Fixed Parameter Tractability and
Completeness IV: on Completeness for W |P]
and PSPACE analogues

Karl A. Abrahamson,
Department of Computer Science,
East Carolina University,
Greenville

North Carolina, 27858, U.S.A.

Rodney G. Downey ¥
Mathematics Department,

Victoria University,
P.O. Box 600, Wellington, New Zealand.

Michael R. Fellows |
Department of Computer Science,
University of Victoria,
Victoria, British Columbia V8W 3P6, Canada

July 7, 2010

*Research supported by Victoria University IGC, by the United States / New Zealand
Cooperative Science Foundation under grant INT 90-20558, by the University of Victoria,
and by the Mathematical Sciences Institute at Cornell University.

tResearch supported by the National Science and Engineering Research Council of
Canada, and the U.S. National Science Foundation under grant MIP-8919312.

1



Abstract

We describe new results in parameterized complexity theory. In
particular, we prove a number of concrete hardness results for W[P],
the top level of the hardness hierarchy introduced by Downey and
Fellows in a series of earlier papers. We also study the parameterized
complexity of analogues of PSPACFE via certain natural problems
concerning k-move games. Finally, we examine several aspects of the
structural complexity of W[P] and related classes. For instance, we
show that W[P] can be characterized in terms of the DTTM E(2°(™))
and NP.

1 Introduction

The theory of N P-completeness provides an excellent vehicle for explaining
the apparent asymptotic intractability of many algorithmic problems. Yet
while many natural problems do behave intractably in the limit, the manner
by which they arrive at this intractable behavior can vary considerably. The
standard NP and other completeness models are often far too coarse to
give insight into this variation. To be specific, many natural computational
problems take input consisting of two or more parts. The following are some
examples of well-known parameterized problems.

Example 1. VERTEX COVER

Instance: A graph G = (V, E).

Parameter: A positive integer k.

Question: Is there a set of vertices V' C V of cardinality at most k, such
that for every edge uv € F, either u € V' or v € V'?

Example 2. FEEDBACK VERTEX SET

Instance: A graph G = (V, E).

Parameter: A positive integer k.

Question: Is there a set of vertices V' C V of cardinality at most k such that
G — V' is acyclic?

Example 3. GRAPH GENUS

Instance: A graph G = (V, E).

Partameter: A positive integer k.

Question: Can G be embedded on the surface of genus k7

Example 4. MINOR TESTING

Instance: A graph G



Parameter: A graph H

Question: Is G >, H?

Example 5. GRAPH LINKING NUMBER

Instance: A graph G.

Parameter: k.

Question: Can G be embedded into 3-space so thst at most £k disjoint cycles
in G are topologically linked?

Example 6. DOMINATING SET

Instance: A graph G = (V, E).

Parameter: A positive integer k.

Question: Is there a set of vertices V' C V of cardinality at most k such that
for every vertex u € V, there is an edge uv € E for some vertex v € V'?

With the exception of example 5 for which this question is open, all of the
above problems are known to be N P-complete. But what can be said when
the parameter £ is held fixed? For examples 1-5, there is a constant a such
that for every fixed k the problem can be solved in time O(n®). For examples
3 - 5 we may take a = 3 by the deep results of Robertson and Seymour [31]
[32]. Example 6 illustrates the contrasting situation where for fixed values of
k we seem to be able to do no better than a brute force examination of all
possible solutions and thus the best known algorithm is O(n*). The contrast
is that for problems such as DOMINATING SET above, INDEPENDENT
SET and many others, for a fixed k there only seem algorithms running in
time O(n9®) with g(k) — co. We are thus concerned with an issue that is
very much akin to P versus N P. The previous papers of this series [10] [11]
[12] [13], established a framework with which to address the apparent fixed-
parameter intractability of problems such as example 6. We feel that our
framework provides an important contribution to the analysis of complexity
of combinatorial problems for the following reasons.

(i) Distinct from most other notions and classes inroduced since the orig-
inal clarification of NP and PSPACE completeness, our framework is ap-
plicable to a wide class of practical problems.

(ii) Our framework provides a refined measure to that helps to explain
the apparent diversity of actual behavior of many hard problems, as well as
having numerous other applications.

This theory has found applications to various concrete problem domains
such as cryptography (Fellows-Koblitz [21]), computational biology (Fellows-
Hallett-Wareham [20]), computational learning theory (Downey-Fellows [15],

3



Downey-Evans-Fellows [9]), and many others. The theory has ties with such
classical notions as advice classes (Cai et. al. [6]) and some of the basic
structural questions raised by, for instance, the various reducibilities, seem
currently beyond our capabilities. (Even ones which are easy for classical
reducibilities. See e.g. Downey-Fellows [14]). The issues raised in the study
of parameterized complexity seem to have very wide ranging theoretical and
practical interest.
In [10], [11] a hierarchy, the W-hierarchy,

FPT CW[1] CW[2 C--- C W[P]

is defined and studied, where the base class F'PT denotes the fixed-parameter
tractable problems. This hierarchy is based on the logical depth needed to
describe the problems in terms of circuits. (The formal definitions we shall
need are given in §2.) It is shown, for example, that INDEPENDENT SET
(equivalently, CLIQUE) is complete for W{1] ([12]), and that DOMINATING
SET is complete for W[2] ([11]). (For a compendium of the many known
completeness and hardness results see [11].)

We conjecture that the above hierarchy of parameterized problem classes
is proper. If P = NP then FPT = W/[P], and conversely, if F'PT = W|[P]
then, as we will prove, a quantitative version of the P # N P conjecture fails.

Since for each fixed parameter value, each of the problems in the class
WP] is solvable in polynomial time, this theory addresses in some sense (i.e.,
with parameters fixed) complexity issues inside of P. Alternatively, one may
view the larger issue as regarding limited amounts of nondeterminism. For
related studies addressing these issues see for instance, [3], [4], [6], [29], and
[30])

In the present paper, we will first concentrate upon establishing some
concrete U;e, W i]-hardness results. In particular, we will concentrate upon
WP], the top of the W-hierarchy, as well as a new class we call W[SAT
which is again apparently distinct from W[P], and contains a number of im-
portant combinatorial problems such as the problem of deciding WEIGHTED
SATISFIABILITY: does a given formula ¢ of propositional logic have a satis-
fying assignment with exactly k£ literals true. These sections will complement
the earlier papers by Downey and Fellows which established hardness results
for lower levels such as W[1] and W[2]. As an illustration, we shall establish
that the following problems (and many others) are complete for W[P].



DEGREE 3 SUBGRAPH ANNIHILATOR

Instance: A graph G.

Parameter: k

Question: Is there a set V' of at most k vertices of G, such that G — V' has
no minimum degree subgraph?

WEIGHTED PLANAR CIRCUIT SATISFIABILITY

Instance: A planar decision circuit C.

Parameter: k.

Question: Does C' have a weight k satisfying assignment? (A weight k
satisfying assignment is one with exactly k variables set to be true.)
k-LINEAR INEQUALITIES

Instance: A system of linear inequalities.

Parameter: k.

Question: Can the system be made consistent over the rationals by deleting
at most k of the inequalities?

The second goal of the present paper is to introduce and study param-
eterized analogues of problems complete for PSPACE. This turns out to
be of some interest since we are naturally lead to the analysis of the com-
putational complexity of k-move games, such as ALTERNATING HITTING
SET.

Finally in the last section we shall make some contributions to the study
of the structural complexity of the notions we have introduced. For instance,
as we mentioned earlier, we shall prove that if the WW-hierarchy collapses, then
a qualitiative version of P = N P holds. This is expressed in terms of a notion
we call near polynomial time which is along the lines of a DTTM E(2°™)
algorithm for SATISFIABILITY. We also show that certain quantative clas-
sical complexity- theoretical collapses occur if F'PT = W|[P].

The paper is self-contained and can be read independently of the others
in the series. Preliminary versions of some of the results appeared in the ex-
tended abstract [1]. We thank Liming Cai for helpful discussions concerning
aspects of this work.

2 Preliminaries

A parameterized problem is a set L C X* x ¥*. Typically, the second compo-
nent represents a parameter k£ € N, and for our purposes can be thought of



as being presented in unary. For k € ¥* we write Ly = {y|(y, k) € L}. We
refer to L; as the k-th slice of L.

Consideration of examples 1-5 of §1 leads to three flavours of tractability
and reduction.
Definition of Fixed-Parameter Tractability. We say that a parameter-
ized problem L is
(1) nonuniformly fized-parameter tractable if there is a constant o and a se-
quence of algorithms @&, such that, for each x € N, &, computes L, in time
O(n®);
(2) uniformly fixed-parameter tractable if there is a constant o and a single al-
gorithm @ such that ® decides if (z, k) € L in time f(k)|z|* where f : N — N
is an arbitrary function;
(3) strongly uniformly fized-parameter tractable if L is uniformly fixed-parameter
tractable with the function f recursive.

Example 1 is strongly uniformly f.p.tractable (as are most examples of f.
p. tractability obtained without essential use of the Graph Minor Theorem).
Example 2 can be shown to be strongly uniformly F'PT by the methods of [23]
(the Graph Minor Theorem alone gives only give nonuniform tractability).
Example 3 can be shown to be uniformly FPT by the method of [22] (since
the technique of [23] is not presently known to apply, we do not know a
strongly uniform algorithm). Example 5 is at present only known to be
nonuniformly F'PT. If P = NP then example 6 is also F'PT. The following
is the basic definition needed for a completeness programme to help explain
the apparent fixed parameter intractability of such problems.
Definition (Uniform Reducibility). Let A, B be parameterized problems.
We say that A is uniformly f.p.-reducible to B if there is an oracle algorithm
®, a constant «, and an arbitrary function f : N — N such that
(a) the running time of ®(B; (x, k)) is at most f(k)|z|®,
(b) on input (x, k), ® only asks oracle questions of BU/(*

BY®) — ) B; ={(,5): (x,5) € B}
J<I)

) where

(c) ®(B) = A.

If A is uniformly f.p.-reducible to B, write A <% B. We may say that
A <% B wvia f. If the reduction is many:1 (an m-reduction), write A <" B.
Working Definition of Parameterized Reducibility. As with classical
N P-completeness results, most of the reductions we construct will be m-

6



reductions, and in fact will be of the form
(x, k) € Aiff (g9(x, k), h(k)) € B.

Indeed, in all cases in the present paper, g will be P-time of low degree and h
will be recursive. Such reducibilities are special cases of the strong uni form
reducibility described in the next definition.

Definition. (i) We say that A is strongly uniformly f.p.-reducible to B if
A <4 B via f where f is recursive. We write A <7, B in this case.

(ii) We say that A is nonuniformly f.p.-reducible to B if there exists a constant
a, a function f : N — N, and a collection of procedures {®;, : k € N} such
that ®,(BUY®)) = A, for k € N, and the running time of ®; is f(k)|z|.
Here we write A <7. B.

Note that the above are good definitions since whenever A < B with <
any of the reducibilities, if B is F'PT so too is A. We will write F'PT (<) for
the F'PT class corresponding to the reducibility <.

(2.1) Theorem. [1}] The ordering <5 partitions FPT(<Y) into infinitely
many classes. Similarly <% partitions F'PT (<) into infinitely many classes.

