
Lowness for Demuth Randomness

Rod Downey and Keng Meng Ng�

Victoria University of Wellington,
School of Mathematics, Statistics and Computer Science,

PO Box 600, Wellington, New Zealand

Abstract. We show that every real low for Demuth randomness is of
hyperimmune-free degree.

1 Introduction

A fundamental theme in the study of computability theory is the idea of com-
putational feebleness, which might be loosely defined as properties exhibited by
non-computable sets resembling computability. This is usually described in lit-
erature as a notion of lowness, and indicates weakness as an oracle. The classical
example of sets exhibiting a property of this sort are the low sets, which are the
sets A such that A′ ≡T ∅′. Thus in terms of the jump operator, low sets are
indistinguishable from the computable ones. There is a plethora of results in the
literature which suggest that low sets resemble computable sets, particularly for
the computably enumerable (c.e.) sets.

In notions of lowness, one usually considers a certain set operation and says
that A satisfies the notion of lowness if it does not give any extra power to the
operation. In the above example of low sets, the operation concerned was the
Turing jump operator. Slaman and Solovay demonstrated in [26] a relationship
between the low sets, and another seemingly unrelated lowness notion from the
theory of inductive inference. In particular they showed that every set A which
was low for EX learning was also low (and in fact 1-generic below ∅′). This
result says that lowness for various notions of computation can be intertwined.

In a similar vein, Bickford and Mills [5] introduced the concept of a superlow
set. A truth-table reduction is a Turing reduction which is total on every oracle
string, and a set A was defined to be superlow if A′ ≡tt ∅′, where the equivalence
≡tt is induced by the pre-ordering of truth-table reducibility. One expects that
the superlow sets would resemble the computable sets very strongly. Indeed a
standard construction of a low c.e. set by the preservation of jump computations
already made the constructed set superlow (as in the low basis theorem). At first
blush we might be tempted to think that the low and superlow sets are very
similar, or even the same. However the low and superlow sets have turned out to
be not even elementarily equivalent. Recent examples have suggested that the
dynamic properties of low and superlow c.e. sets are very different. For instance

� Both authors were partially supported by the Marsden Fund of New Zealand.

K. Ambos-Spies, B. Löwe, and W. Merkle (Eds.): CiE 2009, LNCS 5635, pp. 154–166, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Lowness for Demuth Randomness 155

Downey and Ng [12] showed that there is a low c.e. degree which is not the join
of any two superlow c.e. degrees.

Recent development in algorithmic randomness have revealed that the theory
of low and superlow c.e. sets is much deeper than originally thought. Various
lowness notions for Kolmogorov complexity and other operations arising in algo-
rithmic randomness have suggested a deep connection with subclasses of the low
sets. Several subclasses of the superlow sets have sprung up, and have been shown
to be even better candidates for studying properties resembling computability.
A central theme in these classes is the notion of traceability.

An order function h is a total computable, non-decreasing and unbounded
function. A set A is said to be jump traceable with respect to an order h, if there
is a computable g, such that for all x, |Wg(x)| ≤ h(x), and JA(x) ∈ Wg(x). Here,
JA(x) denotes the value of the universal function ΦA

x (x) partial computable in
A. Note that the range of JA is contained in IN, and not restricted to binary
values. A set A is said to be jump traceable, if there is an order h for which it
is jump traceable with respect to h. This notion was introduced by Nies [23].

A jump traceable set A differs from a superlow set in the sense that we are able
to effectively enumerate finitely many candidates for each JA(x). For a superlow
set A we are only able to approximate whether JA(x) converges. Since we are
able to code finite information into JA(x), it might appear that being jump
traceable is stronger than being superlow. Recall that a set A is n-c.e. if there
is a computable approximation As(x) to A, such that the number of changes
in As(x) is bounded by n at every x. A is ω-c.e. if the number of changes is
bounded by a computable function.

Ng [19] showed that for n-c.e. sets, jump traceability and superlowness were
the same. Earlier, Nies [23] showed that they coincide on the c.e. sets. However
when we consider the next level on the Ershov hierarchy, these two notions
separate: it is not hard to see that no jump traceable set can be Martin-Löf
random, so a superlow Martin-Löf random set cannot be jump traceable. In
the other direction, Nies [23] showed that there was an ω-c.e. jump traceable
set which was not superlow. If we consider non-Δ0

2 sets, the situation becomes
even more bizzare. There is a perfect Π0

1 class of sets which are jump traceable,
via an exponential bound. Such a phenomenon highlights an important inherent
property of being traceable; we are only able to enumerate possible values of A |n,
but beyond that we are given no additional information to suggest which one
of the enumerated values is correct. Indeed Kjos-Hanssen and Nies [17] showed
that jump traceable sets could even be superhigh.

