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Abstract. Recently there have been some new initiatives in the field
of parameterized complexity. In this paper, we will report on some of
these, concentrating on some open questions, and also looking at some
of our ideas towards applying ideas of parametric complexity in the field
of online model theory.

1 Introduction

Paremeterized complexity was developed as a tool to try address practical issues
in algorithmic complexity. The basic idea is that the combinatorial explosion that
occurs in exact algorithms for many intractable problems can systematically be
address by seeking parameters to fix to contain this explosion. The main idea is
that for natural, practical problems often there are one of more parameters that
are naturally small, and if it is these that “make” the problem intractable then
for a small range of these parameters the problem can be efficiently solved.

For example, if we are analyzing data arising as, for instance, the conflict
graph of some problem in, say, computational biology. Because of the nature of
the data we know that it is likely the conflicts are at most about 50 or so, but
the data set is large, maybe 108 points. We wish to eliminate the conflicts, by
identifying those 50 or fewer points. Let’s examine the problem depending on
whether the identification turns out to be a dominating set problem or a vertex
cover problem. The classic two examples usually quoted here are the following.
Dominating Set. Essentially the only known algorithm for this problem is to
try all possibilities. Since we are looking at subsets of size 50 or less then we
will need to examine all (108)50 many possibilities. Of course this is completely
impossible.
Vertex Cover There is now an algorithm running in time O(1.286k + kn)
( [19]) for determining if an G has a vertex c over of size k. This has been
implemented and is practical for n of unlimited size and k up to around 400 [54].

The issue is the manner by which the running time for a fixed k depends on
the k. Critically, is k in the exponent of the size of the problem, or independent
from that? Consider the situation of a running time of Ω(nk) vs 2kn.
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There are myriads of natural implicit and explicit parameters by which
problems can be FPT, including familiar tree-width metrics such as pathwidth,
treewidth etc, as well as logical restrications.

To investigate the complexity of basic problems associated with persistence,
we use the framework of parameterized complexity theory, introduced by Downey
and Fellows [25]. We remind the reader that a parameterized language L is a
subset of Σ∗×Σ∗. If L is a parameterized language and 〈σ, k〉 ∈ L then we refer to
σ as the main part and k as the parameter. The basic notion of tractability is fixed
parameter tractability (FPT). Intuitively, we say that a parameterized problem
is fixed-parameter tractable (FPT) if we can somehow confine the any “bad”
complexity behaviour to some limited aspect of the problem, the parameter.
Formally, we say that a parameterized language, L, is fixed-parameter tractable
if there is a computable function f , an algorithm A, and a constant c such
that for all k, 〈x, k〉 ∈ L iff A(x, k) = 1, and A(x, k) runs in time f(k)|x|c (c is
independent of k). For instance, k-Vertex Cover is solvable in time O(|x|). On
the other hand, for k-Turing Machine Acceptance, the problem of deciding
if a nondeterministic Turing machine with arbitrarily large fanout has a k-step
accepting path, the only known algorithm is to try all possibilities, and this takes
time Ω(|x|k). This situation, akin to NP -completeness, is described by hardness
classes, and reductions. A parameterized reduction, L to L′, is a transformation
which takes 〈x, k〉 to 〈x′, k′〉, running in time g(k)|x|c, with k 7→ k′ a function
purely of k.

Downey and Fellows [25] observed that these reductions gave rise to a hier-
archy called the W -hierarchy.

FPT ⊂ W [1] ⊆ W [2] ⊆ . . . ⊆ W [t] ⊆ . . . .

The core problem for W [1] is k-Turing Machine Acceptance, which is equiv-
alent to the problem Weighted 3Sat. The input for Weighted 3Sat is a
3CNF formula, ϕ and the problem is to determine whether or not ϕ has a satis-
fying assignment of Hamming weight k. W [2] has the same core problem except
that ϕ is in CNF form, with no bound on the clause size. In general, W [t] has as
its core problem the weighted satisfiability problem for ϕ of the form “products
of sums of products of ...” of depth t. It is conjectured that the W -hierarchy is
proper, and from W [1] onwards, all parametrically intractable.

There have been exciting new methods of establishing parametric tractability.
In this paper we will not address them. Rather we point towards Rolf Nieder-
meier’s survey [46], as well as Fellows survey [31], and Downey [23]. These is an
upcoming book [47] which will be devoted to methods of parametric tractability.

