptyset<_{T}[f(e)]^{A}<_{w t t} A$? We end this section by showing that this is not possible for two natural methods of indexing sets of c.e. Turing degree.

Let Z_{e} denote the e-th Σ_{2}^{0} set with the approximation $Z_{e, s}$ given by the e-th Σ_{2}^{0} predicate. We say $\langle e, i\rangle$ is an c.e. degree index for a Δ_{2}^{0} set A of c.e. degree if $A=Z_{e}$ and Φ_{i}^{A} is a modulus function for $A_{s}=Z_{e, s}$. The proof of Proposition 4.1 is uniform relative to this indexing method in the sense that the proof produces a computable function $g(r)$ such that $g(r)=\langle e, i\rangle$ where $\langle e, i\rangle$ is a c.e. degree index for a noncomputable set A of c.e. Turing degree such that if $[r]^{A}$ is total, then either $[r]^{A}$ is computable or $A \leq_{w t t}[r]^{A}$.

Of course, we can give other types of indices for a set A of c.e. degree. For example, we could index A by $\langle e, k, i, j\rangle$ where $A=Z_{e}, A=\Phi_{i}^{W_{k}}$ and $W_{k}=\Phi_{j}^{A}$. By the proof of the Modulus Lemma, we can uniformly translate between indices of these two different forms. Therefore, the results below apply to this type of indexing as well.

To get our strong non-uniformity result, we will use the relativized version of the Recursion Theorem with Parameters which says that for any computable function $f(x, y)$, there is a computable function $n(y)$ such that for all oracles A and for all $y, \Phi_{n(y)}^{A}=\Phi_{f(n(y), y)}^{A}$ as partial functions. (See Soare [34] Chapters II and III.) Moreover, by the proof of this theorem, these functions have identical use functions. We will use this property to give a version of the recursion theorem for $w t t$-indices.

Because we will shift between different types of indices, recall that an index for a $w t t$-functional is a pair $\langle e, i\rangle$ where e is an index for a Turing functional Φ_{e} and i is an index for a partial computable function φ_{i}. We compute $[\langle e, i\rangle]^{A}(n)$ by first calculating $\varphi_{i}(0), \ldots, \varphi_{i}(n)$. If any of these computations fail to con-
verge, then $[\langle e, i\rangle]^{A}(n)$ diverges without asking an oracle question. Otherwise, we calculate $\Phi_{e}^{A}(n)$. We set $[\langle e, i\rangle]^{A}(n)=\Phi_{e}^{A}(n)$ if the computation converges and never quarries the oracle about a number $x>\varphi_{i}(n)$, and the computation $[\langle e, i\rangle]^{A}(n)$ diverges otherwise.

In general, for a partial computable function φ_{i} and a Turing functional Φ_{e}, we say φ_{i} bounds the use of Φ_{e} if for all oracles A and all inputs n such that $\Phi_{e}^{A}(n)$ converges, we have that $\varphi_{i}(0), \ldots, \varphi_{i}(n)$ also converge and the computation $\Phi_{e}^{A}(n)$ never quarries the oracle about a number $x>\varphi_{i}(n)$.

To move from $w t t$-indices to Turing indices for functionals, we fix a computable function $T(e, i)$ which gives the Turing index for the $w t t$-functional $[\langle e, i\rangle]$. Note that if φ_{i} is a total computable function, then for every A and $n, \varphi_{i}(n)$ bounds the use of $\Phi_{T(e, i)}^{A}=[\langle e, i\rangle]^{A}$ in the usual sense. Furthermore, if φ_{i} is partial, then φ_{i} bounds the use of $\Phi_{T(e, i)}$ in the sense of the previous paragraph and for every oracle $A, \Phi_{T(e, i)}^{A}$ is partial. More importantly for the proof below, if Φ_{e} is a Turing functional such that φ_{i} (whether partial or total) bounds the use of Φ_{e}^{A} for every A, then $\Phi_{e}^{A}=[\langle e, i\rangle]^{A}$ for every A. That is, Φ_{e} and $[\langle e, i\rangle]$ are equal as functionals.

The next proposition gives a version of the recursion theorem for $w t t$-indices. In the statement of this proposition, we think of the computable function f as a mapping between $w t t$-indices.

Proposition 4.3. Let $f(x, y): \mathbb{N}^{2} \rightarrow \mathbb{N}^{2}$ be a computable function. There is a wtt-index $\langle e, i\rangle$ such that for all $A,[\langle e, i\rangle]^{A}=[f(e, i)]^{A}$.

Proof. Let $h(x, y)=T(f(x, y))$. Since $h(x, y)$ is a computable function from \mathbb{N}^{2} to \mathbb{N}, the relativized version of the Recursion Theorem with Parameters gives us a computable function $n(y)$ such that for all A and y, we have $\Phi_{h(n(y), y)}^{A}=$ $\Phi_{n(y)}^{A}$ as partial functions and the uses of these computations are identical. By the definitions of the functions h and $T, \Phi_{h(n(y), y)}^{A}=[f(n(y), y)]^{A}$ for all A. Therefore, the use of $\Phi_{h(n(y), y)}^{A}$, and hence also the use of $\Phi_{n(y)}^{A}$, is bounded by $\varphi_{\pi_{2}(f(n(y), y))}$ where $\pi_{2}(\langle u, v\rangle)=v$ is the second projection function on pairs.

Let $k(y)$ be the computable function defined by $k(y)=\pi_{2}(f(n(y), y))$. By the Recursion Theorem, there is an index a such that $\varphi_{k(a)}=\varphi_{a}$ as partial computable functions. By the definition of k, we have

$$
\varphi_{\pi_{2}(f(n(a), a))}=\varphi_{a}
$$

and so the use of $\Phi_{n(a)}^{A}$ is bounded by φ_{a} for every A. Therefore, we have $\Phi_{n(a)}^{A}=[\langle n(a), a\rangle]^{A}$ and

$$
[f(n(a), a)]^{A}=\Phi_{h(n(a), a)}^{A}=\Phi_{n(a)}^{A}=[\langle n(a), a\rangle]^{A}
$$

as required to prove the proposition with $e=n(a)$ and $i=a$.
We end this section with the stronger non-uniformity result.

Proposition 4.4. There is no partial computable function $f(x, y)$ such that for every pair $\langle x, y\rangle$ which is a c.e. degree index for a noncomputable Δ_{2}^{0} set (that is, $A=Z_{x}$ is not computable and Φ_{y}^{A} is a modulus function for $\left.A\right), f(x, y)$ converges and $\emptyset<_{T}[f(x, y)]^{A}<_{w t t} A$.

Proof. Suppose there is such a partial computable function $f(x, y)$. Let $g(e, i)$ be the function witnessing the uniformity in the proof of Proposition 4.1. That is, for all $w t t$-indices $\langle e, i\rangle, g(e, i)=\langle x, y\rangle$ where $\langle x, y\rangle$ is the c.e. degree index for a noncomputable set A such that if $[\langle e, i\rangle]^{A}$ is computable, then either $[\langle e, i\rangle]^{A}$ is computable or $A \leq_{w t t}[\langle e . i\rangle]^{A}$. Note that the composition $f \circ g: \mathbb{N}^{2} \rightarrow \mathbb{N}^{2}$ is a total computable function.

Applying Proposition 4.3 to $f \circ g$ we get a pair $\langle e, i\rangle$ such that $[\langle e, i\rangle]^{X}=$ $[f(g(e, i))]^{X}$ for all sets X. Let A be the noncomputable set with c.e. degree index $g(e, i)$. The properties of f tell us that $\emptyset<_{T}[f(g(e, i))]^{A}<_{w t t} A$, so in particular, $[f(g(e, i))]^{A}$ is total. Therefore, $[\langle e, i\rangle]^{A}$ is also total. Since $g(e, i)$ is the c.e. degree index of A, the properties of g tell us that either $[\langle e, i\rangle]^{A}=$ $[f(g(e, i))]^{A}$ is computable or $A \leq_{w t t}[\langle e, i\rangle]^{A}=[f(g(e, i))]^{A}$, both of which give a contradiction.

4.2 Almost c.e. approximations

Over the next two sections, we present the proof of Theorem 1.2. In this section, we identify a specific type of approximation, called an almost c.e. approximation, such that if A has an almost c.e. approximation then it is straightforward to verify that there is a c.e. set $B \leq_{w t t} A$ of the same Turing degree as A. Thus, if such a set A is not computable, it cannot have minimal $w t t$-degree. After completing this case, we show that any set with c.e. Turing degree has an approximation which possesses most of the properties of an almost c.e. approximation. We will use this approximation to complete our proof in the next section.

Definition 4.5. A set A has an almost c.e. approximation if there exists a computable sequence of finite strings $\left\{\sigma_{i}[s] \mid i<s, s \in \omega\right\}$ satisfying the following properties for every $i<s$.
$(\mathrm{P} 1) \sigma_{i}[s] \subseteq \sigma_{i+1}[s]$.
(P2) $\sigma_{i}[s]$ and $\sigma_{i}[s+1]$ are either equal or incomparable.
(P3) If $\sigma_{i}[s]$ and $\sigma_{i}[s+1]$ are incomparable, then $\sigma_{i}[t]$ and $\sigma_{i}[s]$ are incomparable for every $t \geq s+1$.
(P4) For each $i, \lim _{s} \sigma_{i}[s]$ exists and $A=\bigcup_{i} \lim _{s} \sigma_{i}[s]$.
An almost c.e. approximation of A is a sequence of "marked" initial segments $\sigma_{0}[s] \subseteq \sigma_{1}[s] \subseteq \cdots \subseteq \sigma_{s-1}[s] \subseteq A_{s}$ at each stage s such that each time we move away from a marked segment (i.e. $\sigma_{i}[s] \nsubseteq A_{s+1}$), we cannot return to extend
this marked segment at any future stage $t>s+1$ (i.e. $\sigma_{i}[s] \nsubseteq A_{t}$). For example, every c.e. set A has an almost c.e. approximation by setting $\sigma_{i}[s]=A_{s} \upharpoonright i$.

If A has an almost c.e. approximation, then A is clearly Δ_{2}^{0}. However, an almost c.e. approximation might not be either a left or right c.e. approximation since we might restore part (but not all) of $\sigma_{i}[s]$ at a future stage t after $\sigma_{i}[s] \nsubseteq$ A_{s+1}. We say that these approximations are almost c.e. because they act as c.e. approximations to A modulo the marked segments. That is, $\sigma_{i}[s]$ is a correct initial segment of A as long as $\forall t \geq s\left(\sigma_{i}[s] \subseteq A_{t}\right)$, but as soon as this Π_{1}^{0} statement fails, we know that $\sigma_{i}[s]$ is not a correct initial segment.

Proposition 4.6. If A has an almost c.e. approximation then there is a c.e. set B such that $A \leq_{T} B \leq_{w t t} A$.

Proof. Fix an almost c.e. approximation $\left\{\sigma_{i}[s] \mid i<s, s \in \omega\right\}$ of A. For each $i<s$ let $q_{i}^{s}=\max \left\{\left|\sigma_{i}[t]\right| \mid t \leq s\right\}$ and note that $\lim _{s} q_{i}^{s}$ exists since $\lim _{s} \sigma_{i}[s]$ exists. Let B be the set of all triples $\langle\sigma, q, i\rangle$ such that for some $s, \sigma=\sigma_{i}[s]$, $q=q_{i}^{s}$ and $\sigma_{i}[s] \neq \sigma_{i}[s+1]$.

From its definition, B is a c.e. set. In particular, a triple $\langle\sigma, q, i\rangle$ is only eligible to be enumerated into B if it has the form $\left\langle\sigma_{i}[t], q_{i}^{t}, i\right\rangle$ with $\sigma_{i}[t]$ and q_{i}^{t} calculated at some stage t of our almost c.e. approximation. Given such a triple $\left\langle\sigma_{i}[t], q_{i}^{t}, i\right\rangle$, we eventually enumerate this triple into B if and only if $\sigma_{i}[t] \nsubseteq A$. For one direction, if $\sigma_{i}[t] \nsubseteq A$, then we eventually see a stage $s \geq t$ such that $\sigma_{i}[t]=\sigma_{i}[s] \nsubseteq A_{s+1}$ and hence $\sigma_{i}[s] \neq \sigma_{i}[s+1]$. For the other direction, if $\sigma_{i}[t] \subseteq A$, then by Property (P3) of Definition 4.5, $\sigma_{i}[t]=\sigma_{i}[s]$ for all $s \geq t$.

To see that $A \leq_{T} B$, for each i, we search for the least stage s such that $\left\langle\sigma_{i}[s], q_{i}^{s}, i\right\rangle \notin B$. By the previous paragraph, such s exists and is the least stage such that $\sigma_{i}[s] \subseteq A$ (or equivalently, the least stage such that $\sigma_{i}[s]=\lim _{t} \sigma_{i}[t]$). Since $A=\bigcup_{i} \lim _{t} \sigma_{i}[t]$, this process suffices to compute A.

To see that $B \leq_{w t t} A$, fix a triple $\langle\sigma, q, i\rangle$. We search for the first stage s such that either $\bar{q}_{i}^{s}>q$ or $\sigma_{i}[s] \subseteq A$. Because there are only finitely many possible values for strings $\sigma_{i}[t]$ of length less than q and because the values of q_{i}^{t} are non-decreasing in t, the existence of this stage s follows from Property (P3) of Definition 4.5. Furthermore, to compute s, we only need access to the first q many bits of A.

Suppose $q_{i}^{s}>q$. Because the values q_{i}^{t} are non-decreasing in t, we will not enumerate $\langle\sigma, q, i\rangle$ into B after stage s. Therefore, $\langle\sigma, q, i\rangle \in B$ if and only if there is a stage $t<s$ such that $\sigma=\sigma_{i}[t], q=q_{i}^{t}$ and $\sigma_{i}[t] \neq \sigma_{i}[t+1]$.

On the other hand if $\sigma_{i}[s] \subseteq A$ then for every $t \geq s$ we have $\sigma_{i}[t]=\sigma_{i}[s]$ and $q_{i}^{t}=q_{i}^{s}$, which again means that $\langle\sigma, q, i\rangle \in B$ if and only if there is some $t<s$ so that $\sigma=\sigma_{i}[t], q=q_{i}^{t}$ and $\sigma_{i}[t] \neq \sigma_{i}[t+1]$.

Corollary 4.7. If A has an almost c.e. approximation, then A is not wttminimal.

Proof. Corollary 4.7 follows immediately from Proposition 4.6 because the noncomputable c.e. $w t t$-degrees are dense.

Corollary 4.7 completes the proof of Theorem 1.2 in the case when A has an almost c.e. approximation. Our next goal is to show that if A has c.e. Turning degree, then A can be approximated using strings which have Properties (P1), (P2) and (P4) from Definition 4.5.

Fix a set A of non-computable c.e. Turing degree. As noted in the previous section, by the Modulus Lemma, there is a Δ_{2}^{0} approximation A_{s} to A such that A can compute a modulus for this approximation. We fix such an approximation A_{S} and a Turing functional Ψ such that Ψ^{A} is a modulus for the approximation A_{s}. Without loss of generality, we assume that if $\Psi^{A_{s}}(x)[s]$ converges, then $\Psi^{A_{s}}(y)[s]$ also converges for all $y<x$.

We use the fixed Δ_{2}^{0} approximation A_{s} and functional Ψ to define a finite set of strings at each stage s which will eventually give us a approximation to A similar to an almost c.e. approximation. At each stage s, we compute a finite sequence $\alpha_{0}[s], \ldots, \alpha_{k_{s}}[s]$ of initial segments of A_{s} as follows. Set $\alpha_{0}[s]=A_{s} \upharpoonright$ $0=\left\langle A_{s}(0)\right\rangle$. If $\alpha_{i}[s]$ is defined, then we define $\alpha_{i+1}[s]$ to be the first string found satisfying
(C1) $\alpha_{i}[s] \subseteq \alpha_{i+1}[s] \subseteq A_{s}$ and
(C2) $\Psi^{\alpha_{i+1}}{ }^{[s]}\left(\left|\alpha_{i}[s]\right|\right)[s]$ converges.
If no such string $\alpha_{i+1}[s]$ is found, then our sequence of approximating strings ends with $\alpha_{i}[s]$ and we set $k_{s}=i$. To be more precise about the search procedure to define $\alpha_{i+1}[s]$, we first check whether $\Psi^{A_{s}}\left(\left|\alpha_{i}[s]\right|\right)[s]$ converges. If so, we take $\alpha_{i+1}[s]$ to be the shortest initial segment of A_{s} such that this computation does not query any bits greater than $\left|\alpha_{i+1}[s]\right|$ (so it satisfies (C2)) and such that it is also long enough to satisfy (C1). Note that the sequence $\alpha_{0}[s], \ldots, \alpha_{k_{s}}[s]$ is uniformly computable in s.

It is straightforward to check by induction on i that $\alpha_{i}[s]$ is defined for cofinitely many stages s and that $\lim _{s} \alpha_{i}[s]=\alpha_{i}$ exists and is an initial segment of A. We want to make the set of these approximating sequences look more like an almost c.e. approximation by speeding up the computation procedure Ψ^{A} to ensure that at stage s, we define $\alpha_{i}[s]$ for all $i<s$. That is, we want to think of $\alpha_{i}[s]$ performing the same approximating task as $\sigma_{i}[s]$.
Definition 4.8. We say that s is an n-modulus stage if for all $x \leq n$, there is a $t \leq s$ such that $\Psi^{A_{s}}(x)[s]=t$ and for all stages u such that $t \leq u \leq s$, $A_{u} \upharpoonright x=A_{t} \upharpoonright x$.

Intuitively, s is an n-modulus stage if $\Psi^{A_{s}}[s]$ converges on all inputs up to n and the output stages are consistent (as far as we can tell at stage s) with Ψ^{A} being a modulus function for A. Since Ψ^{A} is a modulus function for A, it follows that for each n, there will be cofinitely many n-modulus stages.
Definition 4.9. We say that s is an ℓ-approximation stage if $\alpha_{0}[s], \ldots, \alpha_{\ell-1}[s]$ are defined and s is an $\left|\alpha_{\ell-1}[s]\right|$-modulus stage.

That is, s is an ℓ-approximation stage if $\alpha_{i}[s]$ is defined for all $i<\ell$ and for every $x \leq\left|\alpha_{\ell-1}[s]\right|$, the computations $\Psi^{A_{s}}(x)[s]$ are consistent (as far as we
can tell at stage s) with Ψ^{A} being a modulus function. Again, because Ψ^{A} is a modulus function, there are cofinitely many ℓ-approximation stages for each ℓ.

Let $0=t_{0}<t_{1}<t_{2}<\cdots$ be a sequence of stages such that for $s>0, t_{s}$ is an s-approximation stage. We speed up our computations to run along these chosen stages so we can treat stage s as an s-approximation stage. That is, we assume that at stage s, the strings $\alpha_{i}[s]$ are defined for $i<s$ and that for all $x \leq\left|\alpha_{s-1}[s]\right|$, the computation $\Psi^{A_{s}}(x)[s]=t$ converges with $t \leq s$ and for all u such that $t \leq u \leq s, A_{u} \upharpoonright x=A_{t} \upharpoonright x$.

