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RECURSIVE LINEAR ORDERS 

WITH INCOMPLETE SUCCESSIVITIES 


RODNEY G. DOWNEY AND MICHAEL F. MOSES 

ABSTRACT.A recursive linear order is said to have intrinsically complete suc- 
cessivities if, in every recursive copy, the successivities form a complete set. 
We show (Theorem 1) that there is a recursive linear order with intrinsically 
complete successivities but (Theorem 2) that this cannot be a discrete linear 
oder. We investigate the related issues of intrinsically non-low and non-semi- 
low successivities in discrete linear orders. We show also (Theorem 3) that no 
recursive linear order has intrinsically w tt-complete successivities. 

In an addendum to [lo] Remmel suggests that every recursive Boolean al- 
gebra with infinitely many atoms has a recursive copy whose set of atoms is 
incomplete. The result remains a conjecture. The corresponding result for lin- 
ear orders. is that every recursive linear oder has a recursive copy whose set 
of successivities is incomplete. (A successivity is a pair of adjacent elements.) 
We show in Theorem 1 that this is not true. Our proof uses a construction 
involving the novel idea of "separators" from Jockusch and Soare [8]. From 
initial wayward attempts to prove the converse to Theorem 1, we were able to 
salvage Theorem 2: every discrete linear oder has a recursive copy whose set 
of successivities is incomplete, and Theorem 3: every recursive linear order 
has a recursive copy whose set of successivities is wtt-incomplete. Theorems 
1, 2, and 3 are presented in §$I, 2, and 3, respectively. In $2 we also present 
three results noting some of the peculiarities of discrete linear orders: there is 
a discrete recursive linear order none of whose recursive copies has low succes- 
sivities; every discrete recursive linear order has a recursive copy with semi-low 
successivities; and every semi-low II, discrete linear oder has a recursive copy. 

Our terminology and notation are as presented in Soare [14] for general re- 
cursion theory and Rosenstein [12] for recursive linear orders. A linear order is 
discrete if every element has an immediate predecessor and an immediate suc- 
cessor. It is recursive if its universe is cc, (equivalently an r.e. subset of o)and 
it has a recursive order relation. We use U, C and in Theorem 1, d , A9 to 
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denote recursive linear orders and U, for the finite suborder of U enumerated 
by stage s . The subscript s is used exclusively to denote the finite part of an r.e. 
set enumerated by stage s . A I I ,  linear order is the suborder defined by a I I ,  
subset of the recursive universe of Q , the recursively unique recursive linear 
order of type q . I I ,  linear orders are defined similarly. Since every recursive 
linear order is recursively isomorphic to a recursive suborder of Q , and con- 
versely (see Lemma 16.3 of Rosenstein [12]) ,a linear order is II, if and only 
if it is the suborder defined by a II, subset of some recursive linear order. II, 
linear orders may alternatively be defined as structures with a recursive universe 
and a C, order relation. That these definitions coincide is shown in Roy and 
Watnick [13, Corollary 4.31. The successivity relation S ( x ,  y )  is satisfied by 
every pair ( a ,  b )  with the interval ( a ,  b) empty. The block relation B ( x  , y )  
is satisfied by every pair ( a ,  b )  with the interval ( a ,  b )  finite or empty. Notice 
that, in a recursive linear order, S ( x  , y )  is a II ,  relation and B ( x  , y )  is C2. 
(In Moses [9, Theorem 2.2.11 it is shown that every recursive linear order with 
B ( x  , y )  recursive has a recursive copy with S ( x  , y )  recursive.) A block is an 
equivalence class under B ( x  , y )  ; this is the c,[x] of Chapter 4.2 of Rosenstein 
[12].We sometimes use the phrase "complete block" to stress that the elements 
outside a block have infinitely many elements between them and the block. A 
choice set consists of precisely one element from each block. Every recursive 
linear order has a II ,  choice set C defined by 

x E C * Vy  < x l B ( x ,  y )  (here < is that of w )  

We construct a linear order U as the limit of a series of finite linear orders 
Uo G U ,  G U2 c . . . . We consider S ( U ), the set of successivities of 2 ,  
to be a subset of the indices of So , 3, , 3, , . . . , some fixed enumeration of 
w 2 .  Thus i E S ( U )  denotes that Ti is a successivity in U .  Note that neither 
S(U,) G S(U,+,) nor S(U,+,) c S(U,) need be true. We use the same symbol 
to denote an r.e. set and its characteristic function; the context will make clear 
which is intended. 

1. INTRINSICALLYCOMPLETE SUCCESSIVITIES 

The class of recursive linear orders with intrinsically complete successivities is 
nonempty. This is proved in Theorem 1 via a technique which we believe lends 
itself to the analysis of other questions regarding the existence of recursive struc- 
tures with intrinsically nonrecursive properties (see the discussion after the proof 
of Theorem 1 ) .  The technique was suggested to us by Jockusch and Soare [8].  

Theorem 1. There is u recursive linear order U with S (U)  intrinsically complete. 
In fact, for each r.e. nonrecursive set C , there is a recursive linear order U with 
S ( U )=, C and S ( C )  2, C for every recursive C (clasically) isomorphic to 2 .  

