The Sixth Lecture on Algorithmic Randomness*

Rod Downey
School of Mathematics, Statistics, and Computer Science
Victoria University

PO Box 600 Wellington
New Zealand

April 17, 2007

Abstract

This paper follows on from the author’s Five Lectures on Algorith-
mic Randomness. It is concerned with material not found in that long
paper, concentrating on Martin-Lof lowness and triviality. We present
a hopefully user-friendly account of the decanter method, and discuss
recent results of the author with Peter Cholak and Noam Greenberg
concerning the class of strongly jump traceable reals introduced by
Figueira, Nies and Stephan.

1 Introduction

This paper is a follow-up to the author’s paper Five Lectures on Algorithmic
Randomness, Downey [8], and covers material not covered in those lectures.
In particular, I plan to look at lowness which was the basis of one of my
lectures in Nijmegen, and to try to make accessible the decanter method
whose roots come from the paper Downey, Hirschfeldt, Nies and Stephan
[12], and whose full development was in Nies [26]. The class of K-trivial reals
has turned out to be a remarkable “natural” class with really fascinating

*Research supported by the Marsden Fund of New Zealand. Special thanks to Noam
Greenberg for providing extensive corrections.

properties and connections with other areas of mathematics. For instance,
K-trivial reals allow us to solve Post’s problem “naturally” (well, reasonably
naturally), without the use of a priority argument, or indeed without the
use of requirements. Also, Kucera and Slaman [19] have used this class to
solve a longstanding question in computable model theory, namely given a
noncomputable Y in a Scott set S, there exists in S an element X Turing
incomparable with Y.

As well T will report on recent work of the author with Peter Cholak and
Noam Greenberg [4] on the computably enumerable strongly jump traceable
reals which form a proper subclass of the K-trivials.

2 Notation

I will keep the notation identical to that of Downey [8] and Downey and
Hirschfeldt [11]. As a brief reminder, I will use C' for plain complexity and
K for prefix free complexity. We will be working in Cantor space 2“ with
uniform measure u([o]) = 271°!, where the subbasic clopen sets are [0] =g
{oa:a € 2¥}: 0 € 2<¢}. Elements of 2 will be referred to as reals. For
any other notations and the like, we refer the reader to either [8] or [11].

3 Plain complexity characterizations of com-
putable sets

The first result establishing the fact that the complexity of initial segment
of a real can have significant impact on its algorithmic complexity is due to
Loveland. It concerned conditional complexity. It states that if all initial
segments of a real are as compressible as they can be then the real must
be computable. Notice that if « is a computable real then since there is a
computable function g such that g(n) = a | n for all n, C(a | nln) is a
constant: we read n then apply g.

Theorem 3.1 (Loveland [22]). Suppose that there is e such that for all x,
C(a | z|lx) < e. Then « is computable. Moreover for each e there are only
finitely many o with C(a | x|z) < e for all x. (Indeed the same is true even
if we replace “for all x” by “for all x in some infinite computable set.”.)

Proof. (Sketch) The main idea in the proof below is that the possibilities for
a reduce to a II{ class with a finite number of paths, and hence all such «
all will be computable. If C(« | z|x) < e for all x, then there are at most
f = O(2°) many programs of size e or less. There is a maximum collection
of such programs py, ..., p, which are hit infinitely often.

Working above some length (taken to be 0 for simplicity), inductively
form the II{ class of strings o as follows. For the first step, find a set of
m strings oy,...,0,, of the same length ¢ such that all of them appear to
have C(o; [plp) < e for all p < ¢, and C(0;|¢) < e via p;. For the second
step, we simply use extensions of these o; in the same way. Then this will
generate a 1Y class of width at most m which must contain a. Therefore a
is computable. O

The same proof will also work for any usual complexity measure such as
K or KM or Km etc in place of C' for the conditional case.

A mild generalization of Loveland’s Theorem is the result of Chaitin,
which gives another information-theoretical characterization of computable
sets.

Theorem 3.2 (Chaitin [3]). Suppose that C(a [n) < C(n)+ O(1) for alln
(or for an infinite computable set of n), or C(a | n) <logn + O(1), for all
n. Then a is computable (and conversely). Furthermore for a given constant
O(1) = d, there are only finitely many (O(29)) such «.

In the same way that Loveland’s Theorem needed a basic finiteness con-
dition to work, the same holds for Chaitin’s theorem. The following is the
main lemma. Let D : ¥* — X* be partial computable. Then we define
D-description of o to be a pre-image of o.

Lemma 3.3 (Chaitin [3]). For all d and D, there is a number f(d) such that
for each o € ¥,

{g: D(g) = o Alg| < C(o) +d}| < fp(d).

That is, the number of D-descriptions of length < C(c) + d, is bounded by
an absolute constant depending upon d, D alone (and not on o)

Proof. Let o be given, and k = C(0) + d. For each m there are at most
2k=m _ 1 strings with at least 2™ D-descriptions of length at most k, since
there are 2F — 1 strings in total. Given k and m we can effectively list strings

3

o with at least 2™ D-descriptions of length below k, uniformly in k&, m. (Wait
till you see 2™ ¢’s of length < k with D(¢) = v and and then put v on the
list Ly,,.) The list Ly, has length < 2~

If 0 has at least 2™ D-descriptions of length at most k, then o can be
specified by

® M

e a string ¢ of length 28—

the latter indicating the position of ¢ in Ly ,,. This description has length
bounded by 2logm + k — m + ¢ where ¢ depends only upon D. If we choose
m large enough so that 2logm + k — m + ¢ < k — d, we can then get a
description of o of length < k —d = C(0). If we let f(d) be 2" where n is
the least m with 2logm + ¢+ d < m then we are done. O]

In the next lemma, we will apply Lemma 3.3 with D being the universal
prefix-free machine. The next lemma tells us that there are relatively few
string with short descriptions, and the number depends on d alone.

Lemma 3.4 (Chaitin [3]). There is a computable h depending only on d
(h(d) = O(2%)) such that, for all n,

Ho:|lo|=nAC(c) <C(n)+d} < h(d).

Proof. Consider the partial computable function D defined via D(p) is 11V®).
Then let h(d) = fp(d), with f given by the previous lemma. Suppose that
C(o) < C(n) + d, and pick the shortest p with U(p) = o. Then p is a D-
description of n and |p| < C'(n) + d. Thus there at most f(d) many p's, and
hence o’s. [

Now we can use the same I1Y class argument to establish Chaitin’s theo-
rem, Theorem 3.2. We will have the width determined by Lemma 3.4, and
hence if C(a [n) < logn + ¢ for all n, then o will be computable. This is
because there will always be a length between k and 2% where C(n) = logn.

The same argument will also show that for monotone complexity (or any
other where C' is a special case) if Km(a [n) <logn + c for all n, then « is
computable.

Frank Stephan (see [11]) has shown that for left c.e. reals, o and 3, if for
all n,

Cla In) < C(8 I n) +0(1),
then a <r f.

4 K-trivials are A}, and there are few of them

Chaitin’s Theorem 3.2 shows that if, for all n, C(a [n) < C(n)+ O(1), then
a is computable. A compact way of expressing this is to use a <g 3, for a
measure of complexity @, iff Q(a [n) < Q(B [n) + O(1). Then Chaitin’s
Theorem says that a <c 1¢ iff « is computable. Chaitin asked if the same
result held for K in place of C. We define the following for K, for other
measures of relative complexity, there are similar notions (most of which
coincide with being computable!).

Definition 4.1 (Downey, Hirschfeldt, Nies and Stephan [12]). We will call
a real o K-trivial if o < 1%.

The first limitation on the complexity of a K-trivial real was given by
Chaitin. It relies on a analog of Lemma 3.4 above for prefix-free Kolmogorov
complexity.

Theorem 4.2 (Chaitin [3], Zambella [38]). For any prefiz-free machine D,
there is a constant d such that for all ¢ and all o,

Hv:Dv)=0 A |v| < K(0) + c}| < d2°.

The proof of Theorem 4.2 uses the Coding Theorem (Levin [21]) (see
Downey [8], Downey and Hirschfeldt [11]). Essentially, if there were too
many elements in {v : D(v) = o A |v| < K(0) + ¢}, then we could use the
total measure they provide to make an even shorter description of o, that
being a contradiction. Here is our analog of Lemma 3.4.

Theorem 4.3. The set KT(d,n) = {0 : K(0) < K(|o|) + d} has at most
O(24) many strings of length n.

Proof. We build a prefix-free machine V. Suppose that Uy(v) = o A || <
K(|o|)+d. Then define V(v) = |o|. Then V is prefix-free as U is. Moreover,
by Theorem 4.2,

{v: V() =lo| AV < K(lol) +d}] < c2?.

But then by construction, there is a constant p such that K7(d,n) has at
most pc2? many members. O

Now we can run the proof that all C-trivial reals are computable using
K in place of C. However, we do not know any value of K!. The key thing
we use in the C case is that between k& and 2% there is a C-random length
which will have complexity log p. Using ()’ as an oracle we can know K. The
same argument will show the following.

Theorem 4.4 (Chaitin [3]). If « is K-trivial, then o < V',

This proof has the following corollary, first observed by Zambella. To
state Zambella’s result, we let KT'(d) denote the class of reals which are
K-trivial with constant d, meaning that for all n,

K(an) < K(n)+d.

Corollary 4.5 (Zambella [38]). The number of elements in KT(d) is < b2¢
for some constant b independent of d.

The reader should note that to be K-trivial, it is enough that the real
be K-trivial on an infinite computable set. That is, the following piece of
folklore is true.

Proposition 4.6. Suppose that we have a computable set A = {ay,as,...}
listed in increasing order of magnitude, and for all i, K(A | a;) < K(a;) +
O(1). Then A is K-trivial.

