
MINIMAL PAIRS IN THE C.E. TRUTH-TABLE DEGREES.

ROD DOWNEY AND KENG MENG NG

1. Introduction

Strong reducibilities such as the m-reducibility have been around implicitly, if not explicitly,
since the dawn of computability theory. The explicit recognition of the existence of differing
kinds of oracle access mechanisms began with the seminal work of Post [12]. Of interest to
us from Post’s paper are the so-called tabular reducibilities ≤tt, truth table reducibility, and
≤wtt, weak truth table reducibility. Following the work of Nerode [11], we know that ≤tt can
be characterized by saying A ≤tt B iff there is a Turing procedure Φ with ΦB = A and ΦX

is total for all oracles X. Weak truth table reducibility is defined via X ≤wtt Y , iff there is a
procedure Ψ with the use ψ(x) is a computable function.

Quite aside from their intrinsic interest, reducibilities stronger than Turing reducibility
crop up everywhere in effective mathematics. For example ≤wtt can be used for classifying
the degrees of bases of vector spaces (Downey and Remmel [5]), it can be used to study the
presentations of reals (Downey and Terwijn [6]), and are also applied to concepts used for the
classifications of approximations to effective processes. For example, X is of hyperimmune-free
Turing degree iff for all Y ≤T X, Y ≤tt X.

One reason for recent interest in truth table reducibility is due to its intrinsic relationship
with algorithmic randomness. This relationship seems to occur because the totality of truth
table procedures allows measure to be transformed from one space to another. For example,
long ago, Demuth [4] showed that if X ≤tt Y is noncomputable and Y is random, then there
is a random Z ≡T X. The reason being that the uniform measure for the space Y can
be effectively transformed into another measure relative to which X is random, and this, in
turn, can be re-translated into a uniform measure for Z. Other examples include Franklin
and Stephan’s use of tt-reducibility for classifying concepts related to Schnorr randomness
(Franklin and Stephan [7]) and similar investigations of Greenberg, Franklin, Stephan and
Wu [8].

The present paper was motivated by the consideration of the reals tt-below the collection
of nonrandom strings. For example, let NC = {x | C(x) < |x|}, where C is plain Kolmovorov
complexity. We know that NC is wtt-complete amongst c.e. sets. Kummer [10] showed that
in fact NC is also tt-complete. The argument was particularly interesting in that the process
of constructing the tt-reduction was nonuniform.

On the other hand, Kummer showed that whether NK , the analogous set for prefix-free
complexity, is tt-complete depends on the choice of universal machine. That is, there are
universal machines U1, U2 such that NKU1

is tt-complete, and such that NKU2
is not. The

proof of the latter fact was rather novel and has seen applications as far as complexity, such
as Allender, Buhrman, Friedman and Loff [1] where it is used for results relating randomness
to PSPACE.

Date: May 28, 2014.
The first author is partially supported by the Marsden Fund of New Zealand, while the second author is

partially supported by the MOE grants MOE2011-T2-1-071 and MOE-RG26/13.

1

2 ROD DOWNEY AND KENG MENG NG

In [2], Cai, Downey, Epstein, Lempp and Miller looked at the question of the tt-
computational power of sets of random strings for various universal machines computing the
prefix-free complexity K. This group showed that a set A is tt- below all such sets of random
strings iff A is computable. On the other hand, these authors also showed that for any two
universal machines U1, U2, there is a noncomputable set X ≤tt NKU1

, NKU2
.

Since all such sets of non-random strings are necessarily wtt-complete, the question arises
whether there exist wtt-complete c.e. sets A, B which form a tt-minimal pair. If this is false
then the second result of Cai et. al would be a simple corollary. In [2], Cai et. al. showed
that there are c. e. Turing complete sets forming a tt-minimal pair, but left the wtt-question
open.

This question seems hard. Earlier, Jockusch and Mohrherr [9] showed that the diamond
lattice can be embedded into the c.e. tt-degrees preserving the greatest and the least element.
That is, there are c.e. sets A and B such that A ⊕ B ≡tt ∅′ with X ≤tt A,B implies X
computable. Also Degtev [3] had shown the existence of c.e. Turing complete sets forming a
minimal pair in the tt-degrees of c.e. sets. It is unknown whether A ≡wtt B ≡wtt ∅′ is possible.