In particular, we now have an approximation to A by finite strings in stages given by $\left\{\alpha_{i}[s] \mid i<s, s \in \omega\right\}$. In the remained of this section, we verify properties of these approximating sequence and show that they closely resemble an almost c.e. approximation. First, we show that they satisfies Properties (P1) and (P4) of an almost c.e. approximation.

Lemma 4.10. Our sequences $\left\{\alpha_{i}[s] \mid i<s, s \in \omega\right\}$ satisfy $\alpha_{i}[s] \subseteq \alpha_{i+1}[s]$. Furthermore, $\lim _{s} \alpha_{i}[s]$ exists and is an initial segment of A.

Proof. The first statement is just the the condition (C1). The proof of the second statement is a straightforward induction on i. The base case is clear since $\alpha_{0}[s]=\left\langle A_{s}(0)\right\rangle$ and A_{s} is a Δ_{2}^{0} approximation for A. For the induction case, let s_{i} denote a stage such that $\alpha_{i}\left[s_{i}\right]$ has reached its limiting value. The value of $\alpha_{i+1}[s]$ will stabilize by stage $s>s_{i}$ such that $\Phi^{A_{s}}\left(\left|\alpha_{i}\left[s_{i}\right]\right|\right)[s]$ converges and A_{s} is correct up to the maximum of $\left|\alpha_{i}\left[s_{i}\right]\right|$ and the use of the computation.

Lemma 4.11. Let $i<s<t$ be such that $\alpha_{i}[s] \subseteq A_{t}$. For all $j \leq i$, we have $\alpha_{j}[t]=\alpha_{j}[s]$, and for all $j<i$ and all u satisfying $s \leq u \leq t$, we have $\alpha_{j}[u]=\alpha_{j}[s]$.

Proof. We proceed by induction of i. Since $\alpha_{0}[s]=\left\langle A_{s}(0)\right\rangle$, the statement is clear for $i=0$. Assume the lemma holds for i and we prove it for $i+1$. Fix $t>s$ such that $\alpha_{i+1}[s] \subseteq A_{t}$. Since $\alpha_{i}[s] \subseteq \alpha_{i+1}[s] \subseteq A_{t}$, the induction hypothesis gives that $\alpha_{j}[t]=\alpha_{j}[s]$ for all $j \leq i$ and that $\alpha_{j}[u]=\alpha_{j}[s]$ for all $j<i$ and $s \leq u \leq t$. Because $\alpha_{i}[t]=\alpha_{i}[s]$ and $\alpha_{i+1}[s] \subseteq A_{t}$, we have that $\Phi^{A_{t}}\left(\left|\alpha_{i}[t]\right|\right)[t]$ converges by the same computation as $\Phi^{A_{s}}\left(\left|\alpha_{i}[s]\right|\right)[s]$, and therefore, that $\alpha_{i+1}[t]$ is chosen to be the same initial segment as $\alpha_{i+1}[s]$.

To complete the proof, assume for a contradiction that there is a stage u with $s<u<t$ such that $\alpha_{i}[u] \neq \alpha_{i}[s]$. Fix such a stage u. Since $\alpha_{i+1}[s]$ is defined, we know that

$$
\Psi^{\alpha_{i+1}[s]}\left(\left|\alpha_{i}[s]\right|\right)[s]=s^{\prime} \leq s
$$

As above, since $s<t, \alpha_{i}[s]=\alpha_{i}[t]$ and $\alpha_{i+1}[s] \subseteq A_{t}$, we have

$$
\Psi^{A_{t}}\left(\left|\alpha_{i}[t]\right|\right)[t]=s^{\prime}
$$

Because t is an $\left|\alpha_{i}[t]\right|$-modulus stage, we have

$$
A_{v} \upharpoonright\left|\alpha_{i}[t]\right|=A_{s^{\prime}} \upharpoonright\left|\alpha_{i}[t]\right|
$$

for all stages v such that $s^{\prime} \leq v \leq t$. However, $s^{\prime} \leq s<u<t$ and $\alpha_{i}[s]=\alpha_{i}[t]$, so we conclude that

$$
A_{u} \upharpoonright\left|\alpha_{i}[s]\right|=A_{s} \upharpoonright\left|\alpha_{i}[s]\right|=\alpha_{i}[s]
$$

and hence $\alpha_{i}[s] \subseteq A_{u}$. By the induction hypothesis, $\alpha_{i}[u]=\alpha_{i}[s]$ contradicting our assumption that $\alpha_{i}[u] \neq \alpha_{i}[s]$ and concluding the proof.

The next lemma shows that these approximating strings also satisfy Property (P2) of an almost c.e. approximation.

Lemma 4.12. For all s and all $i<s, \alpha_{i}[s]$ and $\alpha_{i}[s+1]$ are either equal or incomparable.

Proof. The proof proceeds by induction on i with the case $i=0$ holding trivially by definition. For the induction case, assume $i>0$ with $\alpha_{i}[s]$ and $\alpha_{i}[s+1]$ comparable. It follows that $\alpha_{i-1}[s]$ and $\alpha_{i-1}[s+1]$ are comparable and hence equal. In particular, $\left|\alpha_{i-1}[s]\right|=\left|\alpha_{i-1}[s+1]\right|$. If $\alpha_{i}[s+1] \subsetneq \alpha_{i}[s] \subseteq A_{s}$, then the string $\alpha_{i}[s+1]$ was available as a potential value to be chosen for $\alpha_{i}[s]$ (i.e. it is an initial segment of A_{s} extending $\alpha_{i-1}[s]$ and is long enough to use as an oracle for the convergent computation on $\left.\left|\alpha_{i-1}[s]\right|\right)$ and so we would have chosen $\alpha_{i}[s]$ to be the shorter string $\alpha_{i}[s+1]$. Therefore, we cannot have $\alpha_{i}[s+1] \subsetneq \alpha_{i}[s] \subseteq A_{s}$. So, we must have $\alpha_{i}[s] \subseteq \alpha_{i}[s+1] \subseteq A_{s+1}$ and hence by Lemma 4.11, $\alpha_{i}[s]=\alpha_{i}[s+1]$.

In this proof, we use the fact that $s+1>s$ but we never use the fact that $s+1$ is the stage immediately after s. Therefore, this proof really shows that comparable strings $\alpha_{i}[s]$ and $\alpha_{i}[t]$ at stages $s<t$ must be equal. We will use this property repeatedly in the verification of the construction in the next section.

Lemma 4.13. For all stages $s<t$ and indices $i<s$, if $\alpha_{i}[s]$ and $\alpha_{i}[t]$ are comparable, then $\alpha_{i}[s]=\alpha_{i}[t]$.

Our next fact shows that although the strings $\alpha_{i}[s]$ may not satisfy Property (P3) of an almost c.e. approximation, they do satisfy a similar property. We can have stages $s<u<t$ such that $\alpha_{i}[s] \neq \alpha_{i}[u]$ but $\alpha_{i}[s]=\alpha_{i}[t]$. However, when this happens, we can guarantee that the value of $\alpha_{i+1}[t]$ is not equal to any value of this string prior to stage s.

Lemma 4.14. Suppose $\alpha_{i}[s]$ is defined and $\alpha_{i}[s] \nsubseteq A_{u}$ for some $u>s$. At every future stage $t>u$, if $\alpha_{i}[s] \subseteq A_{t}$, then $\alpha_{i+1}[t] \neq \alpha_{i+1}\left[s^{\prime}\right]$ for all $s^{\prime} \leq s$.

Proof. Suppose that $\alpha_{i}[s] \nsubseteq A_{u}$ for some $u>s$ and fix a stage $t>u$ such that $\alpha_{i}[s] \subseteq A_{t}$. Assume for a contradiction that $\alpha_{i+1}[t]=\alpha_{i+1}\left[s^{\prime}\right]$ for a fixed $s^{\prime} \leq s$.

By Lemma 4.11, $\alpha_{i}[s] \subseteq A_{t}$ implies $\alpha_{i}[s]=\alpha_{i}[t]$. Similarly, $\alpha_{i}\left[s^{\prime}\right] \subseteq$ $\alpha_{i+1}\left[s^{\prime}\right]=\alpha_{i+1}[t] \subseteq A_{t}$ implies $\alpha_{i}\left[s^{\prime}\right]=\alpha_{i}[t]$ and hence $\alpha_{i}\left[s^{\prime}\right]=\alpha_{i}[s]$. However, since $\alpha_{i}[s] \nsubseteq A_{u}$, we know that $\alpha_{i}[s] \neq \alpha_{i}[u]$ and so $\alpha_{i}\left[s^{\prime}\right] \neq \alpha_{i}[u]$. Putting these facts together, we have stages $s^{\prime}<u<t$ with $\alpha_{i}[u] \neq \alpha_{i}\left[s^{\prime}\right]$ and $\alpha_{i+1}\left[s^{\prime}\right] \subseteq A_{t}$ contradicting Lemma 4.11.

We next give a slight strengthening of this lemma. We say that a string $\alpha_{i}[s]$ is new if $\alpha_{i}[s] \neq \alpha_{i}\left[s^{\prime}\right]$ for all $s^{\prime}<s$. Similarly, we say $\alpha_{i}[s]$ was new at stage t (or first appeared at stage t) if $t \leq s, \alpha_{i}[s]=\alpha_{i}[t]$ and $\alpha_{i}[t]$ was new.

Lemma 4.15. If $s_{0}<s_{1}<s_{2}$ are stages such that $\alpha_{i}\left[s_{0}\right] \neq \alpha_{i}\left[s_{1}\right]$ but $\alpha_{i}\left[s_{0}\right]=$ $\alpha_{i}\left[s_{2}\right]$, then $\alpha_{i+1}\left[s_{2}\right] \neq \alpha_{i+1}\left[s^{\prime}\right]$ for all $s^{\prime} \leq s_{1}$. In particular, if $\alpha_{i+1}\left[s_{2}\right]$ was new at stage t, then $s_{1}<t$.

Proof. The second statement in the lemma follows immediately from the first statement. To prove the first statement, fix stages $s_{0}<s_{1}<s_{2}$ and an index i as described. Suppose for a contradiction that $\alpha_{i+1}\left[s_{2}\right]=\alpha_{i+1}\left[s^{\prime}\right]$ for some $s^{\prime} \leq s_{1}$, and hence that $\alpha_{i+1}\left[s^{\prime}\right] \subseteq A_{s_{2}}$. By Lemma 4.11, $\alpha_{i}\left[s^{\prime}\right]=\alpha_{i}\left[s_{2}\right]$ (and hence $\left.\alpha_{i}\left[s^{\prime}\right]=\alpha_{i}\left[s_{0}\right]\right)$ and for all stages u such that $s^{\prime} \leq u \leq s_{2}, \alpha_{i}[u]=\alpha_{i}\left[s^{\prime}\right]$. In particular, since $s^{\prime} \leq s_{1} \leq s_{2}$, we have $\alpha_{i}\left[s_{1}\right]=\alpha_{i}\left[s^{\prime}\right]$ and therefore $\alpha_{i}\left[s_{1}\right]=$ $\alpha_{i}\left[s_{0}\right]$ for the desired contradiction.

Before finishing this section, we want to slightly alter our definition of the sequence of strings $\alpha_{i}[s]$ by adding two stretching conditions in the case when $i>0$. First, by Lemma 4.15, we know that if $s_{0}<s_{1}$ with $\alpha_{i}\left[s_{0}\right] \neq \alpha_{i}\left[s_{1}\right]$, then the values of $\alpha_{i+1}[t]$ for $t>s_{1}$ are all initially chosen after stage s_{1}. In such a situation, we want to choose the strings $\alpha_{i+1}[t]$ to have length longer than s_{1}. Second, when a value $\alpha_{i+1}[s]$ is new (i.e. $\alpha_{i+1}[s] \neq \alpha_{i+1}\left[s^{\prime}\right]$ for all $s^{\prime}<s$), we want to choose $\alpha_{i+1}[s]$ so that its length is at least as long as the lengths of the values of $\alpha_{i+1}\left[s^{\prime}\right]$ for $s^{\prime}<s$.

Formally, we define $\alpha_{0}[s]=A_{s} \upharpoonright 0=\left\langle A_{s}(0)\right\rangle$ and we choose $\alpha_{i+1}[s]$ to satisfy
(C1) $\alpha_{i}[s] \subseteq \alpha_{i+1}[s] \subseteq A_{s}$,
(C2) $\Psi^{\alpha_{i+1}[s]}\left(\left|\alpha_{i}[s]\right|\right)[s]$ converges,
(C3) if there are stages $s_{0}<s_{1}<s$ with $\alpha_{i}\left[s_{0}\right]=\alpha_{i}[s]$ and $\alpha_{i}\left[s_{0}\right] \neq \alpha_{i}\left[s_{1}\right]$, then $\left|\alpha_{i+1}\left[s_{1}\right]\right|>s_{1}$, and
(C4) if $\alpha_{i+1}[s] \neq \alpha_{i+1}\left[s^{\prime}\right]$ for all $s^{\prime}<s$, then $\left|\alpha_{i+1}[s]\right| \geq \max \left\{\left|\alpha_{i+1}\left[s^{\prime}\right]\right| \mid s^{\prime}<s\right\}$.
To incorporate these stretching conditions, when defining $\alpha_{i+1}[s]$, we first check whether there is a stage $u<s$ such that $\alpha_{i}[s]=\alpha_{i}[u]$ and $\alpha_{i+1}[u] \subseteq A_{s}$. If so, we set $\alpha_{i+1}[s]=\alpha_{i+1}[u]$ for the least such state u. Otherwise, we choose $\alpha_{i+1}[s]$ to be the least initial segment of A_{s} satisfying (C1)-(C4). By speeding up our computations as before, we assume that at stage s, the strings $\alpha_{0}[s], \ldots, \alpha_{s-1}[s]$ are defined. With minor changes, the arguments for the properties given in Lemmas 4.10 through 4.15 go through so we maintain these properties.

4.3 Proof of Theorem 1.2

We turn to the proof of Theorem 1.2. Fix a set A of noncomputable c.e. degree and by Corollary 4.7 assume that A does not have an almost c.e. approximation. We use this assumption in an essential way during the construction.

We need to construct a noncomputable set C such that $C \leq_{w t t} A$ and $A \not z_{w t t} C$. In fact, C will have the stronger property that $A \not \leq_{T} C$. We meet the following requirements:

$$
\begin{aligned}
& \mathcal{P}_{e}: C \neq \Delta_{e} \\
& \mathcal{R}_{e}: \Phi_{e}^{C} \neq A
\end{aligned}
$$

where Δ_{e} is the $e^{t h}$ partial computable function and Φ_{e} is the $e^{t h}$ Turing functional. The construction is finite injury and the requirements are given priority $\mathcal{P}_{0}<\mathcal{R}_{0}<\mathcal{P}_{1}<\cdots$.

4.3.1 Definition of $C \leq_{w t t} A$

The reduction $C \leq_{w t t} A$ will have identity bounded use. We indirectly build C using the notion of marks. At each stage of the construction we may declare an unmarked number marked (marking a number), or declare an already marked number unmarked (removing a mark). Since competing \mathcal{R} requirements may have different views about wanting to have a number marked or unmarked, we will allow a number to be conditionally unmarked with respect to a neighborhood.

A neighborhood $N(i, s)$ is specified by an index i and a stage s. The neighborhood $N(i, s)$ is the set of all X such that $\alpha_{i}[s] \subseteq X$ and $\alpha_{i+1}[t] \nsubseteq X$ for any $t \leq s$. Therefore a neighborhood $N(i, s)$ contains the possible values for A if it is the case that the approximation for A moves away from $\alpha_{i}[s]$ but later returns to $\alpha_{i}[s]$. The neighborhood $N(i, s)$ is said to apply at stage $u>s$ (or be applicable at u) if $A_{u} \in N(i, s)$.

Each number may be declared marked at most once. The marking of a number is global and applies to all neighborhoods. A number can be declared unmarked with respect to some neighborhood only if it is already marked. We will ensure during the construction that a mark on m can only be placed after stage m.

Intuitively, if a number x has been marked but has not been unmarked with respect to an applicable neighborhood at a stage s, we will have (as long as it is consistent to do so) $C_{s}(x)=1$, and $C_{s}(x)=0$ otherwise. Formally, we have the following definition.

Definition 4.16. We define the stage s approximation C_{s} of C as follows. For each $x<s$ if $A_{t} \upharpoonright x \nsubseteq A_{s}$ for every $x<t<s$, then $C_{s}(x)=1$ if and only if there is a mark on x which has not yet been removed with respect to a neighborhood that currently applies. Otherwise, $C_{s}(x)=C_{t}(x)$ for the least stage t such that $x<t<s$ such that $A_{t} \upharpoonright x \subseteq A_{s}$.

The following lemma shows this definition ensures $C \leq{ }_{w t t} A$ as required.
Lemma 4.17. For every x and $s>t>x$, if $A_{t} \upharpoonright x \subseteq A_{s}$ then $C_{s}(x)=C_{t}(x)$. Hence $C=\lim _{s} C_{s}$ exists and C is computable from A with identity bounded use.

Proof. The first statement follows by a straightforward induction on s. To see that $C=\lim _{s} C_{s}$ exists, fix x and let $s^{\prime}>x$ be such that $A_{s} \upharpoonright x=A \upharpoonright x$ for all $s \geq s^{\prime}$. Since $C_{s}(x)=C_{s^{\prime}}(x)$ for all $s \geq s^{\prime}, \lim _{s} C_{s}(x)$ exists.

To compute $C(x)$ from A, let $s>x$ be the least stage such that $A_{s} \upharpoonright x=$ $A \upharpoonright x$. Since s is chosen least, $A_{t} \upharpoonright x \not \subset A_{s}$ for all t such that $x<t<s$. By definition, $C_{s}(x)=1$ if and only if there is a mark on x at stage s which has not been removed with respect to a neighborhood containing A_{s}. By the first statement in the lemma, $C(x)=C_{s}(x)$ and hence we can determine the value of $C(x)$ using only $A \upharpoonright x$.

4.3.2 Informal description of the \mathcal{P}_{e} strategy

We describe the basic strategy to meet a single \mathcal{P}_{e} requirement. \mathcal{P}_{e} defines a sequence of followers $p_{e}(0)<p_{e}(1)<\cdots$ at stages $s_{e}(0)<s_{e}(1)<\cdots$ and attempts to use $\alpha_{p_{e}(i)}\left[s_{e}(i+1)\right]$ to compute A. In addition, \mathcal{P}_{e} defines a sequence of marked numbers $m_{e}(0)<m_{e}(1)<\cdots$ with $m_{e}(i)$ marked at stage $s_{e}(i+1)$ and tries to ensure that for some i, we have $C\left(m_{e}(i)\right)=1 \neq \Delta_{e}\left(m_{e}(i)\right)$. Because A is not computable, one of these diagonalization attempts will succeed.