Proof. Our construction uses an elegant idea of Jockusch and Soare [8]to diag- 
onalize over a list 2, , C,  , C2, . . . of all candidates for recursive linear orders. 
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Such a list may be generated by, for example, considering W, o2to be the 
order relation of C, . A O"-priority argument is applied to each C, to produce 
a recursive linear order de. U will be Yo+ do+ Y,+ d,+ . . . , where each 
separator is a block of length i + 3 . Each 4will have order-type q or 
( r ]  + 2 + r ] )  . z  for some z . Note that our separators, being blocks of size at least 
3, are distinguishable from the blocks of the 4. It follows that if C, E U, then 
Ce must also be of the form 9;+Bo+q'+Bl+. . . , with each B,E 4 (and<' E <). We attempt to arrange that 9,9 de, thus ensuring that C, 9U. 
This attempt will fail only if S(Ce) 2, C . The construction of each such de 
will be governed by the enumeration of the suborder Beof C, ; this is where 
the II, guessing comes in: If C, were to be isomorphic to U,  then Bewould 
be definable as the interval between the separators 3'and 31,-(complete) 
blocks of size e + 3 and e + 4 ,  respectively. These separators, and consequently 
B e ,  are definable in 2, by ll, formulae. Our strategy against Ce is to begin 
with an ordered list of pairs of blocks (77, , E,) of 2, of size e + 3 and e + 4 ,  
respectively-candidates for the pair of separators ( X I ,  q;!). We use II, 
guessing to settle on'the "correct" pair, thus obtaining a recursive enumeration 
of B e ,  and then construct de9 Be. We will describe this II, strategy later; 
for now we describe the basic module, under the assumption that we know the 
pair ( 3 '  , <:, ) and the recursive linear order LBe . 

Given a recursive linear order 9 we construct a recursive linear order d 
such that either 99d or Y(B)2, C . d will have order-type (r]+2+ q) . r  
for some nonempty z and Y ( d )  will be =, C .  If Y(B)happens to be 
infinite, z will be one of o+ o*, o+ k , or k + o*for some finite (or empty) 
k . We will build d anticipating this possibility and write L and R for the 
two "blocks" of successivities of d defined by the blocks of z ; i.e. L contains 
all those successivities of d that have only finitely many successivities to their 
left and R those with only finitely many to their right. At each stage s we will 
define L, and R, , approximations to L and R . Some of the successivities of 
4will be labelled; these labels may be subsequently removed. At stage s + 1 
we add points to dS, one at the extreme left, one at the extreme right and one 
between every unlabelled successivity. Thus a successivity in d, will remain 
one in %,, if and only if it is labelled. Those that retain their labels forever 
will be the successivities of d . Successivities introduced to the extreme left 
or right of d will never be labelled; consequently the separators < will not 
merge with these d . 

At stage s we define the partial function f, by f ,(n) = j if and only if 3, 
is the (n + 1)st element of Y ( 9 , )  (as a subset of, and with order inherited 
from, the list 02). f , (n)  is undefined if IY(B,)I < n + 1 , i.e. if 19s1< 
n + 2 .  If Y ( 9 )  is infinite, then f = lim, f, exists and is a total function, and 
9(B)2, f . We arrange in this case either that 997d or that f 2, C and 
therefore P ( B )  2, C .  If Y(B)is finite, then, since Y ( d )  is not, we have 
B 9 d .  
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Begin with do= 0.  At each further stage s ,  let k = C, - C,-, (we ar- 
range that a single element of C is enumerated at each stage), and perform the 
following four steps: 

1. Remove all labels 2 k . 
2. If m < k and there is no successivity labelled m , introduce one, placing 

it immediately to the right of L,-, . These new successivities may be placed in 
any order between L,-, and R,-, ;an order induced by their labels will make 
this step deterministic. Let a, < a, < . . . < Zik-, (< of 4-,)be the labelled 
successivities at the completion of this step (note that ai may not necessarily 
be labelled i) . 

3. In this step, the heart of the construction, we introduce a successivity 
Zi labelled k . If f,(O) , f,( 1), . . . , f ,(k) are not all defined, place Zi between 
L,-, and R,-, as in Step 2. If they are all defined, consider their distribution 
in 9,. Let n of the successivities {f,(1) , . . . , f,(k)) lie to the left of f ,(0) 
and the others to. the right. Place Zi immediately to the right of a,-, (the 
subscript n - 1 is as defined in Step 2). Define R, to include the successivity 
Zi and all those to its right, and L, to include the others. 

4. Define 4 as previously indicated, i.e. add points, one to the extreme 
right, and one between every unlabelled successivity. 

This ends the description of the construction. 

Y(d)consists of those successivities whose labels are never removed. The 
labels 0 ,  1 ,  . . . , k are never removed once C has settled on these numbers. 
It follows that Y(d) is infinite (and is 5 ,  C )  . Thus, if Y(LB) is finite, 
or empty, then 53' d . If P (LB)  is infinite then f = lim, f, exists and 
Y(53')2, f .  If f 2, C then P(LB)  2, C also. If f 2, C then there 
must be infinitely many k that are enumerated into C after f has settled on 
0 ,  1 ,  . . . , k . (We use here the fact that, as the enumeration progresses, f ,  
like C ,  settles down on increasingly larger initial segments of w ; i.e. if f ,  
agrees with f on some initial segment of w , then so does f, for every t 2 s .) 
Equivalently, there must be infinitely many k satisfying property * ,defined by 
(i), (ii), and (iii) below: 

(i) k is enumerated into C at some stage t(k) ; 
(ii) C does not change (on or) below k after stage t(k) ; 

(iii) f does not change on or below k after stage t(k) . 
These k will allow us to prove that LB 9 d . 

