
Bounded Randomness?

Paul Brodhead, Rod Downey, and Keng Meng Ng

1 Indian River State College, Fort Pierce, Florida
pbrodhea@irsc.edu

2 School of Math, Statistics, & Operations Research, Victoria University
Cotton Building, Room 358, Gate 7, Kelburn Parade, Wellington, New Zealand

Rod.Downey@vuw.ac.nz
3 School of Physical & Mathematical Sciences

Nanyang Technological University
21 Nanyang Link, Singapore

kmng@ntu.edu.sg

Abstract. We introduce some new variations of the notions of being
Martin-Löf random where the tests are all clopen sets. We explore how
these randomness notions relate to classical randomness notions and to
degrees of unsolvability.

1 Introduction

The underlying idea behind algorithmic randomness is that to understand
randomness you should tie the notion to computational considerations.
Randomness means that the object in question avoids simpler algorithmic
descriptions, either through effective betting, effective regularities or ef-
fective compression. Exactly what we mean here by “effective” delineates
notions of algorithmic randomness. A major theme in the area of algorith-
mic randomness seeks to calibrate notions of randomness by varying the
notion of effectivity. For example, classical Martin-Löf randomness4 uses
tests, shrinking connections of c.e. open sets whose measure is bounded
by effective bounds, whereas Schnorr randomness has the tests of some
precise effective measure. We then see that Schnorr and Martin-Löf ran-
domness are related but can have very different properties; for example
outside the high degrees they coincide, but the lowness concepts are com-
pletely disjoint.

? Supported by the Marsden Fund of New Zealand. We wish to dedicate this to Cris
Calude on the occasion of his 60th Birthday.

4 We assume that the reader is familiar with the basic notions of algorithmic ran-
domness as found in the early chapters of either Downey-Hirschfeldt [6] or Nies
[13].

Another major theme in the study of algorithmic randomness is the
intimate relationship of randomness concepts with calibrations of com-
putational power as given by measures of relative computability, like the
Turing degrees. If something is random, can it have high computational
power, for instance? A classic result in this area is Stephan’s theorem [14]
that if a Martin-Löf real is random and has enough computational power
to be able to compute a {0, 1}-valued fixed point free function then it
must be Turing complete.

The goal of the present paper is to introduce some new variations in
these studies, and to explore both themes. In particular, we will introduce
what we call bounded variations of the notion of Martin-Löf randomness
where the tests are all finite. These notions generalize the notion of Kurtz
(or weak) randomness but are incomparable with both Schnorr and com-
putable randomness.

More precisely, if W is a finite set then #W denotes the cardinality of
W . |σ| denotes the length of a finite string σ. We work in the Cantor space
2ω with the usual clopen topology. The basic open sets are of the form
[σ] where σ is a finite string, and [σ] = {X ∈ 2ω | X ⊃ σ}. We fix some
effective coding of the set of finite strings, and we freely identify finite
strings with their code numbers. We denote [W] = ∪{[σ] : σ ∈ W} as
the Σ1 open set associated with the c.e. set W . µ([W]) denotes Lebesgue
measure, and we write µ(W) instead of µ([W]).

Definition 1. (a) A Martin-Löf (ML) test is a uniform c.e. sequence
{Un}n∈ω of sets Un such that µ(Un) < 2−n.

(b) A Martin-Löf test {Un}n∈ω is finitely bounded (FB) if #Un <∞ for
every n.

(c) A Martin-Löf test {Un}n∈ω is computably bounded (CB) if there is
some total computable function f such that #Un ≤ f(n) for every n.

(d) A real X ∈ 2ω passes a CB-test (FB-test) {Un}n∈ω if X 6∈
⋂
n[Un].

A real X ∈ 2ω is computably bounded random if X passes every
CB-test. X is finitely bounded random if it passes every FB-test.

These two notions of randomness are weaker than Martin-Löf random-
ness, although they imply Kurtz randomness. The obvious implications
are:

- - -

PPPPPPPq ��
��

��
�1

ML-random FB-random CB-random Kurtz random

Schnorr random

No implications hold other than those stated in the diagram. This can
be derived from the following facts: There is a ∆0

3 1-generic real which
is FB-random (see the remarks after Proposition 3), while no Schnorr
random is weakly 1-generic. No incomplete c.e. degree can compute a
FB-random (Proposition 1(i)) while some incomplete c.e. degree bounds
a CB-random (Theorem 2). Lathrop and Lutz [12] showed that there
is a computably random set X such that for every order function g,
K(X � n) ≤ K(n) + g(n) for almost every n. Hence X cannot be CB-
random, by Proposition 3.