Fix attention on any of the above reducibilities, and call it fp-reducibility.
We consider circuits (termed mized type) in which some gates have bounded
fan-in (small gates) and some have unrestricted fan-in (large gates).
Definition. The depth d(C') of a circuit C' is the maximum number of gates
(small or large), on an input-output path in C. The weft w(C') of a circuit
C' is the maximum number of large gates on an input-output path in C.
Definition. We say that a family of circuits F' has bounded depth if there
exists a constant h such that VC' € F, d(C) < h. We say that F' has bounded
weft if there exists a constant ¢ such that VC' € F', w(C) <t. F is a decision
circuit famaly if each circuit has a single output. A decision circuit C' accepts
an input vector z if the single output gate has value 1 on input x. The weight
of a boolean vector z is the number of 1’s in the vector.

Definition of the W-hierarchy. Let F' be a family of decision circuits. We
allow that F' may have many different circuits with a given number of inputs.
To F' we associate the parameterized circuit problem Ly = {(C,k) : C € F
and C' accepts an input vector of weight k}.

(i) A parameterized problem L belongs to W t] if L reduces to the parame-
terized decision circuit problem Lpqp) for the family F'(¢,h) of mixed type



decision circuits of weft at most ¢, and depth at most h, for some constant
h.
(ii) A parameterized problem L belongs to W[P] if L reduces to the circuit
problem Lp where F' is the set of all circuits (no restrictions).
(iii) A prameterized problem belongs to W[SAT] if L reduces to the circuit
problem L where F is the set of all boolean circuits. (I.e all circuits with
all gates having fanout 1.)

The above leads to an interesting hierarchy of parameterized problem
classes

FPT CWI1| CW[2] C .. CW[SAT] C W[P]

If P = NP then the hierarchy collapses. As we mentioned in the intro-
duction, we conjecture that each of the containments is proper.
Current Working Hypothesis: Our current measure of fixed parame-
ter intractability is W[l]-hardness. [As we see in Theorem (2.2) below this
means that L is fixed parameter intractable if L is a parameterized problem
that is as hard as deciding if a 3CNF proposition has a weight k satisfying
assignment. |
Motivation: The above hierarchy may seem slightly strange at first but
we mention the following result which establishes why the notion of weft is
natural. We say that a formula ¢ of propositional logic is in ¢-CNF or ¢-PoS
(Product of Sums), if ¢ is the conjunction of clauses of bounded size g. We
drop the ¢ and write CNF or PoS in the situation that there is no restric-
tion on clause size and we can similarly generate PoSoPoSo...oP(S). With
r alternations we call such formulae -NORMALIZED formulae. With this
definition we can generate the problem of WEIGHTED r-NORMALIZED
SATISFTABILITY which asks, for a parameter k, if a given r-normalized
formula has a weight £ satisfying assignment. The following result is an
amalgam of work of Downey and Fellows [10], [11], and [12]. The proof is
not straightforward. (The full proof of (iii) is given here for completeness.)
(2.2) Theorem. (Downey and Fellows) (i) For ¢ > 2 WEIGHTED ¢-CNF
SATISFIABILITY is W([1]-complete.
(ii) For all v > 2, WEIGHTED r-NORMALIZED SATISFIABILITY s
W r]-complete.
(11i) WEIGHTED SATISFTIABILITY is W[SAT]|-complete.



3 Some W|P|-Completeness Results.

We begin this section with the following a series of basic W[P] completeness
results. The following problem provides a useful variation on WEIGHTED
CIRCUIT SATISFIABILITY for basing combinatorial reductions.

SHORT CIRCUIT SATISFIABILITY

Instance: A decision circuit C' with at most n gates and < klogn inputs.
Parameter: k

Question: Is there any setting of the inputs that causes C' to output 1?7
(3.1) Lemma. SHORT CIRCUIT SATISFIABILITY is W[P]-Complete.
Proof. To see that it is W[P]-hard, take an instance C' of WEIGHTED
CIRCUIT SATISFIABILITY, with parameter k and inputs zq,...,z,. Let
21, ..., Zklogn b€ new variables. Using lexicographic order in polynomial time
(independent of k) we can have a surjection from Z = {z1, ..., Zkiogn} to the
(the characteristic function of the) k-element subsets of X = {zy,...,x,}.
Representing this as a circuit with inputs Z and outputs X we can put this
circuit on top of C to for C’ so that C accepts a weight k input iff C” accepts
some input.

That W[P] contains SHORT CIRCUIT SATISFIABILITY is equally
easy, just use the polynomial embedding of the klogn into the £+ 1-element
subsets of n for n sufficiently large. O

For the following result we shall employ ideas from Abrahamson et. al.
[2]. Let ¢ be a formula of propositional logic (or a circuit). Suppose we
wish to extend a partial truth assignment ¢ of a (circuit or) formula ¢ to a
satisfying assignment t'. If there is a clause, say, all but one of whose literals
are forced to be false by ¢ then ¢ implicitly causes the remaining literal to be
made true. Repeat this process until we can go no further. If this process
generates t' a satisfying assignment of ¢ all of whose literals are specified we
say that ¢ causes ¢ to unravel. Following [2], we have the following problem
definitions.

SHORT SATISFIABILITY

Input: A formula ¢ of n variables and a list of at most k logn variables of .
Parameter: k.

Question: Is ther any setting of the distinguished variables that causes ¢ to
unravel?

kE-INDUCED SATISFIABILITY

Input: A formula ¢.



Paramater: k.

Question: Is there a set of k variables, and a truth table assigment to those
variables that causes ¢ to unravel?

(3.2) Theorem. The following are W|[P]-Complete:

(i) SHORT SATISFIABILITY.

(i1) k-INDUCED SATISFIABILITY.

Proof. (i) We reduce from SHORT CIRCUIT SATISFIABILITY via (3.1).
Let x4, ..., x,,, C be an instance of SHORT CIRCUIT SATISFIABILITY with
parameter £ and m < klogn. These variables will be the distinguished
variables for the input ¢ = ¢(C). We introduce new variables and defing ¢
by locally replacing gates of C' as follows. We replace a not gate y = T by the
formula (xVy)A(ZVY) and an and gate z = zAy by (xVZ)A(yVZ)A(TVYV z2).
The formula generated by the circuit is at most quadraticly larger than the
circuit, and clearly a setting of x4, ..., z,, satisfies C'iff it unravels .
(ii) The proof is delayed till Theorem (3.7). O

The basis for many of our reductions is the W[P]-completeness of WEIGHTED
MONOTONE CIRCUIT SATISFIABILITY, which is the restriction of the
problem WEIGHTED CIRCUIT SATISFIABILITY to circuits with no in-
verters. This result was first announced in Downey et. al. [17]. In [17],
Downey et. al analysed the parameterized tractability of logical problems
stemming from logic and linguistics. The problem of relevance to the present
paper is the following.
MINIMUM AXIOM SET
Input: A finite set S of “sentences,” an “implication relation” R consisting
of pairs (A,t) where A C S and t € S, and a positive integer k.
Parameter: k
Question: Is there a set Sy C .S with |Sy| < k and a positive integer n such
that if we define S;, 1 <17 < n, to consist of exactly those t € S for which
either ¢ € S;_1 or there exists a set U C S;_; such that (U,t) € R, then
S, =857

This problem is, of course, the parameterized version of a well known N P
complete problem from Garey and Johnson [25].
(3.3) Theorem. (Downey, Fellows, Kapron, Hallett, and Wareham [17])
MINIMUM AXIOM SET is W|[P]-Complete.

The proof consists of the following two lemmata. We prove this result in
full detail for both the sake of completeness and because the proof is only

9

10



sketched in [17].
(3.4) Lemma. MINIMUM AXIOM SET belongs to monotone WP)].
Proof. @ We describe a parameterized polynomial-time transformation of
an instance (S, R) of MINIMUM AXIOM SET to a circuit C' that accepts
a weight k vector if and only if (S, R) has an axiom set of size k. For
convenience of description, we view C as a directed acyclic graph for which
(1) each vertex is assigned a logic function in the set {A,V,1}, where 1
denotes the identity function, and (2) some (appropriate) vertices have been
designated as inputs.

Suppose |S| = n. The vertex set of C'is V(C') =V} UV, where

Vi =A{tlu,i]: uwe S, 0<i<n}

Each vertex of V; is assigned the identity logic function. The inputs to
C' are the vertices {t[u,0] : v € S}. We may think of each vertex of V; in
the circuit C are representing a boolean variable, the meaning of which is,
“statement wu is true at time ¢.” Thus a weight k£ input to C' represents k
statements (the axioms) being true at time 0.

The vertices of V, are the union of n? sets of vertices

Vo= J{Vu,i]: ue S, 1<i<n}

where the vertices of Vu,i| implement a monotone circuit C(u,4) that
computes the value of t[u, ] from the value of variables at the i — 1 level of
V1, in accordance with the definition of the sets S; in the description of the
MINIMUM AXIOM SET problem. We may describe C(u, ) by the sum-of-
products expression

C(u,i) = tlu,i — 1] + X(au)er (H tlv, i — 1])
vEA

The correctness of this construction is straightforward, noting that by
time n, all of the statements deducible from the axioms will have been de-
duced. a
(3.5) Lemma. MINIMUM AXIOM SET is hard for W|[P].
Proof. Let C be a decision circuit for which we wish to determine whether
there is a Boolean vector of weight k accepted by C'. We describe how C' can
be transformed in parameterized polynomial time into an instance (.S, R) of

11



the Minimum Axiom Set problem that has an axiom set of size 2k if and only
if C' accepts a weight k£ input vector.

As in the proof of Lemma (3.5), we view the circuit C' as a directed acyclic
graph C' = (V, A). We may assume that the circuit C' is leveled in the sense
that the vertices of V' are partitioned into m sets V'[1], ..., V[t] (“levels”), with
the inputs constituting level 1, and such that for every arc uv € A, if u is
in level ¢ then v is in level 7 4+ 1. Since C is a general circuit, each vertex of
V' — V1] is assigned a logic function from the set {A,V,—}. Thus V — V1]
can be expressed as the disjoint union

V-V[l]=V,uW UV,

We assume without loss of generality that A and V vertices have in-degree
two and that — vertices have in-degree one. We will assume that C has n
inputs V[1] = {uo, u1,...,u,—1}. Let z denote the output vertex of C'.

The set of “statements” S for the instance (S5, R) of Minimum Aziom Set
is the union of three sets, S = S[1] U S[2] U S[3]. Similarly, we describe the
deductive structure R as the union of several parts, R = R[1]U R[2] U R[3] U
R[4] U R[5]. The deductive structure R[1] on S[1] has the primary role of
simulating the logic gates of the circuit C'. The deductive structure R[2] on
S[1] and S[2] handles the inputs to the simulation of C. The role of R[3] and
RI4] is to serve an enforcement mechanism for the input simulation. The role
of R[5] is in handling the output of the simulation of C'.

S[1] ={qu,i] : weV, ie{0,1}}

The simulation of C' provided by the deductive structure on S[1] is straight-
forward. Note that each vertex u of C' is represented by two “statements”
qlu, 0] and qlu, 1] in S[1]. The deductive structure (S, R) simulates C' in the
following general way. First, the structure provided by S|[2] enforces (in a
manner explained below) that “at time 1”7 exactly one of ¢[u, 0] and g[u, 1]
has been deduced for each input vertex u € V4 (that is, will belong to the
set S in the definition of the MINIMUM AXIOM SET problem), for any
2k element axiom set with any hope of success (let us call this “meaningful
input” for the moment). Inductively, the simulation of C' insures that for
meaningful input, for each vertex ¢ € V', and for ¢ = 1, ...,t, exactly one of
qlu, 0] and ¢[u, 1] will belong to S;.

