
Bounded Persistence Pathwidth

Rodney G. Downey1 Catherine McCartin2

1 Victoria University, Wellington, New Zealand
Email: Rod.Downey@mcs.vuw.ac.nz

2 Massey University, Palmerston North, New Zealand
Email: C.M.McCartin@massey.ac.nz

Abstract

The role of graph width metrics, such as treewidth,
pathwidth, and cliquewidth, is now seen as central in
both algorithm design and the delineation of what is
algorithmically possible. In this article we introduce
a new, related, parameter for graphs, persistence.

A path decomposition of width k, in which every
vertex of the underlying graph belongs to at most l
nodes of the path, has pathwidth k and persistence
l, and a graph that admits such a decomposition has
bounded persistence pathwidth.

We believe that this natural notion truly cap-
tures the intuition behind the notion of pathwidth.
We present some basic results regarding the gen-
eral recognition of graphs having bounded persistence
path decompositions.

Keywords: Treewidth, Pathwidth, Bounded Persis-
tence Pathwidth, Parameterized Complexity.

1 Introduction

The last 20 years has seen a revolution in the develop-
ment of graph algorithms. This revolution has been
driven by the systematic use of ideas from topologi-
cal graph theory, with the use of graph width metrics
emerging as a fundamental paradigm in such inves-
tigations. The role of graph width metrics, such as
treewidth, pathwidth, and cliquewidth, is now seen as
central in both algorithm design and the delineation
of what is algorithmically possible.

It is now commonplace to find that by restricting
some width parameter for the input graphs, a partic-
ular graph problem can be solved efficiently. A num-
ber of different graph width metrics naturally arise
in this context which restrict the inherent complex-
ity of a graph in various senses. The central idea is
that a useful width metric should admit efficient al-
gorithms for many (generally) intractable problems
on the class of graphs for which the width is small.
One of the most successful measures in this context is
the notion of treewidth which arose from the seminal
work of Robertson and Seymour on graph minors and
immersions (Robertson & Seymour 1986). Treewidth
measures, in a precisely defined way, how “tree-like”
a graph is. The idea here is that we can lift many
results from trees to graphs that are “tree-like”. Re-
lated to treewidth is the notion of pathwidth which
measures, in the same way, how “path-like” a graph
is.

Copyright c©2005, Australian Computer Society, Inc. This pa-
per appeared at Computing: The Australasian Theory Sym-
posium (CATS2005), Newcastle, Australia. Conferences in Re-
search and Practice in Information Technology, Vol. 42. Mike
Atkinson, Frank Dehne, Ed. Reproduction for academic, not-
for profit purposes permitted provided this text is included.

In this article we introduce a new, related, param-
eter for graphs, persistence, which, we believe, truly
captures the intuition behind the notion of pathwidth.
A path decomposition of width k in which every ver-
tex of the underlying graph belongs to at most l nodes
of the path has pathwidth k and persistence l, and a
graph that admits such a decomposition has bounded
persistence pathwidth.

We present some basic results regarding the gen-
eral recognition of graphs having bounded persistence
pathwidth, using the framework of parameterized
complexity theory, introduced by Downey and Fel-
lows (Downey & Fellows 1999). Our results show that
deciding whether or not a given graph has bounded
persistence pathwidth is a parametrically hard prob-
lem, whereas the corresponding problem for tradi-
tional treewidth or pathwidth is not. Nevertheless,
the input for many problems is naturally presented in
a reasonable way and hence, in spite of the lack of
efficient recognition algorithms (as exhibited by the
hardness results that we present), we believe that per-
sistence is an important parameter to be exploited.
This idea is pursued in (Downey & McCartin 2004),
and is part of an overall program of investigation
into parameterized promise problems, where we are
promised that the problem input obeys certain prop-
erties, or is presented in a certain fashion. In (Downey
& McCartin 2004) we consider the algorithmic rami-
fications of such problems in the online setting.

In the following section we review the basic notions
of parameterized complexity, and present definitions
and background information on treewidth and path-
width for graphs. In Section 3 we discuss our notion
of persistence. In Section 4 we present our results re-
garding the complexity of recognizing graphs having
bounded persistence path decompositions.