The crucial observation is that, for each such k , because of (ii) above, the 
successivities labelled 0 ,  1 , . . . , k at stage t(k) never have their labels re- 
moved. By the construction, and because of (iii) above, all labelled successivi- 
ties introduced after this stage are placed between Lt(k) and Rt(k) . It follows 
that, of the successivities labelled at 0 ,  1 , . . . , k , those in Ltik) remain in L 
and those in Rt(k) remain in R . Since infinitely many k satisfy * , this implies 
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that every successivity of d is either in L or in R ,  i.e. every successivity of 
d either has only finitely many successivities to its left or only finitely many to 
its right. Thus if f (0), in 9,has infinitely many successivities on both sides, 
then 9$Z d . (In this case d will have order-type ( r ]  + 2 + r ] )  - (o+ o*).) If 
.f(O) has 1 successivities to its left then, once f (0) and these 1 successivities 
have been enumerated into 53' , for every k satisfying * , f t (k ) ( l ) ,. . . , f t(k)(k) 
will contain precisely 1 labelled successivities to the left of f,(,)(O) and there- 
fore L,(kj will contain precisely 1 labelled successivities (see Step 3 of the 
construction). These 1 successivities will remain in L but every other suc- 
cessivity will move into R ,  since, at the next stage when a k satisfying * is 
enumerated into C , by (iii), f will once again list precisely 1 successivities to 
the left of f (0) in 9 and consequently (see Step 3 of the construction), a new 
labelled successivity, whose label is never removed (property (ii)), is introduced 
immediately to the right of these leftmost I successivities of d . Thus &' will 
have only 1 successivities in L (it will have order-type ( r ]  + 2 + r ] )  . (I + a*)), 
and therefore no successivity with precisely I successivities to its left, i.e. no 
successivity corresponding to f(0) ; so d 7 53' . A similar argument proves 
that if, in LB , f(0) has r successivities to its right, then R will have at least 
one successivity too few ( d  will have order-type ( r ]  + 2 + r ] )  . ( o  + r)) , and 
therefore 9 d . 

We begin by construction of 4,the ~ " - ~ r i o r i t ~  argument on Ce , with a 
list of candidates for the pair of separators ( e l ,  e l l )  in 2 ; i.e. a list T of 
pairs (El , E,) of tuples of o with \E l \  = e + 3 and IE,I = e + 4 .  As noted 
previously, there is a II, predicate Pe with (El ,Ti2)E Pe if and only if El and 
-n ,  are complete blocks of size e + 3 and e + 4 ,  respectively, with El < E2 in 
Ce . At each stage s ,we look among the first s members of T for the leftmost 
pair (El , 3,) that appears to be in Pe at this stage. If no such pair exists, we 
perform just Step 4 of the basic module construction (leaving L and R as is). 
If such a pair (77, , A,) does exist, we apply, with some modifications, one step 
of our basic module to the interval between El and 3, , taking it to be Be. 
The following are then necessary modifications ((77, , 3,) is the leftmost pair in 
T that appears to be in Pe at this stage, and k is the element just enumerated 
into C )  : 

(a) We need to keep track of the pair of tuples we were working with when 
a label was introduced. Labels introduced while working with the pair 

-
(El , n,) will be of the form (- , El , Z2) . Successivities may have many 
labels (produced while working with different pairs in T) ; we shall 
arrange that: 

a Each successivity will have all its labels of the form ( i ,  - ,- ) for 
some particular i , and no two successivities will both have labels 
of the form ( i  ,- ,- ) (for the same i) . 

a If there is a successivity labelled ( i ,  Pi, , Pi,), then, for each j < 
i , there will be a (different) successivity labelled ( j, m1, m,) ; this 
for each pair (Wl , Ei,) in T .  
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(b) All labels introduced while working with pairs to the left of the "cur- 
rent" pair (A, ,A,), i.e. of the form ( - ,  %, ,R,)for some (%,, %,) 
to the left of (A,, A,) in T ,  must be retained. Suppose there are 1 
successivities with such labels. If 1 2 k ,just perform Step 4 of the ba- 
sic module construction, retaining all the successivities with labels (of 
any kind), and no others. 

(c) If 	 1 < k , begin by removing all labels of the form ( i  ,- ,- ) with 
i 2 k .  (Because of the way 1 is defined, and the properties listed in 
(a) above, none of these labels will have been introduced while working 
with pairs to the left of (A, ,A,) .) Introduce, if necessary, labels of the 
form ( i ,  A, ,A,) with i < k , until all labelled successivities also have 
an appropriate label of this form (appropriate in the sense of the first 
property mentioned in (a) above). Now perform Steps 2, 3 and 4 of the 
basic module construction (introducing the label ( i ,  A, ,A,) where the 
basic module called for the introduction of the label i) . 