There have been some new developments in the application of parameterized
intractability to understand when PTAS’s are likely feasible. These, and similar
applications are highlight the use of parameterized complexity for exploring the
boundary of feasibility within polynomial time. There have been very interest-
ing developments exploring the running times of exact exponential algorithms,
including the use “Mini-” classes of Downey et. al. [24]. These have been used
especially by Fellows and his co-authors. This area is very promising and is the
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basis for an upcoming Dahstuhl meeting in 2005 as well as the International
Workshop in Parameterized and Exact Computation. We will examine this ma-
terial in Section2.

In Section 3, we examine the new classes generated by the notion of EPT from
Flum, Grohe and Weyer [34]. In this paper, our first goal will be to examine these
new notions and mention a number of natural open questions that they suggest.
As solution to any of these problem would be significant and is an interesting case
study in a more-or-less neglected arena: structural parameterized complexity. We
will examine tese ideas in Section 3

The last goal of this article is to articulate a new program of the authors
[26, 27]. devoted to applying the ideas of parameterized complexity, and topo-
logical graph theory to the online algorithms and online model theory. Our un-
derlying idea is to provide a proper theoretical foundation to the study of online
algorithms on online structures. Again as a case study we will look at online
colourings of online graphs. Again we will highlight a number of open qwues-
tions in this area. This section is especially relevant to the present conference in
view of the interest in automatic structures (such as Rubin’s Thesis [52]). Here
we have a structure, say, a graph, whose domain and operations are presented by
automata, and there are natural exapmples of online structres since the domains
and other aspects of thieir diagrams are given one point at a time, etc. More on
this in Section 4.

2 M [1], ETH and PTAS’s

2.1 PTAS’s

Let’s re-examine the notion of P: classical polynomial time. Classical polynomial
time allows for polynomials which can, in no way be regarded as “tractable”.
For instance, a running time of n9000 is certainly not feasible.

This fact has certainly been recognized since the dawn of complexity theory.
The main argument used is that P is a robust class (in its closure properties)
and “practical” problems in P have feasible running times. Certainly in the early
70’s this point of view was correct, but recent general tools for extablishing times
in P have give rise to bad running times.

When you are given some problem a classical approach is to either find a
polynomial time algorithm to solve it, or to demonstrate that if is NP-hard. The
latter would then suggest that no exact polynomial time algorithm exists.

The question is suppose that you have a problem that is in P, but the running
time is hideous. What can you do? Parameterized complexity has been shown
to be useful here. This is particularly true for bad running times in PTAS’s
(polynimla time approximation schemes). As per Garey and Johnson [45], poly-
nomial time approximation schemes (PTAS’s) are one of the main traditional
methods for battling intractability. Many ingenious polynomial time approxi-
mation schemes have been invented for this reason. Often the wonderful PCP
theorem of Arora et al. [5] shows that no such approximation exists (assuming
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P 6= NP ). But sometimes they do. Let’s look at some recent examples, taken
from some recent major conferences such as STOC, FOCS and SODA, etc. (See
Downey [23], and Fellows [31] for more examples.)
• Arora [3] gave a O(n

3000
ε ) PTAS for Euclidean Tsp

• Chekuri and Khanna gave a O(n12(log(1/ε)/ε8)) PTAS for Multiple Knap-
sack

• Shamir and Tsur [53] gave a O(n22
1
ε −1)) PTAS for Maximum Subforest

• Chen and Miranda gave a O(n(3mm!)
m
ε

+1
) PTAS for General Multiproces-

sor Job Scheduling
• Erlebach et al. gave a O(n

4
π ( 1

ε2
+1)2( 1

ε2
+2)2) PTAS for Maximum Independent

Set for geometric graphs.
Table 1 below calculates some running times for these PTAS’s with a 20%

error.

Reference Running Time for a
20% Error

Arora [3] O(n15000)

Chekuri and Khanna [18] O(n9,375,000)

Shamir and Tsur [53] O(n958,267,391)

Chen and Miranda [21] > O(n1060
)

(4 Processors)

Erlebach et al. [28] O(n523,804)

Table 1. The Running Times for Some Recent PTAS’s with 20% Error.

After the first author presented the table above at a recent conference (Downey
[23]), one worker from the audience remarked to him “so that’s why my code
did not work,” having tried to implement the Chen-Miranda algorithm!