In the present paper, we will make modest progress towards the resolution of the question
of a wtt-complete tt-minimal pair by proving that there can be A ≡wtt ∅′ and B ≡T ∅′ forming
a tt-minimal pair.

The reader might guess that this result can be proved by a straightforward modification
of the proof in the Cai et. al. paper. This is unfortunately far from the case; the method
used in this paper is quite different. Our argument uses the determinacy of finite games and
their computable winning strategies in a way hitherto unseen. We hope that this might lead
to progress on the full questions. Also, in itself, the technique is very pretty and might well
have other applications.

We prove the following Theorem:

Theorem 1.1. There is a pair of c.e. sets A ≡wtt ∅′ and B ≡T ∅′ whose tt-degrees form a
minimal pair, i.e. X ≤tt A,B ⇒ X is computable.

2. Proof of Theorem 1.1: Informal description

We will use the well-known fact that every finite game is computably determined. Moreover
there is a uniform procedure to pass from a finite game to a winning strategy for one of the
two players in the finite game. We shall build c.e. sets A and B. To ensure that B ≥T ∅′ we
specify computable approximations to the markers {γ(n)}, satisfying the usual marker rules.
For each n:

• γ(n) is moved monotonically.
• γ(n) is moved at a stage s only if B � γ(n)[s] has changed.
• γ(n) is only moved finitely often.
• If n enters ∅′ at a stage s then γ(n) is moved at or after stage s.

It is straightforward to check that these rules ensure that B ≥T ∅′. To ensure A ≥wtt ∅′, we
will reserve intervals {In} where each In is used for coding ∅′(n). We ensure the following
hold:

• The intervals {In} and their lengths |In| are chosen and effectively determined in
advance.
• If n enters ∅′ at stage s then A changes on interval In at or after stage s.

If these two points are ensured during the construction then clearly A ≥wtt ∅′. As we will see,
during the construction we will be enumerating various numbers (for the sake of tt-minimal
pair requirements) into A � In, even when n has not yet entered ∅′. For the coding A ≥wtt ∅′

MINIMAL PAIRS IN THE C.E. TRUTH-TABLE DEGREES. 3

to work, we must ensure that the interval In in A is not filled up before n enters ∅′. Otherwise
if n enters ∅′ later on then there is no way to record this in A.

The requirements to meet are

Re :
(
ΦA
e = ΦB

e = X
)
⇒ X is recursive,

where Φe is the eth potential tt-functional. For each n such that we observe ΦA
e = ΦB

e =
r, we will begin a procedure to certify the computations. This certification procedure will
be concluded when A or B changes below a small number, or when we obtain the desired
certification. In the former case we will wait for both sides to agree again before beginning
another certification procedure on the new computations. In the latter case we will believe in
the common value r, and define the value of X(n) = r.

2.1. The strategy to satisfy R while keeping B ≥T ∅′. We briefly describe the strategy
to make C and B a tt-minimal pair while keeping C ≡T B ≡T ∅′; for more details we refer
the reader to Cai et. al. [2]. The strategy for processing a pair (e, n) is as follows. We
let ce,n be the least number on the C-side below the ϕe(n)-use such that the entry of any
combination of γ(i) > γ(ce,n) will not change the value of ΦC

e (n). If ce,n ≤ e then we say that
ce,n ↑; otherwise ce,n is always picked to be larger than e. We can similarly define the number
be,n > e for ΦB

e (n). We then pick the larger of the two, say be,n, and enumerate γ(be,n) into C
and B (and lifting all larger γ-markers). If be,n = ce,n we can then enumerate γ(be,n) into B
and γ(ce,n + 1) into C.

We then get a disagreement ΦC
e (n) = 0 6= 1 = ΦB

e (n) which will be preserved unless γ(x) is
enumerated into C ∪ B for some x ≤ be,n. This can be used to argue show that each marker
γ(x) is moved only finitely often, and so B,C ≥T ∅′. We will only believe in the pair (e, n)
when we find that one of be,n ↑ or ce,n ↑. In this case at least one of the two sides of a certified
agreement can be forever preserved at the original value (unless, of course γ(e) is moved,
where e is a small number relative to the eth requirement).