12



In describing the simulation, we interpret this in the following way: if
qlu, 0] € S; then the vertex (logic gate) g of C' has logic value 0 at time ¢, and
if g[u, 1] € S; then ¢ has logic value 1 at time ¢. It may eventually transpire
(at time ¢, since the circuit is leveled) that for the output vertex z of C, the
statement ¢[z, 1] is deduced. The structure (S, R) is such that if ¢[z, 1] is
deduced (at time t) then “everything” in S can be deduced at time ¢ + 2.
The details of the circuit simulation are as follows.

For u € (V, UV,) let v/ and u” denote the input vertices to u, that is,
the two vertices for which «/'u and u”u are in the set of arcs A describing
the circuit. Similarly, for u € V. let v/ denote the single input vertex to
u. The implications of R[1] provide the circuit simulation. We have R[1] =
R, U R, U R- where

U {({alv', 1], q[u", 1]}, q[u, 1), ({g[u’, 0]}, q[u, 0]), ({g[u", O]}, q[u, O])}

uEVA

U {({ale’, 0], q[u”, 01}, qlu, 0), ({qlw’, 11}, g, 1)), ({q[u”, 1]}, qlu, 1))}

ueVy

U {(alv', 1}, qfu, 0]), ({qle, 0]}, qlu, 1]), }

ueV-

We next describe the structure which simulates the input to the circuit.
This construction is based on the ideas of Theorem 2.1 of [10]. We have
S[2] = S[2,1]U S[2,2] U S[2,3] U S[2,4] U S[2,5] where

S2,1] ={a[r,s,i]: 0<r<k—-1,0<s<n-1,1<i<2}

S[2,2] = {blr,s,t,i] : 0<r <k-1,0<s<n-1, 1 <t <n—k+l, 1<i<2}
S[2,3] ={d'[r,u,i]: 0<r<k-1,1<u<2k+1, 1<i<2}
S2,4] = {V[ru,i]: 0<r<k—11<u<2k+1, 1<i<2}
S[2,5] ={d[r,s,i]: 0<r<k—1,0<s<n—1,1<i<2}

Note that the set of statements S[2] can be partitioned into two sets
S[2] = S’[2] U 8”[2] according to the value of the last index of the elements.
That is, let S’[2] be those elements of S[2] with last index i = 1 and let S”[2]
be those elements of S[2] with last index i = 2. For 2’ € 5'[2] let 2" be the
element of S”[2] that corresponds to 2’ by changing the last index from ¢ = 1
to ¢ = 2. Similarly we define the notation S'[2, j] for j =1, ..., 5.

13



We can now describe the second set of implications
R2] = {{a]r,i,1]:0<r <k—1},qu;,1]):0<i<n-—1}
U{({b[r,s,t, 1]}7(][“170]) rs<i<s +1, 0<i<n-— 1}

We next introduce as an intermediate descriptive device a graph G =
(V, E) (the domination graph) on the vertex set V' = S'[2]. For convenience,
we introduce notation for the following sets of vertices in this graph.

A(r)y=A{alr,s,1]:0< s <n-—1}
B(r)={blr,s,t,1]:0<s<n—1,1<t<n—k+1}
B(r,s) = {b[r,s,t,1] : 1 <t <n—k+1}

The edge set E of GG is the union of the following sets of edges. In these
descriptions we implicitly quantify over all possible indices.

Ey ={alr,s,1]a[r,s',1] : s # s’}
Ey = {b[r, s, t,1]b[r,s,t', 1] : t # 1’}

Es = {a|r, s, 1]b[r,s',t,1] : s # &'}
Ey={b[r,s,t,1]d[r,s',1] : s’ # s+t (mod n)}
Es = {ar, s, 1]d'[r,u, 1]}

Eg = {b[r,s,t,1]'[r,u, 1]}

E; ={d[r,s,1]a[r',;s,1] : ¥ =r +1 (mod n)}

We use this graph in describing the third set of implications as follows.
For a vertex v € V, the closed neighborhood N[v] of v is defined to be
N] ={w:vw € E} U{v}.

R[3] = {(N[2],2") : 2" € V = §'[2]}
The third set of statements is
S[3] ={eli] : 1 <i<2k+1}
The final sets of implications are

R[] = {(S"2] U {qlz, 1} efi]) : 1 <i < 2k + 1)

14



R[5] = {(S[3],5) : s € S[1] U S[2]}

This completes the description of the instance (S, R) of MINIMUM AX-
IOM SET. We argue the correctness of the reduction as follows.

We first describe an interpretation of a set U of 2k vertices in the domina-
tion graph, as this plays a key role in the argument. We interpret a[r, s, 1] € U
as the directive, “set the input us of C' to 1.” We interpret b[r,s,t,1] € U
as the directive, “set the inputs u; of C' to 0, for all 7, s < i < s+ ¢.” If
these directives are consistent for the vertices in a set U, call U a consistent
set of vertices in the domination graph. Say that U is total if the direc-
tives corresponding to the vertices in U assign each input to C a value. If
U is consistent and total, then the interpretation 7y of U is the input to C'
corresponding to U according to the directives.

Claim 1. A dominating set D of 2k vertices in the domination graph G is
is consistent and total and the corresponding Boolean input vector 7p to the
circuit C' has weight k.

Proof of Claim 1.

Suppose D is a dominating set of 2k vertices in G. The closed neighbor-
hoods of the 2k vertices a’[0,1,1],...,a'[k — 1,1,1], [0, 1,1],...,b'[k — 1,1,1]
are disjoint, so D must consist of exactly 2k vertices, one in each of these
closed neighborhoods. Also, none of the vertices of V; U V5 are in D, since
if a'[r,u, 1] € D then necessarily a'[r,u/,1] € D for 1 < «' < 2k + 1 (other-
wise D fails to be dominating), which contradicts that D contains exactly 2k
vertices. It follows that D contains exactly one vertex from each of the sets
A(r) and B(r) for 0 <r <k — 1.

The possibilities for D are further constrained by the edges of F3, F, and
E;. The vertices of D in S’[2,1] represent the inputs set to 1 in a weight
k input vector for the circuit C, and the vertices of D in S’[2,2] represent
“intervals” of inputs set to 0 in a weight k input vector for C'. Since there
are k inputs to be set to 1 (in a weight k vector), there are, considering the
indices of the variables mod n, also k intervals of inputs to be set to 0.

The edges of E3, FE, and E7; enforce that the 2k vertices in D must
represent such a choice consistently. To see how this enforcement works,
suppose a[3,4,1] € D. This represents that the third of & distinct choices
of inputs to be given the value 1 is the input us. The edges of E3 force the
unique vertex of D in the set B(3) to belong to the subset B(3,4). The
index of the vertex of D in the subset B(3,4) represents the difference (mod

15



n) between the indices of the third and fourth choices of an input to receive
the value 1, and thus the vertex represents a range of inputs to receive the
value 0. The edges of E4 and FE; enforce that the index ¢ of the vertex of D
in the subset B(3,4) represents the “distance” to the next input to receive
the value 1, as it is represented by the unique vertex of D in the set A(4).
In this way, a dominating set D of size 2k is forced to be both consistent
and total, and we may note also that 7p necessarily has weight k. a
Claim 2. 1f C' accepts a weight k input vector, then (S, R) is a yes-instance
of MINIMUM AXIOM SET.
Proof of Claim 2. Let 7 denote an input Boolean vector of weight k
accepted by C, that assigns the inputs V; = {u;, i, ..., u;_, } € V[1] the
value 1. Suppose ig < iy < ... < ig—1. Let d, = ir41(moar) — ir (mod n) for
r=0,..,k— 1. It is straightforward to verify that the set of 2k vertices

D ={alr,i,,1]:0<r <k-—-1}U{b[r,i,,d.]: 0<r <k—1}

is a dominating set in the domination graph G and that 7p = 7.

We take the initial set of axioms Sy = D. We will argue that S;, o = S.
Since D is a dominating set in the graph on S’[2], by the implications in R[3]
(based on closed neighborhoods in the domination graph) we may deduce
that 5”[2] C S,.

The implications in R[2] yield that

SNS ={qlu,1] :uw e V;} U{qu,0] :u e V[1] =V}

consistent with our description of the circuit simulation (at time 1).

By induction on 4, noting the form of the implications in R[1], it is
straightforward that the circuit simulation is correct; that is, for ¢ = 2, ...;¢
we have

S[1NS; = {qu,1]: u evaluates to 1 in C(7) }
U {q[u,0] : u evaluates to 0 in C(7) }

Since C' accepts 7, ¢z, 1] € S;, and consequently by the implications in
R[4], S[3] C Si41. By the implications in R[5] this yields S C Sy, . O
Claim 3. If (S, R,2k) is a yes-instance of MINIMUM AXIOM SET then C
accepts a weight k input vector.

Proof of Claim 3. Let Sy be the set of 2k axioms. If Sy does not contain
2k statements in S’[2] then by Claim 1 Sy is not a dominating set in the

16



domination graph, and consequently there is at least one statement s € S”[2]
that can only be deduced if every statement in S[3] is first deduced (or is an
axiom). Not every statement in S[3] can be an axiom (since the cardinality
of S[3] is 2k + 1), so there must be some statement s’ € S[3] that is properly
deduced, necessarily by an implication in R[4], prior to the deduction of
s. An examination of R[4] shows that s must be deduced prior to s, a
contradiction. Thus Sy C 5'[2], and furthermore, Sy must be a dominating
set in G.

By Claim 1, Sy must be consistent and total, and we may therefore con-
sider the interpretation 7g,, which we argue is accepted by C. The only
possibility for statements in S’[2] — Sy to be deduced is by the implications
in R[5], and these can only be applied if ¢[z, 1] has been deduced. By the
inductive argument for the correctness of the circuit simulation, this can only
happen if C' accepts the weight k input vector g, . a

That completes the proof of Lemma (3.5). O

(3.6) Corollary. WEIGHTED MONOTONE CIRCUIT SATISFIABIL-
ITY is W[P]-complete. That is, MONOTONE W[P] = W|P].

Proof. By Lemma (3.4) MINIMUM AXIOM SET is a special case of
WEIGHTED MONOTONE CIRCUIT SATISFIABILITY. a

The basic results above form a basis for many of the reductions for various
concrete problems. The next theorem gives some illustrations. We will need
the following definitions:

CHAIN REACTION CLOSURE

Instance: A directed Graph D.

Parameter: k. Question: Does there exist a set V' of k vertices of D whose
chain reaction closure is D. Here the chain reaction closure of V' is the
smallest superset S of V' such that if u,v’ € S and arcs ux, v’z are in D
then x € S.

t-THRESHOLD STARTING SET

Instance: A digraph D.

Parameter: k.

Question: Is there a set of k vertices of D with the property that it will
pebble D under the rule that a vertex can be pebbled iff at least ¢ incoming
vertices are pebbled?

(3.7) Theorem. The following problems are W|P]-complete.