Now sometimes the algorithms can be improved. For instance, Arora [4] also
came up with another PTAS for Euclidean Tsp, but this time it was nearly
linear and practical. The crucial question is : having gotten the algorithms and
being unable to find a better algorithm, above how do we show that there are
no paractical PTAS’s. Remember we are in P, so lower bounds are hard to come
by.

If the reader studies the examples above, they will realize that a source of the
appalling running times is the 1

ε in the exponent. We can define an optimization
problem Π has an efficient P -time approximation scheme (EPTAS) if it can
be approximated to a goodness of (1 + ε) of optimal in time f(k)nc where c
is a cons tant. Then as was realized earlr in the game, setting k = 1/ε as the
parameter, and then having a reduction to the PTAS from some parametrically
hard problem will in essence demonstrate that no EPTAS exists..

Here is one early result in the program:

Theorem 1 (Bazgan [7], also Cai and Chen [15]). Suppose that Πopt is
an optimization problem, and that Πparam is the corresponding parameterized
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problem, where the parameter is the value of an optimal solution. Then Πparam

is fixed-parameter tractable if Πopt has an EPTAS.

Here is one recent application of Bazgan’s Theorem taken from Fellows,
Cai, Juedes and Rosamond [16]. In a well-known paper, Khanna and Mot-
wani introduced three planar logic problems towards an explanation of PTAS-
approximability. Their suggestion is that “hidden planar structure” in the logic
of an optim ization problem is what allows PTASs to be developed in Khanna
and Motwani [39]. One of their core problems was the following.
Planar Tmin
Input: A collection of Boolean formulas in sum-of-products form, with all literals
positive, where the associated bipartite graph is planar (this graph has a vertex
for each formula and a vertex for each variable, and an edge between two such
vertices if the variable occurs in the formula).
Output: A truth assignment of minimum weight (i.e., a minimum number of

variables set to true) that satisfies all the formulas.

Theorem 2 (Fellows, Cai, Juedes and Rosamond [16]). Planar Tmin
is hard for W [1] and therefore does not have an EPTAS unless FPT = W [1].

Fellows et al. [16] also show that the other two core problems of Khanna and
Motwani [39] are also W [1] hard and hence have no EPTAS’s.

For most of the problems in Table 1 it is open which have EPTAS’s. It is
an open project to understand when problems such as those in [ACGKMP99],
can have real EPTAS’s rather than just PTAS’s which have unrealistic running
times. Recently Chen, Huang, Kanj, and Xia [20] have made significant progress
by provding ea exact parametric classification for problems with fully polynomial
time approximation schemes, for a wide class of problems (scalable problems):

Theorem 3 (Chen et. al. [20]). Suppos ethat Q is a scalable NP optimization
problem. Then Q has a FPTAS iff Q is in the class of PFTP of parameterized
problems which can be solved by an algorithm whose running time is poolynomial
in both |x| and k.

It seems reasonable that something of a similar ilk will be true for PTAS’s.
There are a number of similar applications using parameterized complexity for
practical lowed bounds in polynomial time such as Alekhnovich and Razborov [2].

2.2 ETH

The previous section demonstrates that using parametric complexity we can ad-
dress the classical issue of polynomial time approximation and whether there
is an efficient polynomial time approximation. Recently the increased compu-
tational power available has shown that there are a lot of problems for which
exponentail time algorithms can be useful in practice. This is particularly the
case if the problem has an exponentail time algorithm which is significantly bet-
ter than DTIME(2o(n)). However, there seems a “hard core” of problems for
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which not only do we think that there is no polynomial time algorithm for them,
but in fact there is no subexponential time one either. This is the exponential
time hypothesis first articulated in Impagliazzo ??.

• (ETH) n-variable 3-Satisfiability is not solvable in DTIME(2o(n)).
Again it has been shwon that parametric techniques are extremely useful in

showing that problems are likely not in DTIME(2o(n)). Actually, the idea that
subexponentail time is intimately related to parametric complexity is relatively
old, going back to Abrahamson, Downey and Fellows [1]. However, there has been
a lot of interest in this area recently, especially after the realization of the central
importance of the Sparsification Lemma of Impagliazzo, Paturi and Zane [37] by
Cai and Juedes [17]. As we will see, showing that a problem is W [1]-hard would
likely be enough (depending on the reduction). To address these issues, Downey,
Estivill-Castro, Fellows, Prieto-Rodriguez and Rosamond [24] introduced a new
class, the Mini-classes. Here the problem itself is parameterized. The notion is
most easily explained by the following example.
Mini-3Sat
Input : A 3-CNF formula ϕ.
Parameter : k.
Problem If ϕ has size ≤ k log n is it satisfiable?

