Online Promise Problems
with Online Width Metrics.

Rodney G. Downey! and Catherine McCartin?

! Victoria University, Wellington, New Zealand
Rod.Downey@mcs.vuw.ac.nz
2 Massey University, Palmerston North, New Zealand
C.M.McCartin@massey.ac.nz

Abstract. In this article we introduce a new program that applies ideas
from parameterized complexity, and topological graph theory, to online
problems. We focus on parameterized promise problems, where we are
promised that the problem input obeys certain properties, or is presented
in a certain fashion. We present some algorithmic ramifications of such
problems in the online setting.

We explore the effects of using graph width metrics as restrictions on the
input to online problems. It seems natural to suppose that, for graphs
having some form of bounded width, good online algorithms may exist
for a number of natural problems. In the work presented we concentrate
on online graph coloring problems, where we restrict the allowed input
to instances having some form of bounded treewidth or pathwidth.

We also consider the effects of restricting the presentation of the input
to some form of bounded width decomposition or layout. A consequence
of this part of the work is the clarification of a new parameter for graphs,
persistence, which arises naturally in the online setting, and is of interest
in its own right. We present some basic results regarding the general
recognition of graphs having bounded persistence path decompositions.

1 Introduction

The last 20 years has seen a revolution in the development of graph algorithms.
This revolution has been driven by the systematic use of ideas from topological
graph theory, with the use of graph width metrics emerging as a fundamen-
tal paradigm in such investigations. The role of graph width metrics, such as
treewidth, pathwidth, and cliquewidth, is now seen as central in both algorithm
design and the delineation of what is algorithmically possible. In turn, these ad-
vances cause us to focus upon the “shape”, or the “inductive nature”, of much
real life data. Indeed, for many real life situations, worst case, or even average
case, analysis no longer seems appropriate, since the data is known to have a
highly regular form, especially when considered from the parameterized point of
view.

In this article we introduce a new program that applies ideas from parame-
terized complexity, and topological graph theory, to online problems. We focus

on parameterized promise problems, where we are promised that the problem
input obeys certain properties, or is presented in a certain fashion. We present
some algorithmic ramifications of such problems in the online setting.

It is now commonplace, in the offline setting, to find that by restricting
some width parameter for the input graphs, a particular graph problem can be
solved efficiently. A number of different graph width metrics naturally arise in
this context which restrict the inherent complexity of a graph in various senses.
The central idea is that a useful width metric should admit efficient algorithms
for many (generally) intractable problems on the class of graphs for which the
width is small. One of the most successful measures in this context is the notion
of treewidth which arose from the seminal work of Robertson and Seymour on
graph minors and immersions [29]. Treewidth measures, in a precisely defined
way, how “tree-like” a graph is. The idea here is that we can lift many results
from trees to graphs that are “tree-like”. Related to treewidth is the notion of
pathwidth which measures, in the same way, how “path-like” a graph is.

It turns out, however, that the classic algorithms generated through the use
of width metrics usually rely upon dynamic programming, and so are highly
unsuited to the focus of our investigation, the online situation.

The usual theoretic model for online problems has the input data presented
to the algorithm in small units, one unit per timestep. The algorithm produces a
string of outputs: after seeing ¢ units of input, it needs to produce the ¢-th unit of
output. Thus, the algorithm makes a decision based only on partial information
about the whole input string, namely the part that has been read so far. How
good the decision of the algorithm is at any given step ¢t may depend on the
future inputs, inputs that the algorithm has not yet seen.

Real-life online situations often give rise to input patterns that seem to be
“long” and “narrow”, that is, pathlike. For instance, consider the online schedul-
ing of some large collection of tasks onto a small number of processors. One
might reasonably expect a pattern of precedence constraints that gives rise to
only small clusters of interdependent tasks, with each cluster presented more or
less contiguously. Alternatively, one might expect a pattern of precedence con-
straints giving rise to just a few long chains of tasks, with only a small number
of dependencies between chains, where each chain is presented more or less in
order. One could argue that the most compelling reason for attempting to solve
a problem online is that the end of the input is “too long coming” according to
some criteria that we have. Given such a situation, we attempt to do the best
we can with the partial information available at each timestep.

In the work presented here, we consider the effects of using width metrics as
restrictions on the input to online problems. As mentioned above, online situa-
tions often give rise to input patterns that seem to naturally conform to restricted
width metrics, in particular to bounded pathwidth. We might expect to obtain
online algorithms having good performance, for various online problems, if we
promise that the allowed input instances have some form of bounded treewidth
or pathwidth.

We also consider the effects of restricting the presentation of the input to some
form of bounded width decomposition or layout. The method of presentation
of the input structure to an algorithm has a marked effect on performance.
Indeed, this observation underpins the study of online algorithms in the first
place. A consequence of this part of the work is the clarification of a new, related,
parameter for graphs, persistence, which arises naturally in the online setting,
and is of interest in its own right. We believe that persistence truly captures the
intuition behind the notion of pathwidth.

We present some basic results regarding the general recognition of graphs
having bounded persistence pathwidth, using the framework of parameterized
complexity theory, introduced by Downey and Fellows [9]. Our results show that
deciding whether or not a given graph has bounded persistence pathwidth is a
parametrically hard problem, whereas the corresponding problem for traditional
treewidth or pathwidth is not. Nevertheless, the input for many problems is
naturally presented in a reasonable way and hence, in spite of the lack of efficient
recognition algorithms (as exhibited by the hardness results that we present),
we believe that persistence is an important parameter to be exploited.

To lay the foundations of the program described, we concentrate on online
graph coloring. There has been a considerable amount of work done on online
graph coloring, much of it related to earlier work on bin packing. However,
approaches similar to the one that we take are notably absent from the literature.

In the following section we present some necessary preliminaries. After that,
we introduce our definition of an online presentation for a graph, which naturally
incorporates the notion of persistence. In Sections 4 and 5 we discuss online
graph coloring and present our results for parameterized promise problems in
the context of online graph coloring. In Section 6 we return to our notion of
persistence and present results regarding the complexity of recognizing graphs
having bounded persistence path decompositions.

2 Preliminaries

2.1 Parameterized Complexity

Throughout this article, we use the framework of parameterized complexity the-
ory, introduced by Downey and Fellows [9]. We remind the reader that a param-
eterized language L is a subset of X* x X*. If L is a parameterized language and
(0,k) € L then we refer to o as the main part and k as the parameter.

The basic notion of tractability is fized parameter tractability (FPT). Intu-
itively, we say that a parameterized problem is fixed-parameter tractable (FPT)
if we can somehow confine the any “bad” complexity behaviour to some limited
aspect of the problem, the parameter.

Formally, we say that a parameterized language, L, is fixed-parameter tractable
if there is a computable function f, an algorithm A, and a constant ¢ such that
for all k, (x,k) € L iff A(x,k) = 1, and A(z, k) runs in time f(k)|x|® (c is in-
dependent of k). For instance, k-VERTEX COVER is solvable in time O(|z]). On

the other hand, for k-TURING MACHINE ACCEPTANCE, the problem of deciding
if a nondeterministic Turing machine with arbitrarily large fanout has a k-step
accepting path, the only known algorithm is to try all possibilities, and this takes
time £2(|x|*). This situation, akin to N P-completeness, is described by hardness
classes, and reductions. A parameterized reduction, L to L', is a transformation
which takes (x, k) to (2/, k'), running in time g(k)|z|¢, with k — &’ a function
purely of k.