Note that herein lies the fundamental difference between making the atoms Turing complete
versus wtt-complete. In the case of wtt-complete this naive plan cannot work, because the
uses for γ(i), i > be,n are not lifted by this action and so this disagreement can be removed
even by a large γ(i) change. When considering A ≥wtt ∅′ we need to consider the possible
effects of enumerating any combination of markers below the use. To help us organize this
process we will need to consider games.

2.2. The game G(e, n, s). We will define the finite game G(e, n, s). The idea is that we will
only believe a pair (e, n) when we find that no appropriate value of be,n on the B-side is found.
In this case we can ensure that the computation on the B-side can be preserved at the original
value.

Definition 2.1. For e, n, s ∈ ω, the game G(e, n, s) is defined as follows. We assume the game
G(e, n, s) starts at stage s of the construction with both sides ΦA

e (n)[s] = ΦB
e (n)[s] agreeing.

For convenience we always assume that the starting common value is r = 0. The game is
a finite game of perfect information played between two players. The first player, called the
SPOILER, always starts first and the game alternates between a SPOILER move and a PRESERVER

move. The PRESERVER wants to keep the starting value ΦA
e (n) = 0 (by enumerating elements

in A). The SPOILER wants to flip the value of ΦA
e (n) to 1 (also via enumeration into A). By

artificially increasing the use by a recursive amount we may assume that I0, · · · , IN ⊆ ϕe(n)
for some N .

At any point in the game, the SPOILER’s next legal move consists of a finite set {jn0 , jn1 , · · · }
where jnk

∈ Ink
and nks are distinct numbers ≤ N , such that the SPOILER has not previously

played in any of the intervals In0 , · · · , and such that ΦA
e (n) = 1 after playing these elements

4 ROD DOWNEY AND KENG MENG NG

into A. In other words, in the entire game, the SPOILER can play at most one element
in each interval In, n ≤ N , and once he has played in an interval, he cannot later play
another element in the same interval. A single move of the SPOILER can contain finitely many
elements in different intervals, as long as the ΦA

e (n)-computation takes value 1 after playing
these elements into A.

A legal move of the PRESERVER is similar. It consists of a finite set {jn0 , jn1 , · · · } where
jnk
∈ Ink

and nks are distinct numbers ≤ N , such that the PRESERVER has not previously
played in any of the intervals In0 , · · · , and such that ΦA

e (n) = 0 after playing these elements
into A. Furthermore we require that each jnk

is larger than some element (not necessarily in the
same interval) already played by the SPOILER. So the PRESERVER plays like the SPOILER, with
the extra restriction that it must play elements which are larger than something previously
played by the SPOILER.

Note that “passing” is not allowed by either player since on a SPOILER turn the value of
ΦA
e (n) must be 0. The game ends when one of the two players has no more moves; in that

case the player who made the last move wins.

In the game G(e, n, s) either the PRESERVER or the SPOILER has a winning strategy.

2.3. Making A ≥wtt ∅′ and B ≥T ∅′. Let’s consider a single pair (e, n) in isolation. How do
we certify the pair (e, n)? If be,n does not exist, then we have a certification of the pair (e, n);
since in this case the computation on the B-side can be preserved forever. Otherwise we will
begin a diagonalization procedure by considering the following cases:

2.3.1. Case 1: The PRESERVER has a winning strategy on the A-side. In this case we try and
diagonalize by enumerating γ(be,n) into B and we will obtain ΦA

e (n) = 0 6= 1 = ΦB
e (n). We

play the PRESERVER strategy on the A-side. What this means is that we enumerate the smallest
element of ω−A in Ix whenever we find that x enters ∅′. If ever we discover that ΦA

e (n) flips
to 1 due to a (sequence of) coding actions, we will consider this to be a SPOILER move in the
game G(e, n, s). During the construction we immediately respond with a PRESERVER-move
according to PRESERVER’s winning strategy in G(e, n, s); this immediately restores the value
of ΦA

e (n) back to 0.
Since the SPOILER moves first in the game, and every SPOILER-move is due to coding, also

every PRESERVER-move is to respond to a previous SPOILER-move, and the PRESERVER only
plays larger numbers, every enumeration into each interval can be accounted for against the
coding of ∅′. At the end of the game when the SPOILER has no more legal moves, we end
up in a situation where the truth table forever oputputs 0, regardless of any future coding,
since the SPOILER has no more moves in the game. So in this situation, when the PRESERVER

has a winning strategy, we can ensure that the diagonalization succeed by keeping the A-side
output 0. The only time a diagonalization set up like this can be unsuccessful is if a number
x ≤ be,n enters ∅′. We stop the process if this happens.