At stage $s_{e}(i+1), \mathcal{P}_{e}$ declares that it has computed A up to $\left|\alpha_{p_{e}(i)}\left[s_{e}(i+1)\right]\right|$ to be equal to $\alpha_{p_{e}(i)}\left[s_{e}(i+1)\right]$ and it marks a number $m_{e}(i)$ for which it has seen $\Delta_{e}\left(m_{e}(i)\right)=0$. If for all $t \geq s_{e}(i+1), \alpha_{p_{e}(i)}\left[s_{e}(i+1)\right]=\alpha_{p_{e}(i)}[t]$, then $\mathcal{P}_{e}{ }^{\prime}$'s declared computation is correct. Since A is not computable, there must be a follower $p_{e}(i)$ and stage $t>s_{e}(i+1)$ such that $\alpha_{p_{e}(i)}[t] \neq \alpha_{p_{e}(i)}\left[s_{e}(i+1)\right]$. Under the right circumstances, the movement of A from $A_{s_{e}(i+1)}$ to A_{t} will cause the mark on $m_{e}(i)$ to change the definition of $C_{s_{e}(i+1)}\left(m_{e}(i)\right)=0$ to $C_{t}\left(m_{e}(i)\right)=1$ permanently.

More formally, \mathcal{P}_{e} acts as follows.

1. Choose $p_{e}(0)$ large at stage $s_{e}(0)$. Assume that $p_{e}(i)$ is the largest defined follower and $p_{e}(i)$ was chosen at stage $s_{e}(i)$.
2. Wait for a stage $s>s_{e}(i)$ at which there is a fresh number m (unmarked and unused by any other requirement) such that
(a) $m_{e}(i-1)<m<s$ (where $\left.m_{e}(-1)=0\right)$,
(b) $C_{s} \upharpoonright m=\Delta_{e, s} \upharpoonright m$ (so $C_{s}(m)=\Delta_{e, s}(m)=0$ because m is unmarked),
(c) $\alpha_{p_{e}(i)+1}[u]=\alpha_{p_{e}(i)+1}[m]$ for all stages u such that $m \leq u \leq s$, and
(d) $\left|\alpha_{p_{e}(i)+1}[u]\right|<m$ for all stages $u \leq s$.
3. When \mathcal{P}_{e} sees such a stage s and witness m, it
(a) sets $m_{e}(i)=m$ and marks $m_{e}(i)$,
(b) sets $s_{e}(i+1)=s$ and chooses $p_{e}(i+1)$ large,
(c) declares it has computed $A \upharpoonright\left|\alpha_{p_{e}(i)}\left[s_{e}(i+1)\right]\right|=\alpha_{p_{e}(i)}\left[s_{e}(i+1)\right]$, and
(d) returns to Step 2 with i incremented to $i+1$.

To see why this strategy should succeed, recall that $\alpha_{p_{e}(i)}[s]$ takes only finitely many values as s increases because it has a limit. Therefore, there will be cofinitely many stages at which there is a (fixed) witness m satisfying the conditions in $2(\mathrm{a}), 2(\mathrm{c})$ and $2(\mathrm{~d})$. If $2(\mathrm{~b})$ is never satisfied at any of these stages, then $C \neq \Delta_{e}$ and \mathcal{P}_{e} is won. However, as noted above, if \mathcal{P}_{e} produces infinitely many followers and for every $t>s_{e}(i+1), \alpha_{p_{e}(i)}\left[s_{e}(i+1)\right]=\alpha_{p_{e}(i)}[t]$, then A would be computable. Therefore, we consider the least index i and least stage $t>s_{e}(i+1)$ at which $\alpha_{p_{e}(i)}[t] \neq \alpha_{p_{e}(i)}\left[s_{e}(i+1)\right]$. Since $\Delta_{e}\left(m_{e}(i)\right)=0$, we need to explain why $C\left(m_{e}(i)\right)=1$. In fact, we show that $C_{t^{\prime}}\left(m_{e}(i)\right)=1$ for all $t^{\prime} \geq t$.

Fix a stage $t^{\prime} \geq t$. To determine the value of $C_{t^{\prime}}\left(m_{e}(i)\right)$, let $s \leq t^{\prime}$ be the least stage such that $m_{e}(i)<s$ and $A_{t^{\prime}} \upharpoonright m_{e}(i)=A_{s} \upharpoonright m_{e}(i)$. If $s_{e}(i+1)<s$, then since $m_{e}(i)$ is marked at stage $s_{e}(i+1)$, it follows from the definition of C that $C_{s}\left(m_{e}(i)\right)=1$ and hence by Lemma 4.17, $C_{t^{\prime}}\left(m_{e}(i)\right)=C_{s}\left(m_{e}(i)\right)=1$. Therefore, it suffices to show that we cannot have $s \leq s_{e}(i+1)$.

Suppose for a contradiction that $A_{t^{\prime}} \upharpoonright m_{e}(i)=A_{s} \upharpoonright m_{e}(i)$ with $s \leq s_{e}(i+1)$. By Condition 2(d) when $m_{e}(i)$ is defined at stage $s_{e}(i+1),\left|\alpha_{p_{e}(i)+1}[s]\right|<m_{e}(i)$ and hence $\alpha_{p_{e}(i)+1}[s] \subseteq A_{t^{\prime}}$. By Lemma 4.11, for all stages u such that $s \leq u \leq$ $t^{\prime}, \alpha_{p_{e}(i)}[u]=\alpha_{p_{e}(i)}[s]$. However, we have $s \leq s_{e}(i+1)<t \leq t^{\prime}$, so it follows that $\alpha_{p_{e}(i)}\left[s_{e}(i+1)\right]=\alpha_{p_{e}(i)}[t]$ for the desired contradiction.

This completes the initial description of the \mathcal{P}_{e} strategy. Based on our explanation for why the strategy will succeed, it might appear that the set C will be computably enumerable. To see why this appearance is deceptive, notice that Conditions 2(b) and 2(c) have the potential to make $m_{e}(i)$ much larger than $\left|\alpha_{p_{e}(i)+1}\left[s_{e}(i+1)\right]\right|$. Let $m=m_{e}(i)$ and $s=s_{e}(i+1)$. Consider the case when there is an index $j>p_{e}(i)+1$ such that $\left|\alpha_{j}[s]\right|<m<\left|\alpha_{j+1}[s]\right|$. (See Figure 4.1.) By Condition $2(\mathrm{~b})$, we know $C_{s}(m)=0$. We could have a stage $t_{0}>s$ such that $\alpha_{j}\left[t_{0}\right] \neq \alpha_{j}[s]$ and hence the approximation $A_{t_{0}}$ differs from A_{s} below m. If $A_{t_{0}} \upharpoonright m$ appears as an initial segment of the approximation to A for the first time at stage t_{0}, then by definition, $C_{t_{0}}(m)=1$. However, at a later stage $t_{1}>t_{0}$, we could have $\alpha_{j}\left[t_{1}\right]=\alpha_{j}[s]$. Since $\alpha_{j}\left[t_{1}\right]$ is returning to the previous value $\alpha_{j}[s]$ after changing at t_{0}, we know $\alpha_{j+1}\left[t_{1}\right]$ differs from $\alpha_{j+1}[u]$ for all $u \leq t_{0}$. However, since $m<\left|\alpha_{j+1}[s]\right|$, we could have $\alpha_{j+1}\left[t_{1}\right] \upharpoonright m=\alpha_{j+1}[s] \upharpoonright m$, in which case $A_{t_{1}} \upharpoonright m=A_{s} \upharpoonright m$ and so by definition, $C_{t_{1}}(m)=0$. Thus, our approximation to C need not be a c.e. approximation.

This example also illustrates the general problem we need to confront with the \mathcal{R}_{e} strategies. To make the problem for an \mathcal{R}_{e} strategy easier to illustrate (see Figure 4.2 for a picture), suppose that in the example above, $\left|\alpha_{j+1}\left[t_{0}\right]\right|>m$ (as shown in Figure 4.1). At stage $t_{2}>t_{1}$, the opponent is free to move the approximation $A_{t_{2}}$ so that $A_{t_{2}} \upharpoonright m=A_{t_{0}} \upharpoonright m$ by making $\alpha_{j}\left[t_{2}\right]=\alpha_{j}\left[t_{0}\right]$. This change at stage t_{2} causes $C_{t_{2}}(m)=1$. Later, the opponent can give us a stage $t_{3}>t_{2}$ at which $\alpha_{j}\left[t_{3}\right]=\alpha_{j}\left[t_{1}\right]=\alpha_{j}[s]$. While this change in the approximation to A back to extending $\alpha_{j}[s]$ causes $\alpha_{j+1}\left[t_{3}\right]$ to differ from $\alpha_{j+1}[u]$ for $u \leq t_{2}$, there is nothing to stop $\alpha_{j+1}\left[t_{3}\right] \upharpoonright m=\alpha_{j+1}[s] \upharpoonright m$ and hence causing the value of $C_{t_{3}}(m)$ to change back to $C_{t_{3}}(m)=0$.

By following this strategy, the opponent has created a split using the values

Figure 4.1: The set C need not be computable enumerable.

Figure 4.2: The opponent can define a split allowing C to compute A if we are not careful.
of $\alpha_{j}[s]$ and $\alpha_{j}\left[t_{0}\right]$ and has threatened to start building a splitting tree which could be used to compute A from C. That is, if left unchecked, the opponent can guarantee that if $C(m)=0$, then $\alpha_{j}[s] \subseteq A$ and if $C(m)=1$, then $\alpha_{j}\left[t_{0}\right] \subseteq A$. If we are not careful, the opponent can use infinitely many \mathcal{P} strategies together to construct a splitting tree allowing C to compute A. Preventing the opponent from constructing such a tree will be the main goal of the \mathcal{R} requirements.

4.3.3 Informal description of an \mathcal{R}_{e} strategy

The main goal of the \mathcal{R}_{e} strategy is to prevent the opponent from building an e-splitting tree that enables C to compute A. \mathcal{R}_{e} defines a sequence of indices $r_{e}(0)<r_{e}(1)<\cdots$ and attempts to use the strings $\alpha_{r_{e}(i)}$ at certain specific stages to define an almost c.e. approximation to A. The fact that A does not have an almost c.e. approximation will prevent \mathcal{R}_{e} from acting infinitely often and hence there will be a finite stage at which \mathcal{R}_{e} becomes satisfied. Because the \mathcal{R} requirements do not mark numbers, and hence do not cause any numbers to
enter C, we describe the action of a single \mathcal{R}_{e} in the presence of \mathcal{P} requirements of lower priority which are marking numbers.

When \mathcal{R}_{e} is first eligible to act, it defines the index $r_{e}(0)$ large and begins to wait for a stage s_{0} at which $\alpha_{r_{e}(0)+1}\left[s_{0}\right] \subseteq \Phi_{e}^{C}\left[s_{0}\right]$ with some use $u_{0}<s_{0}$. When such a stage s_{0} appears, \mathcal{R}_{e} defines $r_{e}(1)$ to be a large index and sets $\sigma_{e, 0}^{0}=\alpha_{r_{e}(0)}\left[s_{0}\right]$. In general, the string $\sigma_{e, n}^{i}$ with be the n-th string defined in the i-th level of a potential almost c.e. approximation to A. (In the end, if \mathcal{R}_{e} acts infinitely often, we will thin out this collection of strings to get the actual almost c.e. approximation of A.) Furthermore, for all marked numbers $m \geq\left|\alpha_{r_{e}(0)+1}\left[s_{0}\right]\right|$ such that $C_{s_{0}}(m)=0, \mathcal{R}_{e}$ removes the mark on m with respect to the neighborhood $N\left(r_{e}(0), s_{0}\right)$. (The reason for this removal will be explained below.)

Consider what can happen to $\alpha_{r_{e}(0)}[s]$ for $s>s_{0}$. If $\alpha_{r_{e}(0)}[s]=\alpha_{r_{e}(0)}\left[s_{0}\right]$ for all $s>s_{0}$, then we have made progress towards computing A. Since A is not computable, this behavior cannot continue indefinitely for larger indices $r_{e}(i)$. Therefore, the interesting case is when there is a stage $s_{1}>s_{0}$ at which $\alpha_{r_{e}(0)}\left[s_{1}\right] \neq \alpha_{r_{e}(0)}\left[s_{0}\right]$. If we were lucky enough to have $C_{s_{1}} \upharpoonright u_{0}=C_{s_{0}} \upharpoonright u_{0}$, then we would have $\alpha_{r_{e}(0)}\left[s_{1}\right] \nsubseteq \Phi_{e}^{C}\left[s_{1}\right]$ because the use of the computation from stage s_{0} showing $\alpha_{r_{e}(0)+1}\left[s_{0}\right] \subseteq \Phi_{e}^{C}\left[s_{0}\right]$ has been preserved. In this case, we would have (at least temporarily) satisfied \mathcal{R}_{e}. However, the use u_{0} could be large and so, as we saw in the examples from the informal \mathcal{P} strategies, the opponent can arrange things so that $C_{s_{1}} \upharpoonright u_{0} \neq C_{s_{0}} \upharpoonright u_{0}$.

However, we have gained control over what would happen if there were a stage $s_{2}>s_{1}$ at which $\alpha_{r_{e}(0)}\left[s_{2}\right]$ reverted back to $\alpha_{r_{e}(0)}\left[s_{0}\right]$. Suppose that $s_{2}>s_{1}$ is the least stage at which $\alpha_{r_{e}(0)}\left[s_{2}\right]=\alpha_{r_{e}(0)}\left[s_{0}\right]$. By Lemma 4.15, $\alpha_{r_{e}(0)+1}\left[s_{2}\right] \neq \alpha_{r_{e}(0)+1}[t]$ for all $t \leq s_{1}$. Furthermore, by the stretching condition (C3), $\left|\alpha_{r_{e}(0)+1}\left[s_{2}\right]\right|>s_{1}$. Since $u_{0}<s_{0}$, we have $\left|\alpha_{r_{e}(0)+1}\left[s_{2}\right]\right|>u_{0}$. We claim that $C\left[s_{2}\right] \upharpoonright u_{0}=C\left[s_{0}\right] \upharpoonright u_{0}$. To prove this claim it suffices to show that $C_{s_{0}}(m)=C_{s_{2}}(m)$ for all numbers $m<u_{0}$ which have been marked at some stage before s_{0} because \mathcal{R}_{e} initializes the \mathcal{P} strategies at stage s_{0} so any number marked after s_{0} will be chosen large and hence will be greater than u_{0}. Fix $m<u_{0}$ which is marked before stage s_{0} and we break into cases to show $C_{s_{0}}(m)=C_{s_{2}}(m)$.

First, suppose $m \leq\left|\alpha_{r_{e}(0)}\left[s_{0}\right]\right|$. Since $\alpha_{r_{e}(0)}\left[s_{2}\right]=\alpha_{r_{e}(0)}\left[s_{0}\right]$, we have $A_{s_{2}} \upharpoonright$ $m=A_{s_{0}} \upharpoonright m$ and hence $C_{s_{2}}(m)=C_{s_{0}}(m)$ by Lemma 4.17.

Second, suppose $m \geq\left|\alpha_{r_{e}(0)+1}\left[s_{0}\right]\right|$. In this case, we claim that $A_{s_{2}} \upharpoonright m$ first appears as an approximation to A at stage s_{2} and hence (by definition) $C_{s_{2}}(m)=1$ if and only if there is a mark on m which applies at stage s_{2}. Before proving the claim, we show that $C_{s_{2}}(m)=C_{s_{0}}(m)$ follows from the claim. Recall that since $m \geq\left|\alpha_{r_{e}(0)+1}\left[s_{0}\right]\right|$, when \mathcal{R}_{e} acts at stage s, it removes the mark on m with respect to the neighborhood $N\left(r_{e}(0), s_{0}\right)$ if $C_{s_{0}}(m)=0$. If $C_{s_{0}}(m)=1$, then the mark on m was not removed at stage s_{0} and hence $C_{s_{2}}(m)=1$. On the other hand, if $C_{s_{0}}(m)=0$, then the mark on m was removed at stage s_{0} with respect to the neighborhood $N\left(r_{e}(0), s_{0}\right)$. This neighborhood applies at s_{2} because $\alpha_{r_{e}(0)}\left[s_{2}\right]$ has reverted back to $\alpha_{r_{e}(0)}\left[s_{0}\right]$ after changing values at s_{1}. Therefore, the mark on m does not apply at s_{2} and hence $C_{s_{2}}(m)=0$.

We now prove that claim. If $A_{s_{2}} \upharpoonright m=A_{t} \upharpoonright m$ for some $t \leq s_{1}$, then we would have $\alpha_{r_{e}(0)+1}\left[s_{2}\right]=\alpha_{r_{e}(0)+1}[t]$ for a contradiction. Therefore, $A_{s_{2}} \upharpoonright m$ first appears after stage s_{1}. Since $\left|\alpha_{r_{e}(0)}\left[s_{0}\right]\right|<m$ and s_{2} is the first stage after s_{1} at which $\alpha_{r_{e}(0)}\left[s_{2}\right]=\alpha_{r_{e}(0)}\left[s_{0}\right], A_{s_{2}} \upharpoonright m \neq A_{t} \upharpoonright m$ for all t such that $s_{1} \leq t<s_{2}$. This completes the proof of the claim and finishes the second case.

Finally, suppose $\left|\alpha_{r_{e}(0)}\left[s_{0}\right]\right|<m<\left|\alpha_{r_{e}(0)+1}\left[s_{0}\right]\right|$. Because $m<$ $\left|\alpha_{r_{e}(0)+1}\left[s_{0}\right]\right|$, the mark on m is not removed when \mathcal{R}_{e} acts at s_{0}. Assume $m=m_{j}(k)$ is marked by \mathcal{P}_{j} at stage $t_{0}<s_{0}$ with associated string $\alpha_{p_{j}(k)}\left[t_{0}\right]$. By Conditions 2(c) and 2(d) in the action of \mathcal{P}_{j}, we know that $\alpha_{p_{j}(k)}$ is constant on the interval $\left[m, t_{0}\right]$ of stages and that $\left|\alpha_{p_{j}(k)+1}[t]\right|<m$ for all $t \leq t_{0}$. Since \mathcal{P}_{j} has lower priority than \mathcal{R}_{e}, we have $r_{e}(0)<p_{j}(k)$ and hence $\left|\alpha_{r_{e}(0)+1}[t]\right|<m$ for all $t \leq t_{0}$. Because m is marked at stage t_{0} and the mark is not removed at stage s_{0}, we know that $C_{s}(m)=1$ for any stage $s>t_{0}$ at which $A_{s} \upharpoonright m \neq A_{t_{0}} \upharpoonright m$.