2 Preliminaries

2.1 Parameterized Complexity

To investigate the complexity of basic problems asso-
ciated with persistence, we use the framework of pa-
rameterized complexity theory, introduced by Downey
and Fellows (Downey & Fellows 1999).

We remind the reader that a parameterized lan-
guage L is a subset of Σ∗ × Σ∗, where Σ is a fi-
nite alphabet. If L is a parameterized language and
〈σ, k〉 ∈ L then we refer to σ as the main part and
k as the parameter. The basic notion of tractability
is fixed parameter tractability (FPT). Intuitively, we
say that a parameterized problem is fixed-parameter
tractable (FPT) if we can somehow confine any “bad”
complexity behaviour to some limited aspect of the
problem, the parameter. Formally, we say that a pa-
rameterized language, L, is fixed-parameter tractable
if there is a computable function f , an algorithm A,
and a constant c such that for all k, 〈x, k〉 ∈ L iff

A(x, k) = 1, and A(x, k) runs in time f(k)|x|c (c is
independent of k). For instance, k-Vertex Cover

is solvable in time O(|x|). On the other hand, for
k-Turing Machine Acceptance, the problem of
deciding if a nondeterministic Turing machine with
arbitrarily large fanout has a k-step accepting path,
the only known algorithm is to try all possibilities,
and this takes time Ω(|x|k). This situation, akin to
NP -completeness, is described by hardness classes,
and reductions. A parameterized reduction, L to L′,
is a transformation which takes 〈x, k〉 to 〈x′, k′〉, run-
ning in time g(k)|x|c, with k 7→ k′ a function purely
of k.

Downey and Fellows (Downey & Fellows 1999) ob-
served that these reductions gave rise to a hierarchy
called the W -hierarchy.

FPT ⊂ W [1] ⊆ W [2] ⊆ . . . ⊆ W [t] ⊆

The core problem for W [1] is k-Turing Machine

Acceptance, which is equivalent to the problem
Weighted 3Sat. The input for Weighted 3Sat

is a 3CNF formula, ϕ and the problem is to deter-
mine whether or not ϕ has a satisfying assignment of
Hamming weight k. W [2] has the same core problem
except that ϕ is in CNF form, with no bound on the
clause size. In general, W [t] has as its core problem
the weighted satisfiability problem for ϕ of the form
“products of sums of products of ...” of depth t. It is
conjectured that the W -hierarchy is proper, and from
W [1] onwards, all parametrically intractable.

2.2 Treewidth and Pathwidth

Many generally intractable problems become
tractable for the class of graphs that have bounded
treewidth or bounded pathwidth. Furthermore,
treewidth and pathwidth subsume many graph
properties that have been previously mooted, in
the sense that tractability for bounded treewidth
or bounded pathwidth implies tractability for many
other well-studied classes of graphs. For example,
planar graphs with radius k have treewidth at most
3k, series parallel multigraphs have treewidth 2,
chordal graphs (graphs having no induced cycles of
length 4 or more) with maximum clique size k have
treewidth at most k − 1, graphs with bandwidth at
most k have pathwidth at most k.

A graph G has treewidth at most k if we can asso-
ciate a tree T with G in which each node represents a
subgraph of G having at most k+1 vertices, such that
all vertices and edges of G are represented in at least
one of the nodes of T , and for each vertex v in G, the
nodes of T where v is represented form a subtree of
T . Such a tree is called a tree decomposition of G, of
width k. We give a formal definition here:

Definition 1 [Tree decomposition and Treewidth]

Let G = (V, E) be a graph. A tree decomposition of
G is a pair (T,X) where T = (I, F) is a tree, and
X = {Xi | i ∈ I} is a family of subsets of V , one for
each node of T , such that

1.
⋃

i∈I Xi = V ,

2. for every edge {v, w} ∈ E, there is an i ∈ I with
v ∈ Xi and w ∈ Xi,

3. for all i, j, k ∈ I, if j is on the path from i to k
in T , then Xi ∩ Xk ⊆ Xj.