There are two outcomes to this diagonalization procedure:

• The procedure is halted due to coding of some number x ≤ be,n. In this case all the
moves on the A-side can be accounted for against coding, while the lifing of γ(be,n) on
the B-side is accounted for against the coding of x.
• The procdure is never halted. We successfully preserve the disagreement.

Note that since the PRESERVER has a winning strategy on the A-side, what we could have
done, was to have immediately believed in the computations and promise to always play the
PRESERVER strategy to keep ΦA

e (n) = 0. This is fine when considering a single pair (e, n),
but not desirable in full construction, because the interactions between different pairs get too
complicated. So we want to keep attempting to diagonalize (if we can), until the B-side can

MINIMAL PAIRS IN THE C.E. TRUTH-TABLE DEGREES. 5

change no more, i.e. be,n ↑, and only then do we believe in the computations. Note that
this “permanent” computation is, of course permanent, assuming that no marker γ(k), k ≤ e
enters B. Believing in such a permanent computation is fine because γ(k) can change only
finitely often for k ≤ e, and the entire strategy for e can restart every time this happens.

Now we assume that the SPOILER has a winning strategy on the A-side. For a number
M ≤ N we say that SPOILER has a M -winning strategy if there is a winning strategy for
SPOILER such that in every possible run of the game the SPOILER has a response that plays
only numbers from intervals with index ≥ M . Since the SPOILER has a winning strategy in
the game G(e, n, s), there is a largest number MA ≤ N such that SPOILER has an MA-winning
strategy in G(e, n, s). (At worst we can take MA = 0 which certainly works; any winning
strategy is a 0-winning strategy). There are now two further cases.

2.3.2. Case 2: The SPOILER has a winning strategy on the A-side and MA ≥ be,n. We play
the MA-winning strategy for the SPOILER on the A-side to keep ΦA

e (n) = 1. We halt the
procedure if a number ≤ be,n enters ∅′. While the diagonalization procedure is running, no
number ≤ be,n enters ∅′, and so we know that ΦB

e (n) = 0 6= 1 = ΦA
e (n).

On the A-side we use the PRESERVER to code ∅′ into A. We explain what this means. We
make the first move of the MA-winning strategy for the SPOILER and flip the A-side to 1. We
then wait for coding to flip the truth table back to 0. When this happens (if ever) we consider
this as the next move of the PRESERVER. We then respond with a SPOILER move to flip it to 1,
and so on. The only time we cannot run this strategy is when some small number, say x ≤ N ,
enters ∅′ (smaller than any of the SPOILER’s moves so far). Then we may have no more legal
next move for PRESERVER and so the SPOILER’s MA-winning strategy does not know how to
respond. In this case we halt the procedure, and wait for the next recovery ΦA

e (n) = ΦB
e (n),

and then do this certification over again.
There are three possible outcomes of this diagonalization procedure:

• A number x ≤ be,n enters ∅′. In this case we must stop the diagonalization proce-
dure because the B-side may no longer have output 0. In this case the attempted
diagonalization is destroyed, but it is okay because we have not yet believed in the
computation, and we have one more number in ∅′ � N . In A we have enumerated a
bunch of numbers for the SPOILER (in accordance to the SPOILER’s winning strategy),
which are now wasted, but these numbers are all larger than MA ≥ be,n ≥ x, so we
can blame all the moves of the SPOILER on the coding of x.
• A number x which is smaller than all the SPOILER moves so far has entered ∅′, so that

the PRESERVER has no more legal moves in the game. The procedure is also halted
in this case. In this case all of the SPOILER moves are wasted, but are all involving
numbers larger than x, so again we can account these against the coding of x.
• The procedure is never halted. We then have a permanent disagreement ΦA

e (n) 6=
ΦB
e (n). In this case on the A-side we have enumerated a bunch of numbers (for the

sake of the MA-winning SPOILER strategy). These numbers may be small and cannot
be accounted for against coding (but each enumerated number must be at least as
large as MA). However this is okay because we now have a permanent disagreement,
and so we can tolerate the wastages in In made by the SPOILER.