Downey and Fellows [9] observed that these reductions gave rise to a hierarchy
called the W-hierarchy.

FPTC W[I]CW[]2]C...CW[]C....

The core problem for W[1] is k-TURING MACHINE ACCEPTANCE, which is equiv-
alent to the problem WEIGHTED 3SAT. The input for WEIGHTED 3SAT is a
3CNF formula, ¢ and the problem is to determine whether or not ¢ has a satis-
fying assignment of Hamming weight k. W[2] has the same core problem except
that ¢ is in CNF form, with no bound on the clause size. In general, W{t] has as
its core problem the weighted satisfiability problem for ¢ of the form “products
of sums of products of ...” of depth ¢. It is conjectured that the W-hierarchy is
proper, and from W[1l] onwards, all parametrically intractable.

2.2 Treewidth and Pathwidth

Many generally intractable problems become tractable for the class of graphs
that have bounded treewidth or bounded pathwidth. Furthermore, treewidth and
pathwidth subsume many graph properties that have been previously mooted, in
the sense that tractability for bounded treewidth or bounded pathwidth implies
tractability for many other well-studied classes of graphs. For example, planar
graphs with radius k have treewidth at most 3k, series parallel multigraphs have
treewidth 2, chordal graphs (graphs having no induced cycles of length 4 or
more) with maximum clique size k have treewidth at most k — 1, graphs with
bandwidth at most k& have pathwidth at most k.

A graph G has treewidth at most k if we can associate a tree 7" with G in
which each node represents a subgraph of G having at most k + 1 vertices, such
that all vertices and edges of GG are represented in at least one of the nodes of T,
and for each vertex v in G, the nodes of T" where v is represented form a subtree
of T'. Such a tree is called a tree decomposition of G, of width k. We give a formal
definition here:

Definition 1. [Tree decomposition and Treewidth]

Let G = (V, E) be a graph. A tree decomposition of G is a pair (T, X) where
T = (I,F) is a tree, and X = {X;|i € I} is a family of subsets of V', one for
each node of T, such that

L Ui Xi =V,
2. for every edge {v,w} € E, thereis an i € I withv € X; and w € X,
3. for alli,j,k €I, if j is on the path from i to k in T, then X; N X} C X;.

The treewidth or width of a tree decomposition ((I,F),{X;|i € I}) is
mazier |X;| — 1. The treewidth of a graph G is the minimum width over all
possible tree decompositions of G.

Definition 2. [Path decomposition and Pathwidth]

A path decomposition of a graph G is a tree decomposition (P, X) of G where P
is simply a path (i.e. the nodes of P have degree at most two). The pathwidth of
G is the minimum width over all possible path decompositions of G.

Any path decomposition of G is also a tree decomposition of G, so the path-
width of G is at least equal to the treewidth of G. For many graphs, the path-
width will be somewhat larger than the treewidth. For example, let By denote
the complete binary tree of height k& and order 2% — 1, then tw(By) = 1, but
pw(By) = k.

Graphs of treewidth and pathwidth at most k are also called partial k-trees
and partial k-paths, respectively, as they are exactly the subgraphs of k-trees
and k-paths. There are a number of other important variations equivalent to the
notions of treewidth and pathwidth (see, e.g., Bodlaender [3]). For algorithmic
purposes, the characterizations provided by the definitions given above tend to
be the most useful.

2.3 Finding Tree and Path Decompositions

We mention above that many intractable problems become tractable for the class
of graphs that have bounded treewidth or bounded pathwidth. A more accurate
statement would be to say that many intractable problems become theoretically
tractable for this class of graphs, in the general case.

The typical method employed to produce efficient algorithms for problems
restricted to graphs of bounded treewidth (pathwidth) proceeds in two stages
(see [4]).

1. Find a bounded-width tree (path) decomposition of the input graph that
exhibits the underlying tree (path) structure.
2. Perform dynamic programming on this decomposition to solve the problem.

In order for this approach to produce practically efficient algorithms, as opposed
to proving that problems are theoretically tractable, it is important to be able
to produce the necessary decomposition reasonably efficiently.

Many people have worked on the problem of finding progressively better
algorithms for recognition of bounded treewidth (pathwidth) graphs, and con-
struction of associated decompositions.

As a first step, Arnborg, Corneil, and Proskurowski [1] showed that if a bound
on the treewidth (pathwidth) of the graph is known, then a decomposition that
acheives this bound can be found in time O(n**2), where n is the size of the
input graph and k is the bound on the treewidth (pathwidth). They also showed
that determining the treewidth or pathwidth of a graph in the first place is
N P-hard.

Robertson and Seymour [29] gave the first FPT algorithm, O(n?), for k-
TREEWIDTH. Their algorithm, based upon the minor well-quasi-ordering the-
orem (see [28]), is highly non-constructive, non-elementary, and has huge con-
stants.

The early work of [1,29] has been improved upon in the work of Lager-
gren [14], Reed [27], Fellows and Langston [10], Matousek and Thomas [24],
Bodlaender [2], and Bodlaender and Kloks [7], among others.

Bodlaender [2] gave the first linear-time FPT algorithms for the constructive
versions of both k-TREEWIDTH and k-PATHWIDTH, although the f(k)’s involved
mean that treewidth and pathwidth still remain parameters of theoretical inter-
est only, at least in the general case.

Bodlaender’s algorithms recursively invoke a linear-time FPT algorithm due
to Bodlaender and Kloks [7] which “squeezes” a given width p tree decomposition
of a graph G down to a width k tree (path) decomposition of G, if G has treewidth
(pathwidth) at most k. A small improvement to the Bodlaender /Kloks algorithm
would substantially improve the performance of Bodlaender’s algorithms.

Perkovic and Reed [26] have recently improved upon Bodlaender’s work,
giving a streamlined algorithm for k-TREEWIDTH that recursively invokes the
Bodlaender /Kloks algorithm no more than O(k?) times, while Bodlaender’s al-
gorithms may require O(k®) recursive iterations.

For some graph classes, the optimal treewidth and pathwidth, or good ap-
proximations of these, can be found using practically efficient polynomial time
algorithms. Examples are chordal bipartite graphs, interval graphs, permutation
graphs, circle graphs, and co-graphs.

2.4 Competitiveness

We measure the performance of an online algorithm, or gauge the difficulty of
an online problem, using the concept of competitiveness, originally defined by
Sleator and Tarjan [30] (see also Manasse, McGeoch, and Sleator [23]).
Suppose that P is an online problem, and A is an online algorithm for P.
Let ¢ > 1 be a constant. We say that A is c-competitive if, for any instance I of
problem P,
cost4(I) < ¢ costop(I) + b

where opt is an optimal offline algorithm that sees all information about the
input in advance, and b is a constant independent of I. In other words, A pays
at most ¢+ O(1) times the optimal cost, for any given input string.

