ITERATED EFFECTIVE EMBEDDINGS OF ABELIAN p-GROUPS

RODNEY DOWNEY, ALEXANDER G. MELNIKOV, AND KENG MENG NG

ABSTRACT. Khisamiev [26, 31] and, independently, Ash, Knight, and Oates [2]
characterized computable reduced abelian p-groups of finite Ulm type. The
case of Ulm type w has been an open problem for at least 20 years. The diffi-
culty in the case of Ulm type w is rooted in the uniformity of effective invariants
(limitwise monotonic functions) corresponding to the computable group. Us-
ing iterated embeddings of p-basic trees, we construct a computable reduced
abelian p-group of Ulm type w having its invariants at the maximal possible
level of complexity, the latter can be obtained from counting alternations of
quantifiers.

The result gives an explanation of why the case of Ulm type w seems un-
approachable in general, while the techniques used in the proof may help to
characterize computable members of some subclasses of type w groups.

We also use the machinery of iterated embeddings of p-basic trees to solve
a problem left open by Calvert, Cenzer, Harizanov and Morozov [5].

1. INTRODUCTION

Following Mal’cev [35] and Rabin [40], we say that a countable group H is
recursive or computable if elements of H can be associated with natural numbers
so that the group operation becomes a recursive function on these numbers. The
above mentioned numbering of the group is called a computable presentation or
constructivistion of the group. Equivalently, a group has a computable presentation
if, and only if, the group admits an effective listing of its generators under which
the word problem is solvable.

Mal’cev [35] initiated the systematic study of computable abelian groups. Among
other results, Mal’cev characterized computable subgroups of (Q,+), and also
showed that the additive group €,.,, Q admits more than one computable presen-
tation, up to a computable isomorphism. After Mal'cev’s fundamental paper [35],
computable abelian group theory has been developing rapidly and simultaneously
with other branches of effective algebra. These related branches include effec-

tive field theory (see Frolich and Shepherdson [16], Rabin [10], Metakides and
Nerode [37]), computable Boolean algebras (Goncharov [19], Remmel [41]) and
computable linear orders (Downey [12]). Other closely related subjects are the
study of effectively presented vector spaces [8, 9, 36] and the theory of computable
ordered groups [13, 20]. For early developments in the field of computable abelian
groups, see Nurtazin [38], Smith [43], Lin [34], and Khisamiev [25].

Modern theory of computable abelian groups uses methods of abelian group
theory [17, 18, 29], pure computability theory [44] and computable model the-
ory [3, 15], as well as tools specific to the field [32, 11, 1]. Standard references for
the theory of computable ablelian groups are [32, 14]. Reflecting the situation in

classical algebra, methods used in the theory of computable abelian p-groups [32]
1

2 RODNEY DOWNEY, ALEXANDER G. MELNIKOV, AND KENG MENG NG

tend to be different from techniques applied in the torsion-free case [11, 1, 30]. In
contrast to torsion-free groups, algebraic properties of countable abelian p-groups
are very well understood. Thus, the study of computable abelian p-groups would
unlikely require significantly new algebraic methods. However, even a masterful use
of known algebraic invariants may not be sufficient, since most of the difficulties
that occur are computability-theoretic in nature. As we will see, even characteriz-
ing computably presented direct sums of cyclic groups already requires some new
computability-theoretic ideas. For a systematic development of computable abelain
p-group theory, see a survey paper of Khisamiev [32]. See also [4, 39, 5] for some
further results in this direction.

In this paper, we look at the effective content of the classical result of Ulm
(see [29]). In the subsection below, we briefly discuss the well-known algebraic
concepts which are central to the paper. A reader familiar with Ulm’s classification
of countable reduced abelian p-groups may skip the subsection below.

1.1. Reduced abelian p-groups. Throughout the paper, all groups are countable
and abelian. Let p be a prime number. A non-zero element g of A has infinite height
if for every k the equation p*z = ¢ has a solution in A. Elements of infinite height
generate a sub-group A’ of A. Iterating this process, we can define A(® for every
ordinal . The quotients A9 = A/A’ and A, = A, /AT contain only (non-zero)
elements of finite height. Since A is countable, there must be a countable a for
which
Ale) — glat1)

The least such « is called the Ulm type of A and is denoted by u(A) in this paper.
If A((4) =0, then A is reduced.

One can show that the Ulm factors A, are simply direct sums of finite cyclic
groups. Such a direct sum can be fully classified by the sizes of its elementary cyclic
summands. This classification can be generalized:

Theorem 1.1 (Ulm). The isomorphism type of a countable reduced (abelian) p-
group is completely determined by the isomorphism types of its Ulm factors.

In this paper, we addresses the long-standing question of which Ulm invariants
correspond to computable reduced abelian p-groups.

1.2. Computable groups of finite Ulm type. Khisamiev [20] was the first to
discover that computable reduced abelian p-groups of Ulm type 1 (those being
direct sums of cyclic groups) can be completely characterized using the concept of
a limitwise monotonic function.

Definition 1.2 (Khisamiev [20]). A total function F is limitwise monotonic if
F = A\z.sup, f(z,y), where f is computable.

If we replace f by a 0(")-computable function in the definition above, we obtain
the notion of 0(-limitwise monotonicity. A set is 0(")-limitwise monotonic if it is
the range of a 0(")-limitwise monotonic function. For infinite %0 41 sets, the latter
is equivalent to containing an infinite range of a 0")-limitwise monotonic function
(see, e.g., [28, 21]). Khisamiev [20] proved:

Theorem 1.3. Let A be a direct sum of finite cyclic p-groups whose orders are un-
bounded. Then A has a computable copy if, and only if, the following two conditions
hold:

ITERATED EFFECTIVE EMBEDDINGS OF ABELIAN p-GROUPS 3

(1) S(A) = {(m,k) : at least k summands of A have order p™} is a X9-set,
and
(2) #A={m: Z,m is a summand of A} is limitwise monotonic.

The concept of limitwise monotonicity was new to computability theory. Lim-
itwise monotonic functions have found various applications outside the theory of
computable groups [7, 21, 27, 22, 6, 23, 24, 10]. We also mention that Khoussainov,
Nies, and Shore [33] independently introduced limitwise monotonic functions in the
context of computable model theory.

Theorem 1.3 can be generalized to any finite Ulm type.

Theorem 1.4. [31, 2] Let A be a reduced (abelian) p-group of Ulm type n < w.
Then the following are equivalent:

(1) A has a computable copy;
(2) A can be represented by a computable p-basic tree;
(3) (a) for everyi < m, the set

S(A4;) ={(m,k) : at least k summands of A; are of order p™}

is $9; o, and
(b) for every i < n, the set

#A, ={m: Z,m is a summand of A;}
is 02D limstwise monotonic.

1.3. The case of Ulm type w. It is not known if Theorem 1.4 can be generalized
to groups of Ulm type > w. One direction of the proof of Theorem 1.4 uses a
non-uniform argument. In fact, the non-uniformity seems to be the crucial obstacle
when one attempts to generalize Theorem 1.4 to groups of type w. It is well-known
though that the theorem holds for A of Ulm type w if the limitwise monotonic
functions ranging over #A; are given uniformly.

One can observe that the sets #G; have to be limitwise monotonic, uniformly
in ¢ or not, if G is computable. Counting the number of quantifiers (see Fact 3.1)
shows that finding an index for a limitwise monotonic function ranging over #G;
is at most I3 over 002, So, for instance, #Gy requires at most a I13-guessing
procedure. In the theorem below we show that this upper bound (namely, H(()3 +2i))
is sharp.