It is clear that the properties enumerated in (a) above are preserved through 
the construction at each stage. Also clear is the fact that, at each stage, either 
1 2 k and no labels are added or removed, or 1 < k and precisely k labelled 
successivities remain after the stage is executed. Each of these k successivities 
will have a label of the form ( i ,  A, ,A,) for some i 5 k . 

If C, does have a pair of separators, of size e +3 and e +4 ,  respectively, the 
leftmost such pair in T ,  (A, , A,) will appear to be in P, infinitely often. The 
(finitely many) pairs to the left of (A, ,A,) will eventually cease appearing to be 
in Pe and the number of labels they produce will, after a stage, always be less 
than the k enumerated into C .  Once this has occurred, at ever subsequent 
stage when ( E l ,  A,) appears to be in P, (and there are infinitely many of 
these), all labelled successivities will have labels of the form (- ,A, ,77,) . Labels 
introduced subsequently while working with pairs to the right of (77, ,A,) will 
always be removed, or coupled with a label of the form (- , 77, ,A,) (this at 
the next stage when (A, , 77,) appears to be in P,) . It follows that, after initial 
faltering steps, and perhaps with irrelevant steps interspersed (the effects of 
which will always subsequently be nullified), the construction proceeds just as 
described in the basic module when applied to the linear order 93, lying between 
-n ,  and A, in 2, .  Consequently the arguments of the basic module apply to 
show that either 93, deor Y(93,) >, C and therefore S(Ce) 2, C (since 
S(C,) >, S(93,)). That S ( d e )  5 ,  C follows from the fact that no labels of 
the form ( i ,- ,- ) with i 5 k are ever removed once C has settled on the 
numbers 5 k . 

Meshing the construction of the various de(using a separate enumeration 
of C for each de,) and placing them between the blocks Ye and Ye+,of size 
e +3 and e +4 ,  respectively, produces the recursive linear order U=Yo+do+ 
q+$+.... If C, E U  then Ce mustbeoftheform Y ~ + L B o + ~ ' + L B l + . . .  
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with each LBi E 4.But Be is the interval between the least (and only) pair 
of separators ( 3 '  ,31,)of size e + 3 and e + 4 ,  respectively; consequently, 
since LBe E de,we have that S(Ce)2, C .  That S(U) =, C follows from this 
(which implies that S(U) 2, C) , and the fact that the S ( d e )  are, uniformly 
in e , 5 ,  C (which implies that S(U) 5 ,  C )  . 

The employment of separators in the last proof was suggested to us by 
Jockusch and Soare [8] where a construction involving separators is used to 
show that for every r.e., non-recursive set C there is a II, linear order U =, C 
with no recursive copy. We believe they have provided a useful technique for 
proving results like these, that guarantee the existence of a structure with an in-
trinsically nonrecursive property. Previous proofs of such results code sets into 
the classical isomorphism type; see for example Feiner [3] and [4], Rosenstein 
[12, Theorem 16.301. $3 of Remmel [ l l ] ,  55 of Goncharov [6] and Theorems 
2.1.1, 2.2.3, and 2.3.1 of Moses [9]. We mention these coding arguments again 
toward the end of 52. 

We note that the argument we use to construct the 4 is slightly 
more intricate than that used in Jockusch and Soare [8] because of the coding 
employed to force S(Ce)2, C ; the argument of [8] would guarantee only that 
S(Ce) is nonrecursive. Adding a similar coding argument to the construction 
in [8] would prove that, for every r.e., nonrecursive set C , there is a II, linear 
order U = f  C with C 2, C for every II, copy C of U. This cannot be 
improved to replace II, by A, since the classic result of Richter that no linear 
ordering has a nonzero degree actually shows that no II, linear ordering has a 
A, degree. 

Theorem 1 suggests the problem of classifying, by their classical isomorphism 
type, those recursive linear orders with intrinsically complete successivities. We 
show in Theorem 2 that no discrete linear order is a member of this class. 
There is however a recursive discrete linear order with intrinsically non-low 
successivities but, surprisingly, none with the successivities intrinsically non-
semi-low. We discuss these results after Theorem 2 and end the section with a 
proof that every II, discrete linear order on a semi-low universe has a recursive 
COPY 

The construction in Theorem 2 is based on a II, construction of a recursive 
linear order of type (w*+ w) .z from a II, linear oder of type z. This basic 
construction appears also in proofs of the main results in Watnick [15] and 
Downey and Moses [2]where it is modified to prove other results. Consequently 
we only sketch this basic construction, devoting our proof to a description of 
the modification necessary to arrange that the recursive linear order constructed 
has incomplete successivities. We do present all the formal definitions necessary 
for the basic construction; Downey and Moses [2] offers a rigorous verification 
of its details. 
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Theorem 2. Every recursive discrete linear order has a recursive copy U with 
S(U) incomplete. In fact, for each r.e., nonrecursive set C , there is a recursive 
copy U with S(U) Z T  C . 
Proof. Let C be a recursive discrete linear order, C an r.e., nonrecursive set 
and z the order-type of some 112 choice set B of 2 .  We construct a recursive 
linear order U of type (a*+ o). z (so that U E C ) , and we meet the set of 
requirements Re : (Pe(S(U))# C , where (Pe(S(U))is the eth oracle machine 
with oracle S(U). The choice set B will govern our construction of U ; IUI will 
be an r.e. subset of w . Since B is n, , there is a recursive binary relation D 
satisfying n E B % lmxD(n, x )  . A result in Jockusch [7]allows us to assume 
that D has the additional property: 

(*I Vn E ~ 3 Vk ~5 n x[k E B +D ( k , x ) ] .  