The treewidth or width of a tree decomposition
((I, F), {Xi | i ∈ I}) is
maxi∈I |Xi| − 1. The treewidth of a graph G is the
minimum width over all possible tree decompositions
of G.

Definition 2 [Path decomposition and Pathwidth]

A path decomposition of a graph G is a tree decompo-
sition (P,X) of G where P is simply a path (i.e. the
nodes of P have degree at most two). The pathwidth
of G is the minimum width over all possible path de-
compositions of G.

Any path decomposition of G is also a tree decom-
position of G, so the pathwidth of G is at least equal
to the treewidth of G. For many graphs, the path-
width will be somewhat larger than the treewidth.
For example, let Bk denote the complete binary tree
of height k and order 2k − 1, then tw(Bk) = 1, but
pw(Bk) = k.

Graphs of treewidth and pathwidth at most k are
also called partial k-trees and partial k-paths, respec-
tively, as they are exactly the subgraphs of k-trees
and k-paths. There are a number of other important
variations equivalent to the notions of treewidth and
pathwidth (see, e.g., Bodlaender 1996a). For algorith-
mic purposes, the characterizations provided by the
definitions given above tend to be the most useful.

2.3 Finding tree and path decompositions

We mentioned above that many intractable problems
become tractable for the class of graphs that have
bounded treewidth or bounded pathwidth. A more
accurate statement would be to say that many in-
tractable problems become theoretically tractable for
this class of graphs, in the general case.

The typical method employed to produce effi-
cient algorithms for problems restricted to graphs
of bounded treewidth (pathwidth) proceeds in two
stages (see Bodlaender 1997).

1. Find a bounded-width tree (path) decomposition
of the input graph that exhibits the underlying
tree (path) structure.

2. Perform dynamic programming on this decom-
position to solve the problem.

In order for this approach to produce practically effi-
cient algorithms, as opposed to proving that problems
are theoretically tractable, it is important to be able
to produce the necessary decomposition reasonably
efficiently.

Many people have worked on the problem of find-
ing progressively better algorithms for recognition of
bounded treewidth (pathwidth) graphs, and construc-
tion of associated decompositions.

As a first step, Arnborg et. al. (Arnborg, Corneil
& Proskurowski 1987) showed that if a bound on the
treewidth (pathwidth) of the graph is known, then a
decomposition that acheives this bound can be found
in time O(nk+2), where n is the size of the input graph
and k is the bound on the treewidth (pathwidth).
They also showed that determining the treewidth or
pathwidth of a graph in the first place is NP -hard.

Robertson and Seymour (Robertson & Seymour
1986) gave the first FPT algorithm, O(n2), for k-
Treewidth. Their algorithm, based upon the minor
well-quasi-ordering theorem (Robertson & Seymour
1985), is highly non-constructive, non-elementary,
and has huge constants.

The early work of (Arnborg, Corneil
& Proskurowski 1987), and (Robertson &
Seymour 1986) has been improved upon in the
work of (Lagergen 1996), (Reed 1992), (Fellows
& Langston 1989), (Matousek & Thomas 1991),
(Bodlaender 1996), and (Bodlaender & Kloks 1996),
among others.

Bodlaender (Bodlaender 1996) gave the first
linear-time FPT algorithms for the constructive ver-
sions of both k-Treewidth and k-Pathwidth, al-
though the f(k)’s involved mean that treewidth and
pathwidth still remain parameters of theoretical in-
terest only, at least in the general case.

Bodlaender’s algorithms recursively invoke a
linear-time FPT algorithm due to Bodlaender and
Kloks (Bodlaender & Kloks 1996) which “squeezes” a
given width p tree decomposition of a graph G down
to a width k tree (path) decomposition of G, if G has
treewidth (pathwidth) at most k. A small improve-
ment to the Bodlaender/Kloks algorithm would sub-
stantially improve the performance of Bodlaender’s
algorithms.