2.3.3. Case 3: The SPOILER has a winning strategy on the A-side and MA < be,n. Since
there are no (MA + 1)-winning strategies for the SPOILER on the A-side, by determinacy the
PRESERVER has a winning strategy which allows her to win, provided that SPOILER only plays
numbers ≥ MA + 1. We then enumerate be,n into B to make ΦB

e (n) = 1. (Note that be,n ↓ if
and only if there is some combination of markers γ(i), i in some finite set F ⊆ {e + 1, · · · }
so that the entry of these markers will change the computation. In the case F exists we can

6 ROD DOWNEY AND KENG MENG NG

choose minF = be,n. So we can in this case enumerate γ(be,n), as well as all larger γ(i), i ∈ F
into B, to change the computation. For convenience we shall simply say that we enumerate
be,n into B).

We stop the procedure if a number x < be,n enters ∅′. On the A-side we play the (MA + 1)-
winning strategy for the PRESERVER (as in Case 1 above), and we use the SPOILER moves to
code. There are again two outcomes to this procedure.

• The procedure is halted when some number x < be,n enters ∅′. In this case the lifting
of γ(be,n) on the B-side is accounted for against the coding of x. On the A-side all
SPOILER-moves (used for coding) as well as all PRESERVER response involves numbers
≥ be,n > x. Hence all wastage in A can be blamed on the coding of x.
• The procedure is never halted. In this case no number less than be,n enters ∅′. Hence

ΦB
e (n) = 1 is held permanently. Since MA + 1 ≤ be,n, this means that all SPOILER

moves involves numbers larger than MA, and so the PRESERVER always has a response.
Hence we are able to ensure ΦA

e (n) = 0.

2.4. Some global considerations. Notice that if the pair (e, n) has been certified, then
ΦB
e (n) must remain at the believed value 0 no matter what happens in future. Therefore, once

we believe in the pair (e, n) there is no need for us to actively pursue the PRESERVER-strategy
on the A-side. In fact, once the pair (e, n) is certified, we no longer need to look at the
game G(e, n) on the A-side, since ΦB

e (n) must be 0. The sole purpose of looking at games
and winning strategies on the A-side is to allow us to actively preserve a disagreement before
certification, and is never used after we have obtained certification. Thus, there are no real
interactions between two certified pairs (e, n) and (e′, n′). We may treat this as a finite injury
between pairs (e, n). The only interaction are between two pairs each trying to diagonalize,
and because we have not yet believed in either (e, n) or (e′, n′), it is easy to sort out any
conflict between the two pairs; We can simply initialize the lower priority one (the priority is
explained in the formal construction). If we need to make both A and B wtt-complete, then
the winning strategies for different pairs (each of which are already certified) must be made
to somehow cohere, and this introduces severe difficulties.

3. The formal construction

At each stage s of the construction, there are three lists:

• The active list.
• The inactive list.
• The certified list.

The certified list contains all pairs (e, n) which have been certified, i.e. be,n ↑. As mentioned
previously if (e, n) has been certified then it may be removed from all future consideration.
This list is ordered by magnitude of 〈e, n〉. The inactive list contains all pairs (e, n) which is
waiting to be placed in the active list, and which the strategy for (e, n) has not begun. This
list is also ordered by the magnitude of 〈e, n〉. Finally the active list contains all pairs (e, n)
which we have begun the strategy. Each active pair (e, n) may be in waiting phase, or be in
diagonalization phase. This list is a queue and is ordered by the time where each pair (e, n)
is placed in the queue. The priority ordering is static in the sense that elements in the list do
not have their priority reversed while they remain in the queue. Of course it can happen that
an element leaves the list and later re-joins the end of the queue. In this case the priority of
the element is lowered relative to the other elements of the list, but this only happens when
it gets kicked out of the list.