(i) WEIGHTED PLANAR CIRCUIT SATISFIABILITY

(i) DEGREE 3 SUBGRAPH ANNIHILATOR

17



(iii) CHAIN REACTION CLOSURE
(iv) - THRESHOLD STARTING SET

(v) k-INDUCED 3CNF SATISFIABILITY
(vi) k-LINEAR INEQUALITIES

Proof. (i) We reduce WEIGHTED CIRCUIT SATISFIABILITY to the
planar version. This involves no more than the use of a crossover gadget
along the lines of Lichtenstein [28], or Garey and Johnson [24]. Take an
instance ¢ of WEIGHTED CIRCUIT SATISFIABILITY with paramater k.
Suppose a wire from x (a variable or gate) is crossing one from y. We replace
this crossing by the gadget of diagram 1. On this diagram we have listed the
values at each gate as a triple corresponding to the settings of x and y. Note
that we need only give a triple by symmetry. Since p agrees with y and ¢
agrees with x we have achieved the desired crossing.
(ii) We reduce from WEIGHTED MONOTONE CIRCUIT SATISFIABIL-
ITY. Let C be an instance of WEIGHTED MONOTONE CIRCUIT SAT-
ISFTABILITY with parameter k. We can regard all gates to have only two
inputs with only quadratic increase in the size of the circuit. We shall use
local replacement. We replace the and and or gates by the gadgets given in
diagram 2. Formally, we can define the and gadget AND(z,y, z) for a gate
x Ay with output 2z via the vertices
v(x,7) and v(y, j) for 1 < 7 < 7 together with vertex ¢(z,y) and “pendant
vertices” I(z,y,p) for p=1,2,3,4.
The edges are for r € {z,y},
ro(r, 1),
v(r, Do(r,2), v(r,Do(r,3), v(r,2)v(r,4), v(r,3)v(r,5), v(r,4)v(r,5),
(These are the “pentagonal” edges of the gadget.)
v(r,2)v(r,6), v(r,4)v(r,6), v(r,6)v(r,7), v(r,3)v(r,7), v(r,5)v(r,7),
(These are the edges connected to the pentagon.)
v(r,6)q(z,y), v(r,Na(z,y), ¢(z,y)l(z,y,1),
(These are the connecting edges.)
Uz y, Di(x,y,2), Uz, y, Di(z,y,3), Uz,y,2)l(z,y,3), U(z,y,2)l(z,y,4),
and [(x,y,3)l(z,y,4)
(These are the edges of the “pendant diamond”).

The vertices for the or gadget OR(z,y, z) are w(z,j), w(y,j) for 1 <
j < 7 and 3 additional vertices m(z), m(y), n(z,y) and g(z,y,p) for p =
1,2,3,4. The vertices w(r, j) are connected among themselves exactly as we

18



did for the v(r,j) above, as are the pendant g(z,y,p). We also have edges
w(r,6)m(r), w(r,7)m(r), m(r)n(z,y), and n(z,y)z.

Additionally, we shall need another sort of gadget, a fanout gadget which
is used to cope with the fanout occurring at gates and in the construction.
This gadget is also indicated in diagram 2 for fanouts 3 and 4.

Let the variables of C' be z[1], ..., z[n]. For the construction of the graph
G(C), we first replace all the gates of C' and their fanouts by the gadgets
of diagram 1. Call the result I(C). Using I(G), we make another inter-
mediate graph I'(G) as follows. For each z[i] € {z[1],...,x[n]}, create a
subgraph consisting of the (new) vertices v(i,j) : j = 1,...,4 and edges
v(z, D)v(1, 2), v(i, 1)v(i, 3), v(i, 2)v(i, 3), v(i, 2)v(i, 4), and v(7, 3),v(i,4). form
2k + 1 copies of the I(C) except that in place of the k 4+ 1 versions of the
input variable x[i] we connect all relevant gates to the single vertex v(i,4).
(Thus if in the original circuit the variable z[i] had fanout m then in the
graph I'(C') v(7,4) will have degree m(k + 1) +2.) Finally we form the final
graph I”(C) by taking the vertex u(7) representing the output of the i'th
version of I(C') used in I’(C), and for each j = 1,...,n, join o(i) to v(j,1)
via one of the outputs u; of a fanout gadget of fanout n. This concludes the
construction.

To see that the construction succeeds, we show that C' has a a weight k
accepting input iff 7”(C') has no k element degree 3 subgraph annihilator.
First suppose that C' has a weight k accepting input. Let x[i], ..., x[ix] be
the true variables in some satisfying assignment. Remove the vertices v[q, 4]
for g € {i1, ..., 3} from I"(C). We claim that the result has no min degree 3
subgraph. We shall describe a process that removes edges that are useless to
a min degree 3 subgraph and eventually kills all of I”(C'). The reader should
note the following guiding principle to our proof. Given any graph G the
following simple process determines if G has a min degree 3 subgraph.

1. Repeat until there are no degree < 2 vertices:

Find any vertex v of degree < 3. Let G <~ G — v.

2. (G is has a min degree 3 subgraph iff the result of 1. is nonempty.

In our construction, the interpretation is that “z removed” equates to “x
is true”. Suppose vertex x of the and gadget AN D(z,y, ) is removed. This
will cause the vertex v(x,1) at the top of the gadget that is joined to z to
have degree 2. Thus we may remove v(z, 1) from I”(C') since it can’t be part
of a min degree 3 subgraph. In turn this decreases the degree of v(x,2) and
v(x,3) to 2. Arguing in this way we see that all of the vertices v(z, ) will

19



need to be removed. Note that this causes I(z,y) to have degree 3. Thus if
one input of and gate is removed then the effect is to remove that half of the
gadget.

In the case of an or gate we can similarly argue that the removal of either
of the inputs will cause the whole gadget to be removed, wnd the verteces
corresponding to the other input and the one corresopnding to z to have their
degree reduced by 1.

Translating the gadget observations back to C' it follows that if a gate
is made true then the corresponding gadget can be removed from [”(C').
Since the given assignment is one that satisfies C' it follows that any vertex
u representing the output of a copy of C' can be erased. Consequently, using
the same reasoning we can erase all the vertices of the fanout gadgets thus
dropping the degree of the vertices v[i, 1] by 1. This then allows us to erase
the vertices vli, j| for all 7 and j and thus erase all of I”(C'). Thus I"(C) —
{v[i1, 4], ..., v[ix, 4]} has no min degree 3 subgraph.

Conversely, suppose that I”(C) has a a collection V' of k vertices such
that G = I"”(C) — V' has no min degree 3 subgraph. It follows that except
for variable components, V' must be disjoint from k 4 1 of the circuit copies.
As the circuit copies are identical, we may suppose without loss of generality
that V' has no internal circuit vertices. Now the removal of V/ must cause
the graph to be erased as above. This means that the removal of V' and
the process above must cause all of the output nodes u to be removed, or
else we can add the 9 nodes below of the fanout immediately below v and
have a min degree 3 subgraph. Since all the output vertices must be removed
by V', and not all can be in V' it follows that the circuit aboveat least one
output vertex u must be removed. (Fanout gadgets can only be removed
from above not below.) Since there are 2k + 1 copies of the circuit, it follows
that for one such w, its removal can only be generated by the removal of a
set of variables, which we can take to be {v[i1,4], ..., v[im,4]}. Now we can
argue that since u is removed, if u corresponds to an and gate then both of
its inputs must be removed, and if u is an or gate then at least one of its
inputs must be removed. Chasing the removed inputs up the circuit, we can
argue that eventually a set of vertices must be removed, and we see that
this set of < k vertices cause the circuit to be erased. The reason there
are only < k vertices are able to cause this removal is the following. Apply
the removal process to the initial set V'. As the removal process discharges
through the circuit the “first” time, only vertices corresponding to variables

20



can cause the removal of u. But if u is not removed on the first sweep then
it will never be removed. As above they must correspond to a satisfying
assignment for C'. Since C' is monotone, they can be extended to a weight k
satisfying assignment for C. Thus C'is satisfiable by a weight k assignment iff
I"(C) has a size k degree 3 subgraph annihilator, and hence MIN DEGREE
3 SUBGRAPH ANNIHILATOR is W[P] hard.

(iii). This is very similar to the argument for (ii). Again, we reduce from
WEIGHTED MONOTONE CIRCUIT SATISFIABILITY. This time we use
the and, or and fanout gates of diagram 3, where the arcs go down. In the
construction, this time we represent the variables by pairs of vertices z[i], yli]
Again we form I”(C') by replacing the gates in the circuit C' by gadgets as
above and then taking 2k + 1 copies of the for i = 1,...,n. Again each pair
that represents an output for a circuit fans out to and gates above each of the
variable pairs. (Or more precisely, to collections of gadgets corresponding
to large and gates with outpots the variables.) Note, for instance, that it
requires both of the input pairs of the and gadget to be in the closure before
the output pair will be included. Thus for the variable pairs to be included,
we need all of the output pirs corresponding to the circuits to be included.
Thus as in the previous argument, the original collection of < 2k variable
pairs included in V' cannot cause any more variable pairs to be included
unless they first cause the inclusion of all of the circuit output pairs first.
But as in the previous argument, this corresponds to a satisfying assignment
of C.

(iv) This is similar to (iii), except that we modify the gadget so that instead
of 2 incoming vertics we gat t. Diagram 3 illustrates this for an and gate for
t=5. Here every variable is replaced by t variables.

(v) CHAIN REACTION CLOSURE is a special case of k--INDUCED 3CNF
SATISFIABILITY.

(vi) This time we employ the reduction from [2]. Cook observed that if
C'is and circuit with input variables x = (z1,...,x,) and output variables
y = (Y1, ..., Ym) then there is a LOGSPACE procedure that, on input C
produces a set L of linear inequalities with the properties

(a) The inequalities include variables X = (X, ..., X,,) and Y = (Y7,..., Y},,).
(b) For all binary vectors b = (by, ..., b,) there is exactly one point that sat-
isfies all the inequalities of L and additionally satisfies X = b.

(b) If ¢ is the output of C on input b then the unique assignment that satisfies
L and X = b also satisfies Y = c.

21



L is said to simulate C. (The proof of this result is the following: represent
not gatesa = bbya=1—band 0 < a < 1, and and gates a = b A ¢ by
0<a<l1l a<b a<c andb+c—1<a.) Wereduce from WEIGHTED
CIRCUIT SATISFIABILITY. Let C be an instance of WEIGHTED CIR-
CUIT SATISFIABILITY with ¢ input variables x4, ...,z,. Let Xj,..., X, be
rational variables. Consider the inequalities:

X; <0, and £+ 1 copies of both X; +...+ X, >k, and 0 < X, < 1.

To this system we add k + 1 copies of the inequalities representing C' with
X1, ..., X, also representing the input variables. We also add a variable Z
to represent the output variable and add the inequality Z > 1 k4 1 times.
Clearly this system is satisfiable by the deletion of k of the inequalities (which
must be the X; < O-type) iff C' has a weight k satisfying assigmment. a
Remark. There are a number of “planar” questions open for finite levels of
the W-heirarchy. For instance, we do not know if PLANAR »~-NORMALIZED
WEIGHTED SATISFIABILITY (r fixed) is (even) W[l]-hard.

4 Some W[SAT]-complete problems

We shall need the following definition. We say that a circuit is antimonotone
if all the inverters occur in the inputs and furthermore all the inputs are
negated. So the sircuit is monotone save for all the inputs being negated.
We have the following W[SAT|-completeness results to offer.

(4.1) Theorem. (Downey and Fellows) The following are W[SAT]-complete
(i) WEIGHTED MONOTONE SATISFTABILITY

(i) WEIGHTED ANTIMONOTONE SATISFIABILITY

Proof. We only include a proof for completeness, since these results follow
from [10], [11], and [12]. Let C be a boolean circuit. Following [10], we first
normalize C' by bringing all the inverters to the top of the circuit. As the
circuit is boolean, this process involves no more than a constant increase in
size using iterated applications of De Morgan’s laws. Let C’ be the resultant
circuit. For (i) we now f.p. reduce C’ to an instance of MONOTONE SATIS-
FIABILITY. This reducton involves the basic reduction in [10] there used to
reduce WEIGHTED CNF SATISFIABILITY to DOMINATING SET (which
is just an instance of MONOTONE CNF SATISFIABILITY.)