There is a non-zero ∆0
2 degree containing no CB-random (Theorem

2) while every hyperimmune degree contains a Kurtz random.

What is interesting is that these notions of randomness turn out to
have strong relationships with degrees classes hitherto unrelated to algo-
rithmic randomness. We will show that FB-randomness and Martin-Löf
-randomness coincide on the ∆0

2 sets but are distinct on the ∆0
3 sets (The-

orem 1). There is some restriction on the degrees of these reals in that
they cannot be c.e. traceable (Theorem 2). It is not clear exactly what
the degrees of such reals can be.

In the case of CB-randomness there can be incomplete c.e. degrees
containing such reals. We know that every c.e. degree contains a Kurtz
random real, but the degrees containing a CB-random form a subclass
of the c.e. degrees : those that are not totally ω-c.a.. This is a class of
c.e. degress introduced by Downey, Greenberg and Weber [5] to explain
certain “multiple permitting” phenomena in degree constructions such as
“critical triples” in the c.e. degrees, and a number of other constructions
as witnessed in the subsequent papers Barmpalias, Downey and Green-
berg [1] and Downey and Greenberg [4]. This class extends the notion of
array noncomputable reals, and correlates to the fact that all CB ran-
dom reals have effective packing dimension 1 (Theorem 3). Downey and
Greenberg [3] having previously showed that the c.e. degrees containing
reals of packing dimension 1 are exactly the array noncomputable reals.
We also show that if a c.e. degree a contains a CB random then every
(not necessarily c.e.) degree above a contains a CB random as well. From
all of this, we see that there remains a lot to understand for this class.

Some other results which space restrictions preclude us from including
concern lowness for the classes we have introduced. We know that if A
is K-trivial (i.e. low for Martin-Löf randomness) then A is low for FB-
randomness. Also we know that if A is low for FB-randomness then A
is Low(Ω). Finally in the case of CB-randomness, we know that if A is
low for CB-randomness then A is of hyperimmune-free degree. However,

we have a reasonably intricate construction which constructs a ∆0
3 real

which is low for CB-randomness.

2 Basic results

We first show that the notions of FB-randomness and Martin-Löf -randomness
coincide on the ∆0

2 sets, and they differ on the ∆0
3 sets.

Proposition 1. (i) Suppose Z ≤T ∅′. Then Z is ML-random iff Z is
FB-random.

(ii) There is some Z ≤T ∅′′ such that Z is FB-random but not ML-
random.

Proof. (i): Given an approximation Zs of Z, and suppose {Ux} is the
universal ML-test where Z ∈ ∩x[Ux]. Enumerate an FB-test {Vx} by
the following: at stage s, enumerate into Vx, the string Zs � n for the
least n such that Zs � n ∈ Ux[s]. Then, {Vx} is uniformly c.e., where
µ(Vx) ≤ µ(Ux) < 2−x for all x. Clearly Z ∈ [Vx] for all x. We know
Z �n ∈ Ux for some least n, and let s be a stage such that Zs �n is correct
and Z �n has appeared in Ux[s]. Then, Z �n will be in Vx by stage s, and
we will never enumerate again into Vx after stage s.

(ii): We build Z = ∪sσs by finite extension. Let {Ux} be the universal
ML-test, and {V e

x }x be the eth ML-test. Assume we have defined σs, where
for all e < s, we have

– all infinite extensions of σs are in Ue,
– if #V e

x <∞ for all x, then there exists k such that no infinite extension
of σs can be in U ek .

Now we define σs+1 ⊃ σs. Firstly, find some τ ⊇ σs such that all infi-
nite extensions of τ are in Us; such τ exists because {Ue} is universal.
Let k = |τ |. Next, ask if #V s

k < ∞. If not, let σs+1 = τ_0 and we
are done. If yes, then figure out exactly the strings ρi such that [V s

k] =
∪{[ρ1], [ρ2], · · · , [ρn]}. We cannot have [V s

k] ⊇ [τ] since µ(V s
k) < 2−k, so

there has to be some σs+1 ⊃ τ such that [σs+1] ∩ [V s
k] = ∅, by the finite-

ness of V s
k . We can figure σs+1 out effectively from ρ1, ρ2, · · · , ρn. Clearly

the properties above continue to hold for σs+1. All questions asked can
be answered by the oracle ∅′′.

Note that there is no way of making {Vx} computably bounded in (i), even
if Z ≤tt ∅′. It is easy to construct a low left c.e. real which is CB-random,
while from Theorem 2 below, no superlow c.e. real can be CB-random.
Hence CB-randomness and FB-randomness differ even on the c.e. reals.

CB-randomness is still sufficiently strong as a notion of randomness
to exclude being traceable:

Proposition 2. No CB-random is c.e. traceable.