Theorem 1.5. The exists a computable reduced abelian p-group G of Ulm type
w such that there is no uniformly E%Hi)—eﬂective procedure guessing indices for
limiwise monotonic functions ranging over #G;.

The following immediate corollary proves a conjecture of Ash, Knight and Oates [2]:

Corollary 1.6. There exists a computable reduced abelian p-group G of Ulm type
w for which #G; are not uniformly 09 -limitwise monotonic.

Theorem 1.5 also gives an evidence that the question of which computable re-
duced p-groups are computably presentable is as difficult as it could be. We have
already observed that it is necessary that the sets #G; are limitwise monotonic
(relative to O(Qi)). Any characterization would have to use this property to pass
from the collection of the invariants to a computable group, unless it turns out
that very few Ulm invariants may correspond to computable groups. The general

4 RODNEY DOWNEY, ALEXANDER G. MELNIKOV, AND KENG MENG NG

expectation is that the latter is not the case, and whence any proof of the posi-
tive direction would have to incorporate an iterated 0”’-construction with various
combinatorial and algebraic difficulties (to be discussed in Conclusion).

The key technical tool of the present paper is contained in Proposition 3.5 which
gives a uniform embedding performed on top of a strategy potentially having a I13-
outcome. Some elements of the 0”/-machinery as well as specific purely algebraic
techniques are vital for both construction and its verification.

1.4. A categoricity question. Recall that a computable structure is A% -categorical
if any two computable isomorphic copies of the structure are AY-isomorphic [3].
Calvert, Cenzer, Harizanov, and Morozov asked (see Problem 5.1 in [5]):

Question 1.7. Let G be a computable abelian p-group isomorphic to D & H, where
D is a direct sum of finitely many copies of the Prufer group Zpe, and H is a direct
sum of cyclic summands of unbounded orders. Can G be AS-categorical?

We answer the question in negative. In fact, we prove more:

Theorem 1.8. Let G be a computable p-group of finite Ulm type n, such that:
(1.) G = Bj<mZpe, for some m € w;
(2.) orders of cyclic summands in G,_1 are not bounded.

Then G is not AY, -categorical.

In the special case when n = 1 we get exactly groups satisfying conditions
of Question 1.7. The theorem improves earlier results of Dushenin [] who used
complex full approximation techniques to construct non-AY, -categorical groups in
these classes for small n.

2. BACKGROUND AND CONVENTIONS

We assume that the reader has a sufficient background in computability the-
ory [141] and computable model theory [3, 15]. We will be using some rudiments
of abelian group theory, standard textbooks are [17, 18, 29], but no background in
abelian group theory is assumed.

2.1. p-Basic trees. In mathematical practice, it is convenient to use tree-like di-
agrams representing abelian p-groups. For instance, imagine a tree on vertices
v1, V2, v3 and v4 such that vy is the root having successor vs, and vs, v4 are the only
two children of vs. This tree corresponds to the abelian group

B = (v1,v2,v3,04 : v1 = 0, pva = vy, pu3 = Va, Py = V2).

Notice that the same group can be represented by another tree: for instance, pick
v1, V2, v3 and vz — vy as new generators. Both trees are called p-basic trees of B [12].
The formal definition is:

Definition 2.1. [42] A p-basic tree is a set X together with an binary operation -
of the sort {p" :n € w\ {0}} x X — X such that:

(1) there is a unique element 0 in X for which p - 0= 0, and

(2) for each nonzero element z in X, there is a positive integer n such that
p"-x=0.

Given a p-basic tree X we can pass to an abelian p-group G(X). We make the
set X \ {0} the set of generators, and put px = y into the collection of relations

ITERATED EFFECTIVE EMBEDDINGS OF ABELIAN p-GROUPS 5

if p-x =y in X. Every countable reduced abelian p-group is generated by some
well-founded p-basic tree [12].

Convention 2.2. We typicaly identify a p-basic tree with the corresponding abelian
p-group, but the reader should keep in mind that the choice of a p-basic tree is typ-
ically not unique.

Recall the notion of ordinal tree rank for a well-founded tree: every leaf has
tree rank 0, and the tree rank of any other vertex is the least ordinal greater than
the ranks of all its successors. Notice that every element in G(X) can be uniquely
represented in the form), m;v;, where v; € X and m; € {1,...,p —1}.

Definition 2.3. Suppose X is a well-founded p-basic tree, and G(X) is the corre-
sponding group. The rank of), m,v;, where v; € X and m; € {1,...,p — 1}, is
the minimum of tree ranks of the v; in X.

The definition is independent on the choice of the underlying p-basic tree (follows
from Proposition 1 of [12]). We will use the following consequence of Definition 2.3
without explicit references:

Remark 2.4. The collection of tree-ranks that appear in X is the same as the
collection of ranks that appear in G(X).

A non-zero element has rank k£ € w if, and only if, it has height k. Non-zero
elements having rank > w are exactly the elements of infinite height. Thus, we
could define the Ulm factors using ranks rather than heights. Furthermore, the
Ulm invariants of G(X) can be reconstructed using only tree ranks which appear
in X [42].

2.2. Trees which give rise to isomorphic groups. We will not completely
describe the congruence relation ~ on trees defined by the rule T' ~ X iff G(T) =
G(X). A detailed analysis of ~ can be found in [12]. We will be using some weaker
sufficient conditions and partial invariants.

In a tree, a chain is called simple if each node in the chain has at most one

successor. Consider the following example.

Example 2.5. Suppose we have a tree T, and suppose v € T has tree rank a.
Suppose also w is a successor of v having rank k € w such that k41 < a. Suppose
further that w is on top of a simple chain c¢(w) (there are no splittings below w).
Remove the chain c¢(w) together with w from T, and then adjoin c¢(w) to 0. The
resulting p-basic tree X has the property G(T) = G(X).

The procedure described in Example 2.5 is called stripping. We can iterate this
process and obtain a fully stripped tree representing the same group. The only
restriction is that we have to keep some sequence below a node witnessing its tree-
rank. For example, a fully stripped tree for a group of Ulm type 1 is simply a
collection of simple chains attached to 0. We have just proved that every countable
reduced p-group of Ulm type 1 is isomorphic to a direct sum of cyclic p-groups [17].

Another very special case of the general framework on p-basic trees is stated in
the fact below.

Fact 2.6. Suppose T and X are p-basic trees so that O has rank w in X. There
exists a p-basic tree V' such that G(V)o 2 G(X) and G(V) =2 G(T).

6 RODNEY DOWNEY, ALEXANDER G. MELNIKOV, AND KENG MENG NG

Proof Sketch. Attach infinitely many finite simple chains to every node in 7' making
ranks of vertices in (the image of) T infinite within V. The lengths of the finite
chains should be based on the ranks which occur in X. (]

Although classically Fact 2.6 is a triviality, an effective analog of it is not straight-
forward and is the main technical tool of [2, 31]:

Lemma 2.7. Let T be a computable p-basic tree of Ulm type 1 in which 0 has tree-
rank w, and let C be any 119 subtree of w<* (C is viewed as a p-basic tree). There
exists a computable p-basic tree U expanding C such that Uy 2T and U’ = C.