We claim that $C_{s_{0}}(m)=C_{s_{2}}(m)=1$. To see that $C_{s_{0}}(m)=1$, note that if $A_{s_{0}} \upharpoonright m=A_{t_{0}} \upharpoonright m$, then we would have $\alpha_{r_{e}(0)+1}\left[s_{0}\right]=\alpha_{r_{e}(0)+1}\left[t_{0}\right]$ because $\left|\alpha_{r_{e}(0)+1}\left[t_{0}\right]\right|<m$. Therefore, we would have $\left|\alpha_{r_{e}(0)+1}\left[s_{0}\right]\right|<m$ contradicting our case assumption on the size of m. Similarly, to see that $C_{s_{2}}(m)=1$, note that if $A_{s_{2}} \upharpoonright m=A_{t_{0}} \upharpoonright m$, then we would have $\alpha_{r_{e}(0)+1}\left[s_{2}\right]=\alpha_{r_{e}(0)+1}\left[t_{0}\right]$. However, $\alpha_{r_{e}(0)+1}\left[s_{2}\right] \neq \alpha_{r_{e}(0)+1}[t]$ for all $t \leq s_{1}$ giving the desired contradiction.

This completes the proof that $C_{s_{2}} \upharpoonright u_{0}=C_{s_{0}} \upharpoonright u_{0}$. What does this fact tell us about the construction? If A_{s} ever moves away from $\sigma_{e, 0}^{0}$ at stage s_{1} and later returns to $\sigma_{e, 0}^{0}$ at stage s_{2}, then the computation $\alpha_{r_{e}(0)+1}\left[s_{0}\right] \subseteq \Phi_{e}^{C}\left[s_{2}\right]$ holds because the use of the computation $\alpha_{r_{e}(0)+1}\left[s_{0}\right] \subseteq \Phi_{e}^{C}\left[s_{0}\right]$ was preserved. However, the strings $\alpha_{r_{e}(0)+1}\left[s_{2}\right]$ and $\alpha_{r_{e}(0)+1}\left[s_{2}\right]$ are incomparable and hence $\alpha_{r_{e}(0)+1}\left[s_{2}\right] \nsubseteq \Phi_{e}^{C}\left[s_{2}\right]$. Therefore, \mathcal{R}_{e} looks (at least temporarily) satisfied at s_{2}.

The general strategy for \mathcal{R}_{e} uses this procedure to define the sequence $r_{e}(0)<r_{e}(1)<\cdots$ of witness indices and the strings $\sigma_{e, n}^{i}$ of potential members of an almost c.e. approximating family. At stage s, we fix the largest index i (if any) such that $\sigma_{e, n}^{i} \subseteq A_{s}$ for some n (and let $i=-1$ if there is no such index). If $\alpha_{r_{e}(i+1)+1}[s] \subseteq \Phi_{e}^{C}[s]$, then we set $\sigma_{e, k}^{i+1}=\alpha_{r_{e}(i+1)+1}[s]$ and define $r_{e}(i+2)$ large (if it is not yet defined). As a technical point, in the full construction, it will be convenient to keep the indices $r_{e}(i)$ for different values of e and i spread out. Therefore, in addition to choosing $r_{e}(i+1)$ large, we will also make sure it is even.

The key property of each of these $\sigma_{e, n}^{i}$ strings is similar to that shown for $\sigma_{e, 0}^{0}$. Suppose $\sigma_{e, n}^{i}=\alpha_{r_{e}(i)}\left[s_{0}\right]$ is defined at stage s_{0}. If the approximation A_{s} ever moves away from $\sigma_{e, n}^{i}$ after s_{0} and later returns to $\sigma_{e, n}^{i}$ at stage $s^{\prime}>s_{0}$, then $\alpha_{r_{e}(i)}\left[s^{\prime}\right] \nsubseteq \Phi_{e}^{C}\left[s^{\prime}\right]$ and we have (at least temporarily) satisfied \mathcal{R}_{e}. In the end, either we settle permanently on such a string $\sigma_{e, n}^{i}$ (and win \mathcal{R}_{e} permanently) or we stop seeing correct computations $\Phi_{e}^{C}[s]$ for initial segments of A (and hence win \mathcal{R}_{e}) or \mathcal{R}_{e} acts infinitely often. If \mathcal{R}_{e} acts infinitely often, then we can restrict our attention to stages at which we define strings $\sigma_{e, n}^{i}$. By the argument given for $\sigma_{e, 0}^{0}$, we know that whenever we return to a previously defined $\sigma_{e, n}^{i}$ we do not have the appropriate computations to define a new σ string. Therefore, by restricting to these stages, once we move away from a string $\sigma_{e, n}^{i}$, we can
never return to this string. This property is exactly the property of an almost c.e. approximation that is missing from the set of $\alpha_{k}[s]$ strings. In this way, we will extract an almost c.e. approximation for A in the case when \mathcal{R}_{e} acts infinitely often. Since A does not have an almost c.e. approximation, the action of \mathcal{R}_{e} must be finitely and we eventually win \mathcal{R}_{e} permanently.

4.3.4 Formal construction

Each \mathcal{R}_{e} requirement defines an increasing sequence of parameters $r_{e}(0)<$ $r_{e}(1)<\cdots$ and uses the associated strings $\alpha_{r_{e}(i)}[s]$ to build a c.e. set of strings $\left\{\sigma_{e, u}^{i} \mid i, u \in \omega\right\}$ which threatens to generate an almost c.e. approximation to A. Each \mathcal{P}_{e} requirement defines an increasing sequence of parameters $p_{e}(0)<p_{e}(1)<\cdots$ with associated marks $m_{e}(i)$. It uses $\alpha_{p_{e}(i)}$ to attempt to compute A and uses $m_{e}(i)$ to attempt to diagonalize making C noncomputable. During the construction the \mathcal{P} requirements will place marks while the \mathcal{R} requirements will remove them with respect to certain neighborhoods.

At stage 0 , we initialize every requirement. This means we make every parameter associated with a requirement undefined. As usual we assume that the value of the parameters $r_{e}(i), p_{e}(i)$ and $m_{e}(i)$ are always larger than the last stage where the requirement is initialized. When \mathcal{P}_{e} is initialized, the parameters $m_{e}(i)$ become undefined but we do not remove the marks previously set by \mathcal{P}_{e}. Once set, a mark can only be removed by an \mathcal{R} requirement.

At stage $s>0$, we define what it means for a requirement to require and to get attention.

For \mathcal{P}_{e}, let i_{0} be the largest number (if any) such that $p_{e}\left(i_{0}\right)$ is currently defined. \mathcal{P}_{e} requires attention if one of the following holds.
($\mathcal{P}_{e} .1$) The number i_{0} is undefined, i.e. $p_{e}(0)$ is not currently defined.
$\left(\mathcal{P}_{e} .2\right)$ There is a number $m<s$ never used by any requirement such that

- $\alpha_{p_{e}\left(i_{0}\right)}[t]=\alpha_{p_{e}\left(i_{0}\right)}[m]$ for all stages t such that $m \leq t \leq s$,
- $m>\left|\alpha_{p_{e}\left(i_{0}\right)+1}[u]\right|$ for $u \leq s$,
- $m>m_{e}\left(i_{0}-1\right)$ and
- $\Delta_{e} \upharpoonright m=C_{s} \upharpoonright m$.

To give \mathcal{P}_{e} attention in $\left(\mathcal{P}_{e} .1\right)$, we set $p_{e}(0)$ to be a large number. In $\left(\mathcal{P}_{e} .2\right)$, we set $m_{e}\left(i_{0}\right)=m$, set $p_{e}\left(i_{0}+1\right)$ to be a large number and mark the number $m_{e}\left(i_{0}\right)$.

For \mathcal{R}_{e}, let i be the largest such that $\sigma_{e, u}^{i} \subseteq A_{s}$ for some u, and $i=-1$ if no such i is found. \mathcal{R}_{e} requires attention if one of the following holds.
$\left(\mathcal{R}_{e} .1\right) r_{e}(0)$ is undefined.

$$
\left(\mathcal{R}_{e} .2\right) \alpha_{r_{e}(i+1)+1}[s] \subseteq \Phi_{e}^{C}[s]
$$

To give \mathcal{R}_{e} attention in ($\mathcal{R}_{e} .1$), we set $r(0)$ to be a large even number. In $\left(\mathcal{R}_{e} .2\right)$, we declare $\sigma_{e, v}^{i+1}=\alpha_{r_{e}(i+1)}[s]$ for the least v such that $\sigma_{e, v}^{i+1}$ has not yet received a value. If $r_{e}(i+2)$ is undefined, we pick a large even value for it and otherwise we leave the value as previously defined. For every number $n>\left|\alpha_{r_{e}(i+1)+1}[s]\right|$ such that $C_{s}(n)=0$, we remove the mark on n with respect to the neighborhood $N\left(r_{e}(i+1), s\right)$.

At stage s the construction, we pick the highest priority requirement requiring attention from amongst the first s many requirements, give it attention according the description above, initialize all lower priority requirements and go to the next stage. This ends the description of the construction.

4.3.5 Verification

The verification of the construction is given by the following series of lemmas.
Lemma 4.18. Fix a number marked by a \mathcal{P} requirement at stage s_{1}. If the mark on m is removed with respect to a neighborhood $N\left(r_{1}, t_{1}\right)$ which applies at A_{s}, then $s_{1}<t_{1}<s$.

Proof. Since marks are not removed before they are set, we have $s_{1}<t_{1}$. For the neighborhood $N\left(r_{1}, t_{1}\right)$ to apply to A_{s}, we must have $t_{1} \leq s$ and furthermore $\alpha_{r_{1}+1}[u] \nsubseteq A_{s}$ for all $u \leq t_{1}$, which implies that $t_{1}<s$.

Lemma 4.19. For each m, k and stages $t<s$, if there are requests to remove the mark on m with respect to both $N(k, t)$ and $N(k, s)$, then $\alpha_{k}[s] \neq \alpha_{k}[t]$.

Proof. Suppose the mark on m is removed with respect to $N(k, t)$ by \mathcal{R}_{e}. At stage t, we must have $k=r_{e}(i+1)$ where i is the largest number such that $\sigma_{e, u}^{i} \subseteq A_{t}$ for some u. Furthermore, $m>\left|\alpha_{r_{e}(i+1)+1}[t]\right|=\left|\alpha_{k+1}[t]\right|$ and we set $\sigma_{e, v}^{i+1}=\alpha_{r_{e}(i+1)}[t]=\alpha_{k}[t]$ for some v.

Assume the mark on m is removed with respect to $N(k, s)$ at a stage $s>t$. Because $k=r_{e}(i+1)$ at stage t and because we always choose witnesses for \mathcal{R} requirements fresh, the removal of the mark on m with respect to $N(k, s)$ must be done by the requirement \mathcal{R}_{e} and this requirement cannot have been initialized between stages t and s. Therefore, $\sigma_{e, v}^{i+1}=\alpha_{k}[t]$ has retained its value at stage s.

Assume for a contradiction that $\alpha_{k}[s]=\alpha_{k}[t]$. Then $\sigma_{e, v}^{i+1}=\alpha_{k}[s] \subseteq A_{s}$ at stage s. By construction, if \mathcal{R}_{e} removes a mark at stage s, it must be with respect to a neighborhood of the form $N\left(r_{e}(j+1), s\right)$ for $j \geq i+1$. In particular, the first coordinate of this neighborhood cannot be equal to k, giving the desired contradiction.

Lemma 4.20. Let $s_{1}<s_{2}$ be stages and m be a number such that there is a mark on m which applies at s_{2}. Assume the mark on m was set before s_{1} and that $A_{s_{1}} \upharpoonright m \not \subset A_{v}$ for all v such that $m<v<s_{1}$. If $A_{s_{1}} \upharpoonright m=A_{s_{2}} \upharpoonright m$, then the mark on m also applies at the earlier stage s_{1}.

Proof. Assume for a contradiction that the mark on m does not apply at stage s_{1}. Since the mark was set before s_{1}, the mark must have been removed with respect to some neighborhood $N\left(k, s_{0}\right)$ at a stage $s_{0}<s_{1}$ such that $N\left(k, s_{0}\right)$ applies at stage s_{1}. The mark on m must be set before it is removed at s_{0}, so $m<s_{0}$. The neighborhood $N\left(k, s_{0}\right)$ applies at s_{1}, so we have $\alpha_{k}\left[s_{0}\right] \subseteq A_{s_{1}}$ but $\alpha_{k+1}[u] \nsubseteq A_{s_{1}}$ for all $u \leq s_{0}$. Since the mark on m is removed at s_{0}, we have $m>\left|\alpha_{k+1}\left[s_{0}\right]\right|$. Because $\left|\alpha_{k}\left[s_{0}\right]\right|<\left|\alpha_{k+1}\left[s_{0}\right]\right|<m$ and $\alpha_{k}\left[s_{0}\right] \subseteq A_{s_{1}}$, we have $\alpha_{k}\left[s_{0}\right] \subseteq A_{s_{1}} \upharpoonright m$.

Claim 4.21. $A_{s_{1}} \upharpoonright m$ is incomparable with each $\alpha_{k+1}[u]$ for all $u \leq s_{0}$.
Before proving this claim, we show how to use it to finish the proof of Lemma 4.20. To do so, we show that the neighborhood $N\left(k, s_{0}\right)$ applies at s_{2} and hence the mark on m doesn't apply at s_{2} giving the desired contradiction. We need to check the two conditions for $N\left(k, s_{0}\right)$ to apply at s_{2}. First, $\alpha_{k}\left[s_{0}\right] \subseteq A_{s_{2}}$ because $\alpha_{k}\left[s_{0}\right] \subseteq A_{s_{1}} \upharpoonright m=A_{s_{2}} \upharpoonright m$. Second, for each $u \leq s_{0}, \alpha_{k+1}[u] \nsubseteq A_{s_{2}}$ because $\alpha_{k+1}[u]$ is incomparable with $A_{s_{1}} \upharpoonright m=A_{s_{2}} \upharpoonright m$ by the claim. Therefore, if we can verify the claim, the proof will be complete.

To prove the claim, fix $u \leq s_{0}$ and we split into several cases. If $\left|\alpha_{k+1}[u]\right| \leq$ m, then since $\alpha_{k+1}[u] \nsubseteq A_{s_{1}}$, it follows that $\alpha_{k+1}[u]$ is incomparable with $A_{s_{1}} \upharpoonright$ m. Therefore, we can assume that $\left|\alpha_{k+1}[u]\right|>m$. If $m<u$, then we have $m<u \leq s_{0}<s_{1}$ and so $m<u<s_{1}$. It follows that $A_{s_{1}} \upharpoonright m \nsubseteq A_{u}$ by the condition on s_{1} in the statement of the lemma (setting $v=u$). Since $\alpha_{k+1}[u] \subseteq A_{u}$, we have $A_{s_{1}} \upharpoonright m \nsubseteq \alpha_{k+1}[u]$ and so these strings are incomparable as required.

The final case to consider to prove the claim is when $\left|\alpha_{k+1}[u]\right|>m$ and $u \leq$ m. We show that this case cannot occur given the assumptions of the lemma. Since $\alpha_{k+1}[u]$ is defined, we know $k+1 \leq u$ and hence $k<u \leq m<s_{0}<s_{1}$. Let \mathcal{R}_{i} be the requirement that removes the mark on m, so $k=r_{i}(n)$ for some n. Let \mathcal{P}_{j} be the requirement which sets the mark on $m=m_{j}(\ell)$ for some ℓ, which must occur before the mark is removed at stage $s_{0} . \mathcal{R}_{i}$ cannot be initialized between the stage at which is defines $k=r_{i}(n)$ and stage s_{0} when it removes the mark on m with respect to $N\left(k, s_{0}\right)$. If \mathcal{R}_{i} defines $r_{i}(n)=k$ after the mark on m is set by \mathcal{P}_{j}, then \mathcal{R}_{i} would define $r_{i}(n)=k>m$. Since $k<m$, this implies that \mathcal{R}_{i} must define $r_{i}(n)=k$ before the mark is set on m by \mathcal{P}_{j}. Therefore, \mathcal{P}_{j} must have lower priority than \mathcal{R}_{i} because otherwise it would initialize \mathcal{R}_{i} (and cancel $r_{i}(n)=k$) when it sets the mark on m.

By the previous paragraph, we know that the order of events is as follows. \mathcal{R}_{i} defines $r_{i}(n)=k$ initializing the lower priority \mathcal{P}_{j}. Later, \mathcal{P}_{j} defines $p_{j}(\ell)>k$ and eventually sets a mark on $m=m_{j}(\ell)$, necessarily at a stage after m. When \mathcal{P}_{j} sets the mark on m, it chooses m greater than the maximum of all values of $\left|\alpha_{p_{j}(\ell)+1}[w]\right|$ for all $w \leq$ the stage at which the mark is set. Since the mark is set after stage $m, u \leq m$ and $k<p_{j}(\ell)$, it follows that $\left|\alpha_{k+1}[u]\right|<m$. However, our case assumption was that $\left|\alpha_{k+1}[u]\right|>m$ so we have obtained the desired contradiction.

Lemma 4.22. Suppose that requirement \mathcal{P} marks a number $m=m\left(i_{0}\right)$ at stage s_{0}. If $s>s_{0}$ is such that $\alpha_{p\left(i_{0}\right)}\left[s_{0}\right] \nsubseteq A_{s}$, then at every future stage $s^{\prime} \geq s$, as long as m is still marked (i.e. the mark has not be removed with respect the a neighborhood applicable at s^{\prime}), we have $C_{s^{\prime}}(m)=1$.

Proof. Let $p=p\left(i_{0}\right)$. First, we show that if $s_{1}>s_{0}$ is the least stage such that $\alpha_{p}\left[s_{0}\right] \nsubseteq A_{s_{1}}$, then assuming m is still marked at $s_{1}, C_{s_{1}}(m)=1$. Since the mark on m has not been removed with respect to a neighborhood which applies at s_{1}, by the definition of $C_{s_{1}}(m)$, it suffices to show that $A_{v} \upharpoonright m \nsubseteq A_{s_{1}}$ for all stages v such that $m<v<s_{1}$.

When m is marked at stage s_{0}, Condition ($\mathcal{P} .2$) must hold, so for all v such that $m \leq v \leq s_{0}$, we have $\alpha_{p}[v]=\alpha_{p}\left[s_{0}\right]$. Furthermore, by the choice of s_{1}, we have $\alpha_{p}[v]=\alpha_{p}\left[s_{0}\right]$ for all v such that $s_{0} \leq v<s_{1}$, and therefore, $\alpha_{p}[v]=\alpha_{p}\left[s_{0}\right]$ for all v such that $m \leq v<s_{1}$.

In addition, when m is marked at stage s_{0}, we have $m>\left|\alpha_{p+1}\left[s_{0}\right]\right|>$ $\left|\alpha_{p}\left[s_{0}\right]\right|$. By the previous paragraph, this inequality implies $m>\left|\alpha_{p}[v]\right|$, and hence $\alpha_{p}[v] \subseteq A_{v} \upharpoonright m$, for all $m \leq v<s_{1}$. Since $\alpha_{p}[v]=\alpha_{p}\left[s_{0}\right] \nsubseteq A_{s_{1}}$, we have shown that $A_{v} \upharpoonright m \not \subset A_{s_{1}}$ for all v such that $m \leq v<s_{1}$ as required to prove the lemma for s_{1}.

To complete the proof, we consider stages $s^{\prime}>s_{1}$ such that the mark has not been removed from m with respect to a neighborhood applicable at s^{\prime}. Assume for a contradiction that $s^{\prime}>s$ is the least stage such that m is marked at s^{\prime} but $C_{s^{\prime}}(m)=0$. We verify three claims and then break our proof into cases.