Proof. Suppose that A is c.e. traceable, and that A is coinfinite (otherwise
we are done). We define the functional Φ by evaluating ΦX(n) as σ where
σ ⊂ X is the shortest string such that #{k : σ(k) = 1} = 2n, for
any X and n. Since ΦA is total, there is a c.e. trace {Tx}x∈N, such that
#Tx ≤ x and ΦA(x) ∈ Tx for every x. We define the CB-test {Ux} by the
following: we enumerate σ into Ux if |σ| ≥ 2x and σ ∈ Tx. Then #Ux ≤ x
and µ(Ux) ≤ x2−2x < 2−x for every x and A ∈ ∩x[Ux].

We next investigate the connection between CB-randomness and effective
dimension.

Proposition 3. Every CB-random is of effective packing dimension 1.

Proof. Suppose K(α�n) ≤ cn for all n ≥ N for some N ∈ N and c < 1 is
rational. Fix a computable increasing sequence of natural numbers {ni}
all larger than N , such that ni >

i
1−c for all i. Now define a CB-test {Vi}

by the following: Vi := {σ ∈ 2ni | K(σ) ≤ cni}. Here we have #Vi ≤ 2cni .

In contrast, every incomplete c.e. real which is CB-random cannot
be of d.n.c. degree (and hence has effective Hausdorff dimension 0). The
proof of Theorem 1(ii) constructs a FB-random real by finite extensions.
It is straightforward to modify the construction to build a ∆0

3 FB-random
which is 1-generic, and hence not of d.n.c. degree.

Next we investigate the upward closure of CB-random degrees.

Theorem 1. If A is a c.e. real and is CB-random, and A ≤T B, then
degT (B) contains a CB-random.

Proof. Fix a left-c.e. approximation As to A. Let h : N 7→ N be a strictly
increasing function such that h(n+1) ≥ h(n)+2 for every n. For any real
X we let (A ⊕h X)(z) be defined by the following: if z = h(n) for some
n then (A ⊕h X)(z) = X(n), otherwise let (A ⊕h X)(z) = A(z − n − 1)
where h(n) < z < h(n + 1). This is the “sparse” join of A and X, and
is obtained by copying the first h(0) many digits of A followed by B(0),
the next h(1) − h(0) − 1 many digits of A followed by B(1), and so on.
For numbers n, s we denote αns as the finite string As � hs(n) − n. This
represents the A portion of the current approximation to A ⊕h X below
hs(n).

The construction builds a function h ≤T A such that A⊕h X is CB-
random for any path X ∈ 2ω. This is achieved by specifying an effective
approximation hs(n) which is non-decreasing in each variable n, s. We let
h(n) = lims hs(n). We also ensure that for every n, s if hs+1(n) > hs(n)
then As+1 6⊃ αns . Intuitively hs(n) is the stage s coding location for X(n),
and we are insuring that before moving the coding location hs(n) we need
to first obtain a change in αns . The theorem is then satisfied by taking
A⊕h B, for given A⊕h B as oracle, to figure out B(n), one can run the
construction until a stage s is found such that αns agrees with the true
αn of the oracle string. Then each of the coding location hs(0), · · · , hs(n)
must already be stable at s.

Construction of h: Let {U ex} be the eth Martin-Löf test, and ϕe be
the eth partial computable function. We set h0(n) = 2n for every n. At
stage s > 0 find the least n < s such that As 6⊃ αns−1, and there is some
e, x ≤ n and some σ ∈ U ex[s−1] such that ϕe(x) ↓ and #U ex[s−1] ≤ ϕe(x).
We also require that αns−1 ⊇ σ but As 6⊃ σ. If such n is found we set
hs(n+ i) = s+ n+ 2i for every i.

We now verify the construction works. Clearly hs has the above-
mentioned properties and lims hs(n) exists. The only thing left is to check
that A⊕hX is CB-random. Suppose this fails for some X ∈ 2ω. Let {Ux}
be a CB-test such that A⊕h X ∈ [Ux] for every x.

For a finite string σ and stage s, we let σ∗(s) be the string obtained
by removing the (hs(0)+1)th, (hs(1)+1)th, · · · digits from σ. We define a
new CB-test {Vx} by the following. At a stage s if we find some σ ∈ Ux2 [s]
and σ∗(s) ⊂ As we enumerate σ∗(s) � (hs(x) − x) into Vx (unless some
comparable string is already in Vx). That is, we enumerate the A-part
of A ⊕h ∅ below hs(x) into Vx, unless σ∗(s) is shorter, in which case we
enumerate σ∗(s) instead.