Proof Sketch. First, observe that there exists a computable limitwise monotonic
function f such that sup,, f(z,y) is infinite and ranges over lengths that occur in T'.
Using this limitwise monotonic function, as well as the fact that the Ulm invariant of
T is naturally represented as a ¥ (multi)set, we shall imitate the proof of Fact 2.6.
If a II9-predicate fires on 0 € w<“, as well as on all initial segments of o, we add
more simple chains below o using f. Without loss of generality, we may assume
that Az sup,, f(z,y) is injective and even that sup, f(z,y) > n, for any computable
increasing sequence (N)zew-
There are several difficulties in the construction that need to be addressed:

(1) Utilizing finite subtrees. If the T19 predicate representing C' does not fire
anymore on o, we need to ensure the finite tree that we have built on top
of o (for the sake of approximating C') does not give finite chains of wrong
lengths after stripping. (There could have been ¢’ extending o which we
thought was in C, say.) Since C contains (), there exists a 7 C ¢ such that
7 € C. Thus, we may assume that, whenever a finite tree is abandoned due
to the predicate being not active, the longest chain present in this subtree
can be stripped off (see Example 2.5). The difficulty is that the longest
chain present in the abandoned finite subtree may not be in the range of
the limitwise monotonic function. We then pick x so that sup,«, f(z,t) is
large enough and extend that longest chain using this function. We may
organize the construction so that, even though sup,., f(z,t) is large, the
corresponding string sup, f(x,t) can still be stripped off at the end. We do
so by using very long strings when approximating initial segments of o.

(2) Resurrecting o. If C becomes active on o again, we need to start adding
longer and longer finite chains below ¢ making progress in showing that
o € U’. Nonetheless, due to o being inactive at previous stages, we have
extended the longest chain below o to a larger value sup,., f(z,t). If we
keep it like that, and simply add an even longer simple chain below o, we
might be in trouble since this size is not present in 7. We could extend
that previously extended longest string once again, using a new argument
of the limitwise monotonic function. We then argue that the construction
can be organized so that each string can be further extended at most twice.

(3) Multiple sizes in T'. If T has exactly 3 simple chains of size 4 (corresponding
to 3 elementary summands of type Z,1), we have to use exactly 3 simple
chains of that length when constructing U. This is not really a problem,
since we have already observed the Ulm invariant of 7" is %9. All we need
to do is just tracing which sizes we have used to approximate C, and the
rest we could realize as simple chains adjoined to (). If m leaves the Ulm

ITERATED EFFECTIVE EMBEDDINGS OF ABELIAN p-GROUPS 7

invariant (39-process), we use f on an appropriate argument to grow the
simple chain of length m, attached to (3, to a safe length.

The proof does not contain any further significant difficulties. O

3. PROOF OF THEOREM 1.5

Throughout the proof, all groups are reduced abelian p-groups. Also, we will
typically identify a p-basic tree and the group it generates, but the reader should
keep in mind that non-isomorphic trees may generate isomorphic groups.

Preliminary analysis. Recall that for a group G, the set of finite heights which
occur in Gj; is denoted by #G;.

Fact 3.1. In a computable G of Ulm type w the multisets #G; are uniformly
9(039) -limitwise monotonic. (There exists a H?3+2i)—sequence of sets of indices
witnessing limitwise monotonicity.)

Proof of Fact 3.1. To say that an element g # 0 has infinite height in G takes
2 quantifiers. We also say that there is no h € G having infinite height such
that ph = g. The combined complexity is II3. Given such an element, we can
effectively pass to a limitwise monotonic function with the range {n : (3a)(h,(a) =
0Ap"g = a)} C #Gp. Tt is well-known that one can effectively pass from a limitwise
monotonic function on an infinite subset to a limitwise monotonic function ranging
over the whole set. A relativized version of this argument gives TI3(0(*)) when
considering #G;. O

We aim to construct a computable reduced abelian p-group G of Ulm type w
for which the indices of functions witnessing limitwise monotonicity of #G; are not
uniformly %9(09).

Notations and requirements. Although it is intuitively clear which requirements
we need to satisfy, we prefer to formally state them. Let (Fp ;)jew, (F1,j)jew, - -
be the effective listing of all uniformly c.e. sequences of predicates. Based on this
listing, and using alternating projections and complementations, we can associate
every (uniformly) 2?3 +24) Sequence of predicates with a single index e, and denote it
(Re,i)icw, where R. ; is £, o, uniformly in i. We say that j witnesses 0(®)-limitwise
monotonicity of a set X if f(z) = sup, ®;(0(9); z,y) is total, rng, f(x) is infinite,
and
rng, f(z) C X.

A set S witnesses 0(°)-limitwise monotonicity of X if each j € S witnesses 0(¢)-
limitwise monotonicity of X. We meet, for every e, the requirement:

L : Re 3. does not witness 0(%e)_limitwise monotonicity of #G ..

The reason we are using G3, instead of G, is related to the outcomes of the basic
diagonalization strategy and will be explained later. In subsection 3.1 we describe
one diagonalization strategy in isolation. Then, in subsection 3.2, we modify the
basic strategy to a strategy which can handle any finite tree. In subsection 3.3
we merge the modified diagonalization strategy and a 9-guessing procedure. In
subsection 3.4 we construct an auxiliary group F' that will be used later in the
construction of G. In subsection 3.5, we describe how to build G assuming certain
uniform operators exist. The operators are constructed in subsection 3.6. The
proof is finished in subsection 3.7.

8 RODNEY DOWNEY, ALEXANDER G. MELNIKOV, AND KENG MENG NG

3.1. The basic strategy. Recall that for a group G, the collection of finite heights
which occur in Gy is denoted by #Gy. Suppose we wish to uniformly construct
a computable group G in which #G is infinite and not limitwise monotonic via
sup,, f(z,y) for a given (partially) computable f:

#Go # range Az sup f(z,y).
y

We initially start with the computable group @m)na} Zpn Q. Where {am p
m,n € w} is a computable collection of distinguished generators of its cyclic sum-
mands. We can think of this group as of a fully stripped tree with 0 having rank
w such that every size is represented by infinitely many simple chains attached to
the root.

Note 3.2. We additionally assume that we know in advance the length of any
simple chain in the tree representing €, ,, ,,c., Zpn @m,n» (equivalently, we know orders
of the elementary summands in advance).

We wait for s and = such that sup, ., fs(z,y) is defined and is equal to k > 1.
If we never see such a computation, then either f is not total or the range of
Az.sup,, f(z,y) is a finite set, and we are done. If we see such s and z, we add
extra elements to the group as follows:

(1) for every elementary cyclic summand Zka, x of order k, pick its genera-
tor am k;

(2) put the label | f|onto pan, k;
(3) introduce a new element h,, ; and declare p2h, k. = pa,, k-

Notice that h,, ; has order pF*1 in the group. Also, the subgroup generated by
{@m,n;hm,k} can be represented as

Zp(am,k - phm)k) D Zpk+1 hm,k-

Thus, the cyclic summand Z,x is currently not present in the complete decompo-
sition of Go. Therefore, if sup, f(z,y) = sup, < fs(x,y), then R, is met. If at a
later stage ¢ > s we see sup, <, fs(7,y) < sup,<; fi(z,y), we need to consider the
following cases:

Case 1. sup, <, fi(v,y) = k + 1. For every element carrying |f| (these currently are
Pam,k), introduce a new generator h;mk and declare pzh;mk equal to the

element carrying .
Case 2. sup, <, fi(v,y) = k' > k + 1 (recall k = sup,, fs(z,y)). In this case we

remove all labels | f | which were put by the strategy at stage s. Repeat the
(1) — (3) with k replaced by k. (Notice that in this case we put new labels
onto pay, k)

If the strategy introduces new elements to the group at stage v, we say that the
strategy is active at stage v. If the strategy has been active, it has a witness x
an argument of the potential limitwise monotonic function. The general strategy
proceeds iterating the actions explained above.