We say that a given online problem P is c-competitive if there exists a c-
competitive algorithm for P, and we say that it is no better than c-competitive if
there exists no ¢’-competitive algorithm for P for any ¢’ < ¢. An online algorithm
A is said to be optimal for P if A is c-competitive and P is no better than c-
competitive.

Competitive analysis measures algorithm performance relative to what is
achievable by an omniscient algorithm, rather than in absolute terms. If an
algorithm A is c-competitive, then we say that A has a performance ratio of c.

3 Online Presentations

The usual definition of an online presentation of a graph G is a structure
G< = (V,E,<) where < is a linear ordering of V. G is presented one vertex
per timestep, v; at time 1, vy at time 2, ...and so on. At each step, the edges
incident with the newly introduced vertex and those vertices already “visible”
are also presented. We use the terms online presentation and online graph inter-
changeably.

Let V; = {v; | j <i} and G5 = G<[V;], the online subgraph of G< induced
by V;. An algorithm that solves some online problem on G will make a decision
regarding v; (and/or edges incident with v;) using only information about G;.

An extension of this model adds the notion of lookahead, where the algorithm
is shown a limited portion of the remaining graph at the time that it must
make each decision. In this case the algorithm will make a decision regarding
v; (and/or edges incident with v;) using only information about G, for some
[> 1. Another way to view lookahead is as limited revision, being able to see
the next [units of input at the time that we make each decision is essentially
the same as being able to revise the last [decisions each time we see the next
unit of input.

In this article we introduce a different method of presenting a graphlike struc-
ture online. First, fix some arbitrary constant (parameter) k. At each timestep
we present one new active vertex that may be incident with at most k active
vertices previously presented. Once a vertex has been presented we may render
some of the current set of active vertices inactive in preparation for the intro-
duction of the next new vertex. At no point do we allow more than k + 1 active
vertices, and we do not allow a new vertex to be incident with any inactive
vertex.

new vertex v

Fig. 1. Online presentation of a pathwidth 3 graph using 4 active vertices. Vertex v
remains active for 3 timesteps.

These requirements mean that any graph presented in this fashion must
have bounded pathwidth (pathwidth k). We are, in effect, presenting the graph
as a path decomposition, one node per timestep. We denote such an online
presentation of a graph G as G<Pathk,

We can add the further requirement that any vertex may remain active for at
most [timesteps, for some arbitrary constant (parameter) . We say that a path
decomposition of width k, in which every vertex of the underlying graph belongs
to at most [nodes of the path, has width k and persistence [, and say that a
graph that admits such a decomposition has bounded persistence pathwidth.

Bounding the persistence of the presentation further restricts the class of
graphs that can be considered, but in a quite natural fashion. We are assuming,
in a sense, at most k parallel “channels”, where dependencies are limited to short
timeframes, e.g. if vertex (event) b appears much later than vertex a, then b can
be affected only indirectly by a.

We explore persistence further in Section 6, but we remark here that we
believe that this natural notion truly captures the intuition behind the notion
of pathwidth.

An online graph that can be presented in the form of a path decomposition
with both low width and low persistence is properly pathlike, whereas graphs
that have high persistence are, in some sense, “unnatural” or pathological. Con-
sider the graph G presented in Figure 2. G is not really path-like, but still has
a path decomposition of width only two. The reason for this is reflected in the
presence of vertex a in every node of the path decomposition.

G c b
d a i
e h
[y
abc acd ade aef afg agh ahi

Fig. 2. A graph G having low pathwidth but high persistence.

Persistence appears to be a natural and interesting parameter in both the online
setting and the offline setting. For many problems where the input is generated
as an ordered sequence of small units, it seems natural to expect that the sphere
of influence of each unit of input should be localised.

4 Online Coloring

An online algorithm A for coloring an online graph G< will determine the color
of the ith vertex of G< using only information about G;~. A colors the vertices of
G< one at a time in the order vy < v, -, and at the time a color is irrevocably
assigned to v;, the algorithm can only see G;-.

A simple, but important, example of an online algorithm is First-Fit, which
colors the vertices of G< with an initial sequence of the colors {1,2,...} by
assigning to v; the least color that has not already been assigned to any vertex
in G5 that is adjacent to v;.

Szegedy [31] has shown that, for any online coloring algorithm A and integer
k, there is an online graph G< on at most k(2% —1) vertices with chromatic num-
ber k on which A will use 2% — 1 colors. This yields a lower bound of Q(m)
for the performance ratio of any online coloring algorithm on general graphs.
Note that the worst possible performance ratio on general graphs is n. Lovasz,
Saks, and Trotter [22] have given an algorithm that achieves a performance ratio
O({737y=) on all graphs.

Online coloring of some restricted classes of graphs has been considered. In
the bipartite case it can be shown that, for any online coloring algorithm A and
integer k, there is an online tree T< with 2/~! vertices on which A will use at
least ¢ colors. Thus, we get a lower bound of 2(log n) for any online algorithm
on bipartite graphs. Lovasz, Saks, and Trotter [22] give an algorithm that colors
any bipartite online graph using at most 1 4+ 2 log n colors.

Kierstead and Trotter [19] have given an online coloring algorithm that
achieves a performance ratio of 3 on interval graphs, which is also best pos-
sible. Kierstead [17] has shown that First-Fit has a constant performance ratio
on the class of interval graphs. Gyarfas and Lehel [13] have shown that First-Fit
achieves a constant performance ratio on split graphs, complements of bipartite
graphs, and complements of chordal graphs.

One approach that is similar in flavour to ours is presented by Irani [15].
Irani introduces the notion of d-inductive graphs. A graph G is d-inductive if
the vertices of G can be ordered in such a way that each vertex is adjacent to
at most d higher numbered vertices. Such an ordering on the vertices is called
an inductive order. As for a path or tree decomposition, an inductive order is
not necessarily unique for a graph. An inductive order of a graph G defines
an inductive orientation of G, obtained by orienting the edges from the higher
numbered vertices to the lower numbered vertices. Notice that, in an inductive
orientation, the indegree of each vertex is bounded by d. Hence, any d-inductive
graph is d 4+ 1 colorable.

In [15] it is shown that, if G is a d-inductive graph on n vertices, then First-
Fit uses at most O(d - log n) colors to color any online presentation G< of G.
Moreover, for any online coloring algorithm A, there exists a d-inductive online
graph G< such that A uses at least £2(d - log n) colors to color G<.

A connection between graphs of bounded pathwidth or bounded treewidth,
and inductive graphs, is given by the following lemma (see [21], or [25]).

10

Lemma 1. Any graph G of pathwidth k, or treewidth k, is k-inductive.

5 Online Coloring of Bounded Width Graphs

We consider two ways in which to formulate parameterized promise problems
for online coloring of graphs.

We can simply promise to fix a bound k on the treewidth or pathwidth of
any input graph G, and then proceed to present G as a structure G< = (V, E, <)
where < is an arbitrary linear ordering of V.

Alternatively, we can define a parameterized “presentation” promise, where
we fix a bound k on the pathwidth of any input graph G, and then proceed
to present G as an implicit path decomposition, in the manner described in
Section 3 above. We deal with this formulation first.