Perkovic and Reed (Perkovic & Reed 2000) have
recently improved upon Bodlaender’s work, giving
a streamlined algorithm for k-Treewidth that re-
cursively invokes the Bodlaender/Kloks algorithm no
more than O(k2) times, while Bodlaender’s algo-
rithms may require O(k8) recursive iterations.

For some graph classes, the optimal treewidth and
pathwidth, or good approximations of these, can be
found using practically efficient polynomial time al-
gorithms. Examples are chordal bipartite graphs, in-
terval graphs, permutation graphs, circle graphs, and
co-graphs.

3 Bounded Persistence Pathwidth

We say that a path decomposition of width k in which
every vertex of the underlying graph belongs to at
most l nodes of the path has pathwidth k and per-
sistence l, and say that a graph that admits such a
decomposition has bounded persistence pathwidth. We
believe that this natural notion truly captures the in-
tuition behind the notion of pathwidth.

A graph that can be presented in the form of a
path decomposition with both low width and low
persistence is properly pathlike, whereas graphs that
have high persistence are, in some sense, “unnatural”
or pathological. Consider the graph G presented in
Figure 1. G is not really path-like, but still has a path
decomposition of width only two. The reason for this
is reflected in the presence of vertex a in every node of
the path decomposition. Our underlying idea is that
a pathwidth 2 graph should look more like a “long
2-path” than a “fuzzy ball”.

b

f g

h

ia

G c

d

e

adeabc acd ahiaef afg agh

Figure 1: A graph G having low pathwidth but high
persistence.

The notion of persistence arose from some preliminary
investigations into online presentations for graphs
having bounded pathwidth (Downey & McCartin
2004), (McCartin 2003), but it appears to be a natural
and interesting parameter in both the online setting

and the offline setting. For many problems where the
input is generated as an ordered sequence of small
units, it seems natural to expect that the sphere of
influence of each unit of input should be localized.

A related notion is domino treewidth introduced by
Bodlaender and Engelfriet (Bodlaender & Engelfreit
1997). A domino tree decomposition is a tree decom-
position in which every vertex of the underlying graph
belongs to at most two nodes of the tree. Domino
pathwidth is a special case of bounded persistence
pathwidth, where l = 2.

Note that bounded persistence pathwidth gives
us a natural characterization of graphs having both
bounded pathwidth and bounded degree. If a graph
G admits a path decomposition of width k and per-
sistence l then it must be the case that all vertices
in G have degree at most k · l. On the other hand,
if G has pathwidth k and maximum degree d then
the persistence that can be achieved in any path de-
composition of G must be “traded off” against the
resulting width.

4 Complexity of Bounded Persistence Path-
width

We now present some basic results regarding the com-
plexity of recognizing graphs having bounded persis-
tence path decompositions.

Persistence appears to be an interesting parame-
ter in relation to graph width metrics and associated
graph decompositions or layouts. However, in con-
trast to the case for pathwidth, which admits an FPT
algorithm, deciding whether or not a given graph has
bounded persistence pathwidth appears to be a hard
problem.

We give some strong evidence for the likely param-
eterized intractability of both the Bounded Persis-

tence Pathwidth problem and the Domino Path-

width problem. We show that the Bounded Per-

sistence Pathwidth problem is W [t]-hard, for all
t ∈ N, and we show that the Domino Pathwidth

is W [2]-hard. These results mean that is likely to be
impossible to find FPT algorithms for either of these
problems, at least in the general case, unless an un-
likely collapse occurs in the W -hierarchy.

Note that, even though we will show that the
recognition problems are hard, in many real life in-
stances we may reasonably expect to “know” that the
persistence is relatively low, and, indeed be given such
a decomposition.

A related result from (Bodlaender & Engelfreit
1997) is that finding the domino treewidth of a gen-
eral graph is W [t]-hard, for all t ∈ N. Our first result
relies on the following theorem from (Bodlaender, Fel-
lows & Hallett 1994).

Theorem 1 k-Bandwidth is W [t]-hard, for all t ∈
N.

k-Bandwidth is defined as follows:

Instance: A graph G = (V, E).
Parameter: A positive integer k.
Question: Is there a bijective linear layout of V ,

f : V → {1, 2, . . . , |V |}, such that,
for all (u, v) ∈ E, |f(u) − f(v)| ≤ k?