The strategy has the following outcomes:
sy, : The strategy is temporarily not active, and it has been active at n-many
stages.
oo: The strategy is temporarily active.

ITERATED EFFECTIVE EMBEDDINGS OF ABELIAN p-GROUPS 9

If the strategy eventually settles at s,, for some n, then G’ = 0 and
#Go = w \ {sup f(z,y)}.
y

If the strategy is active infinitely often, then we will build a computable group G
such that

#Go = Ww.
It is important that in this case we may have G’ # 0, but in any case G” = 0. Also,
in any case we have Gy = Gy @ Gy; in other words, every n € #G is represented
by infinitely many elements.

The isomorphism type of G depends on f and can not be effectively predicted in
general. Notice that the strategy enumerates, with all possible uniformity, a group
having a computable p-basic tree. We may assume that the strategy actually builds
a tree rather than the corresponding group.

3.2. The modified strategy. We are aiming to build a group having a computable
p-basic tree. The basic strategy described in the previous subsection will not be
sufficient for this goal, since other strategies may possibly effect the isomorphism
type of Gy producing “junk”. More specifically, we need to explain the more com-
plicated case when the basic strategy needs to deal with an arbitrary finite tree,
not simply with a finite simple chain. This situation will occur in Proposition 3.5
which is the key technical tool of the paper.

We initially start having the fully stripped p-basic tree for @mme w LprQm n @S
an input of the procedure. At a later stage, some other strategy may add a finite
p-basic tree V' (or several finite trees) which will contribute to the isomorphism
type of Gy. We need to satisfy

#Go # range \x.sup f(z,y).
y

For the sake of this goal, the strategy may start adding finite chains to some ele-
ments of V. As a consequence of its actions on V, the construction will produce a
potentially infinite tree T" on top of the V-component. At stage s, we will have a
finite tree T'[s], and T = |J, T'[s]. The key idea is:

Never add extra chains to elements from T[s]\ V.

If we can implement this idea, only elements of V' will possibly have infinite heights
in G. Since V is finite, we will have G” = 0.

Recall that every finite tree can be transformed to a collection of finite chains
growing from a single root 0. It is possible to effectively trace images of finite chains
under such a transformation and see which chains contribute to the collection of
heights realized in T'[s]. We say that g € T'[s] is dangerous if

(1) g is a terminal node, and
(2) there exists a finite chain which terminates at g and witnesses that

lf,s == Supfs(xa y)
y<s

is realized as a height of some element in (the group generated by) T'[s].

Modified strategy restricted to T[s]. If g € T[s] is dangerous, then consider the
cases:

Case 1. We have g € V. Then add a new element = to T'[s] and declare pz = g.

10 RODNEY DOWNEY, ALEXANDER G. MELNIKOV, AND KENG MENG NG

Case 2. We have g € T[s] \ V, and there exists m such that h = p™*1g is in V but
p™g € T[s]\ V. Add a new element x to T[s] and declare p™ 2z = h (thus
also adding p¥z for 0 < k <m + 1).

In both cases, declare g not dangerous. Once there are no dangerous elements left,
go to the next stage.

Verification. Note that g can not represent height Iy, in Ty. The action adds a
chain which either extends g by 1 point (Case 1) or represents the new relation
h = pm*tlg (Case 2). In the first case g is not an end-point anymore, and can not
represent any finite height in #T} itself anymore. In the second case, notice that
h = p™*lgis a terminal node in V. Thus, in the second case g belongs to a simple
chain of length less than [y, and will represent a direct summand of order smaller
than s s (see the preliminary section or the example from the previous sub-section).

We could argue (possibly modifying the strategy) that the element x can not
become dangerous unless [; changes. But notice that even if x was dangerous
without [y changing, we would repeat the strategy above with z in place of g, using
the same h. Eventually we would add a chain of length I, below h. Since h is
a terminal node in V, that new added chain can no longer represent height [; ;.
Consequently, its end-vertex can not be declared dangerous unless /¢ increases.

We conclude that eventually no element can represent l¢, unless the latter
increases to a new value. If [; ever stabilizes, we end up with a finite tree T’
such that limg [y s ¢ #To. If I keeps increasing forever, we end up constructing a
(possibly infinite) tree T' containing V' such that only elements of the finite V' can
possibly have infinite height. Thus, heights of elements in 7" are bounded in T”,
and consequently 7" = 0.

3.3. The strategy combined with a ¥J-guessing. In this subsection we explain
how we diagonalize against a single %9 predicate. All procedures in the subsection
are effective. In general, we will be relativizing to an appropriate oracle.

Given a X.3-predicate represented in the form {e : 323°yU(x,y,e)}, where U is
c.e., we will guess which pair (e,) is least such that 3*°yU(z,y, e) (if there is any).
Each pair (e, x) will be associated with a basic diagonalization strategy working
with the function having index e. At stage s the basic module associated with (x, e)
will be working within interval I, ,[s] of size at least sup{n : 3"y < sUs(z,y,€)}
(i.e., the interval is increased if the predicate “fires” again). At stage s we have a
partitioning of w into sub-intervals:

Iools]; Lo [s], I1.0[s]; - - -,
from left to right, where
Lapls] = [mapls], nasls]]-

We may additionally assume that if (¢, d) = (a,b)+1 then me 4[s] > nq4p[s]+(a, b) +
1, so that the intervals are sufficiently far apart even if the predicate does not “fire”
for some pairs.

The basic strategy associated with (e,x) will also be aiming to introduce its
witness, a natural number [. , s representing the supremum of ®.(-,-) on some
(first found) input (z,w) such that ®.(z,w) > m ,[s] and set

le,m,s = inf{sup ée('za ’LU), Ne,x [S]}
z2<s

ITERATED EFFECTIVE EMBEDDINGS OF ABELIAN p-GROUPS 11

We initialize the basic module associated with (e, z) if one of the modules with
smaller index increases its interval. In this case m. . will be lifted to a fresh large
number (larger than any number seen so far in the construction) and I , s will be
set undefined.

We visualize the configuration at a stage s as follows. We have intervals corre-
sponding to the influence of each sub-strategy, and labels I. ;. s representing lengths
which need to be avoided when constructing a tree. Notice each label may move
only to a larger value, and every time one of the interval increases in size all larger
labels will be removed and then possibly put on numbers which are very large. (It
is crucial for the construction.)

3.4. The definition of F. We describe the group F' build by the procedure (com-
bined with a ¥9-guessing) on input @m,new Zpn .y, Tepresented by a tree con-
sisting of simple chains growing from the root. We additionally assume that the
lengths of simple chains in the tree representing € Zpn Q. aTe known in
advance (Note 3.2).

Before stage s begins we have a finite collection of finite trees {V;[s — 1] : i <
s — 1}. The tree V;[s — 1] contains either one of the a,, or is built around a
newly introduced simple chain. All V;[s — 1] share the same root, in other fords,
the corresponding group is a direct sum of groups corresponding to the V;[s — 1].

m,new

Construction. At stage s, let each of the sub-strategies indexed by pairs (e, z) < s
act on V;[s — 1], for each m,n < s, according to the instructions given in subsec-
tion 3.2. Omne extra restriction is that the basic strategy associated with (e, z) is
not allowed to use simple chains of sizes lo/ 5 5, (€/,2") < (e, x), all other sizes are
available!. If the label le 2 is removed or is put onto a larger number, we introduce
infinitely many simple chains representing this currently unoccupied length and
attach it to the root of the tree.