Proof. Let h(n) = a,, be computable. Then K(n) = K(h(n)) + O(1) =
K(a,) + O(1). Notice that K(A | n) < K(a,) + O(1), since to compute
A | n, take the program for A [h(n), then reconstruct n from h(n) and
truncate A [h(n) to get A [n. Then K(A [n) < K(A | h(n)) +O(1) <
K(h(n))+0(1) < K(n)+ 0O(1). O

Zambella’s Theorem, Theorem 4.5, leads one to speculate as to how many
K-trivials there are. This has been investigated in unpublished work of
Downey, Miller and Yu.

Tt is also true that we don’t know the value of C(c) for any given o. However, we do
know that there is some random length between k and 2% for each k, and such a length m
will have maximum complexity which in the C case is m. In the K case, we also know that
there is some random length, but we don’t know what its complexity is, as its complexity
would be m + K(m), bounded by m + 2logm.

Definition 4.7 (Downey, Miller, Yu [14]). Let
G(d) = [KT(d)].

GG seems a strangely complicated object. We calculate some arithmetical
bounds on GG. To do this we will need the following combinatorial result.

Theorem 4.8 (First Counting Theorem, [14]). (i) limc% = 0.

(ii) Indeed,

Z Gz(cc) is finite.

ceN
Proof. We define G(c,n) = |KT(c,n)|.

Lemma 4.9.) _ Gz(f) < liminf,)", @

The proof of Lemma 4.9 is almost immediate. Any finite partial sum on
the left represents a finite number of K-trivials. For sufficiently large n each
of these reals is isolated, so that the sum on the right exceeds that of the
left.

Lemma 4.10. There is a finite q such that, for all n,
G(c,n)
— <
Z 20 >4
ceN

Proof. (Of Lemma 4.10) By definition of G(-,-) we have that for some con-
stant ¢, for all n,

> Gle,n)2 K= <2y " 97K,

ceN oe2n

The first inequality follows from definition of G(-,-). On the other hand, K
is a minimal universal computably enumerable semi-measure (by the Coding
Theorem, see [8, 11]), and hence there is a constant ¢ such that for every n,

since the quantity on the left is a computably enumerable semi-measure. [

The proof is now finished by putting together Lemmas 4.9 and 4.10. [

7

Before we turn to analyzing the Turing complexity of G, we point out
that the result above is relatively sharp in in the following sense.

Theorem 4.11 (Second Counting Theorem, [14]).

2b

G(b) = Q35).

Proof. For any string o, we know that
K(o0") <t K(0) + K(0") <t K(0) + K(0l71F7).

Now if we choose o of length below b — 2log b, we know that K (o) < b, and
hence K(00") < K(|o07]) 4+ b. There are Q(g—s) such strings o. O

Theorem 4.12 (Downey, Miller, Yu [14]). G £ (V.

Proof. 2 Assume that G is AJ, and hence by the Limit Lemma, G(n) =
limg G(n, s), where this time G(n, s) denotes a computable approximation to
G(n). Also we assume that we know k such that that 0 € KT'(k).

Using Kraft-Chaitin, we build a machine M with coding constant d, which
we know in advance. M looks for the first ¢ > &, 2¢ such that

Gle)
oc

<274,
We can approximate the ¢ in a A manner, so that ¢ = lim, ¢,, where ¢, is
the stage s approximation of c.

The key idea behind the definition of M is that M wants to ensure that
there are at least 2°=¢ KT (c) reals. If it does this, then we have a contradic-
tion.

At stage s, M will pick (at most) 2%~¢ strings of length s extending those
of length s—1 already defined, and promise to give them each M-descriptions
of length K (s)+cs—d (hence they are KT'(cs) strings). It clearly has enough
room to do this, since

2cs—d2—(K(s)+c5 —d) _ 2—K(s))

2If the reader is unfamiliar with the use of Kraft-Chaitin to build prefix free Turing
machines, then they might delay the reading of this proof until looking at the first con-
struction of the next section.

At stage s, if ¢4 has a new value then all of M’s old work is abandoned and
M starts building 2¢~¢ KT (c,) reals which branch off of 0* starting at length
s. If ¢, has the same old value, then M continues building the 2%~¢ KT'(c,)
reals. Eventually c, stabilizes and M gets to build his 2°°¢ KT(c) reals,
contradicting the definition of c. O]

We remark that a crude upper bound on G is that it is computable in
0. It is unknown if G <7 ()", or even if this question is machine dependent.

5 The basic construction : limiting damage
and quanta recycling

Solovay was the first to construct a (AY) K-trivial real. This method was
adapted by Zambella [38] and later Calude and Coles [6] to construct a c.e.
K-trivial real. In [12], Downey, Hirschfeldt, Nies, and Stephan gave a new
construction of a K-trivial real, and this time the real was strongly c.e., that
is, the characteristic function of a c.e. set. (Independently, this had been
found by Kummer in an unpublished manuscript.) As we will later see this
is a priority-free and later requirement free solution to Post’s problem.

Theorem 5.1. (Downey, Hirschfeldt, Nies, and Stephan [12], Calude and
Coles [6], after Solovay [33]) There is a noncomputable c.e. set B such that
B <k 1¢.

Proof. The proof below is surely becoming pretty well known. We only give it
for completeness. As we will later see, the only way to to construct a K-trivial
real is to build a machine to demonstrate the fact that it is K-trivial. By that,
if B is the relevant target set, we must show that K(B [n) < K(n) 4+ O(1).
In most constructions, the O(1) term is the overhead of the Recursion, or at
least the s-m-n theorem.

We view this as a game: The opponent will give descriptions of n’s in
the construction. That is, at each stage s, he will say K (n) = p, say, by
giving some string v of length p, (and n < s) shorter than K,_1(n) and have
U(v) = n[s]. It is our job to build a machine M, by using Kraft-Chaitin,
saying saying there is a description of B [n of length p+1 (the “+1” option
here being for technical reasons). We enumerate an axiom (p, B [n).

Notice that to be a Kraft-Chaitin set we only need that the sum of 277
(indeed 2~®+Y)) for such requests is below 1. In the case that B was, say,

9

computable, no problem, for we are only making request of exactly the same
size as the opponent has used. So our requests (to make M) are bounded by
% the amount he spends, namely %

Unfortunately, B being noncomputable, is not actually given to us. We
will only know B,, where B = UgB,; that is, approximations to the real B.
Here is the main asymmetry:

We might describe (p, B; | n) but it might be that to make B non-
computable, we will need B,,1 [n # B, [n, since we enumerate n into
Bsy1 — Bs. This will then entail issuing new descriptions for parts of B
which have changed since the last time. In particular, we will need to de-
scribe Bsi1 | m for m € [n, s].

Thus we have a cost of

n<m<s

This cost is not chargeable to the opponent, and hence we will have to make
sure that this is limited. Thus, if we are meeting a requirement R, saying
W, # B, we would be prepared to do this if the cost was less than, say,
27(e+1)‘

Thus we can define

Bsi1 = BsU{n:ne W, AW, NBs = BAn > 2eN Z o—Ks(m) < 27(e+1)}.

n<m<s

In that case B will be noncomputable and we can make it K-trivial
since the overall cost of the injuries is bounded by the amount we can
charge against the opponent %, plus the amount we are not compensated
for, namely, > ., 2(et]) — % The reader should realize that the B # W,
since lim,, sup, ¢(n, s) — 0. O

Actually, this construction can be made to have no visible requirements:
In particular, if ¢ is any computable function which dominated the overheads
of the Recursion Theorem, then if we define, akin to the Dekker deficiency
set,
Bt(s+1) = Bt(s) U {bfz(S)a s 7@%3}7

if Ky(sr1)(m) < K (m) for all n < m < t(s), where By = {b5 : s € w}, then
B is automatically K-trivial and noncomputable. Space limitations mean

10

that we will not discuss this variation here. hence, we refer the reader to
Downey, Hirschfeldt, Nies, Terwijn [13], or Downey and Hirschfeldt [11] for
more details.

6 Lowness

A very similar construction to that of the last section is due to Kucera and
Terwijn [20], involving lowness. Let R be the collection of random sets for
some randomness concept. Then RX is the class obtained for the same
concept using X as an oracle.

Definition 6.1. We say that a set X is R-low if R = R*X. We say that X is
low for R-tests, Ro-low if, for every R* -test {UX : n € N}, there is a R-test
{V,, : n € N} such that N, V,, 2 N,U,.

For instance, a set X is Martin-Lof low if the collection of reals Martin-
Lof random relative to X is the same as the collection of Martin-Lof random
reals. Hence X is no help in making reals non-random. Notice also that
if X is Ryp-low then it is automatically R-low, but the converse is not clear.
However, since there is a universal Martin-Lof test, the collections Martin-Lof
low and Martin-Lof low for tests coincide?.

Martin-Lof low sets were first studied by Kuéera and Terwijn [20], an-
swering a question of van Lambalgen [37].

Theorem 6.2 (Kucera and Terwijn [20]). There is a noncomputable c.e. set
A that is Martin-Lof low.

Proof. We give an alternative proof to that in [20], taken from Downey [7]. It
is clear that there is a primitive recursive function f, so that {U]‘Q‘(n) ‘m € wlis
the universal Martin-Lof test relative to A. Let I denote the corresponding
Solovay test. Then X is A-random iff X is in at most finitely many I2. We
show how to build a {J, : n € w}, a Solovay test, so that for each [p] € I
is also in J,. This is done by simple copying: if p < s (as a number) is
in Uj<sl JA is not in J; : ¢ € s, add it. Clearly this “test” has the desired
property of covering I7'. We need to make A so that the “mistakes” are not

too big. This is done in the same way as the construction of a K-trivial.

3Not treated in these notes are lowness notions for other kinds of randomness such as
Schnorr and Kurtz randomness. To the author’s knowledge there is no notion of random-
ness where the potentially two lowness notions have not turned out to coincide.