5.1 The Presentation Promise

If we undertake to present a graph G in the form of an implicit path decomposi-
tion, then we are effectively enforcing the presentation to be, if not best-possible,
then at least “very good” for the simple strategy of First-Fit acting on G.

Lemma 2. If G is a graph of pathwidth k, presented in the form of an implicit
path decomposition, then First-Fit will use at most k-1 colors to color G<P¥h k.

This is easy to see, since, at each step 7, 0 < ¢ < n, the newly presented
vertex v; will be adjacent to at most k already-colored vertices. This result is
best possible in the sense that the chromatic number (and, therefore, the online
chromatic number) of the class of graphs of pathwidth k is k + 1. However,
note that G <P*h* may not contain all of the information required to color G
optimally online, as the following lemma shows.

Lemma 3. For each k > 0, there is a tree T of pathwidth k presented as
T<Pathk on which First-Fit can be forced to use k + 1 colors.

Proof. Suppose Tj is a connected tree with pathwidth 0, then 7" must consist of
a single vertex (any graph of pathwidth 0 must consist only of isolated vertices)
so First-Fit will color T0< Path 0 with one color.

Suppose 77 is a connected tree with pathwidth 1 that has at least two vertices.
Each vertex of T, Pathl can be adjacent to at most one active vertex at the time
of presentation. Since T} is connected, there must be vertices that are adjacent
to an active vertex at the time of presentation in any T1< path 1 Thus, First-Fit
will need to use two colors to color any 77~ P!,

Now, suppose that for any 0 < ¢ < k, there is a tree T} of pathwidth ¢, and a
presentation 7, Patht on which First-Fit can be forced to use t + 1 colors. We
build a connected tree Tj with pathwidth &, and a presentation T pathk = on

which First-Fit will be forced to use k& + 1 colors.

)

11

We order the trees T;, 0 < t < k, and their presentations, in descending order
[Tx—1,Tk—2,...,Tp], and concatenate the presentations together in this order to
obtain a new presentation 7.5, . Note that the subsequence T~ P " of T< will
have at most (¢t + 1) < k active vertices at any stage.

To obtain T<Pah* e alter T'S, as follows. For each ¢, 0 < t < k, we choose
the vertex vy from T;~P*™' that is colored with color ¢ + 1 by First-Fit and
allow it to remain active throughout the rest of T.5,,. Every other vertex from
= patht g rendered inactive at the conclusion of = Patht i) the concatenated
presentation. Thus, at any stage of 7.5, there will be at most k + 1 active
vertices, and at the conclusion of TS, there will be k active vertices, one from
each of the T, patht 0 < ¢ < k. These k active vertices will be colored with
colors 1,2, ...,k respectively. We now present one new vertex, adjacent to each

of the k active vertices, which must be colored with color k£ + 1. O

k active vertices
colored ¢ ...¢p

new vertex
colored ¢y

Tt = Ti-3

Fig. 3. Schema of T<P*"* on which First-Fit can be forced to use k -+ 1 colors.

5.2 Bounded Width Promises

In this section we consider the situation where the promise is simply the topo-
logical fact that the input graph has bounded width of some type, and we make
no restrictions on how the graph is presented.

As mentioned in Section 4, Kierstead and Trotter [19] have considered online
coloring for interval graphs. A graph G = (V, E) is an interval graph if there is
a function ¥ which maps each vertex of V' to an interval of the real line, such
that for each u,v € V with u # v, ¥(u) N (v) # 0 < (u,v) € E. The function
1 is called an interval realization for G. The relation between interval graphs
and graphs of bounded pathwidth is captured by the following lemma (see [20],
or [25]).

Lemma 4. A graph G has pathwidth at most k if and only if G is a subgraph
of an interval graph G', where G' has mazimum clique size at most k + 1.

Kierstead and Trotter [19] have given an online algorithm that colors any
online interval graph G<, having maximum clique size at most k + 1, using

12

3k + 1 colors. Thus, any graph of pathwidth k£ can be colored online using at
most 3k + 1 colors.

If we insist upon sticking with the simple strategy of First-Fit we can at
least achieve a constant performance ratio on graphs having pathwidth at most k.
Kierstead [17] has shown that for every online interval graph G<, with maximum
clique size at most k + 1, First-Fit will use at most 40(k + 1) colors. In [1§]
Kierstead and Qin have improved the constant here to 25.72.

Chrobak and Slusarek [8] have shown that there exists an online interval
graph G<, and a constant ¢, where ¢ is the maximum clique size of G<, such
that First-Fit will require at least 4.4-c¢ colors to color G<. Such an interval graph
G< will have pathwidth ¢ — 1 and chromatic number c¢. Thus, the performance
ratio of First-Fit on graphs of pathwidth k& must be at least 4.4. It is open as to
what the correct lower bound is here.

In the case where G is a tree of pathwidth k£ we get definitive results for
First-Fit.

Lemma 5. First-Fit will use at most 3k + 1 colors to color any T< where T is
a tree of pathwidth k.

Proof. Let k = 0, then T consists only of an isolated vertex, and First-Fit
requires only one color to color T'<.

Let & be > 1. Suppose that the bound holds for &k — 1: for any tree T of
pathwidth at most k& — 1 First-Fit colors any T'< with at most 3k — 2 colors.

We rely on the fact that any tree T' of pathwidth k consists of a path P and
a collection of subtrees of pathwidth at most k£ — 1, each connected to a single
vertex on the path P (see [11]).

Let v; be a vertex appearing in one of the subtrees of T'. When v; is presented
in T<, at time 4, it will be colored by First-Fit using a color chosen from the
first 3k — 1 colors of {1,2,...}.

Let T be the subtree in which v; appears. Let p; be the path vertex to which
the subtree T is connected. Let V; = {v; | j < i} and T,~ = T<[V;], the online
subgraph of T< induced by V;.

Suppose that p; is not present in 7;~. Then the component of 7.~ containing
v; is a tree of pathwidth at most & — 1, disjoint from all other components of
T;=. Thus, First-Fit will color v; using a color chosen from the first 3k — 2 colors
of {1,2,...}.

Suppose that p; is present in 7~ ;. Then, in 7;~, v; will be adjacent to at
most one vertex in the component of 7=, containing p;. Suppose that this is
the case and that this vertex has been colored with some color C;. Consider
the other components of 7;~; to which v; may become connected. Together
with v;, these form a tree of pathwidth at most k& — 1. First-Fit will require
at most 3k — 2 colors to color this tree, but C; cannot be used to color v;. If
C; ¢ {1,2,...,3k — 2} then First-Fit will color v; using a color chosen from
{1,2,...,3k = 2}. If C; € {1,2,...,3k — 2} then First-Fit will color v; using a
color chosen from {1,2,...,3k — 1} — C;. If, in T;, v; is not connected to the
component of .= ; containing p;, then First-Fit will color v; using a color chosen
from {1,2,...,3k — 2}.

13

Let v; be a vertex appearing in the path of T. When v; is presented in T'<,
at time ¢, it will be colored by First-Fit using a color chosen from the first 3k + 1
colors of {1,2,...}.

Let V; = {v; | j < i} and T;= = T<[V;], the online subgraph of T'< induced
by V;.