The point here is the solution of the problem is akin to classical NP-completeness
in that we are asking for an unrestricted solution to a restricted problem. We can
similarly miniaturize any combinatorial problem. For instance, it is easy to see
that Mini-Clique is FPT. To remain in the miin-classes you need to make sure
that the reductions are small. The core machine problem is a circuit problem:
Mini-Circuit Sat. This allows us to generate the class M [1] of minaiturized
problems. It is not hard to show that Mini-Independent Set, Mini-Vertex
Cover, etc are all M [1]-complete. (Cai and Juedes [17], Downey et. al. [24])
It is unknown if Mini-Turing Machine Acceptance is M [1] complete, as
the reductions of the usual reductions are not linear, and we know of no such
reduction. It is not hard to show that FPT ⊆ M [1] ⊆ W [1]. The relevance of
this class to subexponential time is the following.

Theorem 4 (Cai and Juedes [17], Chor, Fellows and Juedes [32], Downey
et. al. [24]). The M [1] complete problems such as Min-3Sat are in FPT iff the
exponential time hypothesis fails.

For a recent survey summarizing this material with new proofs, we refer the
reader to Flum and Grohe [33].

3 EPT and FPT

Now, let’s re-examine the notion of fixed parameter tractability. Recall that L ⊂
Σ∗ × Σ∗ is FPT iff there is an algorithm deciding 〈x, k〉 ∈ L running in time
f(k)|x|c, with f an arbitary (computable) function, and c fixed, independent of
k.
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The criticisms of polynomial time can also be leveled, perhaps with even more
force, at the notion of FPT since the function f can be arbitary. Remember, one
of the claims of the theory is that it tries to address “practical” complexity. How
does that claim stack up? One of the key methods of demonstrating abstract
parametric tractability is the use of logical methods such as Courcelle’s Theorem.
Here one demonstrates that a given problem is for graphs of bounded treewidth
and is definable in monadic second order logic, perhaps with counting. Then
Courcelle’s Theorem says the problem is linear time fixed-parameter tractable.

However, FPT is only really a general first approximation to feasability. The
kinds of constants we get from applying Courcelle’s Theorem are towers of 2’s
roughly of the order of the number of alternations of the monadic quantifiers.
This was proven by Frick and Grohe [35]. These types of constants stand in
contrast to constants gotten by elementary methods such as bounded search trees,
and crown reduction rules, and kernelization. Here the parameter constants are
managable, more like 2k.

Flum, Grohe, anmd Weyer [34] recently introduced a new class to perhaps
better address when a problem likely has a practical FPT algorithm.

Definition 1 (Flum, Grohe and Weyer [34]). A parameterized problem is
in EPT iff it is solvable in time 20(k)|x|c.

For example, k-Vertex Cover is in EPT. Now the surprise. The reductions
that Flum, Grohe and Weyer use are not parametric ones. The appropriate
parametric reductions to keep within the class would be linear in k, and FPT
in |x|. Flum, Frick and Grohe introduced their notion of an EPT reduction as
being one that is not parametric, rather

L ≤EPT L′ iff 〈x, k〉 ∈ L iff 〈x′, k′〉 ∈ L′,

where x 7→ x′ in time 20(k)|x|c, but

〈k, x〉 7→ k′ has k′ ≤ d(k + log |x|).

This is, as the size of the problem grows, the slice of L′ used for the reduction
can slowly grow. Clearly, it is easy to prove that the two notions of reduction
are distinct. Technically, the addition of the log |x| in the reduction allows for
counters to be used in the reduction.

Frick, Flum and Grohe then go on to define a new hierarchy based upon
these reduction notion called the E-hierarchy,

EPT ⊆ E[1] ⊆ E[2] ⊆ . . . ,

which is robust for t ≥ 2.
What is the point of all of this? Flum Grohe and Weyer demonstrate that a

number of FPT problem lie at higher levels of this hierarchy and are therefore
likely not EPT. For instance, classes of model-checking problems which Flum
and Grohe showed did not have FPT algorithms with elementary parameter
dependence are complete for various levels of the class. Another example of the
phenomenom is the following.
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Theorem 5 (Flum, Grohe and Weyer [34]). k-Vapnik-Chervonenkis Di-
mension is complete for E[3] under EPT reductions.