At the beginning s = 0, place all requirements (e, n) in the inactive list, and do nothing.
Suppose we are at stage s > 0. Suppose k ∈ ∅′s−∅′s−1. We enumerate γ(k) into B and change

MINIMAL PAIRS IN THE C.E. TRUTH-TABLE DEGREES. 7

Ik on the A-side. For every requirement on the active list which needs to respond according to
some winning strategy, we do so (in fact, there can be at most one requirement which needs
to respond). Initialize all strategies on the active list which are halted by this coding action
(i.e. place all these strategies in the inactive list).

Now we find the smallest pair 〈e, n〉 such that e is not represented in the active list. Place
(e, n) from the inactive list into the active list (this new pair joins the active list/queue at the
end). This new pair starts off in the waiting phase. Now we check to see if there is a pair
(e, n) in the active list currently in waiting phase, which can be moved to the diagonalization
phase, we do so for the highest priority pair (this is described below). Otherwise if there is no
waiting pair which can begin diagonalizing, end the construction.

A waiting pair (e, n) can begin diagonalization, if ΦA
e (n) = ΦB

e (n) again (for convenience,
we denote the common value 0). If be,n ↑ we move this waiting pair into the certified list,
and end the stage immediately without initializing anybody. Otherwise assume that be,n ↓.
Suppose that ` = `e,n is the largest such that I` is below some ϕA

i (j) for some active pair (i, j)
of higher priority than (e, n). (Again, remember that the priority ordering amongst active
pairs is according to the “queue number”, i.e., the time where a pair enters the active list).
Intuitively, any winning strategy which (e, n) follows henceforth should be restrained from
modifying I` and below; so (e, n) does not interfere with any pair of higher priority. During
the construction there will only be the following positive actions:

(i) γ(k) enters B due to coding.
(ii) γ(be,n) enters B due to Case 1 or 3 below.
(iii) Ik is modified due to coding.
(iv) Ik is modified in response to a PRESERVER-strategy (in which case there is a smaller

number blamed on coding).
(v) Ik is modified in response to a SPOILER-strategy.
(vi) Ik is modified by an initial SPOILER-move.

(i) and (iii) are called coding actions. (ii) and (vi) are called initial actions. We also assume
that ` is larger than the last stage s where the pair (e, n) is initialized not due to any of
the above reason (this is the case, if for example, some (e′, n′) of higher active priority starts
diagonalizing but does not put a small number in A or B). Also if (e, n) is initialized due to
reason (ii) or (vi) (an initial move) we also increase `. We also assume that `e,n is larger than
`e,i for every i < n.

As in Subsection 2.3, there are three possibilities. This time we make minor changes (to
take I` into consideration).

(I) Case 1: The PRESERVER has a winning strategy on the A-side. In this case we play the
PRESERVER strategy on the A-side and enumerate γ(be,n) into B. We obtain ΦA

e (n) =
0 6= 1 = ΦB

e (n). We stop the procedure if a number < be,n or ≤ ` enters B. (Note that
` may be much larger than be,n).

(II) Case 2: The SPOILER has a winning strategy on the A-side and MA ≥ max{be,n, `}. We
play the MA-winning strategy for the SPOILER on the A-side. DO NOT LIFT γ(be,n).
On the A-side we use the PRESERVER to code, and on the B-side we code with γ(i). We
halt the procedure if a number ≤ max{be,n, `} enters B, or if the PRESERVER has no
further move in this game.

(III) Case 3: The SPOILER has a winning strategy on the A-side and MA < max{be,n, `}.
On the A-side we play the (MA − 1)-winning strategy for the PRESERVER, and use the
SPOILER to code. We then enumerate γ(be,n) into B to make ΦB

e (n) = 1. We stop the
procedure if a number ≤ max{be,n, `} enters B.

8 ROD DOWNEY AND KENG MENG NG

We apply an initial action for (e, n). If Case 1 or 3 applies we initialize all active requirements
which are affected, i.e. whose procedure is halted by the enumeration of γ(be,n) into B. (Note
that this may cause an active requirement of higher priority than (e, n) to be initialized.) We
place these requirements back to the inactive list. If Case 2 applies we do not do this, as we
did not change B, and the initial action in case 2 on the A-side does not affect any higher
priority requirement, because of `. Finally in any case we initialize all lower priority active
requirements.