We consider a large x. Clearly #Vx ≤ #Ux2 , since each σ ∈ Ux2
causes at most one σ∗(s) (or part of) to be enumerated in Vx. We need to
compute a bound on the measure of [Vx]. Each string enumerated into Vx
is either σ∗(s) or part of σ∗(s) for some s and σ ∈ Ux2 [s]. Each string of
the first type satisfies |σ| − |σ∗(s)| ≤ x, while it is easy to see that strings
of the second type must all be of different length greater than x. Hence
the measure of [Vx] is bounded by 2xµ(Ux2) + 2−x+1 < 2−x. Since {Vx} is
a CB-test A must escape this test, a contradiction.

We conclude this section with several questions.

Question 1. 1. If A ≤T B and A is CB-random, must degT (B) contain
a CB-random?

2. Are there characterizations of CB-randomness and FB-randomness
in terms of prefix-free complexity and martingales?

3. Are there minimal Turing degrees which contain CB-randoms?

3 A characterization of the left c.e. reals containing a
CB-random

The class of array computably c.e. sets was introduced by Downey, Jockusch
and Stob [8, 9] to explain a number of multiple permitting arguments in
computability theory. Recall that a degree a is array non-computable5

if for every function f ≤wtt ∅′ there is a function g ≤T a such that
f(x) < g(x) infinitely often. Downey, Greenberg and Weber [5] later in-
troduced the totally ω-c.a.6 sets to explain the construction needed for a
weak critical triple, for which array non-computability seems too weak.

Definition 2 ([5]). A c.e. degree a is totally ω-c.a. if every f ≤T a is
ω-c.e..

Note that array computability can be viewed as a uniform version of
this notion where the computable bound (for the mind changes) can be
chosen independently of f ; hence every c.e. array computable set is totally
ω-c.e.. The class of totally ω-c.e. degrees capture a number of natural
constructions. Downey, Greenberg and Weber [5] proved that a c.e. degree
is not totally ω-c.e. iff it bounds a weak critical triple in the c.e. degrees.

In Theorem 2 we show that the non totally ω-c.e. degrees are exactly
the class of c.e. degrees which permit the construction of a CB-random
real:

Theorem 2. Suppose A is a c.e. real. The following are equivalent.

(i) degT (A) is not totally ω-c.a.,
(ii) degT (A) contains a CB-random,

(iii) There is some c.e. real B ≤T A which is CB-random,
(iv) There is some B ≤T A which is CB-random.

We fix a computable enumeration{ϕn}n∈ω of all partial computable
functions.We let {Wm

n }n∈ω be the mth Martin-Löf test. We use <L to

5 This was not the original definition, but a later equivalent characterization, which
is convenient for us to take as the definition.

6 The original paper [5] called these totally ω-c.e.. However this terminology is some-
what at odds with Ershov’s hierarchy of ∆0

2 sets [10, 11] and causes a problem when
we work at various levels of the computable ordinals. Hence we will adopt the new
name being used in Downey and Greenberg [4].

denote the left-to-right lexicographical ordering on finite strings σ, τ , with
0 being to the left of 1 and σ <L τ meaning that σ is to the left of τ .
This ordering is extended naturally to x <L y for infinite strings x, y. We
assume for any c.e. set U , that if σ ∈ Us then |σ| < s.

3.1 (i) ⇒ (iii)

Assume that f = ∆A and that f is not ω-c.e. We will build B ≤T A and
ensure that B is CB-random. We must ensure that Rm,i holds for every
m, i:

Rm,i : B /∈ ∩n[Wm
n] if ϕi is total and for all n, #Wm

n ≤ ϕi(n).

To ensure that each requirement R is satisfied, suppose that R is the
kth requirement, where k = 〈m, i〉. Our construction will implement a
sequence of modules {Mk

j }j∈ω for R and each module is given infinitely
many opportunities to act. At any particular stage, the construction at-
tempts to satisfy at most one requirement through the implementation
of at most one module. Associated with each module Mk

j is an integer

n = nkj , and the module aims to ensure that if {Wm
e }e∈ω is a CB-test

then B 6∈ [Wm
n] as follows. (Note that as long as some module succeeds,

the requirement succeeds.)

Suppose at the current stage s of the construction that it is module
Mk
j ’s turn to act and B is in [Wm

n]— that is, Bs−1 ∈ [Wm
n,s]. The module’s

strategy is to redefine B to the right (outside of [Wm
n]), but on precon-

dition that it receives an A-permission, due to certain conditions related
to ∆A.

To be more precise: throughout the construction, the modules {Mk
j }j∈ω

will collectively be defining an approximating function fk for ∆A towards
ensuring that, for some j, module Mk

j ’s strategy succeeds (so that Rk is
satisfied). We further discuss fk and the A-permission below.