Traceability plays a very important role in understanding lowness notions
arising in algorithmic information theory. If R is a notion of effective random-
ness, then low for R would denote all the sets A for which RA = R (i.e. every
random Z is still random relative to A). The work of Terwijn and Zambella
[28], Kjos-Hanssen, Nies and Stephan [18], and Bedregal and Nies [4] has re-
vealed an interesting interaction between “predictability” in terms of traceabil-
ity, and simplicity in terms of Kolmogorov complexity. Recall that a set Z is of
hyperimmune-free degree, if every function computable from Z is dominated by

156 R. Downey and K.M. Ng

a computable function. A is said to be computably traceable if A is “uniformly
hyperimmune-free”. That is, there is a computable function h such that for each
f ≤T A, there exists a computable sequence of canonical finite sets Dg(x) with
|Dg(x)| ≤ h(x), and such that f(x) ∈ Dg(x) for all x. They showed that

Theorem 1.1. A is low for Schnorr randomness iff A is computably traceable.

Hence the notion of being low for Schnorr randomness coincided with a combi-
natorial notion, that of being computably traceable.

A very robust class exhibiting low information content is the class of K-
trivial reals1. Formally a real A is K-trivial if there is some constant c such that
K(A |n) ≤ K(n) + c for every n, where K denotes the prefix-free Kolmogorov
complexity. Here A |n denotes the first n bits of A. Hence an initial segment
of a K-trivial real contains no more information than its own length; clearly all
computable reals are K-trivial. The most well-known work on the K-trivials was
the work of Nies showing the coincidence of several simple classes:

Theorem 1.2 (Nies [22,24]). A is K-trivial iff A is low for Martin-Löf ran-
domness iff A is low for K.

A real A is low for K if ∃c∀σ(K(σ) ≤ KA(σ) + c); that is, A does not help
in the compression of strings when used as an oracle. The robustness of this
class was further demonstrated when various other characterizations were found;
for instance the reals low for weak 2-randomness, and the bases for Martin-Löf
randomness [16]. Here A is a base for Martin-Löf randomness if A ≤T Z for some
Z which is random relative to A. Intuitively there cannot be many possibilities
for initial segments of a base for randomness, because we can use the given Turing
reduction Φ (where A = ΦZ) to lower the Kolmogorov complexity of possible
initial segments of Z. This was in fact the driving force behind the “hungry sets”
theorem of [16]. We refer the reader to Franklin and Stephan [14] for a Schorr
random version of a base. Other notions of bases which have been studied are the
LR-bases for randomness [2,3], and the JT -bases for randomness [19]. These are
notions obtained from a base for randomness, by replacing Turing reducibility
with different weak reducibilites.

The resemblance which the K-trivial reals bear with the computable sets
makes one wonder if they are related to the low sets. Is there also a combinatorial
characterization in terms of traceability like the one for Schnorr lowness? Recent
developments have suggested that this was the case. In [10], Downey, Hirschfeldt,
Nies and Stephan showed that the K-trivial reals were natural solutions to Post’s
problem in the following sense:

Theorem 1.3. Every K-trivial real is Turing incomplete.

They used a new method widely known as the “Decanter method”. This method
exploited the fact that for any given K-trivial real, we could challenge its triv-
iality very slowly. This resembles the “drip-feeding” action of a decanter, and
1 We identify sets of natural numbers with real numbers. It is common to use the term

“sets of natural numbers” in traditional computability theory, while in algorithmic
information theory it is useful to think of these as infinite binary sequences.

Lowness for Demuth Randomness 157

hence the fanciful name. Nies [23,24] then applied a non-uniform method of the
Decanter method to show:

Theorem 1.4. Every K-trivial real is superlow.

In fact, the same proof also shows that every K-trivial real is jump traceable at
an order of n log2 n. These results suggested that jump traceability was the ap-
propriate combinatorial notion associated with K-triviality, in the same way as
computable traceability was related to lowness for Schnorr randomness. Armed
with this insight, Figueira, Nies and Stephan [13] defined the notion of strong
jump traceability. They defined A to be strongly jump traceable, if A is jump
traceable with respect to all order functions. Figueira, Nies and Stephan used a
cost function construction to show the existence of a promptly simple strongly
jump traceable c.e. set. One can view c.e. strong jump traceability as a natu-
ral strengthening of being superlow. Unlike the case of computable traceability,
strong jump traceability is different from jump traceability; in fact there is an
entire hierarchy of jump traceable sets ordered by the growth rates of the bound-
ing functions on the size of the trace. This hierarchy contains infinitely many
strata in either direction. That is, there is no single maximal bound for jump
traceability (Figueira Nies and Stephan [13]), and neither is there a single mini-
mal bound (Ng [21]). In fact, Greenberg and Downey [8] showed that if one got
down to a level of log log n, then every jump traceable real was Δ0