We remark that k-Vapnik-Chervonenkis Dimension was known to be
W [1] complete under FPT reductions.

There are a number of very important FPT problems which have no known
FPT algorithms which are also single exponential in the parameter. Showing that
any of the following is likely not EPT would be very significant: k-Treewidth,
k-Branchwidth, and k-Cutwidth. The same is true for many problems which
also only have FPT algorithms known by Courcelle’s Theorem or have been
proven FPT (or PTIME) by treewdith methods.

Also, an interesting technical question is whether k-Independent Set is in
M [1] under EPT reductions. And what about randomization here.

We believe that the methods that are surely lacking here are suitable analogs
of the PCP techniques.

4 Online Algorithms

In this section, we would like to discuss ideas from a new project of the authors
which has several goals. They include (i) providing a theoretical foundation to
online model theory, (ii) trying to apply methods from parameterized complexity
in online algorithms, and (iii) seeking to understand the use of “promises” in this
area.

The last 20 years has seen a revolution in the development of graph algo-
rithms. This revolution has been driven by the systematic use of ideas from
topological graph theory, with the use of graph width metrics emerging as a
fundamental paradigm in such investigations. The role of graph width metrics,
such as treewidth, pathwidth, and cliquewidth, is now seen as central in both
algorithm design and the delineation of what is algorithmically possible. In turn,
these advances cause us to focus upon the “shape” of much real life data. In-
deed, for many real life situations, worst case, or even average case, analysis no
longer seems appropriate, since the data is known to have a highly regular form,
especially when considered from the parameterized point of view.

The authors have begun a project attempting to try to systematically apply
the ideas from classical topological topological graph theory to online algorithms.
In turn this has given rise to new parameters which would seem to have relavence
in both the offline and online arenas.

Online problems come in a number of varieties. There seems no mathematical
foundation to this area along the lines of finite model theory; and it is our
intention to make such a theory. The basic idea is that an online problem is
given one piece at a time per time step and our process must build the desired
object according to this local knowledge. The following is a first definition for
two such online structures.

Definition 2. Let A = 〈A,R1, . . . , Rn〉 be a structure. (We represent functions
as relations for simplicity.)
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(i) We will say that a collection As ⊂ As+1 . . . of finite substructures of A is a
monotone online presentation where As denotes the restriction of A to the
domain As.

(ii) More generally we can have A = limsAs, as above, but non-monotonically.

For instance, an online graph could be one where we are given the graph one
point at a time, and for each new vertex, I need to say which of the vertices seen
so far are adjacent to the new vertex. Then non-montonic version, vertices may
be added and then subtracted. Monotonic online structures model the situation
where more and more information is given and we need to cope; for instance,
bin packing; and the non-monotonic situation is more akin to a database that is
changing with time.

An online procedure on an online presentation {As : s ≤ n} is a computable
function f , and a collection of structures {Bs :≤ n}, such that

(i) f : As 7→ Bs, and
(ii) Bs is an expansion of As, and
(iii) fs+1 extends fs.

The idea is that B would have some extra relation(s) which would need to be
constructed in some online way. A nice example would be to consider colourings
of some online graph. Here we would need to colour each new point witha new
colour depending on only the information given by the finite graph coloured
so far. The point is that the online situation is very different from the offline
version. Every planar graph is 4-colourable, but there are trees of n vertices
which have online presentations which need at least log n many colours for any
online procedure to colour them. The performance ratio compares the offline and
the online performances.

There are a constellation of questions here. For instance, suppose that B is
the expansion of A by a single relation R, and this relation is first order definable.
First order properties are essentially local. Hence one would expect that there is
a general theorem which will show that there for any such first order R, there is
an online procedure with reasonable performance ratio.

Then what about structures of bounded width? We could ask that the Gaif-
man graph of the structure have bounded (tree-)(branch-)(path-)width. There
is almost nothing known here.