Module Mk
j is responsible for defining fk(j, s) for all s; it does so as

follows. Whenever Bs−1 ∈ [Wm
n] as above, then— supposing this is the

ts
th time it acts— Mk

j defines fk(j, ts) := ∆A(j)[ts]. Module Mk
j waits to

act at a later stage q > s when either

• B remained in [Wm
n] throughout all intermediate stages ≤ q and A

changes below the use δ(j) for ∆A(j), or

• B does not remain in [Wm
n] until stage q due to an A-permission being

granted to some other module, or perhaps some other requirement.

In either of these two cases, an A-permission is granted and Mk
j moves B

to the right.

Now suppose {Wm
n } is a CB-test so that #Wm

n ≤ ϕi(n). Since B
is only ever redefined to the right, it follows that there can be at most
ϕi(n) = ϕi(n

k
j) A-permissions associated with module Mk

j so that

#{s : fk(j, s) 6= fk(j, s+ 1)} ≤ ϕi(n) = ϕi(n
k
j).

It follows that if B ∈ [Wm
nk
j
] for all j, then eventually no A-permission oc-

curs for module Mk
j to act, for all j. Consequently, fk(j, t) = ∆A(j)[t] =

f(j) for sufficiently large t and fk must be an approximating function for
∆A = f . This means that f is ω-c.e., a contradiction, and thus require-
ment R = Rk must be satisfied.

We are ready to describe the stage-by-stage construction.

Construction. The construction will proceed in stages of the form
〈a+ 1, 〈j, k〉〉. The intention is that stage 〈a+ 1, 〈j, k〉〉 is the ath time in
which module Mk

j is allowed to act. Consequently, in what follows, we

will use ` to denote ` = 〈j, k〉. We also define the integer nkj = 〈k, j〉 + 1

associated with module Mk
j of the kth requirement. Since ∆A is total, we

assume that ∆A(j)[s] ↓ at every stage s > j.

At stage s = 0, define B0 = 0ω and goto stage s+ 1.

At stage s = 〈0, `〉 > 0 define fk(j, 0) = ∆A(j)[0] and goto stage s+1.

At stage s = 〈a+ 1, `〉, implement the jth module Mk
j of requirement

Rk defined as follows.

Module Mk
j .

1. If ϕi,s(n
k
j) ↑, or #Wm

nk
j ,s
6≤ ϕi,s(n

k
j), or Bs−1 6∈ [Wm

nk
j ,s

], then no non-

trivial action is needed for Mk
j . We simply define fk(j, a + 1) :=

fk(j, a), define Bs := Bs−1 and go to stage s+ 1.

2. Otherwise, define fk(j, a+1) = ∆A(j)[a+1], let r = 〈a, `〉, and imple-
ment the following. If Aa+1 � δ(j) 6= Aa � δ(j), then do the following.
Let σ ⊂ Bs−1 be maximal such that Nσ := ([σ] ∩ {x : Bs−1 <L
x}) \ [Wm

nk
j ,s

] is nonempty. Define Bs to be the left-most path of Nσ,

and go to stage s + 1. Otherwise define Bs := Bs−1 and go to stage
s+ 1.

This completes the construction.

Verification. First observe that for any moduleMk
j , whenever it changes

B, it only adds an amount q ∈ Q to Bs where q can be accounted against

a distinct part of Wm
nk
j
. Therefore Mk

j contributes at most 2−n
k
j to B.

Consequently the total effect of all the modules can contribute at most∑
k,j∈ω 2−n

k
j ≤ 1

2 to B, which means that σ in the construction, at every
stage, can always be found so that Nσ is non-empty.

Lemma 1. Every requirement is satisfied.

Proof. Suppose to the contrary that for some pair m, i, B ∈ ∩n[Wm
n], ϕi

is total, and #Wm
n ≤ ϕi(n) for all n. We first observe that lima fk(j, a) =

∆A(j) for each j. Let W = Wm
nk
j
. Since B ∈ [W], hence at almost every

stage of the construction when Mk
j acts, we have case 2 holds; hence we

will set fk(j, a) = ∆A(j)[a] at almost every a. Next, we want to show that
the fk-changes is bounded by O(ϕi(n

k
j)). We fix a j, and argue that if

〈a0 + 1, `〉 < 〈a1 + 1, `〉 are two stages in the construction such that Mk
j

acts under case 2, and fk(j, a0 + 1) 6= fk(j, a1 + 1), then Bs 6∈ [W〈a0+1,`〉]
for some 〈a0 + 1, `〉 < s ≤ 〈a1 + 1, `〉. This is because there must be some
a0 < a ≤ a1 such that Aa+1 � δ(j) 6= Aa � δ(j). At stage 〈a + 1, `〉 of
the construction we may assume case 2 holds (otherwise we are done).
Hence we will define B〈a+1,`〉 to avoid W〈a+1,`〉 ⊇ W〈a0+1,`〉. This proves
the claim. Now to see that the number of changes in fk(−, a) is bounded
by O(ϕi(n

k
−)), observe that if fk(j, a) 6= fk(j, a+ 1), we must have case 2

applies at stage 〈a+ 1, `〉 of the construction.