2.
Figueira, Nies and Stephan asked if strong jump traceability was the coveted

combinatorial characterization of the K-trivials. Cholak, Downey and Green-
berg [6] answered this for the c.e. case by showing that the c.e. strongly jump
traceable sets form a proper sub-ideal of the c.e. K-trivials. In fact, they showed
that if A was c.e. and jump traceable at order ∼ √

log n, then A was also K-
trivial. This gave the first example of a combinatorial property which implies
K-triviality. Even though neither notion of jump traceability gives us an exact
characterization of the K-trivials, the associated results provide a good idea of
the upper and lower bounds on the order of jump traceability which would cap-
ture K-triviality. By analyzing the proofs which give the lowerbound ∼ √

log n
and upperbound ∼ n log2 n, two possible characterizations had been suggested.
Greenberg suggested that A is K-trivial iff A is jump traceable for all orders h
with

∑
n∈ω

1
h(n) < ∞. This was refuted by Barmpalias, Downey and Greenberg

[1], and independently by Ng [20]. The second conjecture is that the collection
of orders should be the class of all orders h satisfying

∑
n∈ω 2−h(n) < ∞, and is

still open.
Several other lowness notions have been studied with respect to other concepts

of randomness. We list a few notable examples. Downey, Greenberg, Mihailović
and Nies [9] showed that the computably traceable sets were exactly those which
were low for computable measure machines. Here, a computable measure ma-
chine is a prefix-free machine with a computable halting probability, and A is
low for computable measure machines (c.m.m.) if for each c.m.m. M relative
to A, there is a c.m.m. N and a constant c such that KA

M (σ) ≥ KN(σ) − c for
every σ.

158 R. Downey and K.M. Ng

Nies [24] showed that the only sets which were low for computable ran-
domness2, were the computable sets. The combined work of Greenberg, Miller,
Stephan and Yu [15,27] revealed that the sets which were low for Kurtz ran-
domness, were exactly the hyperimmune-free and non-DNR degrees. These were
also the sets which were low for weak 1-genericity, which showed yet another
interaction between lowness notions in classical computability, and randomness.
For more examples we refer the reader to Chapter 8 of Nies’ book [25].

In the next section, we contribute with another result in this direction. We
consider lowness with respect to a less well-known notion of randomness, known
as Demuth random. This was introduced by Demuth [7] and was originally mo-
tivated by topics in constructive analysis. This appears to be a very natural
(strong) randomness notion to study, and not much work has yet been done on
this class.

Definition 1.5. A Demuth test is a sequence of c.e. open sets {Wg(x)}x∈IN such
that μWg(x) < 2−x for every x, and g is ω-c.e. We say that Z passes the test if
∀∞xZ �∈ Wg(x). A real is Demuth random if it passes every Demuth test.

A Demuth test is a sequence of c.e. open sets, but the function giving the weak
indices is an ω-c.e. function. Informally if we were building such a test (to try
and catch some real number) we have additional power over building a ML-test
because we can change the name of Wg(x) a bounded number of times. That
is, we can remove a certain part (or even all) of what we have enumerated
into Wg(x) so far, as long as we only do it a computably bounded number of
times. The definition of passing a Demuth test is as in the Solovay sense, and we
cannot always require that Wg(x) ⊇ Wg(x+1). There is no universal Demuth test,
although there is a single special test {Wĝ(x)} which is universal in the sense
that every real passing the special test is Demuth random. However the function
ĝ(x) has to emulate every ω-c.e. function, and so ĝ(x) is Δ0

2. Hence the special
test is not a Demuth test.

Clearly the Demuth randoms lie between 2-randomness and ML-randomness.
It is not hard to construct a Δ0

2 Demuth random using the special test, and
obviously no ω-c.e. set can be Demuth random. Hence the containments are
proper. Demuth randoms exhibit properties which can be found in both 1- and
2-randomn reals. For instance every Demuth random (like the 2-randoms) are
GL1 and hence of hyperimmune degree by a result of Miller and Nies (Theorem
8.1.19 of [25]). Here a real is of hyperimmune degree if it is not of hyperimmune-
free degree. Since there are hyperimmune-free weakly 2-randoms, this implies
that Demuth randomness and weak 2-randomness are incomparable notions.
However unlike the 2-randoms, the Demuth test notion is essentially computably
enumerable.

We contribute two theorems to the understanding of this notion of random-
ness. First, we prove that every Demuth random is array computable. This notion
was introduced by Downey, Jockusch and Stob [11] to describe the class of reals
below which certain multiple permitting arguments could not be carried out.