11

The crucial concept comes from Kucera and Terwijn: Let M,(y) denote
the collection of intervals {I4s : n < s} which have A,(y) = 0 in their use
function. Then we put y > 2e into A, — As provided that e is least with
AN W, s =10, and

p(Ms(y)) <27

It is easy to see that this can happen at most once for e and hence the
measure of the total mistakes is bounded by %27 and hence the resulting test
is a Solovay test. The only thing we need to prove is that A is noncomputable.
This follows since, for each e, whenever we see the some y with u(Ms(y)) >
27¢, such y will not be added and hence this amount of the A-Solovay test
will be protected. But since the total measure is bounded by 1, this cannot
happen forever. O

A related concept is the following.

Definition 6.3. We call a set X low for K if there is a constant d such that
for all o, KX(0) > K(o) —d.

This notion is due to An. A. Muchnik who, in unpublished work, con-
structed such a real. It is evident that the same method of proof (keeping
the measure of the injury of the uses down) will establish the following.

Theorem 6.4 (Muchnik, unpubl.). There is a noncomputable c.e. set X
that is low for K.

The reader cannot miss the similarities in the proofs of the existence of
K-trivials and K-lows and even low for K reals. These are all notions of
K-antirandomness, and should somehow be related.

We will soon see, in some deep work of Nies, that these classes all coincide!

6.1 K-trivials solve Post’s problem

The basic method introduced in this section, the quanta pushing or more
colorfully, the decanter* method, is the basis for almost all results on the K-
antirandom reals®. In this section we will look only at the basic method to

4The decanter method was introduced in [12] and is a linear one. It is used to prove,
for example, that K-trivials solve Post’s problem. The later extension, discussed later,
where trees of strategies are used is due to Nies [26] and is refereed to as the golden run
method.

5At least in this author’s opinion, and at the present time.

12

aid the reader with the more difficult nonuniform applications in subsequent
sections. The following result proves that they are a more-or-less natural
solution to Post’s problem.

Theorem 6.5 (Downey, Hirschfeldt, Nies, Stephan [12]). If a real o is K-
trivial then o is Turing incomplete.

6.2 The Decanter Method

In this section we will motivate a very important technique for dealing with
K-trivial reals now called the decanter technique, or the golden run machin-
ery. It evolved from attempted proofs that there were Turing complete K-
trivial reals, the blockage being turned around into a proof that no K-trivial
real was Turing complete in the time-honoured symmetry of computability
theory. Subsequently many of the artifacts of the original proof were removed
and streamlined particularly by Nies and we have now what appears to be a
generic technique for dealing with this area. The account below models the
one from Downey, Hirschfeldt, Nies and Terwijn [13].

The following result shows that K-trivials solve Post’s Problem. This will
be greatly improved in the later sections.

The proof of Theorem 6.5 below runs the same way whether A is A}
or computably enumerable. We only need the relevant approximation being

A=U;A; or A =lim, A,.

6.3 The first approximation, wtt-incompleteness

The fundamental tool used in all of these proofs is what can be described as
amplification. Suppose that A is K-trivial with constant of triviality b, and
we are building a machine M whose coding constant within the universal
machine U is known to be d.

Now the import of these constants is that if we describe n by some KC-
axiom (p, n) meaning that we describe n by something of length p, and hence
has weight 277, then in U we describe n by something of length p + d and
hence the opponent at some stage s must eventually give a description of
Ag [n of length p+ b+ d. The reader should think of this as meaning that
the opponent has to play less quanta than we do for the same effect.

What has this to do with us? Suppose that we are trying to claim that
A is not K-trivial. Then we want to force U to issue too many descriptions

13

of A, by using up all of its quanta.

The first idea is to make the opponent play many times on the same length
and hence amount of quanta.

The easiest illustration of this method is to show that no K-trivial is
wtt-complete.

Proposition 6.6. Suppose that A is K-trivial then A is wtt-incomplete.

Proof. We assume that we are given A = lim, A,, a computable approxima-
tion to A. Using the Recursion Theorem, we build a c.e. set B, and a prefix
free machine M. We suppose that I'4 = B is a weak truth table reduction
with computable use 7. Again by the Recursion Theorem, we can know
I',v and we can suppose that the coding constant is d and the constant of
triviality is b as above.

Now, we pick k = 2°%9+! many followers m;, < --- < m; targeted for B
and wait for a stage where £(s) > my, ¢(s) denoting the length of agreement
of T4 = Bs].

At this stage we will load an M-description of some fresh, unseen n >
v(my) (and hence bigger than ~(m;) for all i) of size 1, enumerating an
axiom (1,n). The translation of course is that at some stage sy we must get
a description of A,, [nin U of length b+ d or less. That is, at least 27(+%)
must enter the domain of U devoted to describing this part of A.

At the first such stage sp, we can put my into Bs,11 — By, causing a
change in A [n — Ay, [n. (We remark that in this case we could use
any of the m;’s but later it will be important that the m;’s enter in reverse
order.) Then there must be at some stage s; > sg, with £(s;) > my, a new
As, [n# Ag, | 1 also described by something of length b+ d. Thus U must
have at least 2=(*9) more in its domain. If we repeat this process one time
for each m; then eventually U runs out of quanta since 2-¢+9g > 1. O

6.4 The second approximation: impossible constants

The argument above is fine for weak truth table reducibility. There are
clearly problems in the case that I' is a Turing reduction, for example.
That is, suppose that our new goal is to show that no K-trivial is Turing
complete. The problem with the above construction is the following.
When we play the M-description of n, we have used all of our quanta
available for M to describe a single number. Now it is in the opponents
power to move the use y(my,s) (or y(mg,s) even) to some value bigger than

14

n before even it decides to match our description of n. Thus it costs him
very little to match our M-description of n:

He moves 7y(my, s) then describes A, [n and we can no longer cause any
changes of A below n, as all the ['-uses are too big.

It is at this point that we realize it is pretty dumb of us to try to describe
n in one hit. All that really matters is that we load lots of quanta beyond
some point were it is measured many times. For instance, in the wtt case,
we certainly could have used many n’s beyond (m;) loading each with, say,
27¢ for some small e, and only attacking once we have amassed the requisite
amount beyond y(my).

This is the idea behind our second step.

Impossible assumption: We will assume that we are given a Turing reduc-
tion I'* = B and the overheads of the coding and Recursion Theorem result
in a constant of 0 for the coding, and the constant of triviality is 0.

Hence we have I'* = B[s] in some stage by stage manner, and moreover
when we enumerate (g, n) into M then the opponent will eventually enumer-
ate something of length ¢ into U describing A, [n. Notice that with these
assumptions, in the wtt case we’d only need one follower m. Namely in the
wtt case, we could load (e.g.) £ onto n, beyond ~(m) and then put m into
B causing the domain of U to need % since we count A, | n for two different
A, | n-configurations.

In the case that ~ is a Turing reduction, the key thing to note is that we
still have the problem outlined above. Namely if we use the dumb strategy,
then the opponent will change A [~(m,s) moving some ~y-use before he
describes A, [n. Thus he only needs to describe Ag [n once.

Here is where we use the drip feed strategy for loading. What is happening
is that we really have called a procedure P(%) asking us to load % beyond
v(m) and then use m to count it twice. It might be that whilst we are trying
to load some quanta, the “change of use” problem might happen, a certain
amount of “trash”will occur. This trash corresponds to axioms enumerated
into M that do not cause the appropriate number of short descriptions to
appear in U. We will need to show that this trash is small enough that it
will not cause us problems.

Specifically, we would use a procedure P(%, %) asking for twice counted
quanta (we call this a 2-set) of size g but only having trash bounded by %.

Now, ¢ = > i 2-U+4) Initially we might try loading quanta beyond the
current use y(m, sq) in lots of 274, If we are successful in reaching our target

15

of % before A changes, then we are in the wtt-case and can simply change B
to get the quanta counted twice.

Now suppose we load the quantum 27* on some ng > ~(m,sg). The
opponent might, at this very stage, move v(m, s) to some new y(m, s1) > no,
at essentially no cost to him. We would have played 2=* for no gain, and
would throw the 27 into the trash. Now we would begin to try to load anew
% beyond (m, s1) but this time we would use chunks of size 27°. Again if he
moved immediately, then we would trash that quanta and next time use 276.
Notice that if we assume that I'* = B this movement can’t happen forever,
lest v(m, s) — oo.

On the other hand, in the first instance, perhaps we loaded 2% beyond
v(m, so) and he did not move ~y(m, so) at that stage, but simply described
A | ng by some description of size 4. At the next step, we would pick another
n beyond y(m, so) = v(m, s1) and try again to load 27*. If the opponent now
changes, then we lose the second 27* but he must count the first one (on ng)
twice. That is, whenever he actually does not move y(m,s) then he must
match our description of the current n, and this will later be counted twice
since either he moves y(m, s) over it (causing it to be counted twice) or we
put m into B making y(m, s) change.

Thus, for this simplified construction, each time we try to load, he either
matches us(in which case the amount will contribute to the 2-set, and we can
return 2-CWTeNt 5 where 3 is the current number being used for the loading
to the target, or we lose (3, but gain in that v(m, s) moves again, and we put
[in the trash, but make the next § = g

If T4 = B then at some stage y(m, s) must stop moving and we will
succeed in loading our target a = % into the 2-set. Our cost will be bounded
above by % + % = 1.

6.5 The less impossible case

Now we will remove the simplifying assumptions. The key idea from the wtt-
case where the use is fixed but the coding constants are nontrivial, is that we
must make the changes beyond ~v(my) a k—set. Our idea is to combine the
two methods to achieve this goal. For simplicity, suppose we pretend that
the constant of triviality is 0, but now the coding constant is 1. Thus when
we play 277 to describe some n , the opponent will only use 2~(@+1,
Emulating the wtt-case, we would be working with k& = 2'*! = 4 and
would try to construct a 4-set of changes. What we will do is break the task

16

into the construction of a 2-set of a certain weight, a 3-set and a 4-set of a
related weight in a coherent way.