Bounded Persistence Pathwidth is defined as
follows:

Instance: A graph G = (V, E).
Parameter: A pair of positive integers (k, l).
Question: Is there a path decomposition of G

of width at most k, and persistence
at most l?

Domino Pathwidth is a special case of this problem,
where l = 2.

Theorem 2 Bounded Persistence Pathwidth

is W [t]-hard, for all t ∈ N

Proof: We transform from k-Bandwidth.

Let G = (V, E) be a graph and let k be the parameter.
We produce G′ = (V ′, E′) such that G′ has a width
2(k + 1)2 − 1, persistence k + 1, path decomposition
iff G has bandwidth at most k.

To build G′ we begin with the original graph G, and
alter it as follows:

1. for each vertex v in G, we introduce new vertices
and form a clique of size (k + 1)2 + 1 containing
these vertices and v, call this Cv.

2. for each neighbour u of v (we can assume at most
2k of these, otherwise G cannot have bandwidth
at most k), choose a unique vertex, cvu

, from Cv

(not v) and attach this vertex to all the vertices
in Cu.

G′

G

cuv
cwu

cvu

Cv Cu Cw

v u w

v u w

cuw

Figure 2: Bounded persistence pathwidth, transfor-
mation from G to G′.

⇐ If G has bandwidth k, then the required decom-
position for G′ exists.

Let {v0, . . . , vn} be a layout of bandwidth k for G. To
build the decomposition (P,X) for G′ we let the ith
node of the decomposition, Xi, contain {vi, . . . , vi+k}
plus Ci, plus each cjr

connected to Cr with j ≤ i and
r ≥ i or r ≤ i and j ≥ i.

This fulfills the requirements for a path decomposi-
tion.

1.
⋃

i∈I Xi = V ′,

2. for every edge {v, w} ∈ E′, there is an i ∈ I with
v ∈ Xi and w ∈ Xi, and

3. for all i, j, k ∈ I, if j is on the path from i to k
in P , then Xi ∩ Xk ⊆ Xj .

Each node contains at most (k + 1) + k(k + 1) + (k +
1)2 = 2(k+1)2 vertices. Thus, the decomposition has
width 2(k + 1)2) − 1.

Any vi from G appears in at most k + 1 nodes, being
nodes Xi−k up to Xi. Any cjr

appears in at most
k + 1 nodes, being nodes Xj up to Xr, or Xr up to
Xj , where |j − r| ≤ k. Thus, the decomposition has
persistence k + 1.

⇒ If the required decomposition of G′ exists, then
G has bandwidth k.

At some point in the decomposition, a node Xv′ , con-
taining Cv, will appear for the first time. No other

Cu, u 6= v can appear in this node, as there is not
room.

Pick a neighbour u of v for which Cu has already
appeared. Cu must have appeared for the first time
in some node Xu′ , where v′ − u′ ≤ k, since some cuv

was present in this node which must appear with Cv

at some point, and cuv
cannot appear in more than

k + 1 nodes.
Pick a neighbour w of v for which Cw has not yet

appeared. Cw must appear for the first time some
node Xw′ where w′ − v′ ≤ k, since there is some cvw

in Xv′ which must be present with Cw at some point
and cvw

cannot appear in more than k + 1 nodes.
If we lay out the vertices of G in the order in which

the corresponding cliques first appear in the decom-
position, then we have a layout of G with bandwidth
k. �

Theorem 3 Domino Pathwidth is W [2]-hard.

Proof: We transform from k-Dominating Set, a
fundamental W [2]-complete problem.

k-Dominating Set is defined as follows:

Instance: A graph G = (V, E).
Parameter: A positive integer k.
Question: Does G contain a set of vertices

V ′ ⊆ V , of size k, such that,
∀u ∈ V, ∃v ∈ V ′ with uv ∈ E?