2 A real is computably random if it succeeds on every computable martingale.

Lowness for Demuth Randomness 159

This again suggests that Demuth randoms are like the 2-randoms, having low
computational strength. In particular, the Demuth randoms below ∅′ form an
interesting class, being both low and array computable but not superlow.

Theorem 1.6. Each Demuth random Z is array computable.

Proof. We observe the proof that every Demuth random is GL1 already does it;
this can be found in Chapter 3 of Nies [25]. The proof actually produces an ω-c.e.
function g which dominates the function ΘZ(x) := least s such that ΦZ

x (x)[s] ↓
(which of course implies that Z ′ ≤T Z⊕∅′). By usual convention the output value
of ΦZ

x (x) is < ΘZ(x). Since every function computable in Z can be coded into
the diagonal, we have a computable function p such that for every e, and almost
every y > e, we have ΦZ

e (y) = ΦZ
p(e,y)(p(e, y)) < ΘZ(p(e, y)) < g(p(e, y)) < g̃(y),

where g̃(y) := max{g(p(0, y)), g(p(1, y)), · · · , g(p(y, y))} is ω-c.e. as well. ��
Next, we study the notion of lowness with respect to Demuth randomness.
A relativized Demuth test involves full relativization. That is, a Demuth test
relative to A is a sequence {WA

g(x)} where μWA
g(x) < 2−x for every x. Here,

g(x) = lim g̃(x, s) for some A-computable function g̃, and the number of g̃-mind
changes is bounded by an A-computable function. A real Z is Demuth random
relative to A if it passes every Demuth test relative to A. We say that A is low
for Demuth randomness if every Demuth random is Demuth random relative to
A. In the next section we prove that every real low for Demuth randomness is
of hyperimmune-free degree.

However it is still unknown if there is any set which is non-computable and
low for Demuth randomness. A construction of such a real will have to build
a hyperimmune-free degree, and if one uses the standard forcing method then
one has to address the issue of constructing the effective objects required in the
proof. We conjecture that every real which is low for Demuth randomness is
computable.

2 No Set of Hyperimmune Degree Can be Low for
Demuth Randomness

We work in the Cantor space 2ω with the usual clopen topology. The basic open
sets are of the form [σ] where σ is a finite string, and [σ] = {X ∈ 2ω | X ⊃ σ}.
We fix some effective coding of the set of finite strings, and identify finite strings
with their code numbers. We treat Wx as a c.e. open set, consisting of basic
clopen sets. We say that [σ] ∈ Wx to mean that the code number of σ is in Wx,
and we say that a string τ ∈ Wx if τ ⊇ σ for some [σ] ∈ Wx. Equivalently we
say that τ is captured by Wx. The same definition holds if we replace τ by an
infinite binary string. We prove:

Theorem 2.1. No set of hyperimmune degree can be low for Demuth randomness.

Proof. Suppose A is of hyperimmune degree. Let hA be a function total com-
putable in A and non-decreasing, which escapes domination by all total com-
putable functions. That is, for all total computable g, ∃∞x(g(x) < hA(x)). We

160 R. Downey and K.M. Ng

build a Z ≤T A′ which is Demuth random, but not Demuth random relative to
A. To do this, we give an A-computable approximation {Zs} to Z. The construc-
tion will try to achieve two goals. The first is to make Z Demuth random by
making Z avoid all Demuth tests. The second goal is to ensure that for infinitely
many x, there are at most hA(x) many mind changes of Zs |x. Hence we can
easily use the approximation Zs to build a Demuth test relative to A capturing
Z infinitely often. Hence Z cannot be Demuth random relative to A.

2.1 The Motivation

Before we describe the strategy used to prove Theorem 2.1, let us see why an
attempted construction of a c.e. set A which is low for Demuth randomness fails.
Let us consider a single (relativized) Demuth test {V A

x }, played by the opponent,
where the index for V A

x can change hA(x) times. Now we have to cover {V A
x }

with a plain Demuth test {Ux}, by making sure that V A
x ⊆ Ux for every x. If

hA(x) = 0 for all x, then we could just follow the construction of a c.e. set which
is low for random. We would enumerate y into A (to make A non-computable), if
the penalty we have to pay for making the enumeration of y is small. Even when
hA is computable, we can always arrange the enumerations so that V A

x ⊆ Ux

eventually, because we could use hA(x) as the bound for the index change of Ux.
The problem is that an enumeration into A not only increases the amount

we have to put into Ux, but also gives the opponent a chance to redefine hA(x).
Suppose he has defined hA(x) with use bx. At some stage we will have to commit
ourselves to a number g(x), and promise never to change the index for Ux more
than g(x) times. We would of course declare that g(x) > hA(x), but once we
do that, the opponent could challenge us to change A |bx to ensure the non-
computability of A. We have to eventually change A |bx at some x, and allow
the opponent to make hA(x) > g(x), and then we are stuck.