Our first claim is that there is a stage v such that $m<v<s^{\prime}$ with $A_{v} \upharpoonright$ $m \subset A_{s^{\prime}}$. If there were no such stage v, then since there is a mark on m at s^{\prime}, we would define $C_{s^{\prime}}(m)=1$. Therefore, fix the least v such that $m<v<s^{\prime}$ and $A_{v} \upharpoonright m \subset A_{s^{\prime}}$.

Our second claim is that $C_{v}(m)=0$. By Lemma 4.17, $A_{v} \upharpoonright m \subset A_{s^{\prime}}$ implies $C_{s^{\prime}}(m)=C_{v}(m)$ and hence $C_{v}(m)=0$.

Finally, our third claim is that the mark on m does not apply at v. By the minimality of $v, A_{w} \upharpoonright m \not \subset A_{v}$ for all $m<w<v$. Therefore, if a mark on m applied at v, we would define $C_{v}(m)=1$ contrary to our second claim. We now split into cases depending on whether $v>s_{0}$ or $v \leq s_{0}$.

For the first case, assume that $s_{0}<v$. By the minimality of v, the fact that $s_{0}<v<s^{\prime}$ with the mark on m set at s_{0} and the assumption that the mark on m applies at s^{\prime}, it follows from Lemma 4.20 that the mark on m applies at stage v (setting the values $s_{1}=v$ and $s_{2}=s^{\prime}$ in Lemma 4.20). This conclusion contradicts the third claim above.

For the second case, assume that $v \leq s_{0}$. In this case, we have $m<v \leq$ $s_{0}<s_{1}$. By the second paragraph of this proof, these inequalities imply that $\alpha_{p}[v]=\alpha_{p}\left[s_{0}\right]$. Since \mathcal{P} marks m at s_{0}, we have $m>\left|\alpha_{p+1}[v]\right|>\left|\alpha_{p}[v]\right|$. Since $A_{v} \upharpoonright m \subset A_{s^{\prime}}$, it follows that $\alpha_{p}\left[s_{0}\right] \subseteq A_{s^{\prime}}$ and $\alpha_{p+1}[v] \subseteq A_{s^{\prime}}$, and hence $\alpha_{p}\left[s_{0}\right]=\alpha_{p}\left[s^{\prime}\right]$ and $\alpha_{p+1}[v]=\alpha_{p+1}\left[s^{\prime}\right]$. We now have that $s_{0}<s_{1}<s^{\prime}$ with $\alpha_{p}\left[s_{0}\right]=\alpha_{p}\left[s^{\prime}\right]$ but $\alpha_{p}\left[s_{0}\right] \neq \alpha_{p}\left[s_{1}\right]$. Therefore, $\alpha_{p}\left[s^{\prime}\right]$ is reverting to a previously defined value and so by Lemma 4.15, $\alpha_{p+1}\left[s^{\prime}\right] \neq \alpha_{p+1}[t]$ for all $t \leq s_{1}$. In particular, $\alpha_{p+1}\left[s^{\prime}\right] \neq \alpha_{p+1}[v]$ giving the desired contradiction.

Lemma 4.23. Let s be a stage and let m be a number which is marked at stage $s_{1}<s$ such that the mark on m has been removed with respect to a neighborhood $N\left(r_{1}, t_{1}\right)$ which applies at A_{s}. If $\alpha_{r+1}[s] \neq \alpha_{r+1}[u]$ for all stages u such that $s_{1}<u<s$, then $r_{1} \leq r$.

Proof. Since the mark is removed with respect to $N\left(r_{1}, t_{1}\right)$ which applies to A_{s}, we have $s_{1}<t_{1}<s$ (by Lemma 4.18) and $\alpha_{r_{1}}\left[t_{1}\right] \subseteq A_{s}$. Since $\alpha_{r_{1}}\left[t_{1}\right] \subseteq A_{s}$, we have $\alpha_{r_{1}}\left[t_{1}\right]=\alpha_{r_{1}}[s]$. Suppose for a contradiction that $r<r_{1}$. Because $\alpha_{r_{1}}\left[t_{1}\right]=\alpha_{r_{1}}[s]$ and $r+1 \leq r_{1}$, we have $\alpha_{r+1}[s]=\alpha_{r+1}\left[t_{1}\right]$ contradicting the assumption on the values of α_{r+1}.

We say that $A_{t} \upharpoonright m$ is new at t if $m<t$ and $A_{t} \upharpoonright m \neq A_{u} \upharpoonright m$ for all u such that $m<u<t$. Note that if $A_{t} \upharpoonright m$ is new, then $C_{t}(m)=1$ if and only if there is a mark on m which has not been removed with respect to a neighborhood which applies to A_{t}. Similarly, if $v \leq t$ is such that $A_{v} \upharpoonright m$ is new at v and $A_{t} \upharpoonright m=A_{v} \upharpoonright m$, then $C_{t}(m)=1$ if and only if there is a mark on m at stage v which has not been removed with respect to a neighborhood which applies to A_{v}.

Lemma 4.24. Fix \mathcal{R}_{e} and assume it is never initialized again. Let s_{0} be a stage at which \mathcal{R}_{e} defines $r_{e}(i)=r$, let $s_{2}>s_{0}$ be such that \mathcal{R}_{e} defines $\sigma_{e, n}^{i}=\alpha_{r}\left[s_{2}\right]$ and let $s_{3}>s_{2}$ be the least stage such that $\alpha_{r}\left[s_{3}\right] \neq \alpha_{r}\left[s_{2}\right]$. For all $t>s_{3}$, if $\alpha_{r}[t]=\alpha_{r}\left[s_{2}\right]$, then $C_{t} \upharpoonright s_{2}=C_{s_{2}} \upharpoonright s_{2}$.

Lemma 4.24 is the heart of our verification. To see why, notice that the at stage s_{2}, we have $\alpha_{r+1}\left[s_{2}\right] \subseteq \Phi_{e}^{C}\left[s_{2}\right]$ because \mathcal{R}_{e} defines $\sigma_{e, n}^{i}=\alpha_{r}\left[s_{2}\right]$ and the use of this computation is bounded by s_{2}. Lemma 4.24 implies that C_{t} and $C_{s_{2}}$ agree up to this use and therefore $\alpha_{r+1}\left[s_{2}\right] \subseteq \Phi_{e}^{C}[t]$. Since $\alpha_{r}\left[s_{2}\right]=\alpha_{r}[t]$ but $\alpha_{r}\left[s_{2}\right] \neq \alpha_{r}\left[s_{3}\right]$, we know $\alpha_{r+1}[t]$ is incomparable with $\alpha_{r+1}\left[s_{2}\right]$ and hence $\alpha_{r+1}[t] \nsubseteq \Phi_{e}^{C}[t]$.

Proof. Fix $s_{0}<s_{2}<s_{3}$ as in the statement of the lemma. By the stretching condition (C3), we have $\left|\alpha_{r+1}[t]\right| \geq s_{2}$. Since C is computed from A with identity bounded use, the value of $C_{t} \upharpoonright s_{2}$ is determined by the string $\alpha_{r+1}[t]$.

Consider which numbers $m \leq s_{2}$ could potentially lead to a difference between $C_{t}(m)$ and $C_{s_{2}}(m)$. If $m \leq\left|\alpha_{r}\left[s_{2}\right]\right|$, then $C_{t}(m)=C_{s_{2}}(m)$ because $\alpha_{r}[t]=\alpha_{r}\left[s_{2}\right]$ and the computation of C from A has identity bounded use. If m is never marked, then $C_{t}(m)=C_{s_{2}}(m)=0$. Therefore, we may assume that $m>\left|\alpha_{r}\left[s_{2}\right]\right|$ and that m is marked at some stage.

If m is marked by a \mathcal{P} strategy of higher priority than \mathcal{R}_{e}, then \mathcal{P} initializes \mathcal{R}_{e} when m is marked. This marking must come before $r_{e}(i)=r$ is defined at stage s_{0} as \mathcal{R}_{e} is never initialized after s_{0} by assumption. In this case, \mathcal{R}_{e} would define $r_{e}(i)=r>m$, so $m<r<\left|\alpha_{r}\left[s_{2}\right]\right|$ contrary to our assumption (from the previous paragraph) that $m>\left|\alpha_{r}\left[s_{2}\right]\right|$. Therefore, we may assume m is marked by a \mathcal{P} strategy of lower priority than \mathcal{R}_{e}. If the lower priority \mathcal{P} strategy marked m before stage s_{0}, then we would also define $r_{e}(i)=r>m$, so we may assume that \mathcal{P} marks m after stage s_{0}.

When \mathcal{R}_{e} defines $\sigma_{e, n}^{i}=\alpha_{r}\left[s_{2}\right]$ at stage s_{2}, it initializes all lower priority \mathcal{P} strategies. Before a lower priority strategy \mathcal{P}_{j} can mark another number $m=m_{j}(k)$, it must first define $p_{j}(k)$ and m must be a stage number after $\alpha_{p_{j}(k)}$ has been defined. So, if m is marked after \mathcal{P}_{j} is initialized at s_{2}, then $s_{2}<m$. Therefore, we can assume that m is marked before stage s_{2}.

Summing up this discussion, it suffices to prove that $C_{t}(m)=C_{s_{2}}(m)$ for all numbers $m>\left|\alpha_{r}\left[s_{2}\right]\right|$ which are marked by a lower priority strategy \mathcal{P} between stages s_{0} and s_{2}. For the remainder of the proof, assume that $\mathcal{P}=\mathcal{P}_{j}$ is a strategy of lower priority than \mathcal{R}_{e} which marks $m=m_{j}(k)$ at stage s_{1} with $s_{0}<m<s_{1}<s_{2}$. Let $p=p_{j}(k)$ be the associated index value at stage s_{1} and let $\alpha_{p}\left[s_{1}\right]$ be the associated string. By the conditions in $\left(\mathcal{P}_{j} .2\right)$, the string α_{p} is constant on the interval $\left[m, s_{1}\right]$ of stages. By the initialization at s_{0}, we have $r<p$ and hence the strings α_{r} and α_{r+1} are also constant on the interval [m, s_{1}] of stages. When \mathcal{P} marks m at s_{1}, it satisfies $\left|\alpha_{p+1}[u]\right|<m$ for all $u \leq s_{1}$ and hence $\left|\alpha_{r+2}[u]\right|<m$ for all $u \leq s_{1}$. To complete the proof, we need to show that $C_{t}(m)=C_{s_{2}}(m)$ where $t>s_{3}$ is an arbitrary stage at which $\alpha_{r}[t]=\alpha_{r}\left[s_{2}\right]$. We summarize this information for later reference.
(A1) The events at stages $s_{0}<m<s_{1}<s_{2}<s_{3}<t$ are as follows.

- At s_{0}, \mathcal{R}_{e} defines $r_{e}(i)=r$.
- At s_{1}, the lower priority \mathcal{P} marks m with associated string $\alpha_{p}\left[s_{1}\right]$.
- The strings α_{p}, α_{r} and α_{r+1} are constant on the stages in $\left[m, s_{1}\right]$.
- At s_{2}, \mathcal{R}_{e} defines $\sigma_{e, n}^{i}=\alpha_{r}\left[s_{2}\right]$.
- The stage $s_{3}>s_{2}$ is the least such that $\alpha_{r}\left[s_{3}\right] \neq \alpha_{r}\left[s_{2}\right]$.
- At $t>s_{3}$, we have $\alpha_{r}[t]=\alpha_{r}\left[s_{2}\right]$.

$$
\begin{equation*}
\left|\alpha_{r}\left[s_{2}\right]\right|=\left|\alpha_{r}[t]\right|<m<s_{2} \leq\left|\alpha_{r+1}[t]\right| \tag{A2}
\end{equation*}
$$

(A3) $r<p$ and $\left|\alpha_{r+2}[u]\right|<m$ for all $u \leq s_{1}$.
For the remainder of this proof, fix v to be the least stage such that $m<v \leq t$ and $A_{v} \upharpoonright m=A_{t} \upharpoonright m$. Thus, $A_{v} \upharpoonright m$ is new at stage v and $C_{t}(m)=C_{v}(m)$. Similarly, fix v_{2} to be the least stage such that $m<v_{2} \leq s_{2}$ and $A_{v_{2}} \upharpoonright m=$ $A_{s_{2}} \upharpoonright m$. Again, $A_{v_{2}} \upharpoonright m$ is new at stage v_{2} and $C_{s_{2}}(m)=C_{v_{2}}(m)$. Because $\alpha_{r}\left[s_{2}\right]=\alpha_{r}[t]$ has length less than m, we have

$$
\begin{equation*}
\alpha_{r}\left[v_{2}\right]=\alpha_{r}\left[s_{2}\right]=\alpha_{r}[t]=\alpha_{r}[v] \tag{4.1}
\end{equation*}
$$

If $A_{t} \upharpoonright m=A_{s_{2}} \upharpoonright m$, then we immediately get $C_{t}(m)=C_{s_{2}}(m)$. Therefore, we can assume that $v \neq v_{2}$ and $v \neq s_{2}$.

Claim 4.25. $\left|\alpha_{r+1}[v]\right|>m$ and $\alpha_{r+1}[v] \neq \alpha_{r+1}[u]$ for all $u<v$.
Proof. Suppose $\left|\alpha_{r+1}[v]\right| \leq m$. Since $A_{v} \upharpoonright m=A_{t} \upharpoonright m$ and $\left|\alpha_{r+1}[v]\right| \leq m$, we have $\alpha_{r+1}[t]=\alpha_{r+1}[v]$ by Lemma 4.11 and hence $\left|\alpha_{r+1}[t]\right| \leq m$ contradicting (A2). For the second statement, we have $\alpha_{r+1}[v] \neq \alpha_{r+1}[u]$ for all $u \leq s_{1}$ since
$\left|\alpha_{r+1}[u]\right|<m$ for $u \leq s_{1}$ by (A3). Because $A_{v} \upharpoonright m$ is new at v, we know $A_{v} \upharpoonright m \neq A_{u} \upharpoonright m$ for all u such that $m<u<v$. Since $A_{v} \upharpoonright m \subseteq \alpha_{r+1}[v]$, it follows that $\alpha_{r+1}[v] \neq \alpha_{r+1}[u]$ for all u such that $m<u<v$. Since $m<s_{1}$, these two cases cover all $u<v$.

Claim 4.26. $s_{1}<v$.
Proof. Suppose $v \leq s_{1}$. By (A3), $\left|\alpha_{r+1}[v]\right|<m$ which contradicts Claim 4.25.

The importance of Claim 4.26 is that we know m has been marked by \mathcal{P} before stage v. Therefore, $C_{v}(m)=1$ (and hence $C_{t}(m)=1$) if and only if the mark on m has not been removed with respect to a neighborhood which applies to A_{v}.

Claim 4.27. If an \mathcal{R} requirement removes the mark on m with respect to a neighborhood $N\left(r_{1}, t_{1}\right)$ which applies to A_{v}, then $r_{1} \leq r$.

Proof. Since the mark on m is set at $s_{1}<v$ and $\alpha_{r+1}[v] \neq \alpha_{r+1}[u]$ for $u<v$, this claim follows from Lemma 4.23.

The final claim is stated in a general form because we will later apply it in cases with $k=r+1$ and $k=r+2$.

Claim 4.28. For any index k, if $\left|\alpha_{k}\left[s_{2}\right]\right| \geq m$, then $\left|\alpha_{k}\left[v_{2}\right]\right| \geq m$ and $\alpha_{k}\left[v_{2}\right] \neq$ $\alpha_{k}[u]$ for all u such that $m<u<v_{2}$ and hence for all u such that $s_{1}<u<v_{2}$.

Proof. For a contradiction, assume that $\left|\alpha_{k}\left[v_{2}\right]\right|<m$. Because $A_{v_{2}} \upharpoonright m=A_{s_{2}} \upharpoonright$ m, we have $\alpha_{k}\left[s_{2}\right]=\alpha_{k}\left[v_{2}\right]$ and hence $\left|\alpha_{k}\left[s_{2}\right]\right|<m$ contradicting the hypothesis of this claim. For the second part, assume $m<u<v_{2}$. If $\left|\alpha_{k}[u]\right|<m$ then $\alpha_{k}[u] \neq \alpha_{k}\left[v_{2}\right]$ because $\left|\alpha_{k}\left[v_{2}\right]\right| \geq m$. If $\left|\alpha_{k}[u]\right| \geq m$, then $\alpha_{k}[u] \neq \alpha_{k}\left[v_{2}\right]$ since $A_{u} \upharpoonright m \neq A_{v_{2}} \upharpoonright m$ (because $A_{v_{2}} \upharpoonright m$ is new at v_{2}) and $A_{v_{2}} \upharpoonright m \subseteq \alpha_{k}\left[v_{2}\right]$.

We now proceed to the main part of the proof of Lemma 4.24 by breaking into three cases.

Case 1. Assume that $\mathbf{C}_{\mathbf{S}_{\mathbf{2}}}(\mathbf{m})=1$. Our goal is to show that $C_{v}(m)=1$. As noted after Claim 4.26, it suffices to show that the mark on m has not been removed with respect to a neighborhood $N\left(r_{1}, t_{1}\right)$ which applies to A_{v}. For a contradiction, assume that the mark has been removed by some \mathcal{R} requirement with respect to such a neighborhood $N\left(r_{1}, t_{1}\right)$. By Claim 4.27, $r_{1} \leq r$. Since m is marked at s_{1} and $N\left(r_{1}, t_{1}\right)$ applies to A_{v}, we have $s_{1}<t_{1}<v$ by Lemma 4.18. Furthermore, because $N\left(r_{1}, t_{1}\right)$ applies to $A_{v}, \alpha_{r_{1}}\left[t_{1}\right] \subseteq A_{v}$ and so

$$
\begin{equation*}
\alpha_{r_{1}}\left[t_{1}\right]=\alpha_{r_{1}}[v] \tag{4.2}
\end{equation*}
$$

but $\alpha_{r_{1}+1}[u] \nsubseteq A_{v}$ for all $u \leq t_{1}$. We break into cases depending on whether $r_{1}=r$ or $r_{1}<r$.

First, suppose that $r_{1}=r$. Since $r=r_{e}(i)$ is an \mathcal{R}_{e} parameter, the removal of the mark with respect to the neighborhood $N\left(r_{1}, t_{1}\right)$ is done by \mathcal{R}_{e} at stage
t_{1} in conjunction with defining $\sigma_{e, n^{\prime}}^{i}=\alpha_{r_{1}}\left[t_{1}\right]$ for some n^{\prime}. Because $r_{1}=r$ and $\alpha_{r_{1}}\left[t_{1}\right]=\alpha_{r_{1}}[v]$ by Equation (4.2), we have by Equation (4.1) that

$$
\alpha_{r_{1}}\left[t_{1}\right]=\alpha_{r_{1}}[v]=\alpha_{r}[v]=\alpha_{r}\left[s_{2}\right]=\sigma_{e, n}^{i} .
$$

Therefore, the removal of the mark on m is done by \mathcal{R}_{e} when it defines $\sigma_{e, n}^{i}=$ $\alpha_{r}\left[s_{2}\right]$ and so $t_{1}=s_{2}$. However, $C_{s_{2}}(m)=1$, so \mathcal{R}_{e} does not remove the mark on m at $t_{1}=s_{2}$ giving the desired contradiction.