Let G be a graph and k the parameter. We produce
G′ such that G′ has a width K − 1 domino path de-
composition, where K = k2(k + 4) + k(k + 3), if and
only if G has a dominating set of size k.

2n cliques

k selector threads

graph thread

anchor A1 anchor A2

vertex clique, Q + 1 vertices

Figure 3: Gadget for domino pathwidth transforma-
tion.

G′ = (V, E) consists of the following components:

• Two anchors. Take two cliques, each with K
vertices, with vertex sets A1 = {a1

i |1 ≤ i ≤ K}
and A2 = {a2

i |1 ≤ i ≤ K}.

• The graph thread. Let n = |V |. Take P =
2n+n2+(n+1) cliques, each with Q = k2(k+4)
vertices, with vertex sets Ci = {ci

r|1 ≤ r ≤ Q},
for 1 ≤ i ≤ P . Join them into a “thread” by
choosing separate vertices in each clique, ci

start

and ci
end, and identifying ci

end with ci+1
start. Iden-

tify c1
start with a1

1, and identify cP
end with a2

1.
Now, for each 1 ≤ i ≤ (P − 1) cliques Ci and
Ci+1 have a vertex in common, C1 has a ver-
tex in common with A1, and CP has a vertex in
common with A2.

• The vertex cliques. For each i of the form
i = 2n + j.n + 1 for 0 ≤ j ≤ n− 1 take the clique
Ci from the graph thread and add another vertex
to each such Ci, to make a clique with Q + 1
vertices. Each of these n cliques, Ci

j , represents
a vertex, vj , of G.

• The selector threads. Take 2n cliques of
size 2; n2 cliques of size k + 3 with vertex sets
Si = {si

r|1 ≤ r ≤ k + 3}, for 1 ≤ i ≤ n2; and an-
other 2n cliques of size 2. Join them into a thread
as for the graph thread, so that 2n size 2 cliques
form the first portion of the thread, and 2n size 2
cliques form the last portion of the thread. Now,
the first 2n size 2 cliques form a simple path hav-
ing 2n + 1 vertices and 2n edges, where the last
vertex in this path is also an element of S1. For
each 1 ≤ i ≤ (n2 − 1) cliques Si and Si+1 have
a vertex in common. The last 2n size 2 cliques
form a simple path having 2n+1 vertices and 2n
edges, where the first vertex in this path is also

an element of Sn2

.

For 1 ≤ i ≤ n, let Si denote the ith
consecutive set of n cliques of size k + 3,
{S(i−1)n+1, . . . , S(i−1)n+n}.

Remove one (interior) vertex from the ith clique
of Si, S(i−1)n+i. If vi is connected to vj in G,
remove one (interior) vertex from the jth clique
of Si, S(i−1)n+j .

Make k copies of the selector thread component
described here, and identify the first vertex of the
ith thread with a1

i+1, the last vertex of the ith

thread with a2
i+1.

Each of these threads is used to select a vertex
in a dominating set of G, if one exists.

⇐ Suppose G has a dominating set of size k.
Then the required domino path decomposition of G′,
PD(G′), exists.

There are P + 2 nodes in the decomposition,
{X0, . . . , XP+1}. We let A1 be contained in X0. For
1 ≤ i ≤ P , we let Xi contain Ci from the graph
thread, and we let the XP+1 contain A2.

Note that X1 must contain the first (size 2) clique
of each of the selector threads, and XP must contain
the last (size 2) clique of each of the selector threads,
by domino-ness. Each of these cliques has a vertex in
common with the anchors, and this vertex can appear
in only two nodes. It must appear in some node with
its clique, and this cannot be the same node as the
one where it appears with the anchor.

Suppose the dominating set of G is
{vd1

, vd2
, . . . , vdk

}. We will align the first selec-
tor thread so that the vd1

th clique of S1 in this
thread appears in X2n+1, the same node in which
C2n+1, the first vertex clique in the graph thread,
appears. We will align the second selector thread so
that the vd2

th clique of S1 in this thread appears
in X2n+1, and so on. For each selector thread, we
place each of the Si cliques, 1 ≤ i ≤ n2, one per node
consecutively, but we “fold” the size 2 cliques at the
start of each selector thread, by placing 2 of these at
at time into a node (i.e. 3 vertices per node) as many
times as necessary, so as to ensure that the vdi

th
clique of S1 in ith thread occurs in the same node
as C2n+1 from the graph thread. The size 2 cliques
at the end of each selector thread are also folded to
fit into the nodes remaining before A2 is reached in
XP+1.