We view these as procedures P; for 2 < j < 4 which are called in in
reverse order in the following manner.

Our overall goal begins with, say P4(%, %) asking us to load % beyond
v(my, sp) initially in chunks of %, this being a 4-set.

To do this we will invoke the lower procedures. The procedure P; (2 <
j < 4) enumerates a j-set C;. The construction begins by calling P;, which
calls P3 several times, and so on down to P,, which enumerates the 2-set Cs
and KC set L of axioms (g, n).

Each procedure P; has rational parameters ¢, € [0,1]. The goal ¢ is
the weight it wants C; to reach, and the garbage quota (3 is how much it is
allowed to waste.

In the simplified construction, where there was only one m, the goal was %
and the (evolved with time. The same thing happens here. P,’s goal never
changes, and hence can never be met lest U use too much quanta. Thus A
cannot compute B.

The main idea is that procedures P; will ask that procedures P; for 7 < j
do the work for them, with eventually P, “really” doing the work, but the
the goals of the P; are determined inductively by the garbage quotas of the
P; above. Then if the procedures are canceled before completing their tasks
then the amount of quanta wasted is acceptably small.

We begin the construction by starting P4(§, %) Its action will be to
1. Choose my large.

2. Wait until T'4(my) |.

When this happens, P, will call P3(27%,27°). Note that here the idea is
that P, is asking P3 to enumerate the 27%’s which are the current quanta bits
that P, would like to load beyond my’s current I-use. (The actual numbers
being used here are immaterial except that we need to make them converge,
so that the total garbage will be bounded above.

Now if, while we are waiting, the I'-use of my4 changes, then we will go
back to the beginning. But let’s consider what happens on the assumption
that this has not yet occurred.

What will happen is that P5(27% 27) will pick some mj3 large, wait for
['(m3) convergence, and then it will invoke P,(27°,279) say. This will pick
its own number m, again large, wait for ['*(my) | and finally now we will

17

get to enumerate something into L. Thus, at this very stage we would try to
load 27° beyond ~y(ms, s) in chunks of 279.

Now whilst we are doing this, many things can happen. The simplest
case is that nothing happens to the uses, and hence, as with the wtt case,
we would successfully load this amount beyond ~y(ms, s). Should we do this
then we can enumerate mo into B and hence cause this amount to be a 2-set
Cy of weight 275 and we have reached our target.

This would return to P; which would realize that it now has 275 loaded
beyond 7(ms, s), and it would like another such 275. Thus it would again
invoke P»(27°,27%). If it did this successfully, then we would have seen a
2-set of size 27° loaded beyond (ms, s) (which is unchanged) and hence if
we enumerate ms into B we could make this a 3-set of size 27°, which would
help P, towards its goals.

Then of course Py would need to invoke P3 again and then down to Ps.
The reader should think of this as “wheels within wheels within wheels”
spinning ever faster.

Of course, the problems all come about because uses can change. The
impossible case gave us a technique to deal with that. For example, if only
the outer layer P, has its use y(ms, s) change, then as we have seen, the
amount already matched would still be a 2-set, but the latest attempt would
be wasted. We would reset its garbage quota to be half of what it was, and
then repeat. Then we could rely on the fact that (assuming that all the
other procedures have m;’s with stable uses) limg~y(ma,s) = vy(ms) exists,
eventually we get to build the 2-set of the desired target with acceptable
garbage, build ever more slowly with ever lower quanta.

In general, the inductive procedures work the same way. Whilst waiting, if
uses change, then we will initialize the lower procedures, reset their garbages
to be ever smaller, but not throw away any work that has been successfully
completed. Then in the end we can argue by induction that all tasks are
completed.

Proof of Theorem 6.5. We are now ready to describe the construction. Let
k = 2b%9+1 The method below is basically the same for all the constructions
with one difference as we later see.

As in the wtt case, our construction will build a k-set Cj, of weight > 1/2
to reach a contradiction.

The procedure P; (2 < j < k) enumerates a j-set C;. The construction
begins by calling P, which calls P,_; several times, and so on down to P,

18

which enumerates L (and Cy).

Each procedure P; has rational parameters ¢, € [0,1]. The goal q is
the weight it wants C; to reach, and the garbage quota 3 is how much it is
allowed to waste.

We now describe the procedure P;(gq,), where 1 < j < k, and the
parameters ¢ = 277 and § = 27Y are such that x < y.

1. Choose m large.
2. Wait until I'*(m) |.
3. Let v > 1 be the number of times P; has gone through step 2.

j = 2: Pick a large number n. Put (r,,n) into L, where 27™ = 27Yf.
Wait for a stage t such that K;(n) < r, + d, and put n into Cj.
(If M, is a prefix-free machine corresponding to L, then ¢ exists.)

j>2: Call P;_1(27%8, '), where §/ = $27*=*~1) and w is the number
of P;_; procedures started so far.

In any case, if weight(C;_1) < ¢ then repeat step 3, and otherwise
return.

4. Put m into B. This forces A to change below v(m) < min(C;_4),
and hence makes C;_; a j-set (if we assume inductively that C;_; is a
(j — 1)-set). So put C_; into C}, and declare Cj_y = 0.

If v4(m) changes during the execution of the loop at step 3, then cancel the
run of all subprocedures, and go to step 2. Despite the cancellations, C;_;
is now a j-set because of this very change. (This is an important point, as
it ensures that the measure associated with numbers already in C;_; is not
wasted.) So put C;_; into C;, and declare C;j_; = .

This completes the description of the procedures. The construction con-
sists of calling Py(%, §) (say). It is easy to argue that since quotas are induc-
tively halved each time they are injured by a use change, they are bounded
by, say }1. Thus L is a KC set. Furthermore C} is a k-set, and this is a

contradiction since then the total quanta put into U exceeds 1. O

The following elegant description of Nies’ is taken from [13]:
We can visualize this construction by thinking of a machine similar to
Lerman’s pinball machine (see [34, Chapter VIIL5]). However, since we

19

enumerate rational quantities instead of single objects, we replace the balls
in Lerman’s machine by amounts of a precious liquid, say 1955 Biondi-Santi
Brunello wine. Our machine consists of decanters Cy, Cy_1,...,Cy. At any
stage C; is a j-set. We put C;_; above C; so that C;_; can be emptied into
Cj. The height of a decanter is changeable. The procedure P;j(q, 5) wants
to add weight ¢ to Cj, by filling C;_; up to ¢ and then emptying it into Cj.
The emptying corresponds to adding one more A-change.

The emptying device is a hook (the v (m)-marker), which besides being
used on purpose may go off finitely often by itself. When Cj_; is emptied
into C; then Cj_o, ..., Cy are spilled on the floor, since the new hooks emp-
tying C;_1,...,Cp may be much longer (the v*(m)-marker may move to a
much bigger position), and so we cannot use them any more to empty those
decanters in their old positions.

We first pour wine into the highest decanter Cj, representing the left
domain of L, in portions corresponding to the weight of requests entering L.
We want to ensure that at least half the wine we put into Cy reaches Cj.
Recall that the parameter (3 is the amount of garbage P;(q, #) allows. If v is
the number of times the emptying device has gone off by itself, then P; lets
P;_y fill C;_; in portions of size 27Y3. Then when C;_; is emptied into Cj,
at most 2774 much liquid can be lost because of being in higher decanters
Cj_a,...,Cy. The procedure P,(q, 3) is special but limits the garbage in the
same way: it puts requests (r,,n) into L where 27" = 27Y3. Once it sees
the corresponding A | n description, it empties Cy into C; (but Cy may be
spilled on the floor before that because of a lower decanter being emptied).

6.6 K-trivials form a robust class

It turns out that the K-trivials are a remarkably robust class, and coincide
with a host of reals defined in other ways. This coincidence also has signif-
icant degree-theoretical implications. For example, as we see, not only are
the K-trivials Turing incomplete, but are closed downwards under Turing
reducibility and form a natural 39 ideal in the Turing degrees.

What we need is another view of the decanter method. In the previous
section it was shown that K-trivials solve Post’s Problem. Suppose however,
we actually applied the method above to a K-trivial and a partial functional
I'. Then what would happen would be that for some i the procedure P; would
not return. This idea forms the basis for most applications of the decanter
method, and the run that does not return would be called a golden run. This

20

idea is from Nies [26]

For instance, suppose that we wanted to show Nies’ result that all K-
trivials are superlow.

Let A be K-trivial. Our task is to build a functional T'*(e) computing
whether ®4(e) |. For ease of notation, let us denote J%(e) to be the partial
function that computes ®“'(¢). Now the obvious approach to this task is to
monitor J4(e)[s]. Surely if J4(e)[s] never halts then we will never believe
that J4(e) | . However, we are in a more dangerous situation when we see
some stage s where J4(e)[s] |. If we define T'¥(e) = J(e)[s] then we risk the
possibility that this situation could repeat itself many times since it is in the
opponent’s power the changes A [@.(e, s).

Now if we were building A, then we would know what to do. We should
restrain A in a familiar way and hence with finite injury A is low. However,
the opponent is building A, and all we know is that A is K-trivial.

The main idea is to load up quanta beyond the use of the e-computation,
before we change the value of I'“(e)[s], that is changing our belief from
divergence to convergence. Then, if A were to change on that use after
we had successfully loaded, it would negate our belief and causing us to reset
I'%(e). Our plan is to make sure that it would cost the opponent, dearly.

As with the proof above, this cannot happen too many times for any
particular argument, and in the construction to be described, there will be a
golden run which does not return. The interpretation of this non-returning
is that the T'E (e) that this run R builds will actually work. Thus, the con-
struction of the lowness index is non-uniform.