In 75, v; may be adjacent to single vertices from each of many subtrees.
Note that, in 7, ;, each of the subtrees that becomes connected to v; is disjoint
from all other components of 7=, so any such subtree will have been colored
only with colors from {1,2,...,3k — 2}.

The path vertex v; can also be connected to (at most) two other path vertices
already colored. If v; is not connected to any other path vertex then v; will be
colored by First-Fit using a color chosen from the first 3k — 1 colors of {1,2,...}.
If v; is connected to only one other path vertex then v; will be colored by First-
Fit using a color chosen from the first 3k colors of {1, 2,...}. If v; is connected to
two other path vertices then v; will be colored by First-Fit using a color chosen
from the first 3k + 1 colors of {1,2,...}. O

Lemma 6. For each k > 0, there is an online tree T<, of pathwidth k, such
that First-Fit will use 3k + 1 colors to color T<.

Proof. The proof given for Lemma 5 suggests a way in which to present a tree
of pathwidth k& that will require 3k + 1 colors.

Let £ = 0, then T consists only of an isolated vertex, and First-Fit requires
3k +1 =1 color to color T'<.

Let k& be > 1. Suppose that there is an online tree T<, of pathwidth k — 1, such
that First-Fit is forced to use 3(k — 1) +1 = 3k — 2 colors to color T'<. We build
an online tree T'<, of pathwidth k, such that First-Fit is forced to use 3k + 1
colors to color T'<.

First present four sets of trees having pathwidth & — 1. Each set contains
3k — 2 disjoint trees, all identical, which are presented one after another in such
a way that First-Fit is forced to use 3k — 2 colors on each of them.

Now present a path vertex p; and connect p; to a single vertex from each of
the trees in the first set so that the neighbours of p; use each of the colors in
{1,2,...,3k — 2}. The vertex p; must be colored by First-Fit with color 3k — 1.

Now present a path vertex po and connect ps to a single vertex from each of
the trees in the second set so that the neighbours of ps use each of the colors in
{1,2,...,3k —2}. The vertex pa must be colored by First-Fit with color 3k — 1.

Now present a path vertex ps and connect ps to a single vertex from each of
the trees in the third set, and also to the path vertex p;, so that the neighbours
of ps use each of the colors in {1,2,...,3k — 1}. The vertex p3 must be colored
by First-Fit with color 3k.

Now present a path vertex ps and connect py to a single vertex from each
of the trees in the fourth set, and also to path vertices ps and ps, so that the
neighbours of py use each of the colors in {1,2,...,3k}. The vertex ps must be
colored by First-Fit with color 3k + 1. 0

14

T<
Colored C3k—1 colored C3k colored C3k+1 colored C3k—1
- - - -
3k — 2 colors 3k — 2 colors 3k — 2 colors 3k — 2 colors

Fig. 4. Schema of online tree T< of pathwidth k& on which First-Fit is forced to use
3k + 1 colors.

We now turn to online coloring of graphs having bounded treewidth. Related
is Sandy Irani’s [15] notion of a d-inductive graph, introduced earlier. Recall that
a graph is d-inductive if there is an ordering vy, ..., v, of its vertices such that
for all i, v; is adjacent to at most d vertices amongst {v;11,..., v}

This notion generalizes the notions of bounded treewidth, bounded degree,
and planarity. For instance, a planar graph is 5-inductive. To see this, note that
any planar graph must have a vertex of degree 5 or less. Call this v;. Remove this
vertex, and all edges adjacent to it. Repeat. Similarly, all graphs of treewidth &
are k-inductive (Lemma 1). Irani gives an upper bound on the number of colours
needed for First-Fit acting on d-inductive graphs.

Theorem 1 (Irani [15]). If G = (V,E) is d-inductive, then First-Fit will
colour any online presentation of G- with at most O(dlog|V|) many colours.

This bound is tight for the class, as this second theorem from Irani [15] shows.

Theorem 2 (Irani [15]). For every online graph colouring algorithm A, and
for every d > 0, there is a family of d-inductive graphs G such that for every
n > d3, there is a G € G where G has n vertices and A(G) = 2(dlogn).

We give here a slightly weaker lower bound for First-Fit acting on bounded
treewidth graphs.

Theorem 3. For each k > 0, there is a family of graphs G of treewidth k, such
that for every n > k, there is a G € G where G has n vertices and an online

presentation of G on which First-Fit will use Q(m logn) many colours.

Proof. We build G by describing a single online presentation. Each G,, will be
defined by a prefix of this presentation.

We first present k + 1 vertices, vy, ..., vx+1, forming a clique at each step.
First-Fit will colour these vertices, in order, with colours cy, ..., cx4+1. We then
present an isolated vertex v! which First-Fit will colour using c¢;1. To force First-
Fit to colour the next vertex, vi4s, using colour cy42, we will ensure that vgyo

is adjacent to vo, ..., vr41 and also to v?.
Note that the graph presented so far, which we denote as G2, has treewidth
k as required, with vertices v, ..., Ug41, Ugt2, coloured using ca, ..., Cpt1, Cht2,

forming a k + 1 clique in Gyo.

15

We now proceed inductively. Suppose that we have presented a graph G,,,
of treewidth k, on which First-Fit has been forced to use colours ¢; through ¢,
and that G,,, contains a k+ 1 clique consisting of vertices v,,—k, - . ., U, coloured
using Cp—k, - - -, Cm. We form G, 41, having treewidth k, on which First-Fit is
forced to use colour ¢,,+1 as follows:

We first present a copy of Gyp—k+1\Um—k+1, the graph up to the point where
Um—k+1 was presented (and coloured with ¢,,—g41), but with v, 41 left out.
We then present a new vertex v,,11 and make it adjacent to vy—g+1,..-,Um
and also adjacent to all those vertices in the copy of Gu—kt1\Um—k+1 which
are (copies of) neighbours of v,,_k+1. Since First-Fit was forced to use colour
Cm—k+1 ON Upy—f+1 in Gpy— 41 it must have been the case that the neighbours of
Um—k+1 10 Gpy—k4+1 used all the colours ¢y through ¢, . Thus, the neighbours
of v, 41 use all the colours ¢; through c¢,,, and so First-Fit will be forced to
colour v,,41 using c,,41.

We now show that G,,+1 has treewidth & by constructing a tree decomposi-
tion of width k for G,,41. Since vk, ..., v, form a clique in G,,, it must be
the case that in any tree decomposition of G,,, these vertices will appear together
in some bag, which we denote by B,,. To create a tree decomposition 73,1 of
G+1 having width k, we start with a tree decomposition 7, of width k for G,,.
We create a new bag containing v,,—g+1,- - -, Um, Um+1, denoted by B,,+1. We
add an edge from B,, in T}, to B,,+1. We then replicate a tree decomposition
Tr—k+1 of width k for G,,—r4+1 and replace every occurrence of v, k11 in the
bags of Ty, —k+1 by Upm41. Finally, we add an edge from some bag in T, ;1 that
contains v,,—x+1 to By,,+1. Note that, apart from the vertex v, 41, there are no
vertices in common between T}, and our modified 7}, k41, so this completes the
construction.