Second, suppose that $r_{1}<r$. We claim that the neighborhood $N\left(r_{1}, t_{1}\right)$ applies to $A_{v_{2}}$. This claim gives the desired contradiction because $A_{v_{2}} \upharpoonright m$ is new at v_{2} so the value of $C_{v_{2}}(m)$ is determined by whether there is a mark on m which applies at stage v_{2}. Since the mark on m has been removed with respect to $N\left(r_{1}, t_{1}\right)$ which applies to $A_{v_{2}}$, we conclude that $C_{v_{2}}(m)=0$ contradicting the case assumption that $C_{s_{2}}(m)=C_{v_{2}}(m)=1$.

It remains to show that the neighborhood $N\left(r_{1}, t_{1}\right)$ applies to $A_{v_{2}}$. Because $r_{1}+1 \leq r$, Equation (4.1) implies

$$
\begin{equation*}
\alpha_{r_{1}+1}\left[v_{2}\right]=\alpha_{r_{1}+1}\left[s_{2}\right]=\alpha_{r_{1}+1}[t]=\alpha_{r_{1}+1}[v] \tag{4.3}
\end{equation*}
$$

First, we check that $t_{1}<v_{2}$. Suppose for a contradiction that $v_{2} \leq t_{1}$. By Equation (4.3), $\alpha_{r_{1}+1}\left[v_{2}\right]=\alpha_{r_{1}+1}[v]$. However, since $N\left(r_{1}, t_{1}\right)$ applies to A_{v}, $\alpha_{r_{1}+1}[v] \neq \alpha_{r_{1}+1}[u]$ for all $u \leq t_{1}$, and so in particular, $\alpha_{r_{1}+1}[v] \neq \alpha_{r_{1}+1}\left[v_{2}\right]$ for the desired contradiction.

Second, we check that $\alpha_{r_{1}}\left[t_{1}\right] \subseteq A_{v_{2}}$. Since $\alpha_{r_{1}}\left[t_{1}\right]=\alpha_{r_{1}}[v]$ by Equation (4.2) and $\alpha_{r_{1}}[v]=\alpha_{r_{1}}\left[v_{2}\right]$ by Equation (4.3), we conclude that $\alpha_{r_{1}}\left[t_{1}\right]=\alpha_{r_{1}}\left[v_{2}\right] \subseteq$ $A_{v_{2}}$.

Finally, we check that $\alpha_{r_{1}+1}[u] \nsubseteq A_{v_{2}}$ for all $u \leq t_{1}$. Suppose for a contradiction that $\alpha_{r_{1}+1}[u] \subseteq A_{v_{2}}$ and $u \leq t_{1}$. Because $\alpha_{r_{1}+1}[u] \subseteq A_{v_{2}}$, we have $\alpha_{r_{1}+1}[u]=\alpha_{r_{1}+1}\left[v_{2}\right]$ and since $\alpha_{r_{1}+1}\left[v_{2}\right]=\alpha_{r_{1}+1}[v]$ by Equation (4.3), we conclude that $\alpha_{r_{1}+1}[u]=\alpha_{r_{1}+1}[v]$ and thus $\alpha_{r_{1}+1}[u] \subseteq A_{v}$. However, since $u \leq t_{1}$ and the neighborhood $N\left(r_{1}, t_{1}\right)$ applies to A_{v}, we know $\alpha_{r_{1}+1}[u] \nsubseteq A_{v}$ giving the desired contradiction. This completes the proof that the neighborhood $N\left(r_{1}, t_{1}\right)$ applies to $A_{v_{2}}$ and so completes the proof of Case 1.

Case 2. Assume that $\mathbf{v}>\mathbf{s}_{\mathbf{2}}$ and $\mathbf{C}_{\mathbf{s}_{2}}(\mathbf{m})=\mathbf{0}$. Our goal is to show that $C_{v}(m)=0$. We split into cases depending on whether $m>\left|\alpha_{r+1}\left[s_{2}\right]\right|$ or $\left|\alpha_{r+1}\left[s_{2}\right]\right| \leq m$.

For the first case, suppose that $m>\left|\alpha_{r+1}\left[s_{2}\right]\right|$. Since $C_{s_{2}}(m)=0, \mathcal{R}_{e}$ removes the mark on m with respect to the neighborhood $N\left(r, s_{2}\right)$ at stage s_{2} when it defines $\sigma_{e, u}^{i}=\alpha_{r}\left[s_{2}\right]$. We will show that the neighborhood $N\left(r, s_{2}\right)$ applies to A_{v} completing this case because $A_{v} \upharpoonright m$ is new at v and hence $C_{v}(m)=0$ because the mark on m does not apply at stage v.

To see that $N\left(r, s_{2}\right)$ applies to A_{v}, note that $s_{2}<v$ by our Case 2 assumption and $\alpha_{r}\left[s_{2}\right]=\alpha_{r}[v] \subseteq A_{v}$ by Equation (4.1). Finally, $\alpha_{r+1}[u] \nsubseteq A_{v}$ for all $u \leq s_{2}$ by Claim 4.25 and our Case 2 assumption that $s_{2}<v$. Therefore, the neighborhood $N\left(r, s_{2}\right)$ applies to A_{v} completing the first case.

For the second case, assume $m \leq\left|\alpha_{r+1}\left[s_{2}\right]\right|$. We claim that $m \leq\left|\alpha_{r+1}\left[v_{2}\right]\right|$. To see why, suppose $\left|\alpha_{r+1}\left[v_{2}\right]\right|<m$. Since $A_{v_{2}} \upharpoonright m=A_{s_{2}} \upharpoonright m$, it follows
that $\alpha_{r+1}\left[v_{2}\right]=\alpha_{r+1}\left[s_{2}\right]$ and hence $\left|\alpha_{r+1}\left[s_{2}\right]\right|<m$, contradicting our case assumption that $m \leq\left|\alpha_{r+1}\left[s_{2}\right]\right|$. Therefore, $m \leq\left|\alpha_{r+1}\left[v_{2}\right]\right|$.

Next, we claim that $s_{1}<v_{2}$, so \mathcal{P} has marked m before stage v_{2}. To see why, suppose that $v_{2} \leq s_{1}$. By (A3), $\left|\alpha_{r+1}\left[v_{2}\right]\right|<m$ contradicting the fact that $m \leq\left|\alpha_{r+1}\left[v_{2}\right]\right|$.

Because $A_{v_{2}} \upharpoonright m$ is new at v_{2} and $A_{v_{2}} \upharpoonright m \subseteq \alpha_{r+1}\left[v_{2}\right]$, we have $\alpha_{r+1}\left[v_{2}\right] \neq$ $\alpha_{r+1}[u]$ for all u such that $m<u<v_{2}$. Since $m<s_{1}<v_{2}$, we know

$$
\begin{equation*}
\alpha_{r+1}\left[v_{2}\right] \neq \alpha_{r+1}[u] \text { for all } s_{1} \leq u<v_{2} \tag{4.4}
\end{equation*}
$$

At this point, we know $A_{v_{2}} \upharpoonright m$ is new at $v_{2}, C_{v_{2}}(m)=C_{s_{2}}(m)=0$ and \mathcal{P} marks m before stage v_{2}. Therefore, the mark on m must have been removed by some \mathcal{R} requirement with respect to a neighborhood $N\left(r_{1}, t_{1}\right)$ which applies to $A_{v_{2}}$ and so

$$
\begin{equation*}
s_{1}<t_{1}<v_{2} \tag{4.5}
\end{equation*}
$$

By Lemma 4.23 and Equation (4.4), we have $r_{1} \leq r$. Because $N\left(r_{1}, t_{1}\right)$ applies to $A_{v_{2}}$, we know that $\alpha_{r_{1}}\left[t_{1}\right] \subseteq A_{v_{2}}$ and $\alpha_{r_{1}+1}[u] \nsubseteq A_{v_{2}}$ for all $u \leq t_{1}$. We will show that the neighborhood $N\left(r_{1}, t_{1}\right)$ applies to A_{v} which implies that $C_{v}(m)=0$ as required.

We check the three conditions for $N\left(r_{1}, t_{1}\right)$ to apply to A_{v}. First, by Equation (4.5) and our Case 2 assumption that $s_{2}<v$, we have $t_{1}<v_{2} \leq s_{2}<v$ and so $t_{1}<v$.

Second, we claim that $\alpha_{r_{1}}\left[t_{1}\right] \subseteq A_{v}$. Since $\alpha_{r_{1}}\left[t_{1}\right] \subseteq A_{v_{2}}$, we have $\alpha_{r_{1}}\left[t_{1}\right]=$ $\alpha_{r_{1}}\left[v_{2}\right]$. Because $r_{1} \leq r$ and $\alpha_{r}\left[v_{2}\right]=\alpha_{r}[v]$ by Equation (4.1), we conclude that $\alpha_{r_{1}}\left[t_{1}\right]=\alpha_{r_{1}}[v]$ and hence $\alpha_{r_{1}}\left[t_{1}\right] \subseteq A_{v}$.

Finally, we claim that $\alpha_{r_{1}+1}[u] \nsubseteq A_{v}$ for all $u \leq t_{1}$. If $r_{1}=r$, this fact follows from Claim 4.25 because $t_{1}<v$. If $r_{1}<r$, then $r_{1}+1 \leq r$ and so $\alpha_{r_{1}+1}[v]=\alpha_{r_{1}+1}\left[v_{2}\right]$ by Equation (4.1). Since $\alpha_{r_{1}+1}\left[v_{2}\right] \neq \alpha_{r_{1}+1}[u]$ for all $u \leq t_{1}$, it follows that $\alpha_{r_{1}+1}[v] \neq \alpha_{r_{1}+1}[u]$ for all $u \leq t_{1}$ and hence $\alpha_{r_{1}+1}[u] \nsubseteq A_{v}$ for all $u \leq t_{1}$. This completes the proof that the neighborhood $N\left(r_{1}, t_{1}\right)$ applies to A_{v} and so completes the proof of Case 2.

Case 3. Assume that $\mathbf{v}<\mathbf{s}_{\mathbf{2}}$ and $\mathbf{C}_{\mathbf{s}_{\mathbf{2}}}(\mathbf{m})=\mathbf{0}$. Our goal is to show that $C_{v}(m)=0$. We split into cases for $\left|\alpha_{r+1}\left[s_{2}\right]\right| \leq m$ and $\left|\alpha_{r+1}\left[s_{2}\right]\right|>m$.

For the first case, suppose that $\left|\alpha_{r+1}\left[s_{2}\right]\right| \leq m$. We claim that $\alpha_{r+1}\left[s_{2}\right]=$ $\alpha_{r+1}[u]$ for some $u<v$. To see why, note that $\left|\alpha_{r+1}\left[s_{2}\right]\right| \leq m<\left|\alpha_{r+1}[v]\right|$ by Claim 4.25. If $\alpha_{r+1}\left[s_{2}\right]$ first appeared after stage v, then by the stretching convention (C4), we would have $\left|\alpha_{r+1}\left[s_{2}\right]\right| \geq\left|\alpha_{r+1}[v]\right|$. Therefore, $\alpha_{r+1}\left[s_{2}\right]$ must be returning to a previous value from before stage v.

Let $u_{2}<v$ be the least stage such that $\alpha_{r+1}\left[u_{2}\right]=\alpha_{r+1}\left[s_{2}\right]$, so $\alpha_{r+1}\left[u_{2}\right] \neq$ $\alpha_{r+1}[x]$ for all $x<u_{2}$. Since $\left|\alpha_{r+1}\left[s_{2}\right]\right| \leq m$ and $A_{v_{2}} \upharpoonright m=A_{s_{2}} \upharpoonright m$, we have $\alpha_{r+1}\left[s_{2}\right]=\alpha_{r+1}\left[v_{2}\right]$. Therefore, $\alpha_{r+1}\left[u_{2}\right]=\alpha_{r+1}\left[v_{2}\right]=\alpha_{r+1}\left[s_{2}\right]$ but $\alpha_{r+1}[v]$ differs from these strings. Summarizing, we have

$$
\begin{equation*}
u_{2}<v<s_{2} \text { with } \alpha_{r+1}\left[u_{2}\right]=\alpha_{r+1}\left[v_{2}\right]=\alpha_{r+1}\left[s_{2}\right] \text { but } \alpha_{r+1}\left[u_{2}\right] \neq \alpha_{r+1}[v] . \tag{4.6}
\end{equation*}
$$

We claim that $s_{1}<v_{2}$. Suppose for a contradiction that $v_{2} \leq s_{1}$. By (A3), $\left|\alpha_{r+2}\left[v_{2}\right]\right|<m$, and so because $A_{v_{2}} \upharpoonright m=A_{s_{2}} \upharpoonright m$, we have $\alpha_{r+2}\left[v_{2}\right]=\alpha_{r+2}\left[s_{2}\right]$. Our goal is to show this equality is impossible under the current assumptions. By Claim 4.26, our Case 3 assumption that $v<s_{2}$ and our local assumption that $v_{2} \leq s_{1}$, these stages are ordered as $v_{2} \leq s_{1}<v<s_{2}$. By Equation (4.6), $\alpha_{r+1}\left[v_{2}\right]=\alpha_{r+1}\left[s_{2}\right]$ but $\alpha_{r+1}\left[v_{2}\right] \neq \alpha_{r+1}[v]$. Therefore, $\alpha_{r+2}\left[s_{2}\right]$ cannot return to the value of $\alpha_{r+2}\left[v_{2}\right]$ giving the desired contradiction.

Since $s_{1}<v_{2}, \mathcal{P}$ has marked m before stage v_{2}. Since $C_{v_{2}}(m)=C_{s_{2}}(m)=0$ and $A_{v_{2}} \upharpoonright m$ is new at v_{2}, the mark on m must have been removed by an \mathcal{R} requirement with respect to a neighborhood $N\left(r_{1}, t_{1}\right)$ which applies to $A_{v_{2}}$. Therefore, we have

$$
\begin{equation*}
s_{1}<t_{1}<v_{2} \text { and } \alpha_{r_{1}}\left[t_{1}\right]=\alpha_{r_{1}}\left[v_{2}\right] \text { but } \alpha_{r_{1}+1}[u] \nsubseteq A_{v_{2}} \text { for all } u \leq t_{1} . \tag{4.7}
\end{equation*}
$$

We claim that $r_{1} \leq r$. Because r_{1} and r are parameters chosen by \mathcal{R} requirements, they are both even. Therefore, it suffices to show that $r_{1} \leq r+1$. By Equation (4.6), we have $u_{2}<v<s_{2}, \alpha_{r+1}\left[u_{2}\right]=\alpha_{r+1}\left[s_{2}\right]$ and $\alpha_{r+1}[v] \neq$ $\alpha_{r+1}\left[u_{2}\right]$, and hence we conclude that $\alpha_{r+2}\left[s_{2}\right] \neq \alpha_{r+2}[u]$ for all $u \leq v$. In particular, by our stretching convention (C4), $\left|\alpha_{r+2}\left[s_{2}\right]\right| \geq\left|\alpha_{r+2}[u]\right|$ for all $u \leq v$. Because $\left|\alpha_{r+1}[v]\right| \geq m$, we have $\left|\alpha_{r+2}\left[s_{2}\right]\right| \geq m$. By Claim 4.28 with $k=r+2$, $\alpha_{r+2}\left[v_{2}\right] \neq \alpha_{r+2}[u]$ for all u such that $s_{1}<u<v_{2}$. It follows by Lemma 4.23 that $r_{1} \leq r+1$ and hence $r_{1} \leq r$.

To show $C_{v}(m)=0$ and complete the first case, it suffices to show that this neighborhood $N\left(r_{1}, t_{1}\right)$ applies to A_{v}.

First, we show that $t_{1}<v$. Assume for a contradiction that $v \leq t_{1}$. Since $u_{2}<v$ by Equation (4.6) and $t_{1}<v_{2}$ by Equation (4.7), we have $u_{2}<v \leq$ $t_{1}<v_{2}$. Because $\alpha_{r+1}\left[u_{2}\right]=\alpha_{r+1}\left[v_{2}\right]$ by Equation (4.6) and $r_{1} \leq r$, we have $\alpha_{r_{1}+1}\left[u_{2}\right]=\alpha_{r_{1}+1}\left[v_{2}\right]$. However, $u_{2}<t_{1}$ and $\alpha_{r_{1}+1}\left[u_{2}\right]=\alpha_{r_{1}+1}\left[v_{2}\right]$ contradict the fact from Equation (4.7) that $\alpha_{r_{1}+1}[u] \nsubseteq A_{v_{2}}$ for all $u \leq t_{1}$. Thus, we have shown $t_{1}<v$.

Second, we show that $\alpha_{r_{1}}\left[t_{1}\right] \subseteq A_{v}$. Since $r_{1} \leq r$ and, by Equation (4.1), $\alpha_{r}[v]=\alpha_{r}\left[v_{2}\right]$, we have $\alpha_{r_{1}}[v]=\alpha_{r_{1}}\left[v_{2}\right]$. But, by Equation (4.7), $\alpha_{r_{1}}\left[t_{1}\right]=$ $\alpha_{r_{1}}\left[v_{2}\right]$, and so $\alpha_{r_{1}}\left[t_{1}\right]=\alpha_{r_{1}}[v] \subseteq A_{v}$ as required.

Third, we show that $\alpha_{r_{1}+1}[u] \nsubseteq A_{v}$ for all $u \leq t_{1}$. If $r_{1}=r$, then this follows by Claim 4.25 and the fact that $t_{1}<v$. If $r_{1}<r$, then $r_{1}+1 \leq r$ and so $\alpha_{r_{1}+1}[v]=\alpha_{r_{1}+1}\left[v_{2}\right]$ by Equation (4.1). Since, by Equation (4.7), $\alpha_{r_{1}+1}\left[v_{2}\right] \neq$ $\alpha_{r_{1}+1}[u]$ for all $u \leq t_{1}$, it follows that $\alpha_{r_{1}+1}[v] \neq \alpha_{r_{1}+1}[u]$ for all $u \leq t_{1}$ and hence $\alpha_{r_{1}+1}[u] \nsubseteq A_{v}$ for all $u \leq t_{1}$. This completes the first case in Case 3.

The remaining case in Case 3 is when $m<\left|\alpha_{r+1}\left[s_{2}\right]\right|$. By Claim 4.28 with $k=r+1, m \leq\left|\alpha_{r+1}\left[v_{2}\right]\right|$ and $\alpha_{r+1}\left[v_{2}\right] \neq \alpha_{r+1}[u]$ for all u such that $s_{1}<u<v_{2}$. Note that we do have $s_{1}<v_{2}$ (i.e. this interval of stages for u is not empty) since if $v_{2} \leq s_{1}$, then by (A3), we would have $\left|\alpha_{r+1}\left[v_{2}\right]\right|<m$ for the desired contradiction.