Thus, the idea would be to have tree of possibilities. The height of the
tree is k = 2791 and the tree is w branching. A node ¢7% denotes the
action to be performed for J4(i) more or less assuming that now o is the
highest priority node that does not return.

At the top level we will be working at a procedure Pk(%, é) yet again, and
we know in advance that this won’t return with a k-set of that size.

What we do is distribute the tasks out to the successors of A, the empty
node. Thus outcome e would be devoted to solving J4(e) via a k-set. It
will be given quanta, say, 2-*Ya;, where a; = %. (Here this choice is
arbitrary, save that it is suitably convergent. For instance, we could use
the series), n—12 which would sharpen the norms of the wtt-reductions
to n2.) To achieve its goals, when it sees some apparent J(A)(e) | [s], It
will invoke Py(27(*Yay, 27¢3,) where £ = %. We denote this procedure by
Py(e,27 D qy, 27D 3 This procedure will look for a k-set of the appro-

21

priate size, which, when it achieves its goal, the version of I at the empty
string says it believes.

Again, notice that if this P, returns (and this is the idea below) 2¢+2
many times then Py(cy, Bx) would return, which is impossible.

As with the case of Theorem 6.5, to achieve its goals, before it believes
that J4(e) | [s], it needs to get its quanta by invoking the team via nodes
below e. These are, of course, of the form e~ j for j € w. They will be
asked to try to achieve a k — 1 set and Py(e, 27 (“*Yay, 27+ 3) by using
Pr_1(e7g,2et2-0+0 g o=(+lo=(e+D) 3, 1) with Br_; << B and j chosen
appropriately. Namely we will choose those j, say, with j > ¢4(e)[s]. That
is, these j will, by convention, have their uses beyond ¢?(e)[s] and hence
will be working similarly to the “next” m; “down” in the method of the
incompleteness proof of Theorem 6.5. Of course such procedures would await
©{(j)[s] and try to load quanta in the form of a k — 1 set beyond the ¢7(j, s)
(> ¢A(e)), the relevant j-use.

The argument procedures working in parallel work their way down the
tree. As above when procedure o7 is injured because the J4(t)[s] is un-
changed for all the uses of t € o, yet J4(i)[s] changes before the procedure
returns then we reset all the garbage quotas in a systematic way, so as to
make the garbage quota be bounded.

Now the argument is the same. There is some m least o of length m,
and some final «, 3 for which P, (e, a,) is invoked and never returns. Then
the procedure built at o will be correct on all j > ¢”(e). Moreover, we
can always calculate how many times it would be that some called procedure
would be invoked to fulfill P,,(c, 3). Thus the can bound the number of times
that we would change our mind on Ff.fm(a,ﬁ) () for any argument 7. That is,
A is superlow. In fact, as Nies pointed out, this gives a little more. Recall
that an order is a computable nondecreasing function with infinite limit.

Definition 6.7 (Nies [24, 26]). We say that a set B is jump traceable iff
there is a computable order h and a weak array (or not necessarily disjoint
c.e. sets) {Wy;) : j € N}, such that [Wy| < h(j), and JB(e) € Wy(e.

Theorem 6.8 (Nies [24, 26]). Suppose that A is K-trivial. Then A is jump
traceable.

The proof is to observe that we are actually constructing a trace. A mild
variation of the proof above also shows the following.

22

Theorem 6.9 (Nies [24]). Suppose that A is K-trivial. Then there ezists a
K -trivial computably enumerable B with A <y B.

Proof. (sketch) Again the golden run proof is more or less the same, our
task being to build B. This is farmed out to outcomes e in the w-branching
tree, where we try to build I'®(e) = A(e). Again at level j, the size of the
use will be determined by the number of times the module can act before it
returns enough quanta to give the node above the necessary 7 — 1 set. This
is a computable calculation. Now when the opponent seeks to load quanta
beyond (e, s) before we believe this, we will load matching quanta beyond
e for A. The details are then more or less the same. O

Other similar arguments show that K-triviality is basically a computably
enumerable phenomenon®. That is, the following is true.

Theorem 6.10 (Nies [26]). The following are equivalent
(i) A is K-trivial.

(11) A has a AY approzimation A = limg A, which reflects the cost function
construction. That 1s,

{I;s %c(y, s) : @ minimal with As(x) # As—1(x)} < %
6.7 More characterizations of the K-trivials

We have seen that the K-trivials are all jump traceable. In this section, we
sketch the proofs that the class is characterized by other “antirandomness”
properties.

Theorem 6.11 (Nies and Hirschfeldt [26]). Suppose that A is K-trivial.
Then A is low for K.

Corollary 6.12. The following are equivalent:

(i) A is K-trivial.

6To the author’s knowledge, K-triviality is the only example of a fact in computability
theory that relies purely on enumerations. It would appear, for instance, that forcing the
existence of a K-trivial is impossible.

23

(ii) A is low for Martin-Léf randomness.
(i1i) A is low for K.

Proof. The corollary is immediate by the implication (iii)—(ii)—(i). We
prove Theorem 6.11. Again this is another golden run construction. This
proof proceeds in a similar way to that showing that K-trivials are low, except
that P;, calls procedures P;_;, based on computations U4(c) = y[s] (since
we now want to enumerate requests (|o| + d,y)), and the marker y(m,s)
is replaced by the use of this computation. That is, we wish to believe a
computation, U4(0) = y[s] and to do so we want to load quanta beyond the
use u(o, s). This is done more or less exactly the same way, beginning at Py
and descending down the nodes of the tree. Each node v will this time build
a machine ﬁ,,, which will copy v-believed computations; namely those for
which we have successfully loaded the requisite |v|—set. We need to argue
that for the golden v, the machine is real. The garbage is bounded by, say,
é by the way we reset it. The machine otherwise is bounded by U itself. [

Corollary 6.13 (Nies [26]). The K -trivials are closed downward under <r.

From Downey [8], we know that real addition + induces a join on the
Solovay (and hence K- and C-) degrees of left c.e. reals. It is not hard to
show that the following also holds.

Theorem 6.14 (Downey, Hirschfeldt, Nies and Stephan [12]). Suppose that
a and 3 are K-trivial. Then so is o+ (3, and hence o & 3.

Proof. Assume that «, 3 are two K-trivial reals. Then there is a constant ¢
such that K(« [n) and K(f | n) are both below K(n) + ¢ for every n. By
Theorem 4.3 there is a constant d such that for each n there are at most d
strings 7 € {0, 1}" satisfying K (7) < K(n) + c. Let e = n* be the shortest
program for n. One can assign to « [n and § [n numbers i, j < d such that
they are the i-th and the j-th string of length n enumerated by a program
of length up to |e| + c.

Let U be a universal prefix-free machine. We build a prefix-free machine
V' witnessing the K-triviality of a + 3. Representing 7,5 by strings of the
fixed length d and taking b € {0,1}, V(eijb) is defined by first simulating
U(e) until an output n is produced and then continuing the simulation in
order to find the i-th and j-th string o and 3 of length n such that both
are generated by a program of size up to n + ¢. Then one can compute

24

27"(a 4+ B + b) and derive from this string the first n binary digits of the
real o + 3. These digits are correct provided that e, i, j are correct and b is
the carry bit from bit n + 1 to bit n when adding o and 3 — this bit is well-
defined unless a+ 3 = z-27"™ for some integers m, z, but in that case a4+ (3 is
computable and one can get the first n bits of a+ 3 directly without having
to do the more involved construction given here. Notice that a ® 0 <gx «
trivially, and hence if @ and 3 are K-trivial, a ® 3 will also be K-trivial. [

Since the K-trivials are closed downwards in <7, we have the following.

Corollary 6.15 (Nies [26]). The K -trivials form a X3 ideal in the Turing
degrees.

The K-trivial form the only known such ideal. It is known ([12]) that
the ideal is not principal, and that there is a lows computably enumerable
degree above this ideal (Nies, see Downey and Hirschfeldt [11] for a proof).
(It is known that no low c.e. degree can be above the K-trivials, but it is
quite possible that there is a AY low degree above them all, perhaps even a
Martin-Lof random one. This is an apparently difficult open question.)

In passing we mention two further characterizations of the K-trivials.
First we can define B be a base of a cone of Martin-Lof randomness if
B <1 A where A is B-random. Kucera was the first to construct such a
noncomputable set B.

Theorem 6.16 (Hirschfeldt, Nies and Stephan [17]). A is K-trivial iff A is
a base of a cone of Martin-OLof randomness.

Finally, in recent work there has been a very surprising new characteriza-
tion of K-triviality. We will say that A is low for weak 2—randomness tests
iff for all 15! nullsets NV, there is a 1T nullset M D N.

Theorem 6.17 (Downey, Nies, Weber, Yu [15]+ Nies [29]+Miller [23]). A
is K-trivial iff A is low for weak 2—randomness.

7 A proper subclass

7.1 Jump traceability and strong jump traceability

Again we return to the theme of jump traceability. Recall that that a set
B is jump traceable iff there is a computable order A and a weak array

25

{Wyi) : j € N}, such that |[Wy;)| < h(j), and JZ(e) € Wy(). We would say
that A is jump traceable via the order h. Recall that Nies [26] showed that if
A is K-trivial, then A is jump traceable.

Such considerations lead Figueira, Nies and Stephan to investigate a new
class of reals.

Definition 7.1 (Figueira, Nies and Stephan [16]). We say that A is strongly
jump traceable iff for all (computable) orders h, A is jump traceable via h.

Nies’ Theorem shows that if A is K-trivial then it is jump traceable via
h(e) about eloge. Interestingly, Figueira, Nies and Stephan [16] showed that
there are 2% many reals which are jump traceable at order h(e) = 2%*. Using
a rather difficult argument, Downey and Greenberg proved the following.