The following outcomes are possible:

(e,x,00): The interval I, , grows to infinity with eventually stable left-most point,
and the eventually stable witness corresponding to (e, x) tends to infinity.
(e,x,k): The interval I. , grows to infinity with eventually stable left-most point,
and the eventually stable witness corresponding to (e,x) is stuck at k. It
includes the case when eventually no witness can be chosen (an outcome of

the form (e, z, f) with symbol f).
g: This I1$-outcome is a global win corresponding to all intervals being even-

tually finite.

If (e,z,00) is the true outcome, no labels to the left of I, ever move after
a stage s. At every stage ¢ > s at which I, , increases in size, all labels of sub
strategies associated with larger pairs will be moved beyond I., to fresh large
numbers. In fact, they will be lifted up so large that no tree among V,, ,, which
ever was influenced by their actions will ever be modified by these strategies again.
Consequently, we are in the situation similar to the one described in subsection 3.1,
but we need to incorporate modifications contained in subsection 3.2 to see that in
the limit we construct a p-basic tree F' with F” = 0.

IRecall that intervals and, whence, labels corresponding to different strategies are sufficiently
far apart.

12 RODNEY DOWNEY, ALEXANDER G. MELNIKOV, AND KENG MENG NG

If (e, x, k) is the true outcome, we will end up with a p-basic tree F' such that
#Fy = w\ S, where S is a finite set containing all eventually stable I-labels. In
fact, F/ = 0 in this case. Similar argument applies when the true outcome is g, but
in this case #Fy = w \ S where F is potentially infinite. In this case we again have
F" = 0. (Recall that the intervals are sufficiently far apart, thus we do not have
the situation when one [-label is an immediate successor of another [-label, say.)

In any of these cases we succeed in constructing a p-basic tree avoiding an index
from the given ©9-set.

3.5. Describing G. Recall that we need to construct a computable reduced abelian
p-group G of Ulm type w and meet:

L : Re 3. does not witness 0(%¢)_limitwise monotonicity of #Gse,

where the R.; are X9_,; uniformly in 4.

The strategy for L. is similar to the one discussed in the previous subsection.
We run this strategy effectively in 0(°¢). As a result, L. will uniformly produce a
0(%¢) _computable p-basic tree A(3e) having Ulm type either 1, 2 or 3, depending
on the true outcome of L.

We wish to construct computable G such that Gs. = A(3e)q, for every e. If we
succeed, then R, will be met for every e. We will also make sure G3eq1 = G3epa =
@m,n Zym G, for every e.

Why do we homogenize Gser1 and Gseqp2? The reason is that, depending on the
outcome of Ly, we may or may not have elements of infinite height in A(0). Conse-
quently, a plane construction without homogenizing would have to sort out conflicts
between Ry and Ry, if Ry were to work within G;. Furthermore, we will need to
put all groups together in a tower (this is the main difficulty), and in some cases
we may have “junk” which will result elements of high rank. We will show that the
ranks of the “junk” elements will be less than w-3, and they could potentially effect
at most two more strategies. We circumvent this potential difficulty homogenizing
G1 and G2 and working within G5 for the sake of L.

How do we construct G? Firstly, we are going to construct not G itself but a com-
putable p-basic tree representing G. Throughout the rest of the paper, we may
(classically) identify this p-basic tree with the corresponding p-group. Secondly,
instead of constructing the whole G at once, we will construct a uniformly com-
putable sequence of p-basic trees (B(%));e., such that B(i) is of Ulm type i. We
will have B(i)se = A(3e) and B(i)ze—1 = B(i)sze—2 = D,, ey, Zpmam,n, for every
3e < i. We will set G = P, B(%).

S
How do we build B(i)? We construct B(i) using operators which map II3-subtrees
of w<* to computable trees. Recall that every AJ-tree is isomorphic to a I1{-subtree
of w<¥, with all possible uniformity.

Given a IIJ p-basic tree D, we can uniformly produce a a computable p-basic tree
H such that Hy = €D,), ,, Zpmam,n and G’ = D (see Proposition 3.4). We will also
prove that, given the computable tree F' constructed by one of the diagonalization
strategies (think of Ry and A(0)) and a IT3 subtree C' of w<“ such that Cy = C =
@m,n Zym G n, We can uniformly construct a computable tree U such that Uy = Fj
and U’ = C (see Proposition 3.5). Assuming these operators exist, we can uniformly
construct the trees/groups B(i), and then uniformly pass to G = @, B(i). The
group G will have the desired properties.

P1EW

ITERATED EFFECTIVE EMBEDDINGS OF ABELIAN p-GROUPS 13

We may summarize subsection 3.3 as follows:

Fact 3.3. There exists a uniform procedure which, given a $9 predicate R, produces
a computable p-basic tree F' of Ulm type at most 2 such that:
a. Fy = Fy ® Fy (thus, every finite height is represented in Fy by infinitely
many elements);
b. R is not a collection of indices of functions witnessing limitwise monotonic-

ity of #Fy.

3.6. The operators mapping II3-trees to computable ones. Recall that we
identify a p-basic tree with the group it generates. We will need the following two
propositions. The first proposition is a special case of a known technical result [2, 31]
(also will be stated in Lemma 2.7 below), the second proposition is new.

Proposition 3.4. Given a 11 p-basic tree D, we can uniformly produce a com-
putable p-basic tree H such that Hy = €D Zpym Q. and H' = D.

m,new

Proof. Adjoin more finite chains of greater length below x is there is more evidence
that x € D. Since all finite lengths amy occur, no further work needs to be done.
Also immediately adjoin infinitely many chains of each finite size to the root. [

Throughout this subsection, the p-basic tree from Fact 3.3 will be called R-avoiding
and will be denoted F'.

Proposition 3.5. There exists a uniform procedure which, given a X5 predicate
R, the procedure building a computable R-avoiding F, and a 113 p-basic tree C such
that Co =2 C; = @m’new Zypym Q. n, produces a computable p-basic tree U such that
UO = FO and U/ = (.

Proof. For future convenience, we modify outcomes described in subsection 3.3 by
splitting them further. We have (e, z, 00;) indicating that there has been ¢ stages
at which some (¢/,2’) < (e, x) increased its interval or moved/newly introduced its
[-label. Similarly, we have (e, z, 00;), where 4 indicates that the predicate “fired” ¢
times for smaller pairs. This modification will allow us to permamentrly abandon
certain blocks in the construction.

We construct a computable group U represented by a computable p-basic tree.
The group will be of the form

U=Fao@DH().

where « ranges over all outcomes of the procedure avoiding R, and F' is the group
(p-basic tree) of Ulm type at most 1 given by Fact 3.3. If a is the true outcome of the
procedure then H(a)" = C, and H ()" = 0 otherwise. Additionally, J,, #H (a)o C
#Fy, whence the diagonalization against R will be successful. It is sufficient to
uniformly and independently construct the trees H(«) for different . We explain
the case a # ¢ first, and then describe what happens if a = g.

The case of a # g. Notice that all outcomes « # g have the property that the
whole H(«) is either 0 or will be forever abandoned if « is not the true outcome.
If & = (e,n,00;) for some i, then it will be using only lengths that are too small
compared to [, s a stage s. It will additionally make sure that lengths [,/ 5+ for
(¢/, 2"y < (e,x) are not present in #H («)[s], at every s. Similarly, if a = (e, n, k;)

14 RODNEY DOWNEY, ALEXANDER G. MELNIKOV, AND KENG MENG NG

of a = (e,n, f;), we make progress in approximating C' but not using chains of
lengths le/ 50 s for (€/,2') < (e,x). The rest is the same as in Proposition 3.4.