Note that the opponent will be likely to have a winning strategy, if hA escapes
domination by all computable functions. He could then carry out the above for
each e, patiently waiting for an x such that hA(x) > ϕe(x), and then defeat the
eth Demuth test. This is the basic idea used in the following proof, where we
will play the opponent’s winning strategy.

2.2 Listing All Demuth Tests

In order to achieve the first goal, we need to specify an effective listing of all
Demuth tests. It is enough to consider all Demuth tests {Ux} where μ(Ux) <
2−3(x+1). Let {ge}e∈IN be an effective listing of all partial computable functions
of a single variable. For every g in the list, we will assume that in order to output
g(x), we will have to first run the procedures to compute g(0), · · · , g(x− 1), and
wait for all of them to return, before attempting to compute g(x). We may
also assume that g is non-decreasing. This minor but important restriction on g
ensures that:

(i) dom(g) is either IN, or an initial segment of IN,
(ii) for every x, g(x + 1) converges strictly after g(x), if ever.

Lowness for Demuth Randomness 161

By doing this, we will not miss any total non-decreasing computable function.
It is easy to see that there is a total function k ≤T ∅′ that is universal in the
following sense:

1. if f(x) is ω-c.e. then for some e, f(x) = k(e, x) for all x,
2. for all e, the function λxk(e, x) is ω-c.e.,
3. there is a uniform approximation for k such that for all e and x, the number

of mind changes for k(e, x) is bounded by
{

ge(x) if ge(x) ↓,
0 otherwise.

Let k(e, x)[s] denote the approximation for k(e, x) at stage s. Denote Ue
x =

Wk(e,x), where we stop enumeration if μ(Wk(e,x)[s]) threatens to exceed 2−3(x+1).
Then for each e, {Ue

x} is a Demuth test, and every Demuth test is one of these.
To make things clear, we remark that there are two possible ways in which
Ue

x[s] �= Ue
x[s+1]. The first is when k(e, x)[s] = k(e, x)[s+1] but a new element is

enumerated into Wk(e,x). The second is when k(e, x)[s] �= k(e, x)[s+1] altogether;
if this case applies we say that Ue

x has a change of index at stage s + 1.

2.3 The Strategy

Now that we have listed all Demuth tests, how are we going to make use of the
function hA? Note that there is no single universal Demuth test; this complicates
matters slightly. The eth requirement will ensure that Z passes the first e many
(plain) Demuth tests. That is,

Re : for each k ≤ e, Z is captured by Uk
x for only finitely many x.

Re will do the following. It starts by picking a number re, and decides on Z |re .
This string can only be captured by Uk

x for x ≤ re, so there are only finitely
many pairs 〈k, x〉 to be considered since we only care about k ≤ e. Let Se denote
the collection of these open sets. If any Uk

x ∈ Se captures Z |re , we would change
our mind on Z |re . If at any point in time, Z |re has to change more than
hA(0) times, we would pick a new follower for re, and repeat, comparing with
hA(1), hA(2), · · · each time. The fact that we will eventually settle on a final
follower for re, will follow from the hyperimmunity of A; all that remains is to
argue that we can define an appropriate computable function at each Re, in
order to challenge the hyperimmunity of A.

Suppose that r0
e , r1

e , · · · are the followers picked by Re. The required com-
putable function P would be something like P (n) =

∑
k≤e

∑
x≤rn

e
gk(x), for

if P (N) < hA(N) for some N , then we would be able to change Z |rN
e

enough
times on the N th attempt. There are two considerations. Firstly, we do not know
which of g0, · · · , ge are total, so we cannot afford to wait on non converging com-
putations when computing P . However, as we have said before, we can have a
different P at each requirement, and the choice of P can be non-uniform. Thus,
P could just sum over all the total functions amongst g0, · · · , ge.

162 R. Downey and K.M. Ng

The second consideration is that we might not be able to compute r0
e , r1

e , · · ·,
if we have to recover rn

e from the construction (which is performed with oracle
A). We have to somehow figure out what rn

e is, externally to the construction.
Observe that however, if we restrict ourselves to non-decreasing g0, g1, · · ·, it
would be sufficient to compute an upperbound for rn

e . We have to synchronize
this with the construction: instead of picking rn

e when we run out of room to
change Z |rn−1

e
, we could instead pick rn

e the moment enough of the gk(x) con-
verge and demonstrate that their sum exceeds hA(rn−1

e). To recover a bound for
say, r1

e externally, we compute the first stage t such that all of the gk(x)[t] have
converged for x ≤ r0

e and gk total.