Now, if G,, consists of n,, vertices then G,,41 consists of n,, + ny—_gt1
vertices, Gy,+2 consists of Ny, + Ny—g41 + Nn—k42 vertices, and so on. G,k
consists of 1y, + N — k1 + Nm—k2 + -+ - + Ny, vertices. Thus, Ny, < (k+ 1)1y,
giving ny4x.q < (k+1)4, for any k£ > 0, d > 0.

Rearranging, we get 1+ k.d > m log n14k.4, which gives us the required
lower bound. O

There are still many unknowns here. For instance, it is unclear how the
parameters of treewidth and pathwidth interact on number of colors needed.
It is also unclear as to what can be said on average. To make a bad online
presentation of a graph G having low pathwidth one seems to need to begin at
the outer bags of some path decomposition for G and work in. This would seem to
be a rare event. Recently, Fouhy [12] has run some simulations and found that,
in general, for random pathwith k graphs, we only ever seem to need 3k + 1
colours using First-Fit. This is not understood. Along with 0-1 behaviour, it is
also suggestive of a more general theorem.

16

6 Bounded Persistence Pathwidth

In Section 3 we introduced a quite natural online presentation scheme that gives
rise to graphs having bounded persistence pathwidth. We present the graph as a
path decomposition, one node per timestep, where every vertex of the underlying
graph belongs to at most [nodes of the path. The underlying idea is that a
pathwidth 2 graph should look more like a “long 2-path” than a “fuzzy ball”.

Recall that a path decomposition of width k in which every vertex of the un-
derlying graph belongs to at most [nodes of the path has width k and persistence
[, and that a graph that admits such a decomposition has bounded persistence
pathwidth.

A related notion is domino treewidth introduced by Bodlaender and Engel-
friet [5]. A domino tree decomposition is a tree decomposition in which every
vertex of the underlying graph belongs to at most two nodes of the tree. Domino
pathwidth is a special case of bounded persistence pathwidth, where [= 2.

Note that bounded persistence pathwidth gives us a natural characterization
of graphs having both bounded pathwidth and bounded degree. If a graph G
admits a path decomposition of width & and persistence [then it must be the
case that all vertices in G have degree at most k- [. On the other hand, if G has
pathwidth £ and maximum degree d then the persistence that can be achieved in
any path decomposition of G must be “traded off” against the resulting width.

6.1 Complexity of Bounded Persistence Pathwidth

We now present some basic results regarding the complexity of recognizing
graphs having bounded persistence path decompositions.

Persistence appears to be an interesting parameter in relation to graph width
metrics and associated graph decompositions or layouts. However, in contrast to
the case for pathwidth, which admits an FPT algorithm, deciding whether or not
a given graph has bounded persistence pathwidth appears to be a hard problem.

We give some strong evidence for the likely parameterized intractability of
both the BOUNDED PERSISTENCE PATHWIDTH problem and the DoMINO PATH-
WIDTH problem. We show that the BOUNDED PERSISTENCE PATHWIDTH prob-
lem is W{t]-hard, for all ¢ € N, and we show that the DOMINO PATHWIDTH
is W[2]-hard. These results mean that is likely to be impossible to find FPT
algorithms for either of these problems, at least in the general case, unless an
unlikely collapse occurs in the W-hierarchy.

Note that, even though we will show that the recognition problems are hard,
in many real life instances we may reasonably expect to “know” that the persis-
tence is relatively low, and, indeed be given such a decomposition.

A related result from [5] is that finding the domino treewidth of a general
graph is Wt]-hard, for all ¢ € N. Our first result relies on the following theorem
from [6].

Theorem 4. k-BANDWIDTH is W[t]-hard, for all t € N.

17

k-BANDWIDTH is defined as follows:

Instance: A graph G = (V, E).

Parameter: A positive integer k.

Question: Is there a bijective linear layout of V., f:V — {1,2,...,|V]},
such that, for all (u,v) € E, |f(u) — f(v)| < k?

BOUNDED PERSISTENCE PATHWIDTH is defined as follows:
Instance: A graph G = (V, E).
Parameter: A pair of positive integers (k,).
Question: Is there a path decomposition of G of width at most k
and persistence at most [7

DoMINO PATHWIDTH is a special case of this problem, where [= 2.

Theorem 5. BOUNDED PERSISTENCE PATHWIDTH is W [t]-hard, for allt € N

Proof. We transform from k-BANDWIDTH.

Let G = (V, E) be a graph and let k be the parameter. We produce G’ = (V', E")
such that G’ has a width 2(k + 1) — 1, persistence k + 1, path decomposition
iff G has bandwidth at most k.

To build G' we begin with the original graph G, and alter it as follows:

1. for each vertex v in G, we introduce new vertices and form a clique of size
(k +1)2 + 1 containing these vertices and v, call this C,,.

2. for each neighbour u of v (we can assume at most 2k of these, otherwise G
cannot have bandwidth at most k), choose a unique vertex, ¢,,, from C,
(not v) and attach this vertex to all the vertices in C,.

G ® ® PY
v U w
o C, C., Cu
A _—
’4 [
v u w

Fig. 5. Bounded persistence pathwidth, transformation from G to G’.

< If G has bandwidth k, then the required decomposition for G’ exists.

18

Let {vo,...,vn} be a layout of bandwidth & for G. To build the decomposition
(P, X) for G’ we let the ith node of the decomposition, X;, contain {v;, ..., vtk }
plus Cj, plus each ¢;, connected to C, with j <iandr>7orr <iandj>q.

This fulfills the requirements for a path decomposition.

L Uie, Xi =V,
2. for every edge {v,w} € F’, there is an i € I with v € X; and w € X;, and
3. for all 4,7,k € I, if j is on the path from ¢ to k£ in P, then X; N X C X;.

Each node contains at most (k + 1) + k(k + 1) + (k + 1) = 2(k + 1)? vertices.
Thus, the decomposition has width 2(k + 1)?) — 1.

Any v; from G appears in at most k + 1 nodes, being nodes X;_j up to X;. Any
¢j, appears in at most k£ + 1 nodes, being nodes X; up to X,., or X, up to Xj,
where |j — | < k. Thus, the decomposition has persistence k + 1.

= If the required decomposition of G’ exists, then G has bandwidth k.

At some point in the decomposition, a node X, containing C',, will appear for
the first time. No other C,, u # v can appear in this node, as there is not room.

Pick a neighbour u of v for which C), has already appeared. C,, must have
appeared for the first time in some node X, where v/ — v’ < k, since some
cy, Was present in this node which must appear with C,, at some point, and ¢,
cannot appear in more than k£ 4 1 nodes.

Pick a neighbour w of v for which C, has not yet appeared. C',, must appear
for the first time some node X, where w’ — v’ < k, since there is some ¢,,, in
X, which must be present with C,, at some point and ¢,, cannot appear in
more than k + 1 nodes.

If we lay out the vertices of G in the order in which the corresponding cliques
first appear in the decomposition, then we have a layout of G with bandwidth
k. O

Theorem 6. DOMINO PATHWIDTH is W |[2]-hard.

Proof. We transform from k-DOMINATING SET, a fundamental TW[2]-complete
problem.

k-DOMINATING SET is defined as follows:
Instance: A graph G = (V, E).
Parameter: A positive integer k.