22



We recall that this reduction went as follows. Let X be a Boolean expres-
sion in conjuctive normal form consisting of m clauses C4, ..., C,, over the set
of n variables xg,...,x,_1. We show how to produce in polynomial-time by
local replacement, a graph G = (V, E') that has a dominating set of size 2k
if and only if X is satisfied by a truth assignment of weight k.

The vertex set V' of GG is the union of the following sets of vertices:
Vi={alr,s]:0<r<k—-10<s<n-—1}

Vo=A{blr,s,t] :0<r<k—-10<s<n—-1,1<t<n—-k+1}
Vs ={clj] : 1< j <m}
Vi={dru:0<r<k—-11<u<2k+1}
Ve={VV[rul:0<r<k—-11<u<2k+1}
Voe=A{dr,s]:0<r<k—-10<s<n-1}

For convenience, we introduce the following notation for important sub-
sets of some of the vertex sets above. Let
A(r)=Aa[r,s] :0<s<n-—1}

B(r)=A{b[r,s,t] :0<s<n—-1,1<t<n-—-k+1}
B(r,s) =A{blr,s,t] : 1 <t <n—k+1}
The edge set E of GG is the union of the following sets of edges. In these
descriptions we implicitly quantify over all possible indices.
E, ={c[jla|r,s] : x5 € C}}
Ez = {a[r, sla[r,s'] : s # §'}
= {b[r, s, t]blr, s, t'] : t £ '}
= {alr, sb[r, s, 1] : s # 5’}
E5—{b[r tld[r,s'] : 8 # s+t (mod n)}
— {alr sla'[r, u]}
= {b[r, s, t]0'[r,u]}
= {c[jlblr,s,t] : Fi 7T € Cj,s <i < s+t}
= {d[r,slalr’,s] : 7" =7+ 1 (mod k)}

Suppose X has a satisfying truth assigment 7 of weight k, with variables
Tigy Tiy s ---, Tif,_, assigned the value true. Suppose iy < i3 < ... < i5_1. Let
dy = Ty 41(modk) — & (mod n) for r =0, ...,k —1. It is straightforward to verify
that the set of 2k vertices

D ={a[r,i,] :0<r <k—1}U{b[r,i,,d,]:0<r<k-—1}

is a dominating set in G.
Conversely, suppose D is a dominating set of 2k vertices in G. The closed
neighborhoods of the 2k vertices d’[0, 1], ..., a'[k — 1,1],0'[0,1], ...,/ [k — 1,1]

23



are disjoint, so D must consist of exactly 2k vertices, one in each of these
closed neighborhoods. Also, none of the vertices of V; U V5 are in D, since if
a'[r,u] € D then necessarily o'[r,u/] € D for 1 < «’ < 2k+1 (otherwise D fails
to be dominating), which contradicts that D contains exactly 2k vertices. It
follows that D contains exactly one vertex from each of the sets A(r) and
B(r) for 0 <r <k—1.

The possibilities for D are further constrained by the edges of Fy, E5 and
FEy. The vertices of D in V; represent the variables set to true in a satisfying
truth assignment for X, and the vertices of D in V5 represent intervals of
variables set to false. Since there are k variables to be set to true there are,
considering the indices of the variables mod n, also k intervals of variables
to be set to false.

The edges of E,, E5 and Ey enforce that the 2k vertices in D must
represent such a choice consistently. To see how this enforcement works,
suppose a[3,4] € D. This represents that the third of & distinct choices of
variables to be given the value true is the variable 4. The edges of F, force
the unique vertex of D in the set B(3) to belong to the subset B(3,4). The
index of the vertex of D in the subset B(3,4) represents the difference (mod
n) between the indices of the third and fourth choices of a variable to receive
the value true, and thus the vertex represents a range of variables to receive
the value false. The edges of F5 and Fqg enforce that the index ¢ of the vertex
of D in the subset B(3,4) represents the “distance” to the next variable to
be set true, as it is represented by the unique vertex of D in the set A(4).

It remains only to check that the fact that D is a dominating set insures
that the truth assignment represented by D satisfies X. This follows by the
definition of the edge sets E; and Fj.

To reduce C’ to a monotone circuit C” we employ a “change of variables”
based on the combinatorial reduction above. Suppose the inputs to the circuit
(" received at the beginning of this step are z[1],...,z[n|. Let X denote the
boolean expression having 2n clauses, with each clause consisting of a single
literal, and with one clause for each of the 2n literals of the n input variables.
Let G x be the graph constructed for this expression as in the reduction above.

The change of variables is implemented for C’ as follows. (1) Create a
new input for each vertex of Gx that is not a clause vertex. (2) Replace
each positive input fanout of z[i] in C” with an Or gate having k new input
variable arguments corresponding to the vertices to which the clause vertex
for the clause (z[i]) of X is adjacent in Gx. (3) Replace each negated fanout

24



line of z[i] with an Or gate having O(n?) new input variable arguments
corresponding to the vertices to which the clause vertex for the clause (—x[i])
of X is adjacent in Gx. (4) Add a new And gate to C’ which takes as input
the output from the bottom gate of C’ and inputs corresponding to the
product-of-sums expression, where the product is taken over all non-clause
vertices of Gx, and the sum for a vertex u is the sum of the new inputs
corresponding to the non-clause vertices in N[u].

The modified circuit C” obtained in this way accepts a weight 2k input
vector if and only if the original circuit C” accepts a weight & input vector.
The proof of this is essentially the same as the verification of the reduction
above. Since all of the not gates of C’ are at the top, the circuit C” will be
monotone. Moreover it is clearly boolean, and does not involve more than a
quadratic blowup of the size of C’. In fact, in [10], [11] using more intricate
arguments, it is shown that the above can be implemented without chang-
ing the weft of the circuit and this observation is the key to completeness
results for W[r]. We do not need this nicety here, and thus employ a simpler
argument.

We now turn to the proof of (ii). This time we use the argument of [12],
Proposition 3.2. Again we give the argument for completeness. We recall
that the relevant result was

(4.2) Wt] = antimonotone W t] for ¢ odd, t > 1.

Again this result is proven by “hardwiring” a combinatorial reduction. This
time the relevant combinatorial reduction came from the rpoof that W1, s] =
antimonotone W1, s for all s > 2. Here the reader should recall that W1, s]
denoted the weighted satisfaction problem for circuits representing formulae
in s-CNF form. The plan of the Downey-Fellows [12] argument is to iden-
tify a problem (RED/BLUE NONBLOCKER) that belongs to antimonotone
W1, s|, and then show that the problem is hard for W|[1,s]. RED/BLUE
NONBLOCKER is the parameterized problem below.

Input: A graph G = (V, E) where V is partitioned into two color classes
V= ‘/red U Vblue-
Parameter: A positive integer k.
Question: Is there is a set of red vertices V' C V,¢q of cardinality k such that
every blue vertex has at least one neighbor that does not belong to V.

The closed neighborhood of a vertex w € V' is the set of vertices N[u| =
{r:zeVand x =uorazu e E}.

25



It is easy to see that the restriction of RED/BLUE NONBLOCKER to
graphs G of maximum degree s belongs to antimonotone W1, s] since the
product-of-sums boolean expression

n > =

uevblue wiEN[u]mV'red

has a weight k truth assignment if and only if G has size k nonblocking set.
By the weight of a truth assignment to a set of boolean variables, we mean
the number of variables assigned the value true.

Such an expression corresponds directly to a circuit meeting the defin-
ing conditions for antimonotone W1, s]. We will refer to the restriction of
RED/BLUE NONBLOCKER to graphs of maximum degree bounded by s
as s-RED/BLUE NONBLOCKER. We next argue that s-RED/BLUE NON-
BLOCKER is complete for W1, s].

Let X be a boolean expression in conjunctive normal form with clauses
of size bounded by s. Suppose X consists of m clauses C1, ..., C,, over the
set of n variables xg, ..., x,,_1. We show how to produce in polynomial-time
by local replacement, a graph G' = (Vieq, Ve, £) that has a nonblocking set
of size 2k if and only if X is satisfied by a truth assignment of weight k.

The red vertex set Vieq of G is the union of the following sets of vertices:
Vi=A{alri,m]:0<r <k—-1,0<ry,<n-—1}

‘/Qz{b[Tl,TQ,Tg]IOSTl Sk—l,OSTgSn—l,lgrgggn—k‘i‘l}

The blue vertex set Vi of G is the union of the following sets of vertices:
Vs ={c[ri,ra, 7] :0<r <k—-10<r<r,<n-1}

Vi = {d[r1,re,rh, 13,75 : 0 <1y < k—1,0<ryr, <n-—10<r3r, <
n—1 and either ro # 1) or r3 # 1}

Vs = {elri,ro,rh,r3] 10 <1 <k—1,0<rory<n—1,ry #7151 <r;<
n—k+1}

Vo = {flri,r,ra,m3] :0<r,r] <k—-1,0<r<n-1,1<rs<n-—k+
1,7 # ro + r3 mod n}

Vi=A{gls,j"1:1<j<m, 1 <5 <my}

In the desription of V7, the integers m; are bounded by a polynomial in
n and k of degree a function of s which will be described below. Note that
since s is a fixed constant independent of k, this is allowed by our definition
of reduction for parameterized problems.

For convenience we distinguish the following sets of vertices.

A(ry) ={afry,m) : 0 <ry <n—1}

26



B(ry) ={b[r1,ro,r3] :0<ry<n—-1,1<r3<n—-k+1}
B(ry,1m9) = {blr1,ro,r3] : 1 <rg<mn—k+1}

The edge set E of GG is the union of the following sets of edges. In these
descriptions we implicitly quantify over all possible indices for the vertex sets
Vi, .., Vo
Ey = {a|r1,qlc[r1,re, 5] g =1y or q=rh}

Ey = {b[r1, g2, q3]d[r1, 72,75, 73,75 either (ga = ro and q3 = 73) or (@ =
vy and gy = 15)}

Es ={a[r —1,r3)e[r1,72,¢,¢]}

Ey = {blri.q.qle[r1,m2, 9, ¢']}

Es = {b[r1,re, r3) flr1, 7y, m9, 73] }

Es = {a[r1 + 1 mod n,r}] flr1,r],r2, 73]}

We say that a red vertex a[ry, ro| represents the possibility that the boolean
variable z,., may evaluate to true (corresponding to the possibility that
a[ry, 9] may belong to a 2k-element nonblocking set V’ in (). Similarly, we
say that a red vertex b[ry,rq,r3] represents the possibility that the boolean
variables X,,y1, ..., Tryirs—1 (With indices reduced mod n) may evaluate to
false.

Suppose C' is a clause of X having s literals. There are O(n**) distinct
ways of choosing, for each literal [ € C, a single vertex representative of the
possibility that [ = x; may evaluate to false, in the case that [ is a positive
literal, or in the case that [ is a negative literal [ = —x;, a representative
of the possibility that x; may evaluate to true. For each clause C; of X,
j=1,....,m,let R(j,1), R(j,2), ..., R(j,m;) be an enumeration of the distinct
possibilities for such a set of representatives. We have the additional sets of
edges for the clause components of G:

= {a[r1,r2]gly, j'] - alr1, 2] € R(j, )}

Eg = {blr1,72,13]g[j, '] : b[r1,r2, 73] € R(j,5")}

Suppose X has a satisfying truth assigment 7 of weight k, with variables
Tigy Tiy s ---, Tif,_, assigned the value true. Suppose iy < i3 < ... < i5_1. Let
dy = Ty 41(modk) — & (mod n) for r =0, ...,k — 1. It is straightforward to verify
that the set of 2k vertices

N =A{a[r,i,]: 0 <r <k—1}yU{b[r,i,,d.] : 0<r <k—1}

is a nonblocking set in G.
Conversely, suppose N is a 2k-element nonblocking set in G. It is straight-
forward to check that a truth assignment for X of weight k is described by

27



setting those variables true for which a vertex representative of this possibil-
ity belongs to N, and by setting all other variables to false.