Exactly (n−1) folds will be required altogether, for
each selector thread. The folding of the size 2 cliques
will not breach the width bound, since each fold con-
tributes 3 to the bag size, over at most k threads, and
at most k(k+3) is permitted i.e k+3 per thread. Al-
lowing (n−1) folds will ensure that any of {v1, . . . , vn}
can be positioned correctly.

If we align the selector threads this way, then each
node containing a vertex clique from the graph thread
will also contain a clique from at least one selector
thread that is of size only (k + 2). Let C2n+j.n+1 be
a vertex clique representing vertex vj from G. If vj is
in the dominating set then one of the selector threads
will be aligned so that the jth clique of Sj from that
thread appears in X2n+j.n+1, and this clique has size
only (k + 2). If vj is a neighbour of some vertex vi

in the dominating set then one of the selector threads
will be aligned so that the ith clique of Sj from that
thread appears in X2n+j.n+1, and this clique has size
only (k + 2).

The decomposition described here preserves
domino-ness. X0 and XP+1 each contain K vertices.
Each interior node in the decomposition contains ei-
ther a non-vertex clique in the graph thread along
with at most k(k+3) other vertices, or a vertex clique
in the graph thread along with k cliques of size (k+3)
or (k + 2), where at least one of these cliques must
have size (k + 2). Hence, each interior node contains
at most K vertices

Thus, we have a domino path decomposition of width
at most K − 1, as required.

⇒ Suppose a domino path decomposition of G′ with
width K, PD(G′), exists, then G must have a domi-
nating set of size k.

• Each of A1 and A2 must be the contained in an
end node of PD(G′), since no threads can pass
over these large cliques, and all threads have ver-
tices in common with both of them. Let us as-
sume that A1 is contained in the first node, X0.

• Only one clique from the graph thread can be
contained in any node of PD(G′), since there is
not enough room to admit more than one. Each
clique of the graph thread must be contained in
some node of PD(G′). By domino-ness, and a
simple induction argument, we must have the
same situation described in the first part of this
proof. The decomposition PD(G′) must consist
of P +2 nodes, A1 is contained in the first node,
X0, A2 is contained in the last node, XP+1, and
for 1 ≤ i ≤ P , node Xi contains Ci from the
graph thread.

• The first vertex clique in the graph thread must
appear in a node containing a clique from S1
for each of the selector threads. The last ver-
tex clique in the graph thread must appear in a
node containing a clique from Sn for each of the
the selector threads.

The first vertex clique in the graph thread ap-
pears in node X2n+1. The last vertex clique in
the graph thread appears in node X2n+n(n−1)+1.
There are 2n + 1 nodes that occur before X2n+1
in the decomposition and 2n+1 nodes that occur
after X2n+n(n−1)+1 in the decomposition. There
are only 2n vertices occurring in a selector thread
before the first clique of S1 is encountered. These
are connected in a path, and by domino-ness, this
path cannot stretch over more than 2n nodes.
Similarly, the path at the end of the selector
thread cannot stretch over more than 2n nodes.

• Each node in the decomposition, apart from the
first and the last, contains a clique from the
graph thread and so can contain at most k dis-
tinct Si cliques from the selector threads.

Each clique from the graph thread contains at
least k2(k + 4) vertices and each Si clique con-
tains at least (k + 2) vertices. In any node there
is room for only k(k+3) more vertices apart from
the graph thread clique. (k+1) distinct Si cliques
will consist of at least (k+1)(k+2) = k(k+3)+2
vertices.

• The arguments given here, along with domino-
ness, force the following situation.