Question: Does G contain a set of vertices V' C V, of size k,
such that, Yu € V, Jv € V' with uwv € E?

Let G be a graph and k the parameter. We produce G’ such that G’ has a width
K — 1 domino path decomposition, where K = k2(k +4) + k(k + 3), if and only
if G has a dominating set of size k.

P

19

G’ = (V, E) consists of the following components:

Two anchors. Take two cliques, each with K vertices, with vertex sets
A ={a}[1 <i< K}and Ay = {a?|]1 <i < K}.

The graph thread. Let n = |V|. Take P = 2n+n? + (n + 1) cliques, each
with @ = k%(k + 4) vertices, with vertex sets C* = {c!|]1 < r < Q}, for
1 <7 < P. Join them into a “thread” by choosing separate vertices in each
clique, ci;,,, and ¢’ ,, and identifying ¢!, with c:f! . Identify cl,,,, with
al, and identify ¢£ , with a?. Now, for each 1 < i < (P — 1) cliques C* and
C™*! have a vertex in common, C' has a vertex in common with A;, and
CP has a vertex in common with As.

The vertex cliques. For each i of the form ¢ = 2n+j.n+1for 0 < j <n-—1
take the clique C? from the graph thread and add another vertex to each
such C?, to make a clique with @ + 1 vertices. Each of these n cliques, C]l:,
represents a vertex, v;, of G.

The selector threads. Take 2n cliques of size 2; n? cliques of size k + 3
with vertex sets S* = {s.|1 < r < k+ 3}, for 1 < i < n? and another 2n
cliques of size 2. Join them into a thread as for the graph thread, so that 2n
size 2 cliques form the first portion of the thread, and 2n size 2 cliques form
the last portion of the thread. Now, the first 2n size 2 cliques form a simple
path having 2n 4 1 vertices and 2n edges, where the last vertex in this path
is also an element of S!. For each 1 < i < (n? — 1) cliques S* and S**! have
a vertex in common. The last 2n size 2 cliques form a simple path having
2n + 1 vertices and 2n edges, where the first vertex in this path is also an
element of S™°.

For 1 < i < n, let §; denote the ith consecutive set of n cliques of size k + 3,
{S(ifl)nJrl7 o S(ifl)nJrn}.

Remove one (interior) vertex from the ith clique of S;, SG=D+i If o, is
connected to v; in G, remove one (interior) vertex from the jth clique of S;,
Gli=1)n+j

Make k copies of the selector thread component described here, and identify
the first vertex of the ith thread with aj, ;, the last vertex of the ith thread
with a?, ;.

Each of these threads is used to select a vertex in a dominating set of G, if
one exists.

Suppose G has a dominating set of size k. Then the required domino path

decomposition of G, PD(G’), exists.

There are P + 2 nodes in the decomposition, {Xp,...,Xpi1}. We let A; be
contained in Xy. For 1 < i < P, we let X; contain C* from the graph thread,
and we let the Xpy1 contain A,.

Note that X7 must contain the first (size 2) clique of each of the selector

threads, and Xp must contain the last (size 2) clique of each of the selector
threads, by domino-ness. Each of these cliques has a vertex in common with
the anchors, and this vertex can appear in only two nodes. It must appear in

20

vertex clique, @ + 1 vertices

2n cliques
jﬂ,\ graph thread

k selector threads

anchor A anchor As

Fig. 6. Gadget for domino pathwidth transformation.

some node with its clique, and this cannot be the same node as the one where
it appears with the anchor.

Suppose the dominating set of G is {vq, , Vdy, - - - , Va4, - We will align the first
selector thread so that the vq, th clique of &7 in this thread appears in X411, the
same node in which C?"*1, the first vertex clique in the graph thread, appears.
We will align the second selector thread so that the vg,th clique of S; in this
thread appears in Xs,11, and so on. For each selector thread, we place each of
the S% cliques, 1 < i < n?, one per node consecutively, but we “fold” the size
2 cliques at the start of each selector thread, by placing 2 of these at at time
into a node (i.e. 3 vertices per node) as many times as necessary, so as to ensure
that the vg,th clique of S; in ith thread occurs in the same node as C?+1 from
the graph thread. The size 2 cliques at the end of each selector thread are also
folded to fit into the nodes remaining before A, is reached in Xpy.

Exactly (n — 1) folds will be required altogether, for each selector thread.
The folding of the size 2 cliques will not breach the width bound, since each fold
contributes 3 to the bag size, over at most k threads, and at most k(k + 3) is
permitted i.e k + 3 per thread. Allowing (n — 1) folds will ensure that any of
{v1,...,v,} can be positioned correctly.

If we align the selector threads this way, then each node containing a vertex
clique from the graph thread will also contain a clique from at least one selector
thread that is of size only (k +2). Let C?"+J"+1 be a vertex clique representing
vertex v; from G. If v; is in the dominating set then one of the selector threads
will be aligned so that the jth clique of §; from that thread appears in Xoy,4j.n+1,
and this clique has size only (k + 2). If v; is a neighbour of some vertex v; in
the dominating set then one of the selector threads will be aligned so that the

21

ith clique of §; from that thread appears in X, ;.n+1, and this clique has size
only (k +2).

The decomposition described here preserves domino-ness. Xy and Xp1 each
contain K vertices. Each interior node in the decomposition contains either a
non-vertex clique in the graph thread along with at most k(k+ 3) other vertices,
or a vertex clique in the graph thread along with k cliques of size (k + 3) or
(k 4+ 2), where at least one of these cliques must have size (k + 2). Hence, each
interior node contains at most K vertices

Thus, we have a domino path decomposition of width at most K — 1, as required.

= Suppose a domino path decomposition of G’ with width K, PD(G"), exists,
then G must have a dominating set of size k.

— Each of A; and A must be the contained in an end node of PD(G’), since
no threads can pass over these large cliques, and all threads have vertices in
common with both of them. Let us assume that A; is contained in the first
node, Xj.

— Only one clique from the graph thread can be contained in any node of
PD(G'), since there is not enough room to admit more than one. Each clique
of the graph thread must be contained in some node of PD(G"). By domino-
ness, and a simple induction argument, we must have the same situation
described in the first part of this proof. The decomposition PD(G’) must
consist of P+ 2 nodes, A; is contained in the first node, Xy, A5 is contained
in the last node, Xp41, and for 1 < i < P, node X; contains C? from the
graph thread.

— The first vertex clique in the graph thread must appear in a node containing

a clique from & for each of the selector threads. The last vertex clique in
the graph thread must appear in a node containing a clique from §,, for each
of the the selector threads.
The first vertex clique in the graph thread appears in node Xs,41. The
last vertex clique in the graph thread appears in node Xy, n—1)+1. There
are 2n + 1 nodes that occur before Xy, 1 in the decomposition and 2n + 1
nodes that occur after Xy, (,—1)+1 in the decomposition. There are only
2n vertices occurring in a selector thread before the first clique of S is
encountered. These are connected in a path, and by domino-ness, this path
cannot stretch over more than 2n nodes. Similarly, the path at the end of
the selector thread cannot stretch over more than 2n nodes.