Lemma 2. B ≤T A.

Proof. Next we describe how to compute B ≤T A. To compute B(x),
we would like to say that only modules Mk

j for nkj ≤ x can change B(x).
This is unfortunately not true, because of the “carry-over” in the addition.
Instead we have to compute B from A in a slightly more elaborate fashion.
Define the total function g ≤A by the following. Let g(0) = x, and given
g(z) we define g(z+1) by first searching recursively in A for some number
a such that Aa � δ(g(z)) is stable and correct. Let g(z + 1) = max{〈a +
1, 〈j, k〉〉 | nkj ≤ g(z)}. Hence the function g is defined so that after stage

g(z + 1) of the construction, no module Mk
j for nkj ≤ g(z) can change B.

Assume we have computed σ = B �x. Now search for the least z such
that either Bg(z+2)(x) = 1, or else Bg(z+2)(y) = 0 for some x < y <
g(z + 1). This search will terminate because otherwise B = σ011111 · · ·
which means B is computable. Let z be the first found. If Bg(z+2)(x) = 1
then B(x) = 1. Otherwise we claim that B(x) = 0. After stage g(z + 2),
only modules Mk

j for nkj > g(z + 1) can contribute to B, and the sum of

their total contribution to B is < 2−g(z+1). On the other hand if Bt(x) = 1
at some t > g(z + 2), then the amount added to B after g(z + 2) is at
least 2−x−1 − (2−x−2 + · · ·+ 2−y−1) = 2−y−1 ≥ 2−g(z+1).

3.2 (iv) ⇒ (i)

Suppose B = ∆A and B is CB-random. Let ϕe be the eth partial com-
putable function. Fix a left c.e. approximation {As} to A. Define f(〈e, k〉)
by the following. Search for the first stage s such that As �δ(〈e, k〉) = A�
δ(〈e, k〉). If ϕe(〈e, k〉)[s] ↑ then output A � δ(〈e, k〉); otherwise output
A�δ(ϕe(〈e, k〉) + 〈e, k〉). Clearly f is total and f ≤T A. Note that the use
of the computation is not (and cannot be) computable. We claim f is not
ω-c.e.; suppose the contrary we have f(x) = lims g(x, s) where g(x,−) has
at most ϕe(x) mind changes for some total computable functions g and
ϕe. We build a CB-test {Vk} capturing B, contrary to assumption. For
each k we find a stage s0 such that ϕe(〈e, k〉)[s0] ↓, and ∆A � 〈e, k〉[s0] ↓.
We then enumerate ∆A �〈e, k〉[s0] into Vk, and for every s > s0 such that
∆A � 〈e, k〉 + ϕe(〈e, k〉)[s] ↓ with g(〈e, k〉, s) ⊇ A � δ(〈e, k〉 + ϕe(〈e, k〉))[s],
we enumerate ∆A �〈e, k〉+ ϕe(〈e, k〉)[s] into Vk.

Clearly for each k we have #Vk ≤ 1 + ϕe(〈e, k〉), and that µ(Vk) is at
most 2−〈e,k〉 + ϕe(〈e, k〉)2−〈e,k〉−ϕe(〈e,k〉) < 2−〈e,k〉+1 ≤ 2−k. We claim that
B ∈ [Vk]. At stage s0 we threw in∆A �〈e, k〉[s0], and ifA�δ(〈e, k〉) is stable
at s0 then clearly B ∈ [Vk]. Since {As} is a monotonic approximation to
A, we therefore may assume that A was not stable at s0, hence f(〈e, k〉) =
A �δ(ϕe(〈e, k〉) + 〈e, k〉). Since g approximates f correctly, at some large
enough stage we will enumerate B �〈e, k〉+ ϕe(〈e, k〉) into Vk.

Finally the proof of Theorem 2 is complete upon observing that (iii)
implies (ii) follows from Theorem 1.

4 Lowness

Theorem 3. There is a non-computable ∆0
3 set A which is low for CB-

randomness.