Since \mathcal{P} marked m at stage $s_{1}<v_{2}$ and $C_{v_{2}}(m)=0$ by our Case 3 assumption, the mark on m must have been removed by an \mathcal{R} requirement with respect
to a neighborhood $N\left(r_{1}, t_{1}\right)$ which applies to $A_{v_{2}}$. Thus, we have

$$
\begin{equation*}
s_{1}<t_{1}<v_{2} \text { and } \alpha_{r_{1}}\left[t_{1}\right]=\alpha_{r_{1}}\left[v_{2}\right] \text { but } \alpha_{r_{1}+1}[u] \nsubseteq A_{v_{2}} \text { for all } u \leq t_{1} . \tag{4.8}
\end{equation*}
$$

Because $s_{1}<v_{2}$ and $\alpha_{r+1}\left[v_{2}\right] \neq \alpha_{r+1}[u]$ for all u such that $s_{1}<u<v_{2}$, it follows by Lemma 4.23 that $r_{1} \leq r$. To prove $C_{v}(m)=0$ and complete our final case, it suffices to show that the neighborhood $N\left(r_{1}, t_{1}\right)$ applies to A_{v}.

First, we show that $t_{1}<v$. For a contradiction, assume that $v \leq t_{1}$. If $r_{1}<r$, then $\alpha_{r_{1}+1}[v]=\alpha_{r_{1}+1}\left[v_{2}\right]$ by Equation (4.1) and so $\alpha_{r_{1}+1}[v] \subseteq A_{v_{2}}$. Since $v \leq t_{1}$, this contradicts Equation (4.8). Therefore, assume that $r_{1}=r$. In this case, the neighborhood is $N\left(r, t_{1}\right)$ so the removal is done by \mathcal{R}_{e}. When \mathcal{R}_{e} acts at t_{1} to remove the mark on m with respect to $N\left(r, t_{1}\right)$, it defines $\sigma_{e, u^{\prime}}^{i}=\alpha_{r}\left[t_{1}\right]$ for some u^{\prime}. Since $t_{1}<s_{2}$ and \mathcal{R}_{e} defines $\sigma_{e, n}^{i}=\alpha_{r}\left[s_{2}\right]$ at s_{2}, this implies $\alpha_{r}\left[t_{1}\right] \neq \alpha_{r}\left[s_{2}\right]$. However, since $r_{1}=r$ and $\alpha_{r_{1}}\left[t_{1}\right]=\alpha_{r_{1}}\left[v_{2}\right]$ by Equation (4.8), we have $\alpha_{r}\left[t_{1}\right]=\alpha_{r}\left[v_{2}\right]$. But, $\alpha_{r}\left[v_{2}\right]=\alpha_{r}\left[s_{2}\right]$ by Equation (4.1) and hence $\alpha_{r}\left[t_{1}\right]=\alpha_{r}\left[s_{2}\right]$ for the desired contradiction.

Second, $\alpha_{r_{1}}\left[t_{1}\right] \subseteq A_{v}$ because $\alpha_{r_{1}}\left[t_{1}\right]=\alpha_{r_{1}}\left[v_{2}\right]$ (by Equation (4.8)) and $\alpha_{r_{1}}\left[v_{2}\right]=\alpha_{r_{1}}[v]$ (by Equation (4.1) and $r_{1} \leq r$), so $\alpha_{r_{1}}\left[t_{1}\right]=\alpha_{r_{1}}[v]$.

Finally, we show that $\alpha_{r_{1}+1}[u] \nsubseteq A_{v}$ for all $u \leq t_{1}$. If $r_{1}=r$, then this follows from Claim 4.25 since $t_{1}<v$. Therefore, suppose $r_{1}<r$ and $u \leq t_{1}$ with $\alpha_{r_{1}+1}[u] \subseteq A_{v}$, so $\alpha_{r_{1}+1}[u]=\alpha_{r_{1}+1}[v]$. Since $\alpha_{r}[v]=\alpha_{r}\left[v_{2}\right]$, we have $\alpha_{r_{1}+1}[v]=$ $\alpha_{r_{1}+1}\left[v_{2}\right]$ and hence $\alpha_{r_{1}+1}[u]=\alpha_{r_{1}+1}\left[v_{2}\right]$ contradicting Equation (4.8). This completes the proof of Case 3 and finishes the proof of our lemma.

Lemma 4.29. Each requirement is initialized finitely often.
Proof. We proceed by induction on the ordering of requirements. Assume the requirement \mathcal{P}_{e} is initialized finitely often. We argue that \mathcal{P}_{e} receives attention finitely often. For a contradiction, suppose \mathcal{P}_{e} receives attention infinitely often.

Consider the final version of \mathcal{P}_{e} (i.e. assume we are past the last stage at which \mathcal{P}_{e} is initialized). Marks set by the final version of \mathcal{P}_{e} cannot be removed by a higher priority \mathcal{R} strategy since the removal would initialize \mathcal{P}_{e}. Also, when a mark is set by the final version of $\mathcal{P}_{e}, \mathcal{P}_{e}$ initializes all lower priority \mathcal{R} strategies. Any parameters chosen by these lower priority strategies in the future will be too large to remove the mark set by \mathcal{P}_{e}. Therefore, no number marked by the final version of \mathcal{P}_{e} is removed with respect to any neighborhood. Because \mathcal{P}_{e} acts infinitely often, p_{e} and m_{e} are defined on all inputs. Let $u_{0}<u_{1}<\cdots$ be the stages such that $p_{e}(i+1)$ and $m_{e}(i)$ are defined at stage u_{i}. At stage u_{i}, condition ($\mathcal{P}_{e} .2$) holds and since $m_{e}(i)$ is first marked at stage u_{i}, we must have $C_{u_{i}}\left(m_{e}(i)\right)=0$ and hence $\Delta_{e}\left(m_{e}(i)\right)=0$.

Claim 4.30. For all i and all $s>u_{i}, \alpha_{p_{e}(i)}\left[u_{i}\right] \subseteq A_{s}$.
Proof. For a contradiction, fix $s>u_{i}$ such that $\alpha_{p_{e}(i)}\left[u_{i}\right] \nsubseteq A_{s}$. Since the mark on $m_{e}(i)$ is never removed with respect to any neighborhood, we have $C_{s^{\prime}}\left(m_{e}(i)\right)=1$ for all $s^{\prime} \geq s$ by Lemma 4.22. Fix $j>i$ such that $s<u_{j}$. Condition ($\mathcal{P}_{e} .2$) holds at u_{j} with $t=m_{e}(j)$, so $\Delta_{e}\left(m_{e}(i)\right)=C_{u_{j}}\left(m_{e}(i)\right)$ because
$m_{e}(i)<m_{e}(j)$. However, $\Delta_{e}\left(m_{e}(i)\right)=0$ and $C_{u_{j}}\left(m_{e}(i)\right)=1$ for the desired contradiction.

By Claim 4.30, $\alpha_{p_{e}(i)}\left[u_{i}\right] \subseteq A$ for every i and hence A is computable giving the contradiction which establishes that \mathcal{P}_{e} receives attention only finitely often.

We turn to \mathcal{R}_{e}. Assume that \mathcal{R}_{e} is initialized finitely often and we work after the last stage at which \mathcal{R}_{e} is initialized so that any parameter $r_{e}(i)$ or string $\sigma_{e, u}^{i}$ which is defined retains its value through the remainder of the construction. Suppose for a contradiction that \mathcal{R}_{e} receives attention infinitely often. In this case, $\left(\mathcal{R}_{e} .2\right)$ must apply infinitely often. For each defined string $\sigma_{e, u}^{i}$, we have $\sigma_{e, u}^{i}=\alpha_{r_{e}(i)}[s]$ where s is the stage at which $\sigma_{e, u}^{i}$ is defined. For any fixed i, there are only finitely many versions of $\alpha_{r_{e}(i)}[s]$ (as a function of s) and hence there are only finitely many strings $\sigma_{e, u}^{i}$ defined for any fixed i. Therefore, as ($\mathcal{R}_{e} .2$) applies infinitely often, we must eventually define $r_{e}(i)$ for each i.

To obtain a contradiction, it suffices to define an almost c.e. approximation $\widehat{\sigma}_{i}[s]$ for A. Fix a sequence of stages $t_{0}<t_{1}<\cdots$ such that for all s and all $i<s$, there is a u such that $\sigma_{e, u}^{i} \subseteq A_{t_{s}}$ and such that $\left(\mathcal{R}_{e} .2\right)$ applies at stage t_{s}. Note that the value of u depends on both i and s and that at stage t_{s}, $\sigma_{e, u}^{i}=\alpha_{r_{e}(i)}\left[t_{s}\right]$. Setting $i=s-1$ shows there is a defined string $\sigma_{e, u}^{s-1} \subseteq A_{t_{s}}$ so that $\sigma_{e, u}^{s}=\alpha_{r_{e}(s)}\left[t_{s}\right]$ is defined (for some u) at stage t_{s} if it is not already defined.

For all s and all $i<s$, we define

$$
\widehat{\sigma}_{i}[s]=\sigma_{e, u}^{i}=\alpha_{r_{e}(i)}\left[t_{s}\right] .
$$

To complete the proof of this lemma, it suffices to show that these strings form an almost c.e. approximation to A. We check Conditions (P1)-(P4) of Definition 4.5.

For Condition (P1), fix s and $i<s-1$. We have $\widehat{\sigma}_{i}[s] \subseteq \widehat{\sigma}_{i+1}[s]$ because $\widehat{\sigma}_{i}[s]=\alpha_{r_{e}(i)}\left[t_{s}\right], \widehat{\sigma}_{i+1}[s]=\alpha_{r_{e}(i+1)}\left[t_{s}\right]$ and $\alpha_{r_{e}(i)}\left[t_{s}\right] \subseteq \alpha_{r_{e}(i+1)}\left[t_{s}\right]$. For Condition (P2), we need to show that if $\widehat{\sigma}_{i}[s]$ and $\widehat{\sigma}_{i}[s+1]$ are comparable, then $\widehat{\sigma}_{i}[s]=\widehat{\sigma}_{i}[s+1]$. However, $\widehat{\sigma}_{i}[s]=\alpha_{r_{e}(i)}\left[t_{s}\right]$ and $\widehat{\sigma}_{i}[s+1]=\alpha_{r_{e}(i)}\left[t_{s+1}\right]$. By Lemma 4.13, if $\alpha_{r_{e}(i)}\left[t_{s}\right]$ and $\alpha_{r_{e}(i)}\left[t_{s+1}\right]$ are comparable, then they are equal. For Condition (P4),

$$
\lim _{s} \widehat{\sigma}_{i}[s]=\lim _{s} \alpha_{r_{e}(i)}\left[t_{s}\right]
$$

exists and is an initial segment of A.
It remains to verify Condition (P3). Fix s and $i<s$ such that $\widehat{\sigma}_{i}[s]$ and $\widehat{\sigma}_{i}[s+1]$ are incomparable and fix $k>s+1$. We show that $\widehat{\sigma}_{i}[s]$ is incomparable with $\widehat{\sigma}_{i}[k]$. Since $\widehat{\sigma}_{i}[s]=\alpha_{r_{e}(i)}\left[t_{s}\right]$ and $\widehat{\sigma}_{i}[k]=\alpha_{r_{e}(i)}\left[t_{k}\right] \subseteq A_{t_{k}}$, it suffices to show that if $t>t_{s+1}$ and $\alpha_{r_{e}(i)}\left[t_{s}\right] \subseteq A_{t}$ then $\left(\mathcal{R}_{e} .2\right)$ does not hold at stage t. Therefore, fix $t>t_{s+1}$ and assume that $\alpha_{r_{e}(i)}\left[t_{s}\right] \subseteq A_{t}$ and hence $\alpha_{r_{e}(i)}\left[t_{s}\right]=\alpha_{r_{e}(i)}[t]$. Fix u such that $\widehat{\sigma}_{i}[s]=\sigma_{e, u}^{i}$ so that we have

$$
\begin{equation*}
\widehat{\sigma}_{i}[s]=\sigma_{e, u}^{i}=\alpha_{r_{e}(i)}\left[t_{s}\right] \subseteq A_{t} \tag{4.9}
\end{equation*}
$$

We show that $\left(\mathcal{R}_{e} .2\right)$ does not apply at t.

Let $s_{2} \leq t_{s}$ be the stage at which $\sigma_{e, u}^{i}=\alpha_{r_{e}(i)}\left[s_{2}\right]$ is defined. Since $\sigma_{e, u}^{i}=\alpha_{r_{e}(i)}\left[s_{2}\right]=\alpha_{r_{e}(i)}\left[t_{s}\right]$ and $\alpha_{r_{e}(i)}\left[t_{s}\right]=\alpha_{r_{e}(i)}[t]$, it follows that $\alpha_{r_{e}(i)}\left[s_{2}\right]=$ $\alpha_{r_{e}(i)}[t]$. However, $\widehat{\sigma}_{i}[s]=\alpha_{r_{e}(i)}\left[t_{s}\right]$ and $\widehat{\sigma}_{i}[s+1]=\alpha_{r_{e}(i)}\left[t_{s+1}\right]$ are incomparable, so $\alpha_{r_{e}(i)}\left[t_{s}\right] \neq \alpha_{r_{e}(i)}\left[t_{s+1}\right]$ and hence $\alpha_{r_{e}(i)}\left[s_{2}\right] \neq \alpha_{r_{e}(i)}\left[t_{s+1}\right]$. Altogether, we have $s_{2}<t_{s+1}<t$ with $\sigma_{e, u}^{i}=\alpha_{r_{e}(i)}\left[s_{2}\right]$ defined at stage $s_{2}, \alpha_{r_{e}(i)}\left[s_{2}\right]=\alpha_{r_{e}(i)}[t]$ and $\alpha_{r_{e}(i)}\left[s_{2}\right] \neq \alpha_{r_{e}(i)}\left[t_{s+1}\right]$. Therefore, by Lemma 4.24, $C_{t} \upharpoonright s_{2}=C_{s_{2}} \upharpoonright s_{2}$.

Condition ($\mathcal{R}_{e} .2$) applies at stage s_{2} when $\sigma_{e, u}^{i}=\alpha_{r_{e}(i)}\left[s_{2}\right]$ is defined so $\alpha_{r_{e}(i)+1}\left[s_{2}\right] \subseteq \Phi_{e}^{C}\left[s_{2}\right]$. Let $U<s_{2}$ denote the use of this computation. Since $\alpha_{r_{e}(i)}\left[s_{2}\right]=\alpha_{r_{e}(i)}[t] \neq \alpha_{r_{e}(i)}\left[t_{s+1}\right]$ with $s_{2}<t_{s+1}<t, \alpha_{r_{e}(i)}[t]$ is returning to a previous value after changing at stage t_{s+1}. Therefore, $\alpha_{r_{e}(i)+1}[t] \neq \alpha_{r_{e}(i)+1}\left[s_{2}\right]$ and hence these strings are incomparable.

We are now in a position to show that $\left(\mathcal{R}_{e} .2\right)$ does not apply at t. Because $\sigma_{e, u}^{i} \subseteq A_{t}$ by Equation (4.9), we need (at least) $\alpha_{r_{e}(i+1)+1}[t] \subseteq \Phi_{e}^{C}[t]$ for $\left(\mathcal{R}_{e} \cdot 2\right)$ to apply at t. However, because $C_{t} \upharpoonright s_{2}=C_{s_{2}} \upharpoonright s_{2}$, we have $\alpha_{r_{e}(i)+1}\left[s_{2}\right] \subseteq \Phi_{e}^{C}[t]$ and hence $\alpha_{r_{e}(i)+1}[t] \nsubseteq \Phi_{e}^{C}[t]$ because $\alpha_{r_{e}(i)+1}[t]$ and $\alpha_{r_{e}(i)+1}\left[s_{2}\right]$ are incomparable. Therefore, $\alpha_{r_{e}(i+1)+1}[t] \nsubseteq \Phi_{e}^{C}[t]$ as well and hence $\left(\mathcal{R}_{e} .2\right)$ cannot apply at t as required.

Lemma 4.31. Each requirement is satisfied.
Proof. By Lemma 4.29, each requirement receives attention finitely often. Obviously for \mathcal{P}_{e} we cannot have $\Delta_{e}=C$, and for \mathcal{R}_{e} we cannot have $\Phi_{e}^{C}=A$, otherwise the requirement would act infinitely often.

This ends the proof of Theorem 1.2.

4.4 Proof of Theorem 1.3

In this section, we prove Theorem 1.3. For convenience, we restate it here. We refer the reader to Soare [34] for information on promptly simple sets and degrees, although below we state the property of promptly simple sets which we will use in the construction.

Theorem 1.3. Let V be a promptly simple c.e. set and let A be a Δ_{2}^{0} set such that $A \geq_{T} V$. There exists a c.e. set B such that $0<_{T} B \leq_{w t t} A$.

Before presenting the formal construction, we fix notation and give an intuitive sketch of how to meet one requirement. Let V and A be as in the statement of the theorem and fix a Turing reduction $\Gamma^{A}=V$. We speed up the Δ_{2}^{0} approximation to A, the enumeration of V and the reduction Γ so that the length of agreement function

$$
l(s)=\max \left\{x \mid \forall y \leq x\left(\Gamma_{s}^{A_{s}}(x) \downarrow=V_{s}(x)\right)\right\} .
$$

satisfies $l(s+1)>l(s)$ for all s. That is, we assume that every stage of our construction is expansionary. For $x \leq l(s)$, we use $\gamma(x, s)$ to denote the use of $\Gamma_{s}^{A_{s}}(x)$.

Because V is promptly simple, there is a fixed computable function $p(s)$ for which we have the following property for all e (see Soare [34] Chapter XIII, Theorem 1.7):

$$
W_{e} \text { infinite } \Rightarrow \exists^{\infty} x \exists s\left(x \in W_{e \text { at } s} \wedge V_{s} \upharpoonright x \neq V_{p(s)} \upharpoonright x\right)
$$

The notation $W_{e \text { at } s}$ means that $x \in W_{e, s}$ and $x \notin W_{e, s-1}$.
To make B noncomputable, we meet the requirement

$$
R_{e}: B \neq \overline{W_{e}}
$$

for every $e . R_{e}$ is met by choosing a witness which we attempt to put into B if it ever enters W_{e}. To make $B \leq_{w t t} A$, we use permitting to guarantee that

$$
A_{s} \upharpoonright x=A \upharpoonright x \Rightarrow B_{s} \upharpoonright x=B \upharpoonright x
$$

for every x, so the computation of B from A has identity bounded use.
Consider a single R_{e} requirement in the presence of our permitting. We attempt to meet R_{e} in cycles (which may be initialized by higher priority requirements, but only finitely often). The prompt simplicity of V will insure that only finitely many cycles are needed for R_{e}.