Note that the edges of the sets E; (F5) which connect pairs of distinct
vertices of A(ry) (B(r1)) to blue vertices of degree two, enforce that any
2k-element nonblocking set must contain exactly one vertex from each of
the sets A(0), B(0), A(1), B(1),..., A(k — 1), B(k — 1). The edges of E3 and
E, enforce (again by connections to blue vertices of degree two) that if a
representative of the possibility that z; evaluates to true is selected for a
nonblocking set from A(ry), then a vertex in the i* row of B(r;) must be
selected as well, representing (consistently) the interval of variables set false
(by increasing index modn) until the “next” variable selected to be true.
The edges of F5 and Ej insure consistency between the selection in A(r;)
and the selection in A(r; + 1 mod n). The edges of F; and Ejg insure that a
consistent selection can be nonblocking if and only if it does not happen that
there is a set of representatives for a clause witnessing that every literal in
the clause evaluates to false. (There is a blue vertex for every such possible
set of representatives.)

To complete the proof of (4.2) and hence Theorem 4.1 (i), let C' be a
circuit of weft ¢ for ¢ odd, ¢ > 3. By Theorem 4.1 of [11], we may assume
that C' is represented by a boolean expression Ej that is in (alternating)
product-of-sums-of-products... form (for ¢ alternations). The first level of
the circuit below the inputs consists of And gates (since ¢ is odd).

Suppose the inputs to C' are z, ..., x,. Let X; be the boolean expression
with single-literal clauses X; = (z1)(x2)---(z,) and let G be the graph
constructed from X; by the reduction in (3.4) above. Let 4, ...,y. be new
variables, one for each red vertex in G.

Let E; be the boolean expression

Ey = H Z Y

u€(Vole—V7)  yi€N[y]

and let C'} be a circuit realizing Fj.

We modify C'in the following ways:
(1) Each positive fan-out from an input x; to C' is replaced by an And gate
receiving negated inputs from all of the new input variables y; for which the
corresponding red vertices of GG represent the possibility that x; evaluates to
false.
(2) Each negated fan-out from an input x; to C' is replaced by an And gate

28



receiving negated inputs from all of the new input variables y; for which the
corresponding red vertices of GG represent the possibility that x; evaluates to
true.

(3) The circuit C; is conjunctively combined with C' at the bottommost
(output) And gate.

The circuit C” obtained in this way accepts a weight 2k input vector if and
only if C accepts a weight £ input vector. The argument for correctness is
essentially the same as for (4.1). The circuit C’ has weft t after the And gates
replacing the former inputs are coalesced with the And gates of the topmost
large gate level (this is feasible, since ¢ is odd). All of the input fan-out lines
of C" are negated. Note that the argument again make no reference to the
depth of the circuit and hence works equally well for W[SAT] size circuits.
O

The results of the previous section suggest natural questions such as
the classification of the parameterized complexity of WEIGHTED PLANAR
SATISFIABILITY and WEIGHTED PLANAR MONOTONE (CIRCUIT)
SATISFIABILITY.

5 Fixed Parameter Analogues of PSPACFE and
k-Move Games

As we have seen, classical time classes such as NP seem to split into many
parameterized classes when natural parameterized versions of the problems
are considered. So too the same situation seems to occur when we look at
parameterized space. Of course, a natural parameterized space class suggests
itself if we wish to consider fixed parameter space complexity.

Definition. We say that a parameterized language L is in SLICEWISE
PSPACE if there is a procedure @, a function f, and a constant « such that
for all k,

(x,ky € L iff ®({x,k)) accepts, and the space bound on ®((x, k)) is f(k)|z|*.

As the Cai et. al. [6] observed, one can similarly define a parameterized
class SLICEWISE C for any classical complexity class C. The reader
should note that since there is a set in DSPACE(|z|°"!) which in linear
time can compute any language in DSPACE(|z|¢), it follows that:

29



Observation. If P = PSPACE then SLICEWISE PSPACE = FPT.

One of the key goals of parameterized complexity is to give real insight
into the complexity of concrete problems and the structure of P. In that
light one interesting variation on the above definitions would be the class
of problems in PARAMETERIZED LOGSPACE. That is, languages L such
that for all k, (x,k) € L is decidable in space f(k)log(|z|). While these
definitions suggest some interesting analyses, we shall not pursue them here.

In this section, the main goal is to point out a very interestion connection
between parameterized versions of space and the complexity of £ move games.
For these purposes, SLICEWISE PSPACE and PARAMFETERIZED
LOGSPACE seem too large. Of course, many game problems are known
to be PSPACE-complete. Typically, such problems ask whether the first
player to move has a winning strategy. A natural parameterized version of
the problem is whether the first player has a strategy that wins within at
most k£ moves.

Parameterized versions of some hard game problems are f. p. tractable.
An example is the ALTERNATING HITTING SET game [25] [33] restricted
to sets of any fixed size t > 2 which is PSPAC E-complete. That is we
consider the problem:

RESTRICTED ALTERNATING HITTING SET

Instance: A collection C' of subsets of a set B with |S| < k; for all S € C'.
Parameter: (ky, ks).

Question: Does player I have a win in < ko moves in the following game?
Players play alternatively and choose unchosen elements, until, for each S €
C some member of S has been chosen. The player whose choice this happens
to be wins.

(5.1) Theorem. RESTRICTED ALTERNATING HITTING SET is (strongly)
fixed parameter tractable.

Proof. It is simplest to consider k; = 2, the analogue of the PSPACFE com-
plete problem ALTERNATING VERTEX COVER. Take an edge (z,y). All
vertex covers must include x or y. Try each, generating the tree of possibili-
ties. Terminate a branch and put the cover at the leaf if a branch achieves a
vertex cover. This gives a tree with at most k7 = 2% leaves (corresponding
to posible candidates for vertex covers), at most k2% vertices, and all size
< ko covers must contain a subset occurring at one of the leaves.

Now we select ks additional vertices of GG, not occurring at any of the
leaves of the tree (we can assume V' is large compared to ks, else the problem

30



is easily done). Consider all possible strategies played on the subgraph in-
duced by these at most ky + ko2F2 vertices. It is easy to see that player I has
a winning strategy in < ko moves in G iff he has one in this set of strategies.
O

On the other hand some problems appear not to be f. p. tractable.
GENERALIZED GEOGRAPHY is a game played on a directed graph G
with a distinguished start vertex [25], [33]. Players alternate choosing ver-
tices, starting at the start vertex vy, in such a way that the chosen vertices
form, in sequence, a simple directed path in G. The first player who is un-
able to choose a vertex loses. Determining whether player 1 has a winning
strategy in a GENERALIZED GEOGRAPHY game is PSPAC E-complete.
A good candidate for a game problem that is not f. p. tractable is SHORT
GEOGRAPHY , in which it is asked whether player 1 has a strategy that
wins a given game of GENERALIZED GEOGRAPHY in at most k moves.

In order to address such questions we introduce the classes AW[P], AW [SAT],
and AW x|, which plausibly contain problems that are not in F'PT. We show
that SHORT GEOGRAPHY is AW [*]-complete.

Like W[SAT], AW[SAT] is the closure under fp-reductions of a kernel
problem of such a general nature that it appears not to be fixed parameter
tractable. This problem is a parameterized version of Quantified Boolean
Formulae, defined as follows.

Definition. PARAMETERIZED @QBFSAT is the parameterized problem
specified

Instance: A sequence sq, ..., s, of pairwise disjoint sets of boolean variables,
and a boolean formula X involving the variables in s; U--- U s,.
Parameters: r, ki, ..., k,.

Question: Is it the case that there exists a size k; subset t; of s; such that
for every size ko subset ty of sy there exists a size k3 subset t3 of s3 such that
...(alternating quantifiers) such that, when the variables in t; U --- Ut, are
made true, and all other variables are made false, formula X is true?
Definition. AW[SAT] is the set of all problems that fp-reduce to PARAM-
ETERIZED QBFSAT.

Clearly, an equivalent formulation of this problem is

Instance: A QBF formula Qqx1...Q0,x,X.

Parameter: k = (ky, ..., kn)

Question: Is QlflleS%Q...QfL"an true? (Here 3%z is interpreted to mean
“does there exist a weight i x such that...” and V*z is interpreted to mean

31



“for all weight k z...”.)

Similarly, we can define the problem of PARAMETERIZED QUANTI-
FIED CIRCUIT SATISFIABILITY, (PARAMETERIZED QCSAT), speci-
fied by replacing the X by a circuit with the variables x as the input. So
with this interpretation WEIGHTED CIRCUIT SATISFIABILITY is in PA-
RAMETERIZED 3%;. We have a natural result which is a partial analogue
to the classical result that QBFSAT is PSPACE-complete. We need the
following problem definition.

COMPACT TM COMPUTATION

Instance: A nondeterministic Turing machine M and a word =x.

Parameter: k.

Question: Is there an accepting computation of M on input z that visits at
most k& work tape squares?

The following result improves the earlier work of Cai, Chen, Downey and
Fellows [7] who proved that COMPACT TM COMPUTATION is W[P]-hard.
(5.2) Theorem. COMPACT TM COMPUTATION is AW |[P]-hard.
Proof. Let X, sq,...,s, be an instance of PARAMETERIZED QCSAT with
parameter k = (ki, ..., k,). We shall use as a subroutine the method devel-
oped by Cai et. al. [7] to prove W[P]-hardness. This proof went as follows.
The reduction is from WEIGHTED MONOTONE CIRCUIT SATISFIABIL-
ITY. Let C be a circuit for which we wish to determine whether there is an
input vector of weight k accepted by C'. We may assume that each logic gate
g of C has two inputs. In time polynomial in |C| we can describe a Turing
machine M sketched as follows.

M has an alphabet consisting of one letter for each input to C', and
the operation of M consists of two phases. In the first phase, M makes
k moves nondeterministically, writing down in the first k tape squares k
symbols which represent k£ inputs to C' set to 1. In the second phase (and
visiting no other tape squares), M checks whether the the guess made in the
first phase represents a vector accepted by the circuit C.

The key point is that we can structure the transition table of M to ac-
complish this, with the size of the table polynomial in |C|. To do this, we
make two states ¢l, and ¢}, for each connection (or line) I of the circuit C.
Let g be an and gate of C, let [ be an output line of g and suppose the input
lines to the gate g are l; and l,. We include in the transition table for M
transitions from ¢!, to g1, from ql},, to ¢2, and from g2, to ¢iy,,. The

up) down
significance of being a state ¢}, is that this represents a value of 1 for the

32



line [ as computed by C on the input guessed in the first phase. The state
qu might be viewed as a state of query about the value of [ for the circuit
C on the input guessed in the first phase. Note that the three transitions
described above for the and gate g thus enforce that ¢}, can be reached
only if ¢'t and ¢ can be reached. The appropriate transitions for an or
gate will differ in the obvious way, i.e., we arrange that the state ¢, can
be reached if either of ¢/, or ¢22 . can be reached.

If [ is an input line to the the circuit C', then we encode in the state table
for M a “check” (involving a scan of the k tape squares) to see if the cor-
responding input symbol was written during the first phase of computation.
The second phase begins in the state qi;g” where [,,; is the output line of C,

and the only accept state is g, .