Theorem 7.2 (Downey and Greenberg, unpubl.). For h(e) = logloge all
reals jump traceable with order h(e) are AS and hence there are only countable
many.

It is not altogether clear that strongly jump traceable reals should exist.

Theorem 7.3 (Figueira, Nies and Stephan [16]). There exist c.e. promptly
simple strongly jump traceable sets.

Proof. The following proof is due to Keng Meng Ng. It is really a II9 ar-
gument since the guess that a particular partial computable function is an
order is a I19 fact. There is a promptly simple c.e. set A, which is strongly
jump traceable.

Requirements

We build an c.e. set A satisfying the following requirements :

P. : W, isinfinite = Jz,s(x € Weas AT € Agtr),
N. : h.is an order = A is jump traceable via h,.

Here, h. is the e partial computable function of a single variable. The
negative requirement A, will build the sequence Veo, Ve, -+ of cee. sets such
that |V.;| < he(i) and JA(i) € V., for all i, if h, is an order.

Strategy

We will describe the strategy used to satisfy Nj. The general strategy
for N, is similar. Suppose that hg is an order function, our aim is to build

26

the uniformly c.e. sequence Vj o, Vi1, --. Consider the sequence of intervals
I, I5,-- -, initial segments of N such that ho(z) = n for all z € I,.

For i € I}, whenever J4(i)[s] | with use u(i), we would enumerate the
value J4(i)[s] into Vj; and preserve the value J*(i)[s] by preventing any pos-
itive requirement from enumerating an z € A [,. If ¢ € I and JA(i')[s/] |
with use u(i') at stage ', we will also enumerate J4(¢')[s'] into Vg . Since
Vo,i» can take two values, it is therefore not essential that the computation
{i"}A(i")[s'] at stage s’ be preserved forever. We could allow Py to make
an enumeration below u(i") (but above max{u(k) | k € Iy}), and block all
other positive requirements Py, Py, - -+ from enumerating below u(i"). When
a new value JA(i')[s"] appears after Py acts, it will be put into Vj; and the
computation {i'}4(i’')[s”] preserved forever.

In general, we would allow the requirements Py, -+ ,P,_o to enumerate
below the use of J4(z)[t] at any stage t and z € I,. This ensures that
for x € I, there will be at most n values placed in Vg ,. Therefore, N
will impose different restraint on each positive requirement Py, Py,---. In
particular, the restraint imposed by Ay on P, at a stage s is rq(e, s) > the
use of any computation J4(x)[s], where x € I; U -+ U I41.

The above strategy is designed to work in the case where hg is an order.
At a stage s we could compute the values hg(0),--- ,ho(s) up to s steps,
and use the values computed to see if hg looks like an order. If the first
[(s) (the length of convergence) many convergent values do not form a non-
decreasing sequence, then we could cease all action for Ay. On the other
hand, if hg is a non-decreasing function such that lim hg(n) = m, then at

n—o0

every stage s, the first I(s) many convergent values of hy will always form
a non-decreasing sequence. This would result in the positive requirements
Prn—1,Pum, - - - having restraint — co. To prevent this situation, we declare a
number x to be active (at some stage s), if the length of convergence [(s) > z,
and ho(z) < ho(l(s)). The requirement Ny would only act on those numbers
1 which are active, for if hg is indeed an order, it does no harm for us to wait
until 7 becomes active before making enumerations into V4.

Construction of A. We arrange the requirements in the order Py < Ny <
P, < Ny < ---. Let J4(i)[s] denote the value of {i}#(i) if it is convergent,
with the use u(i, s), and V,;[s] denote V., in the s stage of formation. For
each e, let the length of convergence of h. at stage s be defined as

lle,s) =max{y <s| (Vz <y) (hes(x) | A he(x) > he(x —1))}.

A number i is said to be e-active at stage s, if i < I(e,s) and h.(i) <

27

he(l(e,s)). That is, a number i will become e-active when the length of
convergence of h, exceeds 7, and we have received further confirmation that
he(x) is not an eventually constant function. For each k < e, we let r4(e, s)
be the restraint imposed by N on the e positive requirement P, at stage
s, defined as follows

ri(e, s) = max{u(i, s) | ¢ is k-active at stage s A hi(i) < e+ 1}.

We will let r(e,s) := max{ri(e,s) | k < e}. At stage s, we say that P,
requires attention if ANW,, =0, and 3xr € W, ; — W, s_; such that z > 2e
and = > r(e, s).

The construction at stage s involves the following actions :

(i) Pick the least e < s such that P, requires attention, and enumerate
the least © > max{2e,r(e,s)} and v € W, s — W, s into A. For each
k> e, we set Vii[s + 1] = 0 for all 4.

(ii) For each e < s we do the following for the sake of N, : For every
currently e-active number i, we enumerate J4(i)[s] (if convergent) into
‘/e,i[s]'

Verification
Firstly note that for each e,

3%s JA(e)[s] | = Je) | (1)

To see this for each e, pick an index ¢ > e such that Vn(h;(n) = n). Since
each positive requirement only enumerates at most one element into A, let s
be a stage such that no Py for any k < i ever receives attention after stage s,
and e is i-active after stage s. If J4(e)[t] | infinitely often, let ¢ > s be such
that J4(e)[t] |. Then, A, lu(ey= A Tuer) and so J4(e) |. Note that this
implies A is low, but A will actually be jump traceable and hence superlow.

It is not difficult to see that (1) implies sh—>I£lo r(e,s) < oo for every e : Fix

a k < e, and we will argue that lim ri(e,s) < oo. There can only be finitely

many numbers i such that ¢ eventually becomes k-active with hy(i) < e+ 1,
and for each such ¢, u(i, s) has to be bounded (or undefined) by (1).

Hence every P, will be satisfied, and A is coinfinite and promptly simple.
Next, we fix an e where h, is an order. Fix an i, and we shall show that
[Voil < he(i) and JA(i) € V. Let s be the last stage at which V;[s] is reset

28

to (), and t > s be the smallest stage such that i becomes e-active at stage t.
Enumerations into V, ; start only after stage ¢ (where ¢ becomes active), and
furthermore no requirement Py for any k > h.(i) — 2 can ever enumerate a
number x < u(i,t') at any stage ¢’ > ¢. This means there are at most h. (i)
many different values in V, ;. Lastly if JA(i) | then JA(i) = JA(>i)[t"] for
some t” > t, and JA(7)[t"] is enumerated into V, ;[t"] at that stage. O

Notice that the proof is yet another cost function construction. (Here
the cost is how many things can potentially be put into some V,;.) Indeed,
at first blush, it would seem that we are only getting the same class as the
K-trivials.

Theorem 7.4 (Cholak, Downey, Greenberg [4]). Suppose that A is c.e. and
strongly jump traceable. Then A is K-trivial. Indeed if A is c.e. and jump
traceable via an order of size v/loge, then A is K-trivial.

Proof. Let A be strongly jump-traceable. As with the proof that K-trivials
are low for K, we will need to cover U4 by an oracle-free machine, ob-
tained via the Kraft-Chaitin theorem. When a string ¢ enters the domain
of U4[s] we need to decide whether we believe the A-computation that put
o in dom U#4. In the “K-trivial implies low for K” proof we put weight
beyond the use of the relevant computation to enable us to certify it. In this
construction, we will use another technique.

To test the 0 € domU*[s] computation, let the use be wandlet p = A [u
(at that stage). The naive idea is to pick some input = and define a function
U4 (which is partial computable in A) on the input x, with A-use u and value
p. This function is traced by a trace (T,); only if p is traced do we believe
it is indeed an initial segment of A and so believe that U4(o) is a correct
computation. We can then enumerate (|o|,U%(0)) into a Kraft-Chaitin set
we build and so ensure that K(U%(c0)) <7 |o].

However, we need to make sure that the issued commands are a KC set.
This would of course be ensured if we only believed correct computations, as
p(dom U#) is finite. However, the size of most T} is greater than 1, and so
an incorrect p may be believed. We need to limit the mass of the errors.

A key new idea from Cholak, Downey and Greenberg [4] is that, rather
than treat each string ¢ individually, we batch strings up in pieces of mass.
When we have a collection of strings in dom U4 whose total mass is 27% we
verify A up to a use that puts them all in dom U#. The greater 27 is, the
more stringent the test will be (ideally, in the sense that the size of T is

29

smaller). We will put a limit mj, on the amount of times that a piece of size
27% can be believed and yet be incorrect. The argument will succeed if

Z ka*k

is finite.

The reader should realize that once we use an input x to verify an A-
correct piece, it cannot be used again for any testing, as WU*(x) becomes
defined permanently. Following the naive strategy, we would need at least
2% many inputs for testing pieces of size 27%. Even a single error on each x
(and there will be more, as the size of T, has to go to infinity) means that
my, > 2F is too large. The rest of the construction is a combinatorial strategy:
which inputs are assigned to which pieces in such a way as to ensure that
the number of possible errors my, is sufficiently small. The strategy has two
ingredients.

First, we note that two pieces of size 27% can be combined into a single
piece of size 2= =1 So if we are testing one such piece, and another piece,
with comparable use, appears, then we can let the testing machinery for
2-(+=1 take over. Thus, even though we need several testing locations for
27% (for example if a third comparable piece appears), at any stage, the
testing at 27% is really responsible for at most one such piece.

The naive reader would imagine that it is now sufficient to let the size
of T, (for = testing 2~*-pieces) be something like k¥ and be done. However,
the opponent’s spoiling strategy would be to “drip-feed” small mass that
aggregates to larger pieces only slowly (this is similar to the situation in
decanter constructions.) In particular, fixing some small 27* the opponent
will first give us k pieces (of incomparable use) one after the other (so as
to change A and remove one before giving us a new one.) At each such
occurrence we would need to use the input devoted to the first 27% piece,
because at each such stage we only see one. Once the amount of errors we
get from using z for testing is filled (T, fills up to the maximum allowed size)
the opponent gives us one correct piece of size 2~*~1 and then moves on to
gives us k more incorrect pieces which we test on the next x. Overall, we get
k errors on each x used for 2 *-pieces. As we already agreed that we need
something like 2 many such 2’s, we are back in trouble.