Assume that the $n^{t h}$ cycle for R_{e} starts at stage s. Pick a large prefollower z_{n}. (In the formal construction, we will denote such a witness by $z_{e, n}$ to indicate it is the $n^{\text {th }}$ prefollower for R_{e}. For now, we leave off the subscript e since we are only considering one requirement.) Wait for a stage $s_{1}>s$ such that $l\left(s_{1}\right)>z_{n}$. At stage s_{1}, pick a large follower $y_{n}^{s_{1}}$ such that $y_{n}^{s_{1}}>\gamma\left(z_{n}, s_{1}\right)$ and $y_{n}^{s_{1}} \notin W_{e, s_{1}}$. Notice that if there is a change in $V_{s_{1}} \upharpoonright z_{n}$, then there must be a corresponding change in $A_{s_{1}} \upharpoonright \gamma\left(z_{n}, s_{1}\right)$, which we would like to use as a permission to put $y_{n}^{s_{1}}$ into B.

We say $y_{n}^{s_{1}}$ is realized at $t>s_{1}$ if $y_{n}^{s_{1}} \in W_{e, t}$. We say that $y_{n}^{s_{1}}$ is canceled at stage $t>s_{1}$ if $\gamma\left(z_{n}, t\right) \neq \gamma\left(z_{n}, s_{1}\right)$ and $y_{n}^{s_{1}}$ has not yet been realized. If $y_{n}^{s_{1}}$ is canceled at stage t, then we pick a new large follower $y_{n}^{t}>\gamma\left(z_{n}, t\right)$ such that $y_{n}^{t} \notin W_{e, t}$. Since $t>s_{1}$, we have $l(t)>l\left(s_{1}\right)>z_{n}$ and so the computation $\Gamma_{t}^{A_{t}}\left(z_{n}\right)$ does converge and $\gamma\left(z_{n}, t\right)$ is defined. In general, we use the notation y_{n}^{t} for the follower of z_{n} at stage t, if there is one. Because there is a final use $\gamma\left(z_{n}\right)$ for $\Gamma^{A}\left(z_{n}\right)$, the sequence of followers for any given prefollower z_{n} is finite and must eventually settle down on a single follower.

Assume that at some stage $s_{2}>s_{1}$, the current follower $y_{n}^{s_{2}}$ becomes realized (that is, it enters W_{e} at s_{2}). We want to use the prompt simplicity of V to get permission to put $y_{n}^{s_{2}}$ into B. Two technical problems arise at this point. Prompt simplicity tells us that if W_{e} is infinite, then there are infinitely many numbers $x \in W_{e}$ for which if x enters W_{e} at stage t, then a number below x must enter V between stage t and stage $p(t)$. The first technical problem is that $y_{n}^{s_{2}}$ may not be one of these infinitely many elements of W_{e} for which the condition of prompt simplicity holds. The second technical problem is that even if $y_{n}^{s_{2}}$ is one of the numbers for which the condition of prompt simplicity holds, it only causes a number below $y_{n}^{s_{2}}$ (and not necessarily below z_{n}) to enter V.

Numbers below $y_{n}^{s_{2}}$ are potentially too large to force the desired change in A below $\gamma\left(z_{n}, s_{2}\right)$ when they enter V. Recall that we want a number below z_{n} to enter V in order to force a permanent change in A below $\gamma\left(z_{n}, s_{2}\right)$, which we can use (since $\gamma\left(z_{n}, s_{2}\right)<y_{n}^{s_{2}}$) as permission to put $y_{n}^{s_{2}}$ into B.

We solve these problems with a computable function f which for any e gives an index for a Turing procedure $\varphi_{f(e)}$ which does the following on input x. (The existence of such a function f follows from the Recursion Theorem.) First, it runs our construction until it finds out if $x=z_{n}$ for some n in a cycle of R_{e}. If it never finds such a z_{n}, then $\varphi_{f(e)}(x) \uparrow$. Once it finds $x=z_{n}$, it watches the construction until it sees a realized follower y_{n}^{s}. Again, if it never sees one, then $\varphi_{f(e)}(x) \uparrow$. Once it sees a realized follower, $\varphi_{f(e)}(x)$ converges and outputs 0 . (The output is irrelevant; only the fact that it converges matters.) The point of this procedure is that it halts on exactly the prefollowers of R_{e} which have realized followers. Notice also that if y_{n}^{t} enters W_{e} at stage t, then $\varphi_{f(e)}$ takes at least t steps to halt.

Returning to the scenario of our construction, recall that z_{n} is our follower and that $y_{n}^{s_{2}}$ has just entered W_{e} at stage s_{2}. This scenario implies that $\varphi_{f(e)}\left(z_{n}\right)$ halts after at least s_{2} many steps. Calculate the stage $t \geq s_{2}$ such that z_{n} enters $W_{f(e)}$ at t. Look at each stage \hat{t} between s_{2} and $p(t)$ to see if

$$
V_{s_{2}} \upharpoonright z_{n} \neq V_{\hat{t}} \upharpoonright z_{n} .
$$

If we find such a stage, then we know

$$
A_{s_{2}}\left|\gamma\left(z_{n}, s_{2}\right) \neq A_{\hat{t}}\right| \gamma\left(z_{n}, s_{2}\right)
$$

Furthermore, since $V_{s_{2}} \upharpoonright z_{n} \neq V \upharpoonright z_{n}$ (since V is c.e.), we know that $A_{s_{2}} \upharpoonright$ $\gamma\left(z_{n}, s_{2}\right) \neq A \upharpoonright \gamma\left(z_{n}, s_{2}\right)$ (even though A is Δ_{2}^{0}). Therefore, we have permission to put $y_{n}^{s_{2}}$ into B and win R_{e}. If we do not find such a stage \hat{t}, then we start the $(n+1)^{s t}$ cycle of R_{e} and initialize everything of lower priority.

The prompt simplicity of V guarantees that $W_{f(e)}$ cannot be infinite, for if so, there would have been a chance to put one of the followers into B. This would imply there were no new prefollowers for R_{e}, which in turn makes $W_{f(e)}$ finite.

We now present the formal construction and lemmas verifying that the construction succeeds. The priority on our requirements is $R_{0}<R_{1}<\cdots$ and the construction is finite injury. As above, we assume that $\Gamma^{A}=V$ and that for every $s, l(s+1)>l(s)$. Let p denote the prompt permitting function for V under this enumeration. At stage 0 , set $B_{0}=\emptyset$.

At stage s+1, run the current cycle (as described below) for each R_{e} with $e \leq s$ (in order of their priority) which is not already satisfied. If some R_{e} ends a cycle and initializes all R_{i} with $i>e$, then end the stage early. (We initialize R_{i} by canceling any current prefollowers and followers and setting it at the start of its next cycle.)

Cycle n for R_{e} : Assume that the cycle starts at stage s. Pick a large prefollower $z_{e, n}$. The cycle takes no more action until the first stage s_{1} at which $l\left(s_{1}\right)>z_{e, n}$. At stage s_{1} pick a large follower $y_{e, n}^{s_{1}}>\gamma\left(z_{e, n}, s_{1}\right)$ such that
$y_{e, n}^{s_{1}} \notin W_{e, s_{1}}$. As noted above, we use the notation $y_{e, n}^{t}$ for the current follower of $z_{e, n}$ at stage t.

We say that $y_{e, n}^{t}$ is realized at $t>s_{1}$ if $y_{e, n}^{t} \in W_{e, t}$. The current follower $y_{e, n}^{s_{1}}$ is canceled and a new large follower is chosen at t if $\gamma\left(z_{e, n}, s_{1}\right) \neq \gamma\left(z_{e, n}, t\right)$ and $y_{e, n}^{s_{1}}$ has not yet been realized. The cycle takes no more action, except to cancel and pick new followers as necessary, until a stage s_{2} when the current follower $y_{e, n}^{s_{2}}$ is realized.

Suppose $y_{e, n}^{s_{2}}$ is realized at stage s_{2}. Find the number $t \geq s_{2}$ such that $z_{e, n}$ enters $W_{f(e)}$ at t. Calculate $V_{\hat{t}}$ for each \hat{t} such that $s_{2}<\hat{t}<p(t)$ and for each such value of \hat{t} check if $V_{s_{2}} \upharpoonright z_{e, n}=V_{\hat{t}} \upharpoonright z_{e, n}$. If there is a \hat{t} such that $V_{s_{2}} \upharpoonright z_{e, n} \neq V_{\hat{t}} \upharpoonright z_{e, n}$, then put $y_{e, n}^{s_{2}}$ into B and declare R_{e} satisfied. If there is no such \hat{t}, then end this stage and initialize all requirements of lower priority. (At the next stage, R_{e} will begin its $(n+1)^{s t}$ cycle.) This ends the description of cycle n for R_{e} and the description of the formal construction.

Lemma 4.32. $B \leq_{w t t} A$.
Proof. By construction, each element in B is a realized follower $y_{e, n}^{s}$. Suppose $y_{e, n}^{s}$ is realized at stage s and we enumerate it into B. There must be a number \hat{t} with $s<\hat{t}<p(t)$ (where t is the stage at which $z_{e, n}$ entered $W_{f(e)}$) such that $V_{s} \upharpoonright z_{e, n} \neq V_{\hat{t}} \upharpoonright z_{e, n}$. Because V is c.e., this inequality implies that $V_{s} \upharpoonright z_{e, n} \neq V \upharpoonright z_{e, n}$.

We claim that $A_{s} \upharpoonright y_{e, n}^{s} \neq A \upharpoonright y_{e, n}^{s}$ and hence enumerating $y_{e, n}^{s}$ into B is allowed by our permitting. For a contradiction, suppose that $A_{s} \upharpoonright y_{e, n}^{s}=A \upharpoonright$ $y_{e, n}^{s}$. Since $\gamma\left(z_{e, n}, s\right)<y_{e, n}^{s}$, we have $A_{s} \upharpoonright \gamma\left(z_{e, n}, s\right)=A \upharpoonright \gamma\left(z_{e, n}, s\right)$. Because $l(s)>z_{e, n}, \Gamma_{s}^{A_{s}} \upharpoonright z_{e, n}=\Gamma^{A} \upharpoonright z_{e, n}$ and hence $V_{s} \upharpoonright z_{e, n}=V \upharpoonright z_{e, n}$ giving the desired contradiction.

Lemma 4.33. Each R_{e} requirement is won.
Proof. This proof proceeds as a finite injury argument. Assume that R_{e} is never initialized by any R_{i} with $i<e$ after stage s. We need to show that R_{e} is met (that is, $B \neq \overline{W_{e}}$) and that R_{e} only initializes lower priority requirements finitely often.

The requirement R_{e} only initializes lower priority requirements when it ends a cycle because it found a realized follower with no corresponding change in V. Therefore, if R_{e} initializes the lower priority requirements infinitely often, then it must have infinitely many realized followers. We make a similar claim if $B=\overline{W_{e}}$.

Claim 4.34. If $B=\overline{W_{e}}$, then R_{e} has infinitely many realized followers.
To prove the claim, assume $B=\overline{W_{e}}$ and suppose R_{e} is in cycle n. We have chosen $z_{e, n}$ and when $l\left(s_{1}\right)>z_{e, n}$ we chose a follower $y_{e, n}^{s_{1}}$. This follower may be canceled, but eventually we get to a stage s_{2} with a true use $\gamma\left(z_{e, n}, s_{2}\right)$. After this stage, $y_{e, n}^{s_{2}}$ will never be canceled. We do not need to worry about $z_{e, n}$ being initialized since nothing of higher priority initializes it and R_{e} only initiates a new cycle after a realized follower is found.

If $y_{e, n}^{s_{2}} \notin W_{e}$, then $B \neq \overline{W_{e}}$ because we never put $y_{e, n}^{s_{2}}$ into B. Hence, $y_{e, n}^{s^{2}} \in W_{e}$, but since we never get to put this element into B, we know that we eventually move on to the next cycle. The same scenario happens in the $(n+1)^{s t}$ cycle: $z_{e, n+1}$ eventually gets a realized follower, but doesn't put it into B and so moves on to the next cycle. In this way it is clear that for every $m>n$, there is a prefollower $z_{e, m}$ which eventually get a realized follower. This completes the proof of the claim.

To finish the proof of the lemma, it suffices to show that R_{e} cannot have infinitely many realized followers. Assume that each $z_{e, m}$ for $m \geq n$ eventually gets a realized follower. Since each $z_{e, m} \in W_{f(e)}, W_{f(e)}$ is infinite. Also, we do not put any of the realized followers into B since doing so would satisfy R_{e} and cause it to stop initiating new cycles, thereby not having infinitely many realized followers. It follows that there is a sequence of stages $s_{n}, s_{n+1}, \ldots, s_{m}, \ldots$ such that

$$
z_{e, m} \in W_{f(e) \text { at } s_{m}} \text { but } V_{s_{m}} \upharpoonright z_{e, m}=V_{p\left(s_{m}\right)} \upharpoonright z_{e, m}
$$

for every $m \geq n$. However, since $W_{f(e)} \subseteq\left\{z_{e, n} \mid n \in \omega\right\}$, this condition implies there can be at most finitely many x for which the prompt permitting function works, contradicting the fact that V is promptly simple.

Bibliography

[1] P. Cholak, R. Downey and R. Walk, Maximal contiguous degrees, The Journal of Symbolic Logic, 67(1), 2002, 409-437.
[2] C.T. Chong and R.G. Downey, Degrees bounding minimal degrees, Mathematical Proceedings of the Cambridge Philosophical Society, 105(2), 1989, 211-222.
[3] S.B. Cooper, Minimal degrees and the jump operator, The Journal of Symbolic Logic 38(2), 1973, 249-271.
[4] B. F. Csima, Applications of Computability Theory to Prime Models and Differential Geometry, Ph.D. Dissertation, The University of Chicago, 2003.
[5] R. Downey and N. Greenberg, A transfinite hierarchy of computably enumerable degrees, unifying classes and natural definability, in preparation.
[6] R. Downey, N. Greenberg and R. Weber, Totally $<\omega$ computably enumerable degrees and bounding critical triples, Journal of Mathematical Logic 7(2), 2007, 145-171.
[7] R. Downey and G. LaForte, Presentations of computably enumerable reals, Theoretical Computer Science 284(2), 2002, 539-555.
[8] R. G. Downey and J. B. Remmel, Classification of degree classes associated with r.e. subspaces, Annals of Pure and Applied Logic 42(2), 1989, 105-125.
[9] R. Downey and S. Terwijn, Computably enumerable reals and uniformly presentable ideals, Dagstuhl Seminar on Computability and Complexity in Analysis 2001, Math Logic Quarterly 48(1), 2002, 29-40.
[10] P.A. Fejer and R.A. Shore, A direct construction of a minimal recursively enumerable truth table degree, in K. Ambos-Spies, G.H. Muller, and G.E. Sacks eds., Recursion Theory Week, Proceedings Oberwolfach 1989, Lecture Note in Mathematics 1432, Springer Verlag, Berlin, 1990, 187204.
[11] A. Frohlich and J.C. Shepherdson, Effective procedures in field theory, Philosophical Transactions of the Royal Society London, Series A 248, 1956, 407-432.
[12] C.A. Haught and R.A. Shore, Undecidability and initial segments of the (r.e.) tt-degrees, The Journal of Symbolic Logic 55(3), 1990, 987-1006.
[13] C.A. Haught and R.A. Shore, Undecidability and initial segments of the wtt-degrees $\leq 0^{\prime}$, in K. Ambos-Spies, G.H. Muller, and G.E. Sacks eds., Recursion Theory Week, Proceedings Oberwolfach 1989, Lecture Notes in Mathematics 1432, Springer Verlag, Berlin, 1990, 223-244.
[14] C. Jockusch Jr., Simple proofs of some theorems on high degrees, Canadian Journal of Mathematics 29(5), 1977, 1072-1080.
[15] A. Kuc̆era, An alternative, priority-free, solution to Post's Problem, in Mathematical Foundation of Computer Science (Bratislava 1986), Lecture Notes in Computer Science 233, Springer, Berlin, 1986, 493-500.
[16] A. Lachlan, Distributive initial segments of the degrees of unsolvability, Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 14, 1968, 457-472.
[17] A. Lachlan, Initial segments of the one-one degrees, Pacific Journal of Mathematics 29, 1969, 351-366.
[18] A. Lachlan, Recursively enumerable many-one degrees, Algebra and Logic 11, 1972, 186-202.
[19] A. Lachlan, Embedding nondistributive lattices in the recursively enumerable degrees, in W. Hodges ed., Conference in Mathematical Logic, London 1970, Lecture notes in mathematics 255, Springer-Verlag, New York, 1972, 149-177.
[20] R.E. Ladner and L.P. Sasso, Jr., The weak truth table degrees of recursively enumerable sets, Annals of Mathematical Logic 8(4), 1975, 429-448.
[21] S.S. Marchenkov, The existence of recursively enumerable minimal truthtable degrees, Algebra and Logic 14(4), 1975, 257-261.
[22] R. Miller, Is it harder to factor a polynomial or to find a root?, Transactions of the American Mathematical Society 362(10), 2010, 5261-5281.
[23] A. Nabutovsky and S. Weinberger, The fractal nature of Riem/Diff I, Geometriae Dedicata 101, 2003, 1-54.
[24] A. Nerode, General topology and partial recursive functionals, Talks from Cornell Summer Institute of Symbolic Logic, Cornell, 1957, 247-251.
[25] A. Nies, Computability and Randomness, Oxford Logic Guides 51, Oxford University Press, Oxford, 2009.
[26] P. Odifreddi, Strong reducibilities, Bulletin (New Series) of the American Mathematical Society 4(1), 1981, 37-86.
[27] P. Odifreddi, Classical recursion theory: the theory of functions and sets of natural numbers, North Holland, Amsterdam, 1989.
[28] D.B. Posner, A survey of non-r.e. degrees $\leq 0^{\prime}$, in F.R. Drake and S.S. Wainer eds., Recursion Theory: Its Generalisation and Applications (Proceedings Logic Colloquium, University of Leeds, Leeds 1979), London Mathematical Society Lecture Note Series 45, Cambridge University Press, Cambridge, 1980, 52-109.
[29] E.L. Post, Recursively enumerable sets of positive integers and their decision problems, Bulletin of the American Mathematical Society 50, 1944, 284-316
[30] H. Rogers, Theory of recursive functions and effective computability, McGraw-Hill, New York, 1967.
[31] J. Reimann and T. Slaman, Measures and their random reals, Transactions of the American Mathematical Society 367(7), 2015, 5081-5097.
[32] G.E. Sacks, A minimal degree less than 0^{\prime}, Bulletin of the American Mathematical Society 67, 1961, 416-419.
[33] G.E. Sacks, The recursively enumerable degrees are dense, Annals of Mathematics (2) 80, 1964, 300-312.
[34] R.I. Soare, Recursively enumerable sets and degrees, Springer-Verlag, Heidelberg, 1987.
[35] R. I. Soare, Computability theory and differential geometry, Bulletin of Symbolic Logic 10(4), 2004, 457-486.
[36] C. Spector, On degrees of recursive unsolvability, Annals of Mathematics (2), 64, 1956, 581-592.
[37] R.M. Steiner, Computable fields and the bounded Turing reduction, Annals of Pure and Applied Logic 163(6), 2012, 730-742.
[38] C.E.M. Yates, Initial segments of the degrees of unsolvability, part II, The Journal of Symbolic Logic 35(2), 1970, 243-266.