Note that the proof above gives a canonical way of going from a proposed
collection t; of true input variables to a Turing acceptance. Furthermore
nor that there is no problem in considering only monotone circuits for our
proof since the proof that WEIGHTED MONOTONE CIRCUIT SATISFIA-
BILITY is W[P] complete lifts to one that proves that PARAMETERIZED
MONOTONE QCSAT is AW [P]-complete.

Thus to complete the proof we need to say how to introduce layers of
quantifiers. Without loss of generality, we can suppose that (); existential.
What we do is break the work tape into n cells of size ky, ..., k,. Our first
action is to write a guess for #; in the first k; squares. We build a recur-
sive algorithm that accepts only if ¢; can be extended to a satisfying pattern
according to the quantifier structure. For cell ¢ > 2, if the quantifier corre-
sponding to k; is an existential one then on each sweep, in the k; squares of
cell 1 we will write a guess for the variables t; from s; we will be assigning
true for this sweep. (We shall process the guesses in lexicographic ordering.)
If the Q; corresponding to cell 7 is a universal quantifier, then for each setting
of the cells 1, ...,7 — 1 we will cycle lexicographically through all the possibil-
ities for t;, that is, all the k; element subsets of s;. As above for each sweep
we will get a setting for cells corresponding to k true variables, and we can
see if M accepts. Fix a setting of 1,...,¢,_1. Recursively, note that if the last
(), is universal then cell n will pass back a confirmation of this setting only
if it successfully cycles through all possible ¢,,. Similarly if @),, is existential
cell n can pass a yes for this setting only if it finds a ¢,,. This process can
be continued inductively using at most &£ counters, and hence we can make a

33



machine that uses at most 2k squares and accepts iff Q1z1...Q,z,C is true.
O

Even AW/[P] appears to be too large a class for our purposes. Instead,
we concentrate on the class AW [*] defined below.
Definition. PARAMETERIZED QBFSAT, is the restriction of PARAME-
TERIZED QBFSAT in which the formula part must consist of ¢ alternating
layers of conjunctions and disjunctions, with negations applied only to vari-
ables, and the main operator a conjunction. For example, if ¢ = 2 then
the formula must be in conjunctive normal form. AW/[t] is the set of all
parameterized problems that fp-reduce to PARAMETERIZED QBFSAT,,
and AW [x] = U, AW[t].
Definition. A parameterized problem X is AW [t]-complete iff X is in AW [t]
and every problem in AW|[t] fp-reduces to X. X is AW [x|-complete iff X is
in AW x| and every problem in AW %] fp-reduces to X.
(5.3) Lemma SHORT GEOGRAPHY is in AW 2].
Proof. We use a generic reduction. Let D be a digraph with distinguished
vertex vg upon which we shall play SHORT GEOGRAPHY with parameter
k. Let {vg,...,v,} list the vertices of D and E the edge set. We shall have
variables {p; ; : 1 <i <k A0 <j <n}. We think of the game as a pebbling
game with p; ; denoting the i-th pebble is on vertex v;. We need clauses as
follows:
(1) p1o. [Pebble 1 is on vertex vy.]
(2) N<izj<qo<k<n(Piq = Djq) [Only one pebble per vertex.|
(3) /\vivﬂE,lSqSk(pq,i - (m/\m)\/(vq%% q’ odd, OStSnpq’,t/\(/\vtvreE(\/q”éq’pq”,r))))-
[If v;u; not an edge then for any pebble placed on v; the preceding pebble
and the next pebble must not be on v; unless player 1 has already won on
some vertex v; pebbled with some ¢’ < ¢.]
(4) Na<j<ko<i<n(Pii = (VoweeE Pi-1,0)V(Va<), ¢ odd, 0<t<nPgtNAvw,eE(Vgr<Pgrr))))-
[If v; is pebbled by pebble j > 2 then some vertex adjacent to v; must be
pebbled by pebble j — 1 unless player 1 has already won on some v; as in (3).]
(5) Ni<j<k—2, j odd, 0<i<n(Pji = (V(Vg<jg odd, 0<t<nPy t/N(AvweB(Vor<gPgrr)))V
((/\vivjeE \/lgqgj pj,q) \% (\/{q,r:qu,qureE}(ijrl,q A pj+2,r))> [If player 1 pebbles
v; then either she wins at this play, has won at a preceding play, or player 2
pebbles a vertex v, adjacent to v; with the next pebble and player 1 pebbles
a vertex adjacent to v,.|
Let P(p;;: 1 <i <k, 0<j <n)denote the conjunction of (1)-(5) expressed
in CNF form. Note that this expression has length polynomial in (|D|, k). Tt

34



is by definition in W2]. The expression we then need is the following.

Vys € {p2.0, s D2 } Y3 € {P3,0, -, P3.n }-...(k alternations )P

This is interpreted as making the chosen variable from the set {p,o, ..., Pjn}
true and the others false. Note that the form of the expression P ensures
that the formula is true iff player 1 has a < k move winning strategy. a
We prove that PARAMETERIZED QBFSAT,; fp-reduces to SHORT GE-
OGRAPHY for every t. The reduction is actually from a restricted form of
PARAMETERIZED QBFSAT,.
Definition. Unitary PARAMETERIZED QBFSAT, is the restriction of
PARAMETERIZED QBFSAT,; in which the parameters kq, ..., k, are all 1.
(5.4) Lemma. Fort > 0, Unitary PARAMETERIZED QBFSAT,is AW |t]-
complete.
Proof. The method is quite simple. Given a quantifier 3k members of (S =
{s1,...,8n})(...), we can replace by 2k quantifiers

Jzy € SVy € 039 € SVy € (... 3z, € SVy € O(Aigj(m; Z x5) N ..).

(We treat universal quantifiers similarly.) Note that the overall parame-
ter is doubled. We also only add an additional large and of or’s to the
circuit. This expression in turn can be put into standard form by replac-
ing the i-th occurrence of S by S; = {st,...;s"} and adding the expression
- s
(5.5) Theorem. SHORT GEOGRAPHY is AW [x]-complete. Hence, AW [«
AW [2].
Proof. We reduce PARAMETERIZED QBFSAT,; to SHORT GEOGRA-
PHY for an arbitrary ¢ > 0. Let I = (r, ky, ..., ky, s1, ..., S, X) be
an instance of PARAMETFERIZEDQBFSATy;, and assume that r is odd,
the leading quantifier is existential. The reduction uses ideas from Schaefer’s
polynomial time reduction from QBF to GENERALIZED GEOGRAPHY
[33]. The graph on which the geography game is played has three parts:
the choice component, the formula testing component and the literal testing
component.

The choice component is similar to Shaefer’s, and is designed so that
player 1 chooses a member of s;, then player 2 chooses a member of s,, then
player 1 chooses a member of s3, etc. The chioce testing gadget is given in

35



diagram 4 for successive quantifier pairs Qt; Qt; 1. the gadget for Qt; which
asks us to pick one member from s; consists of vertices v;, w; and x; for each
x; € s;. The edges are v;x;, and z;w; for each j. A total of 3r moves are
made through this component, and we add two additional edges to ensure
that it is player 2’s move at the end, where the game enters the formula
testing component.

In the formula testing component we use player 1’s moves to simulate
disjunctions, and player 2’s moves to simulate conjunctions. A total of 2t
moves are made through this component. Let y be bottom vertex of the
choice component. Let C be a circuit representing X. Reversing the arrows,
create a tree representing C' with root y. We can assume that the circuit
is 2t layers beginning with layers of, alternatively, disjunctions and then
conjunctions via Downey-Fellows [10], [11]. This is why when the arrows are
reversed, since y will be representing the output of a conjunction and it will
be player 2’s turn, player 2 will always be playing a conjunction and player
1 a disjunction. Play ends at a literal vertex v, corresponding to a literal in
formula X, with the move being player 2’s.

A literal vertex v corresponding to a positive literal x has an edge to the
vertex v, in the choice component t; that corresponds to z. If v, was chosen
(variable x is true), then player 2 has no move, and player 1 wins. If v, was
not chosen (so z is false), then player 2 moves to v, and wins.

If literal vertex v corresponds to a negative literal z, then the literal
testing component has edges (v,u,) and (ug,v,), where u, is a new vertex
and v, is the vertex corresponding to = in the choice component. Vertex u,
switches the initiative, and causes player 1 to win if v, was not chosen, and
player 2 to win if v, was chosen.

In diagram 4 we have given an example of this construction for the formula

dz € {21, 22, 23}Vy € {y1, Y2, U3, ya (@1 Vi) A (@I V2 V T3)].

It is easy to see that the parity of the choices allow player 1 to win iff the
formula is true since all plays begin at v;. The total number of moves is at
most 3r + 2t 4+ 4. Since ¢ is fixed, the conditions of an fp-reduction are met.
O
Remark. Note that the above says that there is a tradeoff between quan-
tification and weft. It would be interesting to understand exactly why this
occurs. Of course weft and quantifier complexity are both measures of
logical alternation, so perhaps this phenomenom is not too surprising.

36



The theorem above suggests that AW |[«] is perhaps the natural home of
k move games. We offer one more illustration to support this idea.

We consider another game of Schaefer.

SHORT NODE KAYLES

Instance: A graph G.

Parameter: k

Question: Does I have a winning k£ move strategy in the following game?
Players pebble a vertex not adjacent to any pebbled vertex. The first player
with no play loses. I plays first.

Remark. We have stuck with the terminology of Schaefer, although the
reader should think of the above as k-move ALTERNATING DOMINATING
SET.

(5.6) Theorem. SHORT NODE KAYLES is AW [x]|-complete.

Proof. First we show that the problem is AW [*]-hard. In view of Theorem
(5.5), we only need show that the problem is AW[2]-hard. Let ¢ = Jx; €
SiVag_1 € Sk_1...3x1 € S1(C1A...Cy,) be an instance of unitary AW/[2]. Here,
we shall assume that k is odd, and S; = {x;1, ..., Z;pn, } With S} = {z11, 212}
and By =212V 212V T Va—1,2. We need the vertex sets

V =U;S;,

So={z204:1<qg<m}, and

Yi={yi; :0<j<i—1}for1 <i<k.

Now we need the edge sets below.

D = {xz4 : © occurs in clause C,},

F={zz,:y#wz, v,y €S; and § occurs in clause Cy}, and

G = {yijw: w € (WogpeipiSp) U (Uisr<irsi Yr))-

Following ideas of Schaefer, we say that the game is played legitimately
if the node played at move ¢ is an element of S,_;;;. We claim that if at
move ¢ a player does not play legitimately then the other player wins at the
next move. Suppose that the first £ — ¢ moves have been legitimate. If the
player then plays illegitimately, note that he cannot have play any node from
Uj<it1(Sk—jUY%_;) as these are already dominated by pebbled vertices. Now
if he plays a vertex in S; UY; for some j < 4, then his opponent can win
by playing y; ;. (Every vertex in (S; UY; is adjacent to the illegal vertex
all the rest are adjacent to either a previously played vertex or y;;.) If the
illegitimate play is in Y;, the only remaining possibility, it must be a y; ;, and
then the opponent can win by playing a member of S; if 7 > 0, and either
201 Or zpo if 7 = 0. This enforcement gadetry clearly now ensures that player

37



I has a winning strategy of k£ moves iff ¢ is true, as the reader can readily
check.
To complete the proof, we need to establish membership of AW |[x]. But
this is essentially the same as Theorem (5.3), and is left to the reader. O
Obviously, there are a number of other k-move games that are natural
candidates for AW [x]-completeness. We mention two. The first is ALTER-
NATING HITTING SET with no vertex degree restrictions. the other is
SHORT GENERALIZED HEX (See Even and Tarjan [18])
Instance. A graph GG with two distinguished vertices v; and v,.
Parameter. k
Question. Does I have a winning strategy in the following game. Player I
plays with white pebbles and player II with black ones. Pebbles are be placed
on nondistinguished vertices alternately by player I then player II. Player I
wins if he can construct a path of white vertices from v; to v, in < k moves.