2.4 Notations Used for the Formal Construction

The construction uses oracle A. At stage s we give an approximation {Zs} of Z,
and at the end we argue that Z ≤T A′. The construction involves finite injury
of the requirements. R1 for instance, would be injured by R0 finitely often while
R0 is waiting for hyperimmune permission from hA. We intend to satisfy Re, by
making μ(Ue

x ∩ [Z |r]) small for appropriate x, r. At stage s, we let re[s] denote
the follower used by Re. At stage s of the construction we define Zs up till length
s. We do this by specifying the strings Zs |r0[s], · · · , Zs |rk[s] for an appropriate
number k (such that rk[s] = s − 1). We adopt the convention of r−1 = −1 and
α |−1= α |0= 〈〉 for any string α. We let Se[s] denote all the pairs 〈k, x〉 for
which Re wants to make Z avoid Uk

x at stage s. The set Se[s] is specified by

Se[s] = {〈k, x〉 | k ≤ e ∧ rk−1[s] + 1 ≤ x ≤ re[s]}.

Define the sequence of numbers

Mn =
2n∑

j=n

2−(1+j);

these will be used to approximate Zs. Roughly speaking, the intuition is that
Zs(n) will be chosen to be either 0 or 1 depending on which of (Zs |n)�0 or
(Zs |n)�1 has a measure of ≤ Mn when restricted to a certain collection of Ue

x .
If P is an expression we append [s] to P , to refer to the value of the expression

as evaluated at stage s. When the context is clear we drop the stage number
from the notation.

2.5 Formal Construction of Z

At stage s = 0, we set r0 = 0 and re ↑ for all e > 0, and do nothing else. Suppose
s > 0. We define Zs |rk[s] inductively; assume that has been defined for some k.
There are two cases to consider for Rk+1:

1. rk+1[s] ↑: set rk+1 = rk[s] + 1, end the definition of Zs and go to the next
stage.

Lowness for Demuth Randomness 163

2. rk+1[s] ↓: check if
∑

〈e,x〉∈Sk+1[s]
2rk+1ge(x)[s] ≤ hA(rk+1[s]). The sum is

computed using converged values, and if ge(x)[s] ↑ for any e, x we count it
as 0. There are two possibilities:
(a) sum > hA(rk+1): set rk+1 = s, and set rk′ ↑ for all k′ > k + 1. End the

definition of Zs and go to the next stage.
(b) sum ≤ hA(rk+1): pick the leftmost node σ ⊇ Zs |rk[s] of length |σ| =

rk+1[s], such that
∑

〈e,x〉∈Sk+1[s]
μ(Ue

x[s] ∩ [σ]) ≤ Mrk+1[s]. We will later
verify that σ exists by a counting of measure. Let Zs |rk+1[s]= σ.

We say that Rk+1 has acted. If 2(a) is taken, then we say that Rk+1 has failed
the sum check. This completes the description of Zs.

2.6 Verification

Clearly, the values of the markers r0, r1, · · · are kept in increasing order. That
is, at all stages s, if rk[s] ↓, then r0[s] < r1[s] < · · · < rk[s] are all defined. From
now on when we talk about Zs, we are referring to the fully constructed string
at the end of stage s. It is also clear that the construction keeps |Zs| < s at each
stage s.

Lemma 2.2. Whenever step 2(b) is taken, we can always define Zs |rk+1[s] for
the relevant k and s.

Proof. We drop s from notations, and proceed by induction on k. Let Υ be
the collection of all possible candidates for Zs |rk+1 , that is, Υ = {σ : σ ⊇
Z |rk

∧ |σ| = rk+1}. Suppose that k ≥ 0:
∑

σ∈Υ

∑

〈e,x〉∈Sk+1

μ(Ue
x ∩ [σ]) =

∑

〈e,x〉∈Sk+1

∑

σ∈Υ

μ(Ue
x ∩ [σ])

≤
∑

〈e,x〉∈Sk+1

μ(Ue
x ∩ [Z |rk

]) ≤
∑

〈e,x〉∈Sk

μ(Ue
x ∩ [Z |rk

]) +
rk+1∑

x=rk+1

∑

e≤k+1

μ(Ue
x)

≤ Mrk
+

rk+1∑

x=rk+1

2−2x (since k ≤ rk) ≤ Mrk
+

rk+rk+1∑

x=2rk+1

2−(1+x)

=
2rk+1∑

x=rk+1

2−(1+x)2rk+1−rk (adjusting the index x) = Mrk+1 |Υ |.

Hence, there must be some σ in Υ which passes the measure check in 2(b) for
Z |rk+1 . A similar, but simpler counting argument follows for the base case
k = −1, using the fact that the search now takes place above Z |rk

= 〈〉. ��
Lemma 2.3. For each e, the follower re[s] eventually settles.