— Each node in the decomposition, apart from the first and the last, contains a
clique from the graph thread and so can contain at most k distinct S cliques
from the selector threads.

Each clique from the graph thread contains at least k?(k + 4) vertices and
each S? clique contains at least (k + 2) vertices. In any node there is room
for only k(k + 3) more vertices apart from the graph thread clique. (k + 1)
distinet S? cliques will consist of at least (k+1)(k+2) = k(k+3)+2 vertices.

— The arguments given here, along with domino-ness, force the following situ-

ation.

22

Every node in the decomposition from Xy, 11, which contains the first vertex
clique of the graph thread, to Xy, pn(n—1)+1, Wwhich contains the last vertex
clique of the graph thread, must contain exactly k& S* cliques, one from each
of the selector threads. These must appear in the order in which they occur
in the threads.

— For the width bound to be maintained, each node containing a vertex clique
C?n+in+1 from the graph thread must contain at least one S? clique of size
(k 4+ 2). Thus, the S; cliques that occur in node Xa,,+1 must correspond to
k vertices that form a dominating set in G. O

7 Conclusions

We consider the work presented in this article to be a first step in a program
to investigate the algorithmic ramifications of parameterized promise problems
in the online setting. It seems apparent that graph width metrics, in particular,
pathwidth, or metrics that are pathwidth-like, are a natural fit in this context.

The notion of persistence for a path decomposition is introduced. Whilst this
natural parameter has a number of very interesting algorithmic implications, we
establish that recognition of graphs having bounded persistence pathwidth is
parametrically hard.

We see the present article as laying the foundations for our ideas. Future stud-
ies will be concerned both with other applications, and with making foundations
for online descriptive complexity.

References

1. S. Arnborg, D. G. Corneil, and A. Proskurowski: Complexity of finding embeddings
in a k-tree. STAM J. Alg. Disc. Meth. 8, pp 277-284, 1987.

2. H. L. Bodlaender: A linear time algorithm for finding tree decompositions of small
treewidth. STAM J. Comput. 25, pp 1305-1317, 1996.

3. H. L. Bodlaender: A partial k-arboretum of graphs with bounded treewidth. Techni-
cal Report UU-CS-1996-02, Department of Computer Science, Utrecht University,
Utrecht, 1996.

4. H. L. Bodlaender: Treewdith: Algorithmic techniques and results. Proc. 22nd MFCS,
Springer-Verlag LNCS 1295, pp 19-36, 1997.

5. H. L. Bodlaender, J. Engelfreit: Domino Treewidth. J. Algorithms 24, pp 94-127,
1997.

6. H. L. Bodlaender, M. R. Fellows, M. T. Hallett: Beyond NP-completeness for prob-
lems of bounded width: Hardness for the W-hierarchy. Proc. 26th Annual Symposium
on Theory of Computing, pp 449-458, ACM Press, New York, 1994.

7. H. L. Bodlaender and T. Kloks: Efficient and constructive algorithms for the path-
width and treewdith of graphs. J. Algorithms 21, pp 358-402, 1996.

8. M. Chrobak, M. Slusarek: On some packing problems related to dynamic storage
allocation. RAIRO Inform. Theor. Appl. 22, pp 487-499, 1988.

9. R. G. Downey, M. R. Fellows: Parameterized Complerity Springer-Verlag, 1999.

23

10. M. R. Fellows and M. A. Langston: An analogue of the Myhill-Nerode theorem and
its use in computing finite-basis characterizations. Proceedings of the 30th Annual
Symposium on Foundations of Computer Science, IEEE Computer Science Press,
Los Alamitos, California, pp 520-525, 1989.

11. B. de Fluiter: Algorithms for Graphs of Small Treewidth. ISBN 90-393-1528-0, 1997.

12. J. Fouhy: Computational Fxperiments on Graph Width Metrics. M.Sc. thesis, Vic-
toria University, Wellington, 2003.

13. A. Gyarfas, J. Lehel: On-line and First Fit Coloring of Graphs. J. Graph Theory,
Vol. 12, No. 2, pp 217-227, 1988.

14. J. Lagergren: Efficient parallel algorithms for graphs of bounded treewidth. J. Al-
gorithms 20, pp 20-44, 1996.

15. S. Irani: Coloring inductive graphs on-line. Proceedings of the 31st Annual Sym-
posium on Foundations of Computer Science, Vol 2, pp 470-479, 1990.

16. H. A. Kierstead: Recursive and On-Line Graph Coloring In Handbook of Recursive
Mathematics, Volume 2, pp 1233-1269, Elsevier, 1998.

17. H. A. Kierstead: The Linearity of First Fit Coloring of Interval Graphs. STAM J.
on Discrete Math, Vol 1, No. 4, pp 526-530, 1988.

18. H. A. Kierstead, J. Qin: Coloring interval graphs with First-Fit. (Special issue:
Combinatorics of Ordered Sets, papers from the 4th Oberwolfach Conf., 1991), M.
Aigner and R. Wille (eds.), Discrete Math. 144, pp 47-57, 1995.

19. H. A. Kierstead, W. A. Trotter: An Extremal Problem in Recursive Combinatorics.
Congressus Numeratium 33, pp 143-153, 1981.

20. N. G. Kinnersley: The Vertex Separation Number of a Graph equals its Path- Width.
Information processing Letters 42(6), pp. 345-350, 1992.

21. L. M. Kirousis, D. M. Thilikos: The Linkage of a Graph. SIAM Journal on Com-
puting 25(3), pp. 626-647, 1996.

22. L. Lovasz, M. E. Saks, W. A. Trotter: An On-Line Graph Coloring Algorithm with
Sublinear Performance Ratio. Bellcore Tech Memorandum, No. TM-ARH-013-014.

23. M. S. Manasse, L. A. McGeoch, D. D. Sleator: Competitive Algorithms for Online
Problems.

24. J. Matousek and R. Thomas: Algorithms for finding tree-decompositions of graphs.
J. Algorithms 12, pp 1-22, 1991. Proceedings of the 20th Annual ACM Symposium
on Theory of Computing, pp 322-333, 1988.

25. C. M. McCartin: Contributions to Parameterized Complexity Ph.D. Thesis, Victo-
ria University, Wellington, 2003.

26. L. Perkovic and B. Reed: An Improved Algorithm for Finding Tree Decompositions
of Small Width. International Journal of Foundations of Computer Science 11 (3),
pp 365-371, 2000.

27. B. Reed: Finding approximate separators and computing treewdith quickly. Pro-
ceedings of the 24th Annual Symposium on Theory of Computing, ACM Press,
New York, pp 221-228, 1992.

28. N. Robertson and P. D. Seymour: Graph minors - a survey. Surveys in Combina-
torics, I. Anderson (Ed.), Cambridge Univ. Press, pp 153-171, 1985.

29. N. Robertson, P. D. Seymour: Graph minors II. Algorithmic aspects of tree-width.
J. Algorithms 7, pp 309-322, 1986.

30. D. D. Sleator, R. E. Tarjan: Amortized Efficiency of List Update and Paging Rules.
Comunication of the ACM 28, pp 202-208, 1985.

31. M. Szegedy: private communication, reported in [16].