6 Some Structural Results

In this section we shall relate our results to classical notions from com-
plexity theory. Our investigations can be viewed in the context of limited
nondeterminism. In the style of Kintala-Fischer [26], let NP[f(n)] denote
the class of decision problems soluable in P-time with an algorithm using
only f(n) bits of nondeterminism on inputs of length n.
Definition. We define the class SUBEXPTIME(f(n)) to be the set of
languages accepted in DTIM E(p(n)29™) for some function g in o(f(n)).
(That is, lim,, . f(n)/g(n) = c0.)

The following results refer to the reducibility <7, that is strongly uniform
parameterized P-time reducibility.
(6.1) Theorem. W[P| = FPT iff for every P-time function f with f(n) >
logn, there is a recursive function h such that for every L € NP|[f(n)] h(L)
computes machine M which witnesses that L € SUBEXPTIME(f(n)).
(We say that N P[f(n)] is constructively a subset of SUBEXPTIME(f(n)).)

(6.2) Corollary. W[P] = FPTimplies that for all P-time f, NP[f(n)] C
SUBEXPTIME(f(n)).

Proof. (=) Suppose W[P| = FPT. Then WEIGHTED CIRCUIT SAT-
ISFTABILITY is soluable by some procedure ® in time g(k)p(n), where p is

38



a polynomial, and g is some function. We can assume that g is strictly in-
creasing, and that it grows rapidly, since any function can be bounded above
by such a function.

Let f(n) > logn be polynomial time computable, and let o be a nonde-
terministic polynomial time algorithm that uses at most f(n) bits of nonde-
terminism on inputs of length n. The following algorithm § simulates «, and
we will show that 8 runs in time ¢(n)2°¢(™) for a polynomial q. For k < m,
let E,, 1 be a canonical list of the size k subsets of {1,...,m}. If s is member
of E,k, let N(s) be the index of s in list E,, ;. List E,, ; can be chosen so
that N(s) can be computed in polynomial time in m. Let [N(s)]q be the d
least significant bits of the binary representation of N(s).

Algorithm ((z):

k < f(n)/loglogn.

loop

m ¢ [k2//F],

C <« a circuit with m inputs, and the following behavior. On an input vector
v of weight k, C considers v to encode a size k subset s, of {1, ..., m}, and
computes n, = [N(sy)]fmn). C then simulates o on input x with guess n,,
and produces the same output as a does with that guess.

Run @ on input (k,C) for at most p(n)2f(W/1oglsn gsteps.

If ® terminates within the allotted time, stop and give the same answer that
it gave.
k+—Fk—1
end loop

Since (72) > (m/k)* > 27 at each iteration, all 2/ binary strings of
length f(n) can be passed as guesses to «, when all weight & inputs are tried.
It is evident, therefore, that if 5(x) terminates, then it gives the same answer
that a(z) does. We show that 3(z) terminates within time q(n)2°/("),

Variable m is largest for small values of k, so the last loop iteration
costs the most. Since ® terminates in time g(k)p(n), the last iteration is
the first one where g(k) < 2f(/loglogn  That is, in the last iteration k =
g~ (2f()/loglogn) " (Here for an increasing function z(n) we define 27! (n) to be
the largest m with z(n) < m.) (Note that the initial value of k is larger than
that for sufficiently rapidly growing functions g.) Considering this smallest
value of k to be a function k(n) of n, observe that lim,,_,, k(n) = co.

39



The initial value of k£ is computable in polynomial time in n. The cost
of producing circuit C' is polynomial in m and n. But m(n) = k(n)2f/kn)
is in 2°U(™) 50 any polynomial of m is also 2°/() The simulation of ® is
bounded in time by p(n)2°(™) | 5o each iteration of the loop uses time at most
q(n)2°¢™) for some polynomial ¢. Since there are at most f(n)/loglogn
iterations, the entire algorithm runs within time g(n)2°¢ (),

To complete this half of the proof, note that £ is computable from «.

(<=) Suppose that N P[f(n)] is constructively a subset of SUBEX PTIME(f(n))
for every polynomial time function f(n) > logn. Let fi(n) = klogn.

For each k, let W 'Sy be the restriction of WEIGHTED CIRCUIT SAT-
ISFTABILITY to inputs of the form (z, k). Then WC'Sy is in N P[fr(n)]. Let
ay, be a deterministic algorithm that solves WC'S, in time p(n)2/+/9() =
p(n)n*/9() wwhere p is a polynomial and lim,,_,., g(n) = co. By the construc-
tive nature of the supposition, «y is a recursive function of k. So to solve
WEIGHTED CIRCUIT SATISFIABILITY on input (z, k), compute oy, and
run it on input (z, k). Call the resulting algorithm £.

Algorithm S solves WEIGHTED CIRCUIT SATISFIABILITY in time
h(k)p(n)n*/9) for some function h. For k < g(n), that is h(k)q(n) for a
polynomial ¢q. For k > g(n), the time is bounded by a function of k. So there
is a function A’ such that algorithm f runs in time h'(k)g(n). O

The theorem above says nothing about the weft classes W[t]. There are
a couple of results relating weft classes to classical notions. One idea is
due to Cai and Chen [4]. They show that W{t] and the class of languages
L accepted by nondeterministic logarithmic time Turing machines making
at most k alternations are closely related. We prove one structural result
relating the soluability of SAT to Wt]. Let C be a class of decision circuit
problems. We shall say that C is nearly polynomial time if there is an
algorithm @ solving C' running in time p(n)2°"), where p(n) is a polynomial
and v is the collection of input variables to C'.

(6.3) Theorem. For strong f.p. reducibility,

(i) Fort > 0, W[2t] C FPT implies that SAT[2t] is nearly polynomial time.
(ii) W[SAT] C FPT implies SAT is nearly polynomial time.

(iii) W[P] C FPT implies CIRCUIT SATISFIABILITY is nearly poly-
nomial time.

Proof. We prove (i), the others follow by the same method. Suppose
that W[2t] is FPT. Then there is a f(k)p(n) time algorithm for solv-
ing WEIGHTED MONOTONE 2t-NORMALIZED SATISFIABILITY on

40



instances (z,k) with |x| = n, for some polynomial p(n) and arbitary re-
cursive function f(k). We assume that f(k) > k and as in the previous
proof, we let f~!(k) denote the largest y with f(y) < k. Furthermore we
can assume that f(k) is computable in time f(k), so that we can easily see
if f(k) > y.

Now let X be a member of SAT[2t], that is, a 2¢t-normalized boolean
formula and consider it as a circuit with 2v input lines for the variables and
their complements. We construct a pair (C, k) with C a circuit and k and
integer to be chosen later. We ensure that C' is a 2¢-normalized monotone
circuit, and that X is satisfiable iff C' has a weight k satisfying assignment.
The reader should not that the reduction will not be a parameterized one.
Let s = 2%kl The circuit C has 4 distince parts:

(1) An encoding circuit F with ks input lines.

(2) A circuit X’ emulating the action of X.

(3) An enforcement circuit connected to the ks inputs.

(4) An additional and gate taking the outputs of X’ and the constraint
circuit. The single output of this and gate is the output for the circuit.

The ks input lines of the encoding circuit can be considered as a k X s
matrix. The encoding circuit translates each row of the input into two binary
numbers. Each binary numbers represent the position of the single 1 in that
row. [The enforcement circuit will be disjunctive and will express the fact
that the input matriz has at most one 1 per row. Since we will be looking for
weight k inputs to C, this will ensure that there is exactly one 1 per row.]
Each binary number has length log s and the collection of possible binary
strings of length of length log s will be in exact one to one correspondence
with the position of the 1 on the row. The binary numbers are complements
of each other (meaning that whenever one is 1 the other is 0). One corre-
sponds to negated variables and one corresponds to varaibles. This can all
be easily achieved disjunctively using 2log s large or gates. For instance, for
the positive variables, suppose the binary number is to be represented by
T1...Togs- We then have one or gate corresponding to xy. This is connected
to every second position on the row. Thus x; will be 1 iff the 1 on the row
falls on an even square. (Similarly, if we want the negation of 1 in the other
binary string we use all the odd positions.) For z, we have a large or at-
tached to positions 4n+3 and 4n+4 of the row for each n. In general, we use
2in+271+1,...,27 " for each n for z;. The idea here is that the 2v inpute
to X are chopped into k equal pieces (sequentially) each of length logs. We

41



note that each row has length s, so we will indeed be able to create a total
of 2klogs = 2k x log2/*/¥1 > 2¢ lines in this way. It is clear that we can
use these lines as the inputs to the circuit X’. Circuit X’ is the same as X
except that each literal is replaced by one of the 2v output lines. Clearly the
circuit can be massaged to be 2t-normalized by coalescing the conjunction at
the output of X’ with the bottom and, and the disjunctions of the encoding
circuit with those of the upper level of X”.

Now to complete the proof we for a given input with v variables we choose
k= f~1(2"/1°8v). Note that f(k) < o(v). This means that the f(k) factor in
the solution size is acceptable. The size of C' is P-time in X and ks. As k
is an unbounded function of v we see that s < 2°*). The running time of ®
on C'is f(k)p(|C]). This is 2°®p(|X|.2°™)). But this quantity is p(|X|).2°),
giving the desired result. a

Since v < | X, the reader should note that the above implies

if W[2] = FPT then NP C DTIME(2°™),

which would seem unlikely.

We believe that the structural issues examined above are just the tip of
the iceberg in terms of parameterized complexity and its interactions with
classical classes. A number of major questions remain to be resolved concern-
ing the noncollapse/collapse of the W-hierarchy. For instance the following
seem very difficult to resolve:

Open Question. Suppose that Wt] = W[t + 1]. Does this imply any other
collapse? Does collapse propogate upwards?

Open Question. Suppose that W{t] # FPT. Does that this mean that
the analogue of Ladner’s theorem hold? That is, does it mean that there are
infinitely many problems of different parameterized degrees between Wt]
and F'PT? More generally does density hold for the f.p. degrees of recursive
sets? The answer is yes for strong f.p. reducibilities. (See Downey-Fellows
14))

Open Question. Is there an oracle separating the W -hierarchy?

Open Question. What is the correct notion of f.p. approximation scheme?
For instance, as inspired from various issues coming from the Robertson-
Seymour theorems we might ask for an algorithm for DOMINATING SET,
which, when given an instance (G, k) with parameter k, either says that
there is no dominating set of G of size k or gives a k-approximate one. (e.g.

42



one of size 2k.) Does the existence of such a parameterized algorithm imply
something like W[2] = FPT?
Open Question. Does every N P-complete problem have a W[P] complete
“parameterization”? This question involves defining the meaning of the last
term.
Open Question. Every known natural language L that is W[P]-complete
is more or less P-complete “by the slice”. By this statement we mean the
following: given a language L define S(L) = {((z,k")k) : (z, k') € L and k' <
k}. [The definition of S(L) makes sure that the slices of L are each coded in
the one above the way that natural problems seem to be.] The question is:
suppose that L is W[P]-complete. Is there some k such that for all m > k,
the m-th slice of S(L) is P-complete. As Cai et. al. [6] observed a yes answer
seems to imply something along the lines of P = LOGSPACE.

Some structural issues have been discussed in Downey