4. Verification

Lemma 4.1. During the construction, every enumeration into A is accounted for. Hence the
weak truth table reduction works, and A ≥wtt ∅′.

Proof. Looking at the list of positive actions (i) to (vi), we see that only (iii), (iv), (v) and
(vi) are relevant. (iii) happens at most once for each Ik.

Only the pairs (e, n) with e < k can modify Ik via (iv), (v) or (vi). For each e at most
one such pair (e, n) will be diagonalizing at any one time. For each such pair (e, n) (that is
diagonalizing via a PRESERVER- or a SPOILER-strategy), it will modify Ik at most one time
before it is initialized. We only consider all pairs (e, n) such that ϕe(n) > max Ik; otherwise
(e, n) has no effect on Ik. Also we must have k > max{`e,n, be,n} (since k > MA in Case
2, and in in the other two cases we play the PRESERVER-strategy so nothing smaller than
max{`e,n, be,n} can be played). If (e, n) is never initialized then e will never need to be
considered again. If the pair (e, n) is initialized not due to a positive action (or due to (ii) or
(vi)) then `e,i is increased large for every i ≥ n, and so e will cease to be active in Ik again,
and so we may neglect this case.

So to find the size of Ik we need to consider an upperbound for the quantity:∑
e<k

(# times (e, n) is initialized for some n by a positive action)

Assume (e, n) is initialized due to a positive action; then we ask what can this action be?
Since (e, n) was initialized by a positive action, we must have some small number less than
max{`e,n, be,n} entering A or B: Cases 1 and 3 are clear, and in Case 2 if the PRESERVER runs
out of moves, and since k was played by either the SPOILER or the PRESERVER, then we must
also have a number smaller than k entering ∅′.

So in any case we must have a number smaller than k which enters A or B. But this is not
enough, because for instance γ(k − 1) could be lifted many times due to other requirements;
so we need to argue that in fact we have a change in ∅′ � k. This number is put in by one of
(i), (iii), (iv) or (v). If it is (i) or (iii) or (iv) then we clearly have a change in ∅′ � k. If it is
due to (v) and performed by another pair (e′, n′), we check if (e′, n′) is of lower priority than
(e, n), at the point of the action. If this is so then this change must be above ϕe(n) > max Ik.
If (e′, n′) is of higher priority then there must also have been a recent change in ∅′, and in fact
less than k. In any case we can blame this initialization on a change in ∅′ � k. �

Lemma 4.2. A requirement (e, n) is initialized only finitely often.

Proof. Let (e, n) be the least such that (e, n) is initialized infinitely often. Thus there is some
stage s0 large enough such that after s0,

• A and B are stable up to ϕe(n).
• Every smaller pair (i, j) is never again initialized.

Claim 4.3. There are only finitely many pairs (p, q) such that at some point (p, q) is active
and of higher priority than (e, n) and 〈p, q〉 > 〈e, n〉

MINIMAL PAIRS IN THE C.E. TRUTH-TABLE DEGREES. 9

To see this, look at the first stage after s0 where (e, n) is active. At this point there are
only finitely many larger (p, q) of higher active priority. No new (p, q) can sneak in after this,
because (e, n) is never satisfied, and so the only thing that can remove (e, n) is an initialization
to (e, n). But then (e, n) will immediately be placed back into the active list above (p, q), if
p > e. (Of course smaller (p, q) can sneak in above (e, n), but not a larger one).

Thus we may further assume that s0 is large enough so that

• No new (p, q) with 〈p, q〉 > 〈e, n〉 appears in the active list above (e, n).
• All (p, q) in the active list above (e, n) is never again initialized.

Thus after s0, the set of requirements of higher active priority than (e, n) is fixed and does
not change. From this point on, what cam result in an initialization to (e, n)? Since all higher
priority requirements are stable, this initialization must be due to a positive action. It cannot
be due to coding, by assumption on s0, so (i) and (iii) are out. Similarly (ii) is not possible
(even if it is done be a lower priority requirement). In fact nothing is possible. �

Lemma 4.4. Each Re is satisfied, and the tt-degrees of A and B form a minimal pair.