If one of the intervals I, ;- ever increase, or one of the ./ v ever is assigned to
a new number, or if the current guess on [, , was finitary and now changed, then
the whole H(«) will be permanently abandoned. We will then follow the modified
basic strategy (subsection 3.3) on the finite tree that « left behind. As it is readily
seen, if « is the true outcome, then H(«) = C, and H(«)” = 0 otherwise. In both
cases clearly #H (a)g C #Fp.

The I13-outcome g and H(g). The procedure constructing H(g) will be working
within a copy of w<% which may be viewed as a complete w-branching tree with
root () growing downwards. It will be enumerating a sub-tree of w<“. At the end,
the I19-tree C' will be imaged into w<% so that nodes of depth n in C' are mapped
to nodes of depth n in w<“(i.e., level-by-level).

The procedure believes that all sizes except for the ones in Y = {l. » s : ¢,z < s}
are available, and it will be using chains of lengths not in Y, unless Y changes.
It will add finite chains to elements in w<“ currently corresponding to C. If an
element is indeed in C then it will be put into H(«)" in the limit. Recall that
legs <legy fort > s.

Construction At a stage s, only one of the three actions can be performed:

(1) Approzimating C. In this case we may assume I, , and [. , are stable, for
(e,z) < s. We basically follow the main strategy suggested in Proposi-
tion 3.4 (more precisely, in case when « # g) since we know which sizes can
be used. Namely, we use chains of lengths < n. 5 s not in U<e,z>§s Ie s s at
stage s (recall that we have reserved plenty of sizes in-between the inter-
vals). We also ensure that if a new simple chain of length y is added below
a node o, then
(i) y+i¢ Upry<s lews and y +i < neg s for each i < |of;

(ii.) y is larger than the maximal length of chains already extending o, if
there are any.

(2) One of the I, grows. In this case I, increases in size, and all sub-
strategies of smaller priority lift their intervals to large fresh numbers. For
every o € w<“ such that |o| = (e, z), permanently abandon any 7 extending
o which has been used by the construction. Approximating C will now
proceed under o within the segment of the Baire space extending o disjoint
from all such 7’s. (Note: The only reason we may again visit 7 or its
extension is due to l.s 5 increasing for some (¢’,z’) < (e, x), since all other
[-labels will be too large.)

(3) One of thel. , grows. Then we follow the generalized basic strategy (subsec-
tion 3.2) possibly adding further splittings to chains that could potentially
represent size l. ; ;. We add a finite chain to a predecessor of 7 if there ex-
ists a scenario in the construction in which 7 could potentially represent size
le 2,5, these include only finitely many options, since there are only finitely
many initial segments of 7. We use only simple chains of sizes < ¢ 5 s not
in {leps:(e,2) < {e,x)}.

Verification for H(g). There are two cases in which a segment of the tree built
by the procedure can be abandoned by the construction. The first case is when

ITERATED EFFECTIVE EMBEDDINGS OF ABELIAN p-GROUPS 15

the II9-predicate representing C' is eventually silent on input a. The finite sub-
tree extending o € w<¥ associated to a may never be visited again for the sake
of approximating C. The second case corresponds to one of the I, , increasing in
size, in which all subtrees built by the strategy and rooted at level (e, z) 4+ 1 of w<¥
will never be active for the sake of C-approximation. The fundamental difference
is that the former is a ¥9-event while the latter is . We may still visit a forever-
abandoned segment of the tree due to the [-labels moving, but not for the sake of
approximating C'.

Remark 3.6. Suppose T is a subtree which looks abandoned (X9) or is perma-
nently abandoned (X9). It could have happened that the finite lengths which occur
in the tree (after stripping) are not allowed. For instance, in [2, 31] (see Lemma 2.7)
one has to extend the longest chain present in T carefully using the limitwise mono-
tonic function, and then observe the construction. We do not have to do that in
our construction because of (i.) and (ii.) above, unless one of the sufficiently small
[-labels moves to a larger number.

The construction is organized so that are only two cases at which we might have
to act due to [, , increasing:

Case 1 We permanently left behind a finite tree 7" due to I, , or some other interval
increasing. Starting from this step on, we follow the generalized basic
strategy (subsection 3.2) in our actions on this finite tree. It will never
be used to approximate C again.

Case 2 We have left behind a finite tree due to C' being silent on one of its inputs,
say on c¢. The node o currently representing c¢ in Baire space may have
arbitrary long finite chains attached to it (it includes the case when |o| <
(e,z)). We follow the generalized basic strategy (subsection 3.2) on each
of the chains, thus possibly further branching some of the chains extending
o. Note that o may be visited again due to a new C-activity on c.

In Case 1, the are only finitely many [-labels which are small enough and can
potentially force us to add new simple chains to 1. For simplicity, suppose there
are only three of them, [y, [; and ls. The label [y can possibly move only up to the
end of its interval. If its interval ever increases, both l; and Il will be lifted large.
The we can argue as in subsection 3.2. Based on this idea, we prove:

Claim 3.7. In Case 1, tree-ranks of nodes in T are bounded by w+k at every stage
of the construction, for some fized k € w not depending on the stage (but depending
on the tree).

Proof. Suppose T' is abandoned at stage s. There are only finitely many [-labels
which can potentially increase the rank of a node o € T. If all of these labels are
eventually stable or too large, the rank of o € T is finite in the limit. Let [; be the
least among these labels which tends to infinity. It follows that the corresponding
interval containing /; has to be increased at a stage t > s. All labels [; with j > ¢
are lifted up to large numbers at stage ¢, and they can not effect the ranks of nodes
in T anymore. Let t’ > ¢ be a stage after which all labels less than [; are stable.
Let k be the maximal length in the tree T, where T” consists of T" and all chains
added for the sake of avoiding I-labels at stages < t'. Since from stage ¢’ we follow
the modified diagonalization strategy (subsection 3.2), the ranks of predecessors of
terminal nodes in 7’ are at most w. (]

16 RODNEY DOWNEY, ALEXANDER G. MELNIKOV, AND KENG MENG NG

In Case 2, the worst scenario is when o representing c is of length smaller than
the least (e, x) for which I, , is grows to infinity. Then C may fire on ¢ in-between
1. z-expansionary stages, and longer simple chains will be added to o. Then these
chains will become infinitely branching due to I, , s increasing. In this case we end
up with ¢ having rank w - 2 + k, for some k < (e,). We summarize these ideas in
the claim below:

Claim 3.8. Suppose the true outcome of the main R-avoiding procedure is not g.
Then tree-ranks of nodes in H(g) are bounded by w -2+ k , for some fized k € w.

Proof. Suppose the true outcome is of the form (e, z,-). It corresponds to the
case when every o having length > (e,) + 1 ever introduced by the construction is
permanently abandoned at some stage. Then every o exceeding > (e,)41 in length
may have rank at most w + k, for some k. Whence, every node in w<“ | {e,x) + 1
has successors of ranks bounded by w - 2. Therefore, the rank of the root @ is at
most w -2+ (e, z) + 1. O

Finally, we prove:
Claim 3.9. If g is the true outcome of the R-avoiding procedure, then H(g) = C.