Proof (Sketch of proof). The construction involves building a ∆0
3 approx-

imation to A. We will specify a computable approximation αs and at the
end we will take A = lim infs αs. We need to meet the requirements

Pe : A 6= ϕe

Re,i : If {UAe,i}i∈ω is an A-relative CB-test with bound ΨAe , there is a

CB-test {Ve,i}i∈ω such that ∩i∈ω[UAe,i] ⊆ ∩i∈ω[Ve,i]

Here we let {UXe,i} be the eth oracle CB-test, and Ψe be the eth Turing

functional. ϕe is the eth partial computable function. The construction
builds A of hyperimmune-free degree. For more details on how to con-
struct a non-computable real of hyperimmune-free degree by a full ∆0

3

approximation we refer the reader to Downey [2]. We sketch the main
ideas here.

To make A of hyperimmune-free degree, for each Turing functional Ψ ,
we need to find a computable function δ that dominates ΨA. We begin by
letting αs be a string of zeroes. The aim is to build a perfect computable
tree T : 2<ω 7→ 2<ω such that for every σ, ΨT (σ)(|σ|) ↓. We need to
also ensure that A is in the range of T . If this fails then we will force
ΨA to be non-total. In the former case we can read δ off T , and in the
latter case we satisfy the requirement automatically. At every stage we
let αs extend T (σ) for some σ of maximal length such that T (σ) has been
defined. If we never encounter a convergent Ψα we keep α ⊃ T (σ). If
we find a convergent computation Ψαt�u(|σ| + 1) at some stage t, we set
T (σ_0) ↓= αt �u and move α to an incomparable string extending T (σ)
and search for a way to define T (σ_1). In this way we define T (σ) level
by level, starting with |σ| = 0, and then |σ| = 1, and so on. It is clear
that if we get stuck searching above some T (σ) then A = lim inf αs will
extend T (σ) and hence ΨA is not total. On the other hand if the procedure
builds a total computable perfect tree T then A = T (0ω). A lower priority
requirement working for another Ψ ′ and believing in the totality of T will
take the tree T as parameter and work to build a perfect subtree T ′ of T .
A lower priority requirement working for P will be assigned a string σP in
the domain of T , which is consistent with P ’s belief about the outcomes of
higher priority requirements, and P will then later delete either T (σP

_0)
or T (σP

_1) (or neither) depending on the value of ϕe.

When more requirements are considered it will become necessary to
define A not as the direct lim inf of αs, but as the lim inf with respect to
the “true stages” of the construction, namely, the stages where the true
path is visited.

How do we implement the R-requirements in this framework? Let us
consider a top requirement working for R0. It seeks to define a single CB-
test {V0,i}i∈ω covering ∩i∈ω[UA0,i]. R0 would pursue the abovementioned

strategy to obtain a computable function dominating ΨA0 . Additionally it
has to build the test {V0,i}i∈ω. For i = 0 we wait for T0(∅) to converge.
If we ever discover some σ entering U τ0,0 with oracle string τ on T0, we
will delete every path on T0 not extending τ , and enumerate σ into V0,0.

Since the cardinality of U0,0 cannot exceed Ψ
T0(∅)
0 , we will only act for

U0,0 finitely often, and succeed in making V0,0 = UA0,0.

Of course we cannot allow U0,i to delete paths in this way for every
i, because we will end up with a computable path A. Suppose P is a re-
quirement believing that R0 has outcome ∞, i.e. R0 succeeds in making
T0 total. The requirement P (and all other positive requirements) of lower
priority will need to be assigned a diagonalization location σP . Suppose
that P has been assigned σP for diagonalization. Each time U0,0 acts as
described above it will move σP . It is crucial to ensure that σP is moved
only finitely often. We arrange for U0,1 to respect σP , so U0,1 will be pro-
hibited from deleting prefixes of T (σP

_0) and T (σP
_1). If we consider

infinitely many positive requirements P0 < P1 < · · · below R0, we can
arrange for a local priority ordering U0,0 < P0 < U0,1 < P1 < U0,2 < · · · ,
where each U0,i has to respect σP0 , · · ·σPi−1 . This resolves the (poten-
tially) infinitary conflicts between R0 and lower priority P requirements.
A computable bound for V0,i can then be easily computed from upper-
bounds for ΨA0 (0), · · · , ΨA0 (i).