Every node in the decomposition from X2n+1,
which contains the first vertex clique of the graph
thread, to X2n+n(n−1)+1, which contains the last
vertex clique of the graph thread, must contain
exactly k Si cliques, one from each of the selector
threads. These must appear in the order in which
they occur in the threads.

• For the width bound to be maintained, each node
containing a vertex clique C2n+j.n+1 from the
graph thread must contain at least one Si clique
of size (k+2). Thus, the S1 cliques that occur in
node X2n+1 must correspond to k vertices that
form a dominating set in G. �

5 Conclusions

The notion of persistence for a path decomposition is
introduced. Whilst this natural parameter has a num-
ber of very interesting algorithmic implications, the
present article establishes that recognition of graphs
having bounded persistence pathwidth is parametri-
cally hard.

References

Arnborg, S., Corneil, D. G. & Proskurowski, A.
(1987), Complexity of finding embeddings in a
k-tree, SIAM J. Alg. Disc. Meth. 8, pp. 277–284.

Bodlaender, H.L. (1996), A linear time algorithm for
finding tree decompositions of small treewidth,
SIAM J. Comput. 25, pp. 1305–1317.

Bodlaender, H.L. (1996a), A partial k-arboretum of
graphs with bounded treewidth, Technical Re-
port UU-CS-1996-02, Department of Computer
Science, Utrecht University, Utrecht.

Bodlaender, H.L. (1997), Treewdith: Algorithmic
techniques and results, in Proceedings of 22nd
MFCS, Springer-Verlag LNCS 1295, pp. 19–36.

Bodlaender, H. L. & Engelfreit, J. (1997), Domino
Treewidth, J. Algorithms 24, pp. 94–127.

Bodlaender, H. L., Fellows, M. R. & Hallett, M. T.
(1994), Beyond NP-completeness for problems of
bounded width: Hardness for the W-hierarchy,
in Proceedings of 26th Annual Symposium on
Theory of Computing, ACM Press, New York,
pp. 449–458.

Bodlaender, H. L. & Kloks, T. (1996), Efficient and
constructive algorithms for the pathwidth and
treewdith of graphs, J. Algorithms 21, pp. 358–
402.

Downey, R. G. & Fellows, M. R. (1999), Parameter-
ized Complexity, Springer-Verlag.

Downey, R. G. & McCartin, C. M. (2004), Online
Problems, Pathwidth, and Persistence, in Pro-
ceedings of IWPEC 2004, Springer-Verlag LNCS
3162, pp. 13–24.

de Fluiter, B. (1997), Algorithms for Graphs of Small
Treewidth, ISBN 90-393-1528-0.

Fellows, M. R. & Langston, M. A. (1989), An ana-
logue of the Myhill-Nerode theorem and its use
in computing finite-basis characterizations, in
Proceedings of the 30th Annual Symposium on
Foundations of Computer Science, IEEE Com-
puter Science Press, Los Alamitos, California,
pp. 520–525.

Lagergren, J. (1996), Efficient parallel algorithms for
graphs of bounded treewidth, J. Algorithms 20,
pp. 20–44.

Matousek, J. & Thomas, R. (1991), Algorithms for
finding tree-decompositions of graphs, J. Algo-
rithms 12, pp. 1–22.

McCartin, C. (2003), Contributions to Parameterized
Complexity, Ph.D., Victoria University, Welling-
ton.

Perkovic, L. & Reed, B. (2000), An Improved Algo-
rithm for Finding Tree Decompositions of Small
Width, International Journal of Foundations of
Computer Science 11 (3), pp. 365–371.

Reed, B. (1992), Finding approximate separators and
computing treewdith quickly, in Proceedings of
the 24th Annual Symposium on Theory of Com-
puting, ACM Press, New York, pp. 221–228.

Robertson, N. & Seymour, P. D. (1986), Graph mi-
nors II. Algorithmic aspects of tree-width, J. Al-
gorithms 7, pp. 309–322.

Robertson, N. & Seymour, P. D. (1985), Graph
minors - a survey, in I. Anderson ed, ‘Sur-
veys in Combinatorics’, Cambridge Univ. Press,
pp. 153–171.