Proof. We proceed by induction on e. Note that once re′ has settled for every
e′ < e, then Re will get to act at every stage after that. Hence there is a stage
s0 such that

164 R. Downey and K.M. Ng

(i) re′ has settled for all e′ < e, and
(ii) re receives a new value at stage s0.

Note also that Re will get a chance to act at every stage t > s0, and the only
reason why re receives a new value after stage s0, is that Re fails the sum check.
Suppose for a contradiction, that Re fails the sum check infinitely often after s0.

Let q(n−1) be the stage where Re fails the sum check for the nth time after s0.
In other words, q(0), q(1), · · · are precisely the different values assigned to re after
s0. Let C be the collection of all k ≤ e such that gk is total, and d be a stage where
gk(x)[d] has converged for all k ≤ e, k �∈ C and x ∈ dom(gk). We now define an
appropriate computable function to contradict the hyperimmunity of A. Define
the total computable function p by: p(0) = 1+max{s0, d, the least stage t where
gk(re[s0])[t] ↓ for all k ∈ C}. Inductively define p(n + 1) = 1+ the least t where
gk(p(n))[t] ↓ for all k ∈ C. Let P (n) =

∑
k≤e

∑
x≤p(n) 2p(n)gk(x)[p(n+1)], which

is the required computable function.
One can show by a simple induction, that p(n) ≥ q(n) for every n, us-

ing the fact that Re is given a chance to act at every stage after s0, as well
as the restrictions we had placed on the functions {gk}. Let N be such that
P (N) ≤ hA(N). At stage q(N + 1) we have Re failing the sum check, so that
hA(N) < hA(q(N)) <

∑
〈k,x〉∈Se

2q(N)gk(x), where everything in the last sum is
evaluated at stage q(N + 1). That last sum is clearly < P (N) ≤ hA(N), giving
a contradiction. ��
Let r̂e denote the final value of the follower re. Let Z = lims Zs. We now show
that Z is not Demuth random relative to A. For each e and s, Zs+1+r̂e |r̂e is
defined, by Lemma 2.2.

Lemma 2.4. For each e, #{t ≥ 1 + r̂e : Zt |r̂e �= Zt+1 |r̂e} ≤ hA(r̂e).

Proof. Suppose that Zt1 |r̂e �= Zt2 |r̂e for some 1 + r̂e ≤ t1 < t2. We must have
re′ already settled at stage t1, for all e′ ≤ e. Suppose that Zt2 |r̂e is to the left
of Zt1 |r̂e , then let e′ be the least such that Zt2 |r̂e′ is to the left of Zt1 |r̂e′ . The
fact that Re′ didn’t pick Zt2 |r̂e′ at stage t1, shows that we must have a change
of index for Ua

b between t1 and t2, for some 〈a, b〉 ∈ Se′ ⊆ Se. Hence, the total
number of mind changes is at most 2r̂e

∑
〈a,b〉∈Se

ga(b), where divergent values
count as 0. 2r̂e represents the number of times we can change our mind from
left to right consecutively without moving back to the left, while

∑
〈a,b〉∈Se

ga(b)
represents the number of times we can move from right to left. Since Re never
fails a sum check after r̂e is picked, it follows that the number of mind changes
has to be bounded by hA(r̂e). ��
By asking A′ appropriate 1-quantifier questions, we can recover Z = lims Zs.
Hence Z is well-defined and computable from A′. To see that Z is not Demuth
random in A, define the A-Demuth test {V A

x } by the following: run the con-
struction and enumerate [Zs |x] into V A

x when it is first defined. Subsequently
each time we get a new Zt |x, we change the index for V A

x , and enumerate the
new [Zt |x] in. If we ever need to change the index > hA(x) times, we stop and
do nothing. By Lemma 2.4, Z will be captured by V A

r̂e
for every e.

Lowness for Demuth Randomness 165

Lastly, we need to see that Z passes all {Ue
x}. Suppose for a contradiction,

that Z ∈ Ue
x for some e and x > r̂e. Let δ be such that Z ∈ [δ] ∈ Ue

x, and let
e′ ≥ e such that r̂e′ > |δ|. Go to a stage in the construction where δ appears
in Ue

x and never leaves, and re′ = r̂e′ has settled. At every stage t after that,
observe that 〈e, x〉 ∈ Se′ , and that Re′ will get to act, at which point it will
discover that μ(Ue

x ∩ [Z |r̂e′]) = 2−r̂e′ > Mr̂e′ . Thus, Re′ never picks Z |r̂e′ as an
initial segment for Zt, giving us a contradiction. ��

References

1. Barmpalias, G., Downey, R., Greenberg, N.: K-trivial degrees and the jump-
traceability hierarchy. Proceedings of the American Mathematical Society (to ap-
pear)