Now consider requirements R0, R1 and P , where R1 believes that R0

has outcome ∞, and P believes that R1 has outcome ∞. Say we arrange
for the local priority ordering U0,0 < U1,0 < P < U0,1 < · · · . Since
R0 cannot assume knowledge about the outcomes of the nodes of lower
priority, U0,1 cannot possibly wait for the tree T1 to converge before fixing
an upperbound for V0,1. Furthermore U0,1 has to respect σP , so we might
enumerate a large number of elements into V0,1 while α was extending
T (σP

_0). Suppose α is next moved to extend T (σP
_1), and U1,0 obtains

an upperbound for V1,0 after seeing T1 grow. Now if we later discover
some σ in U τ1,0 with oracle τ ⊇ T (σP

_1) we will have to move σP to
make T (σp) ⊃ τ , since U1,0 is of higher local priority than P . This means
that all the elements enumerated into V0,1 so far are no longer possible
elements of UA0,1, and the cardinality of V0,1 has gone up unnecessarily.
This wastage can be compounded each time U1,0 moves σP , and since the
bound for V0,1 was computed with no knowledge of ΨA1 (0), we might run
out of space and exceed our declared cardinality bound for V0,1.

Observe that we need not have fixed the local priority ordering be-
forehand. The solution is to assign the local priority of P only when P is
visited. Let us consider the situation above again. Suppose P has not yet
been visited by the construction (hence the local priority of P has not yet
been decided). Suppose T0 has been growing and we are currently waiting
for T1 to be defined at the root. At this point the local priority list reads
U0,0 < U1,0 < U0,1 < U0,2, · · · , < U0,i. If now T1(∅) finds a definition, we

will play outcome∞ for R0 and outcome∞ for R1, and visit P , who will
now be queued after U0,i.

The key point is that U0,i+1, U0,i+2, · · · will only be considered after
this stage, so they can compute upperbounds for V0,i+1, V0,i+2, · · · using
information about ΨA1 (0). They are therefore safe from the actions of U1,0

(and of course, from U0,0, · · · , U0,i). On the other hand even though the
upperbounds for V0,0, · · · , V0,i have been declared without any knowledge
of ΨA1 (0), they too, are safe from the actions of U1,0 because U0,0, · · · , U0,i

are all allowed to move σP whenever we enumerate new elements into
V0,0, · · · , V0,i. The only downside is that σP gets injured a lot more times.
Since the local priority of P once fixed, is never again changed, this means
that σP will be eventually stable.

The interactions between other requirements present no new difficulty,
and a formal construction proceeds in a more or less routine fashion. A
complete proof will appear in the journal version of this paper.

References

1. Barmpalias, G., R. Downey and N. Greenberg, Working with strong reducibilities
above totally ω-c.e. degrees, Transactions of the American Mathematical Society,
Vol. 362 (2010), 777-813.

2. Downey, R. On Π0
1 classes and their ranked points, Notre Dame Journal of Formal

Logic Vol. 32 No. 4 (1991), 499-512.
3. Downey, R. and N. Greenberg, Turing degrees of reals of positive effective packing

dimension, Information Processing Letters, Vol. 108 (2008), 298-303.
4. Downey, R. and N. Greenberg, A Hierarchy of Computably Enumerable Degrees,

Unifying Classes and Natural Definability, in preparation.
5. Downey, R., N. Greenberg, and R. Weber, Totally < ω computably enumerable

degrees and bounding critical triples, Journal of Mathematical Logic, Vol. 7 (2007),
145 - 171.

6. Downey, R. and Hirschfeldt, D., Algorithmic Randomness and Complexity,
Springer-Verlag, Berlin, 2010.

7. Downey, R., Hirschfeldt, D., Nies, A. and Terwijn, S., Calibrating randomness,
Bulletin of Symbolic Logic, Vol. 3 (2006), 411–491.

8. Downey, R., C. Jockusch, and M. Stob, Array nonrecursive sets and multiple per-
mitting arguments, in Recursion Theory Week (Ambos-Spies, Muller, Sacks, eds.)
Lecture Notes in Mathematics 1432, Springer-Verlag, Heidelberg, 1990, 141–174.

9. Downey, R., C. Jockusch, and M. Stob, Array nonrecursive degrees and genericity,
in Computability, Enumerability, Unsolvability (Cooper, Slaman, Wainer, eds.),
London Mathematical Society Lecture Notes Series 224, Cambridge University
Press (1996), 93–105.

10. Ershov, Y., A hierarchy of sets, Part 1, Algebra i Logika, Vol. 7 (1968), 47-73.
11. Ershov, Y., A hierarchy of sets, Part 2, Algebra i Logika, Vol. 7 (1968), 15-47.
12. Lathrop, J., and Lutz, J., Recursive computational depth, in Information and com-

putation, Vol. 153 (1999) 139-172.
13. Nies, A., Computability and Randomness, Oxford University Press, in preparation.

14. Stephan, F., Martin-Löf random sets and PA complete sets, in Logic Colloquium
’02 (eds Z. Chatzidakis, P. Koepke, and W. Pohlers), ASL and A. K. Peters, La
Jolla, (2006) 342-348.