Every error helps us make progress as the opponent has to give up one
possible value in some T,; fewer possible mistakes on z are allowed in the
future. The solution is to make every single error count in our favour in all

30

future testings of pieces of size 27%. In other words, what we need to do is
to maximize the benefit that is given by a single mistake; we make sure that
a single mistake on some piece will mean one less possible mistake on every
other piece.

In the beginning, rather than just testing a piece on a single input z, we
test it simultaneously on a large set of inputs and only believe it is correct
if the use shows up in the trace of every input tested. If this is believed
and more pieces show up then we use them on other large sets of inputs. If,
however, one of these is incorrect, then we later have a large collection of
inputs z for which the number of possible errors is reduced. We can then
break up this collection into 2¥ many smaller collections and keep working
only with such z’s.

This can be geometrically visualized as follows. If the naive strategy was
played on a sequence of inputs x, we now have an mj-dimensional cube of
inputs, each side of which has length 2*. In the beginning we test each piece
on one hyperplane. If the testing on some hyperplane is believed and later
found to be incorrect then from then on we work in that hyperplane, which
becomes the new cube for testing pieces of size 27*: we test on hyperplanes
of the new cube. If the size of T, for each x in the cube is at most m;, then
we never “run out of dimensions”.

Further details can be found in Cholak, Downey and Greenberg [4], and
Downey and Hirschfeldt [11]. O

We remark en passant that it is unknown if this result is true with the hy-
pothesis that A is c.e. is removed. Downey and Greenberg have conjectured
that the answer is yes.

But finally we have an example of a class of reals, defined by cost func-
tions, where we actually get a proper subclass of the K-trivials.

Theorem 7.5 (Cholak, Downey, Greenberg [4]). The c.e. strongly jump
traceables form a proper subclass of the K-trivials. Again this is true at
tracing order logloge.

Proof. The easiest way to understand this proof is that the reader realize the
following: since the K-trivials are closed under <7, there must be ones of
minimal degree, and hence not n-c.e. for any n. How would we make such
a real directly? Now we have already seen that the only way to make K-
trivials is to use a cost function construction. Thus in the basic construction,
we will pick some n and monitor ¢(n, s), the weight of the tail at s. If this

31

was simply making A noncomputable, should that weight be too large, we
would abandon this n and choose some n' > s.

Now if we are to make A not k-c.e. for any k, then we would need to
perhaps put n into and take it out of A many times, perhaps k + 1 times.

The problem is that each time we change A, [n, we must pay some
uncompensated price c(n, s). The basic idea, the reader will recall, is to keep
this price bounded. The plan is to use a decanter kind of idea. Suppose, for
instance, k = 2 so we need 3 attacks on some n. We would have an overall
cost we are willing to pay of, say, 27 (¢t1) for this requirement R,. Then the
idea is to think of this cost as, initially, [27(¢+2) 27(e+4) 2=(e+0)] where the
first attack via some n will only cost at most 2-(¢t6) If we see that this
cost exceeded at some stage s, before the first attack, we could abandon this
attack at no cost choosing a new n’ > s.

However, should we have done the first attack, we would choose a new
n' > s but give n’ the quotas
[27(e42) 2= (e+4) 2=(+9)] (if the attack was abandoned before the second attack
occurred, or give n’ the quotas [27(¢+2) 27(e+6) 9=(e+9)] ghould this happen
after we did the second attack. (In general the third attack gets numbers of
the form 27(¢+37) and the second 27 (¢*+?) (or any suitably convergent series).
This is very similar to the decanter method.

Now in our argument, we need to make A K-trivial, yet not strongly
jump traceable. Again we will have a suitable slowly growing order h about
loglog e is enough. To kill some possible trace W) we will control parts of
the jump. Suppose that we are dealing with part where he is supposed to be
able to jump trace with at most & members of Wy(. (This is some e we can
put things into the jump.)

Then the idea is simple. We would pick some as; > s and put e into the
jump with axiom s, e, as, saying J4(e) = s if a, ¢ A. Once this appears in
Wy(els'] for some s’ > s, we can then remove this from J#(e)[¢] defining it
to be t instead of s by simply putting as into A;;; — A; and this new value
having a new use a; ;. This would need to repeat itself at most k + 1 times.
Each stage would cost us ¢(a¢, t). Then, the argument is the same as the one
above. We simply need a combinatorial counting argument to calculate how
long the interval where h(e) = k needs to be that we must succeed on some
follower.

Details again can be found in Cholak, Downey, Greenberg [4]. O

Notice the property of being strongly jump traceable is something closed

32

downwards under <. Until very recently, it is an interesting open question
as to whether they form an ideal. Keng Meng Ng constructed a strongly jump
traceable c.e. set whose join with any strongly jump traceable set is strongly
jump traceable. That construction was a careful analog of the construction
of an almost deep c.e. degree by Cholak, Groszek and Slaman [5], which was
a c.e. degree a such that for all low c.e. degree b, aU was also low. The proof
relied on a characterization of a c.e. set X being strongly jump traceable due
to Nies, Figueira and Stephan: X is strongly jump traceable iff X’ is well-
approrimable meaning that for all computable orders h, there is a computable
enumeration X'(z) = limg f(z,s) with [{s: f(z,s+ 1) # f(z,5)}| < h(2).

Theorem 7.6 (Ng [32]). There is a promptly simple c.e. set A, such that
if W is a strongly jump traceable c.e. set, then A @ W 1is strongly jump
traceable.

In an earlier version of the present paper we sketched a proof of Ng’s
Theorem. Recently, Cholak, Downey and Greenberg indeed verified that the
c.e. strongly jump traceable degrees form an ideal. It is this last result whose
proof we will sketch.

Theorem 7.7 (Cholak, Downey and Greenberg [4]). Suppose that A and B
are c.e. and strongly jump traceable. Then so is A® B.

Proof. (Sketch) Actually something more is proven. It is shown that given
an order h we can construct a slower order k such that if A and B are jump
traceable via k then A @ B is jump traceable via h. The opponent must give
us Wy(y) jump tracing A and W, jump tracing B, such that

(Wl (W@ | < k(x),

for all . It is our task to construct a trace V. tracing JA®B(2) with |V,| <
h(z). There are two obstacles to this task. We will treat them in turn.

Fundamentally, what happens is that we see some apparent jump com-
putation JA®B(x) | [s]. The question is, should we belicve this computation?
The point is that we only have at most h(z) many slots in the trace V, to put
possible values. (We will think of the V,, as a box of height x.) The opponent
can change the computation by changing either A or B after stage s on the
use.

Our solution is to build another part of the jump to test the A and B
parts. Of course these locations are given by the Recursion Theorem. There

33

will be many parts devoted to a single x. For each x the strategies will
operate separately. We will denote parts of the jump for testing the A use by
a(x,7) and for the B side b(x, 1) for ¢ € w. (The reason for the large number
will be seen later. It is kind of like a decanter of infinite depth, and is because
of the noncompletion problem we need to solve.)

The basic idea is this: when stage s occurs for some a and b we will define

JP1s|(b) = jp(w,s) and J4[s](a) = ja(z,),

where jo(z, s) denotes the C-use of the JA9B(z)[s] computation.

Now of course this is not quite correct. We can do this, but before the
real jump returns either of these computations, they can go away since A
or B ranges on the relevant use. In particular, although we know that real
jump values must occur in W) and W), the jump computations we have
purported to define can become divergent on account of the relevant ora-
cle changing. We will call this the noncompletion problem, and discuss its
solution later.

To demonstrate the first idea, we will assume that this problem will not
arise, so that the procedures return. That is, we see ja(x,s) occur in it
trace: Wy and similarly for B. This would happen at some sage t > s
where without loss of generality, we can assume the J4®Z(z) computation
is still around. Then at such a stage we would be prepared to believe it, by
putting its present value v; into the first slot of V.

The simplest case is that we actually were working in the situation where
the Wy and W) were of size 1 (1-boxes) then we would be done. The
computation for A @ B is correct.

In the more general case we would have, say, the A and B boxes of, say,
size 2, and the A@® B one of size, say, 3. We will, as seen below, manufacture
1-boxes, if necessary.

Now, if the A @& B computation is wrong, at least one of the A or B ones
are too. We have arranged that the size of the V, will be much bigger than
that of the A and B. If both sides are wrong, or are shown wrong then there
is are false jump computations in both of the W,y and W,). In that case
then the boxes are now, in effect, 1-boxes as the top slot is filled with a false
jump computation. Then the next time we get a A @ B computation, we
would be safe, assuming that we get a return.

If only one side, say the A side, is incorrect, then we have come to the first
problem. The B-box W, actually is returning correctly a jump computation

34

and is thus useless for testing more computations. The next test would
involve possibly the same a but would need a different b, and this could
alternate.

The idea is to use more than one a, b as we now see. At the beginning we
could use two A boxes and two B boxes of size 2. Suppose that, as above, we
get a return on all of them and the A side was wrong. Then now we have two
promoted 1-boxes. Then the next time we test a A® B computation, we could
use only one of them and another B-box of size 2. Since the A-computation
now must be correct, if the believed computation is wrong, it must be the
B side which wrong the next time, now creating a new B-1-box. Finally the
third time we test, we would have two 1-boxes.