We offer a brief verification of this fact: Given a recursive D, satisfying the 
weaker property, we produce a recursive D2 satisfying, in addition, property 
(*) . For S a finite subset of w , we define the phrase S is alive at stage s as 
follows. S is not alive at any stage prior to the stage maxS.  For s > maxS,  
we say S is alive at stage s if, writing t for the last stage prior to s when 
S was alive, or t = maxS if S has never before been alive, we have Vn E 

S3x( ( t< x 5 s ) A D,(n , x ) ). We then define D2 by: (n, x )  E D2 if and only 
if there is a subset S (1  , . . . , x )  ,with n E S ,  and with S alive at stage x . 
It is not difficult to verify that D, has the required properties. 

Our strategy for building an interval I ( i )  of order-type o*+ w for each 
i E B is to use 112 guessing, with the aid of the usual 2<W tree. Each node a 
with la1 = i will correspond to a guess as to which of the numbers j 5 i are 
in B . Property (*) will ensure that the nodes corresponding to correct guesses 
will govern our construction at infinitely many stages. We define intervals I ( a )  
for each node o and write I ( a , s )  for the version defined at stage s . If i E B 
and a is the unique node of length i that corresponds to a correct guess, then 
I ( a )  will be an interval of type o*+ o .  Every other I ( o )  will be finite (or 
empty) and will become part of some I ( a )  of type w*+a.For a more leisurely 
account of this basic construction see Theorem 1 of Downey and Moses [2]. 

Our strategy for meeting the requirements Re is to preserve agreements be- 
tween (Pe,,(S(U,))and C, and argue from this that if (Pe(S(U))= C then 
C must be recursive. To preserve the agreement (Pe ,,(S(U,); x )  L= C, ( x )  we 
must arrange that the initial segment S ( e )  of S(U,) which is used in the com- 
putation of (P,, ,(S(U,) ;x )  remains an initial segment of S(U). Since S(U) 
is determined by our block-building strategy, we consider, instead of sets S ( e )  
for (Pe , sets S ( o )  for each node a .  The sets S ( a )  with a of length e will 
be versions of S ( e ); and the S ( a )  with a the unique node of length e corre-
sponding to a correct guess (with regard to B )  will witness our meeting R(e). 
We write S ( a, s )  for the version of S ( a )  defined at stage s ; S ( a , s )  will be 
an initial segment of S(U,) . At the stage s that we decide to preserve the agree- 
ment ( P l o I ,, (S(a , s ) ;x )  I= C ( x )  we will make S ( a , s )  an initial segment of 
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S(U,) ; i.e., all i 5 maxS(a , s)  with i $ S ( a  , s)  will have Si a nonsuccessiv- 
ity in Us . All that remains in order to preserve this agreement is to ensure that 
S(a,s)  c S(U). We will be able to guarantee this under the assumption that 
we never again act for a node a < a . If a corresponds to a correct guess (with 
regard to B) there will be a stage when this assumption is in fact true. In this 
manner we arrange that our construction along the "true path" is a finite injury 
priority construction of a recursive linear order U E C and that we meet all the 
requirements Re . 

We present the formal definitions: 
The terminology relating to the 2'W tree (a is above P , a is to the left of 

p , a c P and a < p) is standard; see, for example, Soare [14] or Downey and 
Moses [2]. For each i 5 JaJ, a guesses that i E B if a ( i )  = 0 and that i $ B 
if a ( i )  = 1 and a 's guess seems correct at stage s if and only if 

Vi 5 la\ [ ( i ,  s )  E D * a guesses that i E B]. 
Notice that if a ' s  guess seems correct at stage s then this is also true of every 
a c a and of exactly one of aAO, aA1 . If a ' s  guess is correct it will seem so 
at infinitely many stages, this because of property (*) . P, is the unique path 
consisting of those nodes whose guesses seem correct at stage s . P is the true 
path, consisting of those nodes whose guesses are correct; i.e. those a satisfying 
a ( i )  = 0 * i E B , for each i 5 la1 . We write PSInand PIn for the restrictions 
of these paths to nodes of length 5 n . Notice that, uniformly in s , the P, are 
recursive (since D is) and that P is II, (since B is). Because of property (*) , 
each a E P will appear on P, at infinitely many stages s . 

The requirement R l o Iwill require attention at stage s if a E PSI, and 
if it is possible, at this stage, to extend the agreement between ,, and 
C, . Precisely, Re requires attention at stage s if there is node a E PSI, with 
E = 101, a set E and an element x satisfying the following three clauses: 

1. @,,,(E; x )  1= C,(x). 
2. x = max{y : @,,,(S(a , s - 1);y) I= C,(y)) + 1 . 
3. E satisfies the following: 

(a) E c_ S(U,-,) ; 
(b) { i : S i G I ( a , s - 1 )  forsome a 5 a ) c E ;  
(c) U { S ( a , ~ - l ) : a 5 a ) c E ; a n d  
(d) V a  C_ a ,  Vi E E ,  either Si c I ( a ,  s - 1) or Si n I ( a ,  s - 1) = 0.  