Proof. Since (e, n) is initialized finitely often, the final state of (e, n) is either permanently
diagonalized, or it is certified, or we wait forever in the case of non-convergence. �

Lemma 4.5. Each γ(k) is lifted finitely often, and so B ≥T ∅′.

Proof. Suppose that γ(m) is stable for all m < k. Note that only requirements Re for e < k
can lift γ(k). Coding only happens at most once. So it must be moved infinitely often due to
an initial action by some pair.

By Lemma 4.2, for each n, the first n elements of the active list/queue is eventually stable.
Furthermore each `i,j for each stable pair (i, j) of the active list is also eventually stable. How
many stable elements of the list can have bi,j ≤ k? Only finitely many. Let M − 1 denote the
largest position of the list which is occupied by a stable pair with bi,j ≤ k. Once everything
below M is stable, we claim that γ(k) cannot be moved. Suppose it is moved by some pair
(e, n). Before the action, the pair (e, n) must occupy a position > M (by the stability of the
first M elements of the list). However every requirement between the M th position and (e, n)
must have b > k, which means that they would be initialized, and so the pair (e, n) must move
to position M itself, a contradiction. �

References

[1] Eric Allender, Harry Buhrman, Luke Friedman, and Bruno Loff, Reductions to the set of random strings:
The resource-bounded case, in Proc. 37th International Symposium on Mathematical Foundations of Com-
puter Science (MFCS ’12), 2012, Lecture Notes in Computer Science.

[2] Mingzhong Cai, Rod Downey, Rachel Epstein, Steffen Lempp and Joseph Miller, Random strings and
truth table degrees of Turing complete c.e. sets, in preparation.

[3] Alexander Degtev, tt- and m-degrees, Algebra i Logika, 12 (1973), 143-161. (trans 12 (1973), 78-89)
[4] Oswald Demuth. Remarks on the structure of tt-degrees based on constructive measure theory. Commen-

tationes Mathematicae Universitatis Carolinae, 29:233–247, 1988.
[5] Rod Downey and Jeffrey Remmel, Classification of degree classes associated with r.e. subspaces, Ann.

Pure and Appl Logic, 42 (1989) 105-125
[6] Rod Downey and Sebastian Terwijn, Computably Enumerable Reals and Uniformly Presentable Ideals,

Archive for Mathematical Logic Vol. 48 (2002), 29-40.
[7] Johanna Franklin and Frank Stephan, Schnorr trivial sets and truth-table reducibility. The Journal of

Symbolic Logic, 75:501–521, 2010.
[8] Johanna Franklin, Noam Greenberg, Frank Stephan, and Guohua Wu, Anti-complexity, lowness and high-

ness notions, and reducibilities with tiny use, Journal of Symbolic Logic 78 (2013), pp. 1307-1327.
[9] Carl Jocksuch and Jeanleah Mohrherr, Embedding the diamond lattice in the recursively enumerable

truth-table degrees Proc. Amer. Math. Soc., 94 (1985), 123-128.

10 ROD DOWNEY AND KENG MENG NG

[10] Martin Kummer. On the complexity of random strings. In 13th Annual Symposium on Theoretical Aspects
of Computer Science (STACS ’96), Lecture Notes in Computer Science 1046, pages 25–36. Springer, 1996.

[11] Anil Nerode, General topology and partial recursive functionals, In Summaries of talks presented at the
Summer Institute for Symbolic Logic, pages 247–251. Cornell University, 1957.

[12] Emil Post. Recursively enumerable sets of positive integers and their decision problems. Bulletin of the
American Mathematical Society Vol. 50 (5) (1944), 284–316.

School of Mathematics, Statistics and Operations Research, Victoria University of Welling-
ton, PO Box 600, Wellington, New Zealand

E-mail address: Rod.Downey@vuw.ac.nz

Division of Mathematical Sciences, School of Physical & Mathematical Sciences, Nanyang
Technological University, 21 Nanyang Link, Singapore

E-mail address: kmng@ntu.edu.sg