Proof. Observe that the only reason a permanently abandoned node (Case 1) may
have an infinite rank is when one of the [-labels tend to infinity. Therefore, all
permanently abandoned nodes may contribute only to H(g)o. The same argument
applies if a node is abandoned due to C being eventually silent on the corresponding
input (Case 2). We need to verify that ranks of nodes in the simple chains added
to a node o for the sake of approximating C' will be kept finite in the limit. Note
that the simple chain can be further branched, using chains of smaller length, due
to one of sufficiently small [-labels moving. Only finitely many labels may force us
to further branch the simple chain, all other labels will occupy numbers which are
too large. All labels, if defined, have to be eventually settled at finite locations.
Thus, we may potentially end up with a finite tree properly containing the original
simple chain. It is clear that o will have rank at least w + |o| if ¢ € C. It may have
a larger rank only if there exists ¢’ extending ¢ in C. (]

We have verified that H(g)" = C if g is the true outcome, and H(g)"" = 0,
otherwise. It is also clear from the construction that in both cases #H (g)o C #Fp.
It completes the verification for H(g). O

3.7. Finalizing the proof. Using Fact 3.3, we can produce a uniformly H((Jae)'
sequence (A(3e))ecw Of Re se-avoiding p-basic trees. By Propositions 3.4 and 3.5,
there exist a uniformly computable sequence (B(i));e, of computable p-basic trees
such that, for each k < i, B(i)r = A(k) if & = 3e, and B(i)r = @
otherwise.

We set G equal to P, ,, B(7). By the definition of G, and since A(3e) = A(3e) ®
A(3e) for every e, the requirement L. is met for each e. Since the operation of
taking a direct sum (of p-basic trees, defined naturally) is uniform, and the p-basic
trees (B(i));e, are computable uniformly in 4, the p-basic tree for G is computable.

m,n Zpm G n

4. AN APPLICATION OF p-BASIC TREES TO CATEGORICITY

In this section, we use the machinery of p-basic trees to prove:

ITERATED EFFECTIVE EMBEDDINGS OF ABELIAN p-GROUPS 17

Theorem 1.8. Let G be a computable p-group of finite Ulm type n, such that:
(1.) G™ = @0y, Zpee, for some m € w;
(2.) orders of cyclic summands in G,,_; are not bounded.

Then G is not AY, -categorical.

Proof. The group G can be represented as
G=H®D,

where D = ®j<,,Zp~, and H is reduced of type n. In this proof, “tree” is used in
several meanings, but it should be clear from the context what exactly we mean;
also these meanings are (effectively) interchangeable. We need:

Fact 4.1 (Folklore). G has a computable copy if, and only if, H has a computable
copy.

Proof sketch. The right-to-left implication is elementary. For the left-to-right im-
plication, non-uniformly fix the finite subspace of the socle of Gy, & < n, consisting
of elements of H. Then apply Define a monotonic function approximating heights
of the remaining elements in GG,. Then apply Theorem 1.4 to H. (I

Encode Tot as a 19 path through w<¥. Denote the resulting I19-tree (a singe
path) by P. The coding of Tot and the fact above can be relativized to a coding
of a II9,-complete set into elements of rank oo of a A9, ;-tree. We can define
a A3, _;-isomorphism of this AJ, _;-tree onto a I19, , subtree of w<*, and then
apply Lemma 2.7 to expand the resulting 119, 5 to a AY,, _;-tree. We repeat until
we get a computable p-basic tree S. Note that the embeddings that we used were
at most AY, _; or less complex.

We can effectively adjoin m — 1 infinite chains to the root of S and obtain a p-
basic tree representing a computable copy A of G. We can also take a computable
copy of H (represented by a p-basic tree) and adjoin m infinite chains to its root.
Let B denote the resulting group (tree).

If A and B are isomorphic via a AY -isomorphism f, then we can reconstruct
the II9,,-complete set encoded into A considering images of a € A in the group B
(in which the divisible part is a computable subgroup). O

5. CONCLUSION

We have shown that guessing limitwise monotonic functions at appropriate level
of a group of type w is as hard as they could be. We expect that Theorem 1.5 can
be pushed to any computable ordinal.

We note that the group constructed in Theorem 1.5 has a complex uniformity
property, but we circumvented many algebraic difficulties by specifically choos-
ing Ulm invariants (homogenizing Gsey1 and Gszeio) and their representations
(Note 3.2, Remark 3.6). It also seems crucial for the construction that the [-labels
can only be moved to larger numbers. Dropping at least one of these restrictions
would result serious problems such as a simultaneous interaction of infinitely many
strategies. It is not surprising that the classification of p-groups of Ulm type w is a
largely unexplored area.

Let T' be either IT or ¥ or A, and let m < 3. Consider the class R,(I',m) of
computable reduced p-groups A of Ulm type w in which 0©™)-indices for limitwise
monotonic functions ranging over #A,, are uniformly I';, 1.

18 RODNEY DOWNEY, ALEXANDER G. MELNIKOV, AND KENG MENG NG

It is readily checked that
Ry(8,1) = Ry(8,2),
methods developed in our paper can be applied to show
Rp(A,2) C Ry(I1, 2),
and Theorem 1.5 implies
Ry(A,3) € R, (IL3).
What can be said about the other inclusions?

The following result is well-known:

Proposition 5.1. [2] Groups in Rp(A,1) are in 1 — 1 correspondence with uni-
formly 0+ _limitwise monotonic collections of Ulm invariants.

Proof idea. We can split each limitwise monotonic set into infinitely many infinite
disjoint subsets. We then uniformly run the proof of Theorem 1.4 and obtain
a uniform sequence of computable groups (Hp)necw, using more of the limitwise
monotonic disjoint subsets for larger n, and so that all disjoint subsets are used in
one of the H,,. We then pass to € H,, which has the desired invariants. O

new

Problem 5.2. Prove an analog of Proposition 5.1 for R, (I, 2).

The first case to consider would be groups G having #G; co-finite, or even
#G; either w or a co-singleton. There are some purely algebraic obstacles even in
this simplest case. It may be the case that not every infinite sequence of 0(27+1)-
limitwise monotonic infinite sets corresponds to a computable reduced p-group. If
there are any further necessary conditions, they might become visible already in
R,(11,2).

We leave open:

Problem 5.3 (Ash, Knight, Oates). Does every computable p-group have a com-
putable p-basic tree?

REFERENCES

[1] B. Andresen, A. Kach, A. Melnikov, and D. Solomon. Jump degrees of torsion-free abelian
groups. To appear in Journal of Symbolic Logic.

[2] C. Ash, J. F. Knight, and S. Oates. Recursive abelian p-groups of small length. Unpublished.
An annotated manuscript: https://dl.dropbox.com/u/4752353/Homepage/AKO. pdf.

[3] C.J. Ash and J. Knight. Computable structures and the hyperarithmetical hierarchy, volume
144 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co.,
Amsterdam, 2000.

[4] Wesley Calvert. The isomorphism problem for computable abelian p-groups of bounded

length. J. Symbolic Logic, 70(1):331-345, 2005.

Wesley Calvert, Douglas Cenzer, Valentina S. Harizanov, and Andrei Morozov. Effective

categoricity of abelian p-groups. Ann. Pure Appl. Logic, 159(1-2):187-197, 2009.

[6] Richard J. Coles, Rod Downey, and Bakhadyr Khoussainov. On initial segments of com-
putable linear orders. Order, 14(2):107-124, 1997/98.

[7] Barbara F. Csima, Denis R. Hirschfeldt, Julia F. Knight, and Robert I. Soare. Bounding
prime models. J. Symbolic Logic, 69(4):1117-1142, 2004.