Our reasons for the requirements (a)-(d) are as follows. We intend to make 
S(a, s)  = E , hence requirement (a). In addition, to ensure that S ( a  , s)  is 
an initial segment of S(U) , we intend to make it an initial segment of S(U,) 
itself, by introducing points between the elements of some Ti if necessary. 
Requirement (b) ensures that while doing so we do not introduce points within 
and I ( a ,  s - 1) with a 5 a .  Consequently, we will extend such intervals 
I ( a  , s- 1) at the ends only and, if a correctly guesses that la1 = B ,will produce 
an interval I ( a )  of order-type o*+o . Requirement (c) similarly ensures that 
no Si with i E S ( a ,  s - 1) for a 5 a is turned into a nonsuccessivity at this 
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stage. Requirement (d) is directed toward ensuring that S ( a ,  s )  c S(U) . Our 
intention is to leave Us as a union of disjoint intervals I ( a ,  s) with a C_ a .  
The intervals of Us-, not contained in any I(a, s - 1) with a G a will be 
absorbed, wholly, into some I ( a ,  s )  with a C a .  Requirement (d) allows us to 
be quite casual about this absorption without running the risk that an Si with 
i E S ( a  ,s)  becomes split between separate intervals I ( a  , s) and I(/?, s) with 
a ,  /? G a .  If we never again act for a node 5 a ,  these intervals I ( a ,  s )  with 
a G a will never have points introduced internally, i.e. they will be extended 
at the ends only; consequently S(a, s)  will be a subset of S(U) . 

The construction at stage s may call for the introduction of a new element 
into the linear order. By this is meant the least element of o not yet in U and 
not a member of any Si with i 5 maxS(a , s - 1) for any one of the (finitely 
many) sets S ( a ,  s - 1 ) .  This is so as not to jeopardize our meeting of RID(  by 
inadvertently introducing a successivity 3, with i 5 maxS(o , s - 1 ) .  

The construction at stage s . 
Look for the least e with Re requiring attention at this stage. If there is 

one, let E and' a be as in the definition of "Re requiers attention at stage s ". 
Define S ( a  , s )  = E and introduce a new element between the points of each 
Si with i E S(U,-l) and i 5 maxE but i f E .  If no Re requires attention, 
let o be the node on P, with \a \= s ;define S ( a ,  s )  = S ( a ,  s - 1) and read 
s for e in what follows. The rest of the construction proceeds without regard 
to whither or not there is an Re requiring attention at this stage. Define: 

S ( a , s ) = S ( a , s -  1) forevery a < a ,  
I ( & ,  s) = I ( a  , s - 1) for every a to the left of P, and 
S ( a , s ) = I ( a , s ) = D  forevery a > o .  

Then modify Us-, using Ps1, as described below; we will in the process define 
I(la1, s )  for a o . We use the nodes of PSIein turn, beginning with the root 
A. For A, leave Us-, as is. After modifying Us-, for a node on Ps1, consider 
its successor a on PSIe. 

Case 1. a guesses that 1 0 1  $ B . 

Define I ( a  , s)  = I(a, s - 1) (= 0). Leave everything else as is. 


Case 2. a guesses that la1 E B and I ( o  , s - 1) = 0.  

The construction will guarantee that the intervals in { I ( a ,  s )  : a C a )  either 

are all empty or form a partition of the existing linear order. If they are all 

empty, define I(a, s)  to be all of the existing linear order. Otherwise define 

i ( a ,  S) = {a) where a is a new element, and place it among the intervals in 

{ I ( a ,  s )  : cv c a )  as dictated by 2. That is, place I ( a ,  s )  to the left of such 

an I ( a  , s)  if and only if 1 a 1 < la1 in C . Leave all else as is. 


Case 3. a guesses that la1 E B and I ( o ,  s - 1) # 0 .  

Let Dl and D2 be the intervals on either side of I ( a ,s - 1) and (strictly) 

between it and all other intervals i (a  , s - 1) or i (a  , s) with a E PSIe. Define 

I ( G ,  s )  = Dl u I ( a ,  s - 1)U D 2 .  Leave all else as is. 
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This ends the modification for a .  After modifying for each node on Psie 
add a new element to each end of each interval I ( a ,  s )  with a E PSIeand 
guessing that la\ E B . This ends the construction at stage s . 