2. Barmpalias, G., Lewis, A., Ng, K.M.: The importance of Π0
1 -classes in effective

randomness (submitted)
3. Barmpalias, G., Lewis, A., Stephan, F.: Π0

1 classes, LR degrees and Turing degrees.
Annals of Pure and Applied Logic

4. Bedregal, B., Nies, A.: Lowness properties of reals and hyper-immunity. In: WoL-
LIC 2003. Electronic Lecture Notes in Theoretical Computer Science, vol. 84 (2003)

5. Bickford, M., Mills, C.: Lowness properties of r.e. sets. Theoretical Computer Sci-
ence (typewritten unpublished manuscript)

6. Cholak, P., Downey, R., Greenberg, N.: Strong jump-traceability I: The computably
enumerable case. Advances in Mathematics 217, 2045–2074 (2008)

7. Demuth, O.: Remarks on the structure of tt-degrees based on constructive mea-
sure theory. Commentationes Mathematicae Universitatis Carolinae 29(2), 233–247
(1988)

8. Downey, R., Greenberg, N.: Strong jump-traceability II: The general case (in prepa-
ration)

9. Downey, R., Greenberg, N., Mihailović, N., Nies, A.: Lowness for computable ma-
chines. In: Computational Prospects of Infinity. Lecture Notes Series of the Insti-
tute for Mathematical Sciences, NUS, vol. 15, pp. 79–86 (2008)

10. Downey, R., Hirschfeldt, D., Nies, A., Stephan, F.: Trivial reals. In: Proceedings of
the 7th and 8th Asian Logic Conferences, pp. 103–131. World Scientific, Singapore
(2003)

11. Downey, R., Jockusch, C., Stob, M.: Array nonrecursive sets and multiple permit-
ting arguments. Recursion Theory Week 1432, 141–174 (1990)

12. Downey, R., Ng, K.M.: Splitting into degrees with low computational strength (in
preparation)

13. Figueira, S., Nies, A., Stephan, F.: Lowness properties and approximations of the
jump. In: Proceedings of the Twelfth Workshop of Logic, Language, Information
and Computation (WoLLIC 2005). Electronic Lecture Notes in Theoretical Com-
puter Science, vol. 143, pp. 45–57 (2006)

14. Franklin, J., Stephan, F.: Schnorr trivial sets and truth-table reducibility. Technical
Report TRA3/08, School of Computing, National University of Singapore (2008)

15. Greenberg, N., Miller, J.: Lowness for Kurtz randomness. Journal of Symbolic Logic
(to appear)

16. Hirschfeldt, D., Nies, A., Stephan, F.: Using random sets as oracles (to appear)
17. Kjos-Hanssen, B., Nies, A.: Superhighness (to appear)

166 R. Downey and K.M. Ng

18. Kjos-Hanssen, B., Nies, A., Stephan, F.: Lowness for the class of Schnorr random
sets. Notre Dame Journal of Formal Logic 35(3), 647–657 (2005)

19. Ng, K.M.: Ph.D Thesis (in preparation)
20. Ng, K.M.: Strong jump traceability and beyond (submitted)
21. Ng, K.M.: On strongly jump traceable reals. Annals of Pure and Applied Logic 154,

51–69 (2008)
22. Nies, A.: On a uniformity in degree structures. In: Complexity, Logic and Recursion

Theory. Lecture Notes in Pure and Applied Mathematics, February 1997, pp. 261–
276 (1997)

23. Nies, A.: Reals which compute little. CDMTCS Research Report 202, The Univer-
sity of Auckland (2002)

24. Nies, A.: Lowness properties and randomness. Advances in Mathematics 197, 274–
305 (2005)

25. Nies, A.: Computability And Randomness. Oxford University Press, Oxford (2006)
(to appear)

26. Slaman, T., Solovay, R.: When oracles do not help. In: Fourth Annual Conference
on Computational Learning Theory, pp. 379–383 (1971)

27. Stephan, F., Liang, Y.: Lowness for weakly 1-generic and Kurtz-random. In: Cai,
J.-Y., Cooper, S.B., Li, A. (eds.) TAMC 2006. LNCS, vol. 3959, pp. 756–764.
Springer, Heidelberg (2006)

28. Terwijn, S., Zambella, D.: Algorithmic randomness and lowness. Journal of Sym-
bolic Logic 66, 1199–1205 (2001)

	Lowness for Demuth Randomness
	Introduction
	No Set of Hyperimmune Degree Can be Low for Demuth Randomness
	The Motivation
	Listing All Demuth Tests
	The Strategy
	Notations Used for the Formal Construction
	Formal Construction of Z
	Verification

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