[8] J. C. E. Dekker. Countable vector spaces with recursive operations. I. J. Symbolic Logic,
34:363-387, 1969.

[9] J. C. E. Dekker. Countable vector spaces with recursive operations. II. J. Symbolic Logic,
36:477-493, 1971.

5

https://dl.dropbox.com/u/4752353/Homepage/AKO.pdf

[10]
(11]

(12]

(13]

(14]

15]
[16]
(17]
18]
(19]
20]
21]
22]
23]

(24]

[25]

[26]

[27)
(28]

29]
(30]
(31]

(32]

(33]
(34]

(35)
(36]

ITERATED EFFECTIVE EMBEDDINGS OF ABELIAN p-GROUPS 19

R. Downey, A. Kach, and D. Turetsky. Limitwise monotonic functions and applications. In
Proceedings of STACS 2012, pages 56—85, 2011.

R. Downey and A. G. Melnikov. Effectively categorical abelian groups. To appear in Journal
of Algebra.

R. G. Downey. Computability theory and linear orderings. In Handbook of recursive math-
ematics, Vol. 2, volume 139 of Stud. Logic Found. Math., pages 823-976. North-Holland,
Amsterdam, 1998.

R. G. Downey and Stuart A. Kurtz. Recursion theory and ordered groups. Ann. Pure Appl.
Logic, 32(2):137-151, 1986.

Rodney G. Downey. On presentations of algebraic structures. In Complexity, logic, and recur-
sion theory, volume 187 of Lecture Notes in Pure and Appl. Math., pages 157-205. Dekker,
New York, 1997.

Yuri L. Ershov and Sergei S. Goncharov. Constructive models. Siberian School of Algebra
and Logic. Consultants Bureau, New York, 2000.

A. Frohlich and J. C. Shepherdson. Effective procedures in field theory. Philos. Trans. Roy.
Soc. London. Ser. A., 248:407-432, 1956.

Lészl6é Fuchs. Infinite abelian groups. Vol. I. Pure and Applied Mathematics, Vol. 36. Aca-
demic Press, New York, 1970.

Lészlé Fuchs. Infinite abelian groups. Vol. II. Academic Press, New York, 1973. Pure and
Applied Mathematics. Vol. 36-11.

Sergei S. Goncharov. Countable Boolean algebras and decidability. Siberian School of Algebra
and Logic. Consultants Bureau, New York, 1997.

Sergey S. Goncharov, Steffen Lempp, and Reed Solomon. The computable dimension of
ordered abelian groups. Adv. Math., 175(1):102-143, 2003.

Kenneth Harris. n-representation of sets and degrees. J. Symbolic Logic, 73(4):1097-1121,
2008.

Denis Hirschfeldt, Russell Miller, and Sergei Podzorov. Order-computable sets. Notre Dame
J. Formal Logic, 48(3):317-347, 2007.

Denis R. Hirschfeldt. Prime models of theories of computable linear orderings. Proc. Amer.
Math. Soc., 129(10):3079-3083 (electronic), 2001.

Denis R. Hirschfeldt, Bakhadyr Khoussainov, and Pavel Semukhin. An uncountably categor-
ical theory whose only computably presentable model is saturated. Notre Dame J. Formal
Logic, 47(1):63-71 (electronic), 2006.

N. G. Hisamiev. The periodic part of a strongly constructivizable abelian group. In Theoretical
and applied problems in mathematics and mechanics (Russian), pages 299-303, 318. “Nauka”
Kazakh. SSR, Alma, 1977.

N. G. Hisamiev. Criterion for constructivizability of a direct sum of cyclic p-groups. Izv. Akad.
Nauk Kazakh. SSR Ser. Fiz.-Mat., (1):51-55, 86, 1981.

Asher M. Kach. Computable shuffle sums of ordinals. Arch. Math. Logic, 47(3):211-219, 2008.
I. Kalimullin, B. Khoussainov, and A. Melnikov. Limitwise monotonic sequences and degree
spectra of structures. To appear.

Irving Kaplansky. Infinite abelian groups. Revised edition. The University of Michigan Press,
Ann Arbor, Mich., 1969.

N. G. Khisamiev. Hierarchies of torsion-free abelian groups. Algebra i Logika, 25(2):205-226,
244, 1986.

N. G. Khisamiev. Constructive abelian p-groups. Siberian Adv. Math., 2(2):68-113, 1992.
Siberian Advances in Mathematics.

N. G. Khisamiev. Constructive abelian groups. In Handbook of recursive mathematics, Vol.
2, volume 139 of Stud. Logic Found. Math., pages 1177-1231. North-Holland, Amsterdam,
1998.

Bakhadyr Khoussainov, Andre Nies, and Richard A. Shore. Computable models of theories
with few models. Notre Dame J. Formal Logic, 38(2):165-178, 1997.

Charlotte Lin. Recursively presented abelian groups: effective p-group theory. I. J. Symbolic
Logic, 46(3):617-624, 1981.

A. 1. Mal’cev. On recursive Abelian groups. Dokl. Akad. Nauk SSSR, 146:1009-1012, 1962.
G. Metakides and A. Nerode. Recursively enumerable vector spaces. Ann. Math. Logic,
11(2):147-171, 1977.

20

37)
(38]
(39]
[40]
[41]
42]

(43]

[44]

RODNEY DOWNEY, ALEXANDER G. MELNIKOV, AND KENG MENG NG

G. Metakides and A. Nerode. Effective content of field theory. Ann. Math. Logic, 17(3):289—
320, 1979.

A.T. Nurtazin. Computable classes and algebraic criteria of autostability. Summary of Sci-
entific Schools, Math. Inst. SB USSRAS, Novosibirsk, 1974.

Sarah Elizabeth Oates. Jump degrees of groups. ProQuest LLC, Ann Arbor, MI, 1989. Thesis
(Ph.D.)—University of Notre Dame.

Michael O. Rabin. Computable algebra, general theory and theory of computable fields.
Trans. Amer. Math. Soc., 95:341-360, 1960.

J. B. Remmel. Recursive Boolean algebras. In Handbook of Boolean algebras, Vol. 3, pages
1097-1165. North-Holland, Amsterdam, 1989.

Laurel A. Rogers. Ulm’s theorem for partially ordered structures related to simply presented
abelian p-groups. Trans. Amer. Math. Soc., 227:333-343, 1977.

Rick L. Smith. Two theorems on autostability in p-groups. In Logic Year 1979-80 (Proc.
Seminars and Conf. Math. Logic, Univ. Connecticut, Storrs, Conn., 1979/80), volume 859
of Lecture Notes in Math., pages 302—311. Springer, Berlin, 1981.

Robert 1. Soare. Recursively enumerable sets and degrees. Perspectives in Mathematical Logic.
Springer-Verlag, Berlin, 1987. A study of computable functions and computably generated
sets.

	1. Introduction
	1.1. Reduced abelian p-groups
	1.2. Computable groups of finite Ulm type
	1.3. The case of Ulm type
	1.4. A categoricity question

	2. Background and conventions
	2.1. p-Basic trees
	2.2. Trees which give rise to isomorphic groups

	3. Proof of Theorem 1.5
	3.1. The basic strategy
	3.2. The modified strategy
	3.3. The strategy combined with a 03-guessing.
	3.4. The definition of F
	3.5. Describing G.
	3.6. The operators mapping 02-trees to computable ones.
	3.7. Finalizing the proof

	4. An application of p-basic trees to categoricity
	5. Conclusion
	References