This is all very fine, but the fact that we might not get a return into the
boxes causes really deep problems. The problem is that we might enumerate
into the boxes two A and B configurations and the computation might occur
in only one side, say the A side, before the A & B computation vanishes.
We have not used up any V, slot, but the probe is that the A side might
be correct and hence that box is now useless. The reader should not that
this is even a problem if we were dealing with 1-boxes. What could happen
is that the change side (before return) could alternate rendering the boxes
corresponding to the (correct) other side useless, and we would run out of
small boxes before the oracle decided to return correctly.

The idea is to use a decanter-like strategy to get rid of this problem.
Initially, to test the 2 boxes for A and B we begin at 3-boxes. These will
be metabozes in the sense that they are amalgams of some large number of
3 boxes. Say, Wyay)s - -+ Wp(a,) and Wy, ..., Wy, Before we believe the
A @ B computation at z, we begin by testing the A side, then the B side one
box at a time, alternating. Thus Wy,), Wyw,), Wpias), and so forth, only
moving on to the next box if the previous one returns, and hence the A @ B
computation remains unchanged. Now two things can happen.

The first possibility is that we get to the end of this process. It is only
then that we would move to the 2-boxes and try to test as above. If we
actually get to the end of the of this final procedure with no A & B change,
then we would then return and use a slot of V.

The other possibility is that at some stage of this process one of A or B
changes on the z-use. Suppose that this is A. The key new idea is then if this
is in the the last 2-box testing phase, then we have created many new 2-boxes,
since the top slot of all of the W), are filled with false jump computations
of A. (In this case we have also created new A 1-boxes.) Box promotion is to

35

a lesser extent true for the case where this fails in the first phase. We have
also created A 1-boxes

Notice that all of the B boxes used in this processes are likely now useless.
The function k£ will be slow enough growing that there will be plenty more
3 boxes for later work. Then the idea is that at the next try we would begin
at the 4 boxes and recursively travel down to the 2-boxes only when we get
returns from the higher boxes. (But at the 3 box stage, we would be using
half of the now promoted original A metabox.) The key thing to observe
is that for a correct computation, we must eventually make progress as the
killed side always promotes. This can only happen finitely often since the
height of the relevant metabox is fixed and the killed side will promote that
box.

The details are a little messy but this is the general idea. Full details can
be found in the paper [4]. O

Several questions suggest themselves. First is it true that each strongly
jump traceable is bounded by a c.e. strongly jump traceable? We have seen
that they form an ideal in the Turing degrees? How complicated is the ideal
in the c.e. case? It would seem likely that it could be I19 complete.

Finally we remark that there are several other examples of cost function
constructions in the literature, whose relationship with the strongly jump
traceables and the K-trivials is not yet clear. For example Nies has proven
the following.

Theorem 7.8 (Nies [28]). There ezists a c.e. set A such that for all B, if
B is random then A & B does not compute).

We know that such sets must be K-trivial. The question is whether this
can be reversed. Barmpalias [1] has related material here, extending Nies’
Theorem above. Finally, we will call a set A almost complete if () is K-trivial
relative to A, and A <7 (/. Such sets can be constructed from the K-trivial
construction and the pseudo-jump theorem. Hirschfeldt” (unpubl) has shown
that there are c.e. (necessarily K-trivial) reals below all such random reals.
The question is whether they coincide with the K-trivials.

TA simpler proof was found by Hirschfeldt and Miller and appears in Nies [30].

36

8 What have I left out this time?

While I hope that this is the last lecture in the series, I should point out
that there is a lovely series of results concerning lowness for other random-
ness notions. Terwijn and Zambella [36] characterized lowness for Schnorr
randomness tests in terms of computable traceability, and this was extended
by Kjos-Hanssen, Nies and Stephan [18] to the class of Schnorr randoms.
Nies [26] proved that only the computable reals are low for computable ran-
domness, and Downey and Griffiths [10], and later Stephan and Yu [35]
investigated lowness for Kurtz randomness. To treat these and other related
results properly would take another paper, and hence I will simply refer the
reader to the source papers, or to Downey-Hirschfeldt [11], or Nies [31], and
the recent survey Nies [30] for details.

References

[1] Barmpalias, G., Random non-cupping revisited, J. Complexity. Vol. 22
(2006) 850-857

[2] Chaitin, G., A theory of program size formally identical to information
theory, Journal of the Association for Computing Machinery 22 (1975),
pp- 329-340.

[3] Chaitin, G. Information-theoretical characterizations of recursive infi-
nite strings, Theoretical Computer Science, vol. 2 (1976), 45-48.

[4] Cholak, P., R. Downey and N. Greenberg, On strongly jump traceable
reals, in preparation.

[5] Cholak, P., M. Groszek, and T. Slaman, An almost deep degree, J. Sym-
bolic Logic, Vol. 66, No.2 (2001), 881-901

[6] Calude, C., and Coles, R. Program size complezity of initial seg-
ments and domination relation reducibility, in Jewels are Forever, (J.
Karhiimaki, H. Mauer, G. Paun, G. Rozenberg, eds.) Springer-Veralg,
New York, 1999, 225-237.

[7] Downey, R., Some Computability-Theoretical Aspects of Reals and Ran-
domness, in The Notre Dame Lectures (P. Cholak, ed) Lecture Notes
in Logic Vol. 18, Association for Symbolic Logic, 2005, 97-148.

37

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

Downey, R., Five Lectures on Algorithmic Randomness, to appear pro-
ceedings of Computational Prospects of Infinity World Scientific.

Downey, R. and N. Greenberg, Strongly jump traceable reals are AY, in
preparation.

Downey, R. and E. Griffiths, Schnorr randomness, Journal of Symbolic
Logic, Vol 69 (2) (2004), 533-554.

Downey, R. and D. Hirschfeldt, Algorithmic Randomness and Complex-
ity, Springer-Verlag, in preparation.

Downey, R., D. Hirschfeldt, A. Nies, and F. Stephan, Trivial reals, ex-
tended abstract in Computability and Complexity in Analysis Malaga,
(Electronic Notes in Theoretical Computer Science, and proceedings,
edited by Brattka, Schroder, Weihrauch, FernUniversitét, 294-6/2002,
37-55),July, 2002. Final version appears in (Downey, R., Ding Decheng,
Tung Shi Ping, Qiu Yu Hui, Mariko Yasuugi, and Guohua Wu (eds)),
Proceedings of the 7th and 8th Asian Logic Conferences, World Scientific,
2003, viii+471 pages.

2003, 103-131.

Downey, R., D. Hirschfeldt, A. Nies, and S. Terwijn, Calibrating ran-
domness, Bulletin Symbolic Logic. Vol. 12 (2006), 411-491.

Downey, R., J. Miller, and L. Yu, On the quantity of K-trivial reals, in
preparation.

Downey, R., A. Nies, R. Weber, and L. Yu, Lowness and 113 nullsets,
Journal of Symbolic Logic, Vol. 71 (2006), 1044-1052.

Figueira, S., A. Nies, and F. Stephan, Lowness properties and approzi-
mations of the jump, in Proceedings of the Twelfth Workshop of Logic,
Language, Information and Computation (WoLLIC 2005), Electronic
Lecture Notes in Theoretical Computer Science, Vol. 143 (2006), 45-57.

Hirschfeldt, D, A. Nies, and F. Stephan, Martin-Lof oracles, in prepa-
ration.

Kjos-Hanssen, B., A. Nies, and F. Stephan, Lowness for the class of
Schnorr random sets, to appear, SICOMP.

38

[19]

[20]

[21]

[22]
[23]
[24]
[25]
[26]

[27]

[31]
[32]

[33]

Kucera, A., and T. Slaman, Turing Incomparability in Scott Sets, Proc.
Amer. Math. Soc.. to appear

Kucera, A., and S. Terwijn, Lowness for the class of random sets, Jour-
nal of Symbolic Logic, vol. 64 (1999), 1396-1402.

Levin, L., Some Theorems on the Algorithmic Approach to Probability
Theory and Information Theory, Dissertation in Mathematics, Moscow,
1971.

Loveland, D. A variant of the Kolmogorov concept of complexity, Infor-
mation and Control, vol. 15 (1969), 510-526.

Miller, J., personal communcation.

Nies, A., Reals which compute little, Proceedings of Logic Colloquium
2002, (Chatzidakis, Z, Koepke, P. and Pohlers, W., editors), Lecture
Notes in Logic 27, Springer-Verlag (2002), 261-275.

Nies, A., Low for random reals: the story, unpublished.

Nies, A., Lowness properties and randomness, Advances in Mathematics,
Vol. 197 (2005), 274-305.

Nies, A., Fach Low(CR) set is computable, typeset manuscript, January
2003.

Nies, A., Non-cupping and randomness, to appear, Proceedings of the
AMS.

Nies, A., personal communication.

Nies, A., Eliminating concepts, to appear proceedings of Computational
Prospects of Infinity, World Scientific.

A. Nies, Computability and Randomness, to appear.
Ng, Keng Meng, On strongly jump traceable reals. in preparation.

Solovay, R., Draft of paper (or series of papers) on Chaitin’s work, un-
published notes, May, 1975, 215 pages.

39

[34] Soare, R., Recursively enumerable sets and degrees (Springer, Berlin,
1987).

[35] Stephan, F. and L. Yu, Lowness for weakly 1-generic and Kurtz-random
in Theory and Applications of Models of Computation: Third Inter-
nationa | Conference, TAMC 2006, Beijing, China, May 15-20, 20006,
Proceedings. Springer LNCS, 3959:756-764, 2006.

[36] Terwijn, S., and D. Zambella, Algorithmic randomness and lowness,
Journal of Symbolic Logic, vol. 66 (2001), 1199-1205.

[37] van Lambalgen, M., Random Sequences, Ph. D,. Diss. University of Am-
sterdam, 1987.

[38] Zambella, D., On sequences with simple initial segments, ILLC technical
report, ML-1990-05, University of Amsterdam, 1990.

40