There is a wonderful analogy with computable structure theory, since we
are dealing with strategies in games against a perhaps hostile universe. In some
general sense, in a online situation it is very hard to use the finiteness of, say,
a graph within the algorithm, since we don’t know how big the graph might be.
Information is only local. The recent work (at this conference!) on automatic
structures where the algorithms in question deal with structures where the rela-
tions are given in an online was by automata are examples of this area. (See e.g.
Rubin [52])

One area that has historically received some attention is online colouring
of monotonic online graphs. Of course colouring is related to scheduling, and
authors considered the situation where the pathwidth of the graph is bounded.
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Kierstead and Trotter [41] gave an online algorithm for interval graphs. An in-
terval graph G = (V,E) is one for which there is a function g taking members
of V to intervals in R wuch that if v 6= v, g(v)∩ g(u) = ∅. It is not hard to show
that G has pathwidth k iff G is a subgraph of an interval graph with clique size
bounded by k + 1. Clearly if I give you a presentation of an interval graph as a
pathwithd k + 1 graph, then I can colour it in k + 1 colours, using first fit. But
the topological fact that the graph has pathwidth k +1 will guarantee good per-
sormance no matter how the graph is presented. Kierstead and Trotter [41] gave
an online algorithm for interval graphs colouring them in 3k + 1 many colours
for any online presentation.

Kierstead and Qin showed that first-fit will online colour any k-inductive
graph with at most 40(k+1) colours, and Chrobak and Slusarek [22] have shown
that there is an online presentation of a pathwidth k graph for which first fit
needs at least 4.4k many colours. It is open what the correct lower bound is here.

Related is Sany Irani’s [38] notion of a d-inductive graph. A graph is d-
inductive if there is an ordering v0, . . . , vn of its vertices such that for all i, vi is
adjacent to at most d vertices amongst {vi+1, . . . , vn}.

For instance, a planar graph is 5-inductive. To see this, any planar graph must
have a vertex of degree 5 or less. Call this v0. Remove it, and edges adjacent to
it. Repeat. Similarly, all graphs of treewidth k are k-inductive. This this notion
generalizes the notions of bounded treewidth, bounded degree and planarity.

Theorem 6 (Irani [38]). If G is d inductive, then first fit will colour any
monotonic online presentation of G with at most O(d log |V |) many colours.
This bound is tight.

In [26], the authors showed that for trees of pathwidth k, first fit will do much
better, needing giving 3k + 1 many colours. It is unclear how the parameters of
treeidth and pathwidth interact on number of colours needed.

We have also shown that Itani’s bound is tight for bounded treewidth graphs.

Theorem 7. For each k, there is a graph G of treewidth k and an online pre-
sentation of G for which first fit needs at least k log |V | many colours.

Proof. To be put in.

There are still many unknowns here. For instance, what can be said on aver-
age? To make a bad online presentation of a graph of low pathwidth one seems
to need to begin at the outer bags and work in. This would seema rare event.
John Fouhy [36] ran some simulations and has found that in general for random
pathwith k graphs we only ever seem to need 3k + 1 colours for first-fit. This is
not understood. Along with 0-1 behaviour, it is also suggestive of a more general
theorem.

Finally this material gives ideas back to classical topological graph theory.
The intuition behing a graph having low pathwidth is that it is “pathlike.” In
practice if we are thinking of some process which is pathlike in it graphical
representation. then we would not think of it as a “fuzzy ball.”
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To make this idea precise, the authors introduced anew notion.
We say that a path decomposition of width k, in which every vertex of the

underlying graph belongs to at most l nodes of the path, has pathwidth k and
persistence l, and say that a graph that admits such a decomposition has bounded
persistence pathwidth. We believe that this natural notion truly captures the
intuition behind the notion of pathwidth.

A graph that can be presented in the form of a path decomposition with
both low width and low persistence is properly pathlike, whereas graphs that
have high persistence are, in some sense, “unnatural” or pathological. Consider
the graph G presented in Figure 1. G is not really path-like, but still has a path
decomposition of width only two. The reason for this is reflected in the presence
of vertex a in every node of the path decomposition. Our underlying idea is that
a pathwidth 2 graph should look more like a “long 2-path” than a “fuzzy ball”.

G c

d

e

f g

h

ia

b

aef afgabc acd ade agh ahi

Fig. 1. A graph G having low pathwidth but high persistence.

What is intersting is that this notion is hard to recognize. Having persistence
k is W [2]-hard to recognize (Downey and McCartin [26, 27]). Nevertheless, it
seems that if we know that a graph has low persistence for a given pathwidth,
we ought to be able to get better performance for algorithms. This is the very
interesting situation where, because we know the shape of the input, we can
explore algorithms which might be fast for the kinds of input we might expect,
yet they should be slow in general. This idea remains to be explored.
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