The construction is effective and produces a recursive linear order U. The 
only nodes a that may have I ( a ,  s )  # 0 are those that end in 0 (see Case 
1). If I ( a ,  s )  # 0 then every a 5. a that ends in 0 also has I ( a ,  s )  # 0 .  
It follows, by Cases 2 and 3, that the intervals in { I ( o ,  s )  : a E Ps) either 
are all empty or they partition Us and, by Case 2, are ordered as dictated by 
C .  A crucial fact is that for every a and s ,  S ( a ,  s )  is an initial segment of 
S(U). That this is true at each stage when S ( o ,  s )  is extended follows from 
3(a) and 3(b) in the definition o f "  Re requires attention" (these guarantee that 
S ( a ,  s )  G S(Us)) and the fact that if i 5 maxS(a ,  s )  but i $ S ( a ,  s )  then 
either 3, is a non-successivity in Us or at least one element of Ti will not 
enter U as long as S(a, s)  is defined (see the definition of "new element"). At 
subsequent stages t , either S ( a  , s)  will be reduced to 0 ,  or, because of 3(b) 
and 3(c) and the fact that we extend intervals at the ends only, will remain an 
initial segment of S(U) . That U has order-type (a*+w) z and that each Re 
is met follow from: 

Lemma. For each a E P there are only finitely many stages s with a E P, at 
which R I O Irequires attention. 

Proof. Let a be the counterexample with (a / the least. Let so be a stage 
after which no a < a is ever the bottom-most node of PSIe(as used in the 
construction). Such a stage exists, by the inductive hypothesis if a E P , and, 
if a is to the left of P , by the fact that a ' s  guess eventually stops seeming 
correct. It follows that 

Let t(0) < t(1) < t(2) < . . . be a sequence of stages after so with a E PI(,)and 
Rial requiring attention at stage t(i) for each i . We will act for R I O 1at these 
stages and each S ( a  , t(i)) will be an initial segment of S(U) . It follows that, 
for each x E w , 0101, f ( X )  (S(a, t(x));X) = C,,,, (x) and that C,(,i (x) = C(x); 
otherwise a disagreement between 0101and C would occur and be preserved, 
and R I O 1would not be a counterexample to the lemma. This implies that C is 
recursive, which it is not; hence the lemma is proved. 

We can now prove that for each a E P there is a stage after which I ( a  , s)  
is never destroyed and that every element of /%I eventually enters some such 
I ( a  , s)  . These together imply that U has type (w*+w) .z . That each R, is met 
follows from the fact that C is nonrecursive, arguing just as in the lemma. 

We note that, in contrast to the last result, 

There is a recursive discrete linear order U with S(U) intrinsically non-low, 
i.e. no recursive C 2 U has S(C) low. 
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t 2 s , w (e , t) is defined, then f (e) = 0 ; otherwise f (e) = 1 . The choice of 
w(e ,  t) may change after t , finitely often, if smaller elements are enumerated 
into WenS(U); but this will settle on some w(e) which our actions to meet 
Re will retain as a member of WenS(U) . It follows that f (e) = lim, f (e , s)  
exists and is the characteristic function of {e : WenS(U) # 0 )  . By the Limit 
Lemma, this set is 5 ,  0' and so S(U) is semi-low. 

This last argument works also for recursive linear orders of type o . T and 
a similar argument, keeping g,(b) fixed and moving gs(a) toward it, works 
for the order-types o*.T . Such arguments will fail for linear orders that con-
tain infinitely many blocks of finite length. There are in fact such recursive 
linear orders U with S(U) intrinsically non-semi-low-produced by the cod-
ing arguments that construct a recursive linear order U with S(U) intrinsically 
nonrecursive. Such an U may be produced by coding a C,-complete set into 
the set B = {n : U has a complete block of size n) . It is clear that S(U) 
being recursive would make B C2 and, since B is determined by the classical 
isomorphism type of U, it follows that S(U) is intrinsically nonrecursive. Such 
arguments originated in Feiner [3] and [4]; for various extensions see Remmel 
[ l  11, Goncharov [6], Rosenstein [12, Theorem 16.301and Moses 19; see the end 
of $1 for theorem/section numbers]. To see that the S(U) so constructed is 
also intrinsically non-semi-low we use the fact that if it is semi-low then the 
relations I ( x )  and F ( x )  defined by b'y < x l S ( y ,  x )  and Vy > x l S ( x ,  y) 
respectively (< of U) are both C2 in U. We show this for I ( x ) : 

For each a E /UI define W(,) to be the r.e. set { ( x ,  a )  : x < a in U) . 
Then a E I if and only if W(,)n S(U) = 0 .  If S(U) is semi-low there is a 
recursive function f with W(,)n S(U) = 0 if and only if Wii(,)) is finite; 
this is a C, predicate. Since [ a ,  b] is a complete block in U if and only if 
I ( a )A F(b)A B(a , b) , it follows that the set B defined above is C, . Since B is 
determined by the classical isomorphism type, we have that the recursive linear 
order U so constructed has S(U) intrinsically non-semi-low. 

We briefly consider a related issue, concerning II, linear orders. It is known 
(see Roy and Watnick 1131) that there is a 111discrete linear order with no re-
cursive copy. However, every low Ill discrete linear order does have a recursive 
copy. We show that, in fact, 

Every semi-low Ill discrete linear order has a recursive copy. 
Let U be a semi-low Ill discrete linear order, defined as a subset A of Q . 

Consider B A defined by 

b E B b'x < b (x  4 A or Vy3z > y (with z E A and 
z lying between x and b in U)). 

(Here < is that of o .) Then B is a choice set for U. We show that B is 112 
and therefore, by Watnick [15], that U has a recursive copy. For each triple x , 
b ,  Y define yx,b,y)to be the r.e. set consisting of those z > y (in o) that 
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lie between x and b in Q . Then 

b E B # 'dx < b (x 6 A or 'dy (Wix,b,y)n A # 0 ) ) .  

Since A is semi-low, there is a recursive function f such that Wix,b ,  y)  n A # 0  
if and only if Wfiix, ,,)) is infinite. Consequently 

b ~ B @ ' d x < b(X @ A O r ' d ~(Wfiix,b,y))is infinite)). 

The relation x $ A is C, and the relation between the brackets is 112 . It fol-
lows that B is a l7, set and therefore, by Watnick [I 51, that U has a recursive 
copy. 

3.  INTRINSICALLYW tt-COMPLETE SUCCESSIVITIES 

We show that, in contrast with Theorem 1, the class of recursive linear orders 
with intrinsically wtt-complete successivities is empty. 

Theorem 3. Every recursive linear order has a recursive copy U with S(U) wtt-
incomplete. In lact, for each r.e., nonrecursive set C , there is a recursive copy U 
with S(U) $,,, C .  
Proof. Let C be a recursive linear order and C an r.e., nonrecursive set. We 
use a @'-priority argument to construct a recursive copy U of C meeting the 
requirements: 

-
R(e ,  i) : @,(S(U))# C or c$i does not majorize u(S(U) , e).  

@,(S(U)) is the eth oracle machine with oracel S(U), 4, the ith partial recur-
sive function and u(S(U) , e) the use function for the computation @,(S(U)) . 
The requirements R(e , i) have a priority ordering determined by 02. At each 
stage s we define Us on ( 0 ,  1, . .. , s) and an isomorphism gs from U, to 
C, , the restriction of C to ( 0 ,  1, . . . , s} . We arrange that g eventually settles 
on each element of /%I and JC/. With this in mind we define for each R(e , i) 
and s the set 

(e , i) is the index of (e , i) in 02. D(e , i ,s) is the subset of (C/on which g, 
must remain unchanged by any action to meet R(e , i) at stage s +  1 . Arranging 
that we act only finitely often to meet each R(e ,  i) will guarantee that g = 
lim, g, exists. 

Our strategy to meet R(e ,  i) is to attempt to arrange a disagreement 
@,(S(U); k)  # C(k) , working successively with k = 0 ,  1 ,  2 ,  .. . . It at some 
stage s ,  @,,,(S(U,) ; k)  I= C,(k) and c$i,s(k)12u(S(U,) ; e ,  k ,  s )  , we try 
to remove all j 5 ~ $ ~ ( k )from S(U) . If we succeed in this task by stage t we 
will have S(U,) n { j  : j 5 c$i(k)) = 0 .  Consequently, if $i is to majorize 
u(S(U), e) , we must have @, (S(U); k)  = Q, ( 0 ,  k )  . If we succeed in this 
strategy for each k without producing a disagreement @,(S(U); k)  # C(k), 
then C must be recursive, which it is not. 
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The set D ( e ,  i , s) may not allow us to remove all j 5 q5i(k) from S(U). 
However, there will be a finite set I such that for every k we will be able to 
remove from S(U) all j 2 q5i(k) that are not in I .  The previous argument is 
still valid since having @,(S(U)) = @,(I) would (since I is finite) still imply 
that C is recursive. 

The standard machinery of a construction provides the book-
keeping; we leave the details to the reader. 

If, in the last theorem, the given linear order C has S(C) infinite and if C is 
incomplete, we can arrange also that S(U) $ C and therefore that S(U) and C 
are wtt-incomparable. To do this we meet the additional set of requirements 
P, : @,(C) # S(U). Once again our basic strategy is to attempt to remove ele-
ments j from S(U) but now we do this only if K has changed below j since 
the stage when @,(C; j) took on its present value. Either we are successful 
in preserving one such disagreement between @,(C) and S(U), or for all but 
finitely many j (for all j $ I ) ,  @,(C) changes below j after K does. Con-
sequently, if P, requires attention infinitely often and/or @,(C) = S(U) we 
can prove that C >, K ,which it is not. 

Theorem 3, in the case when S(C) is infinite, may alternatively be proved 
using the basic strategy of removing elements from S(U) to construct a recursive 
copy U with S(U) hyperimmune. (The construction is similar to that employed 
by Remmel-in Theorem 2.8 of [lo] to show that every recursive Boolean algebra 
with infinitely many atoms has a recursive copy in which the set of atoms is 
hyperimmune.) It follows from a result in Friedberg and Rogers [5, p. 1241 
that S(U) is wtt-incomplete; in fact, by Downey and Jockusch [I ,  Theorem 
4.121, it is not w tt-cuppable. 

The problem of classifying those recursive linear orders with intrinsically 
complete successivities will, we think, prove difficult. Theorem 2 solves the 
problem for the class of discrete linear orders. We suggest a further test case 
which exemplifies the problems we encountered in attempting to extend our 
methods to a general solution: The class of order-types with the property that 
between every pair of successivities there lie only finitely many other succes-
sivities. Are there any such recursive linear orders with intrinsically complete 
successivities? It is possible to show that, in contrast with discrete order-types, 
there are such recursive linear orders with intrinsically non-semi-low successiv-
ities. 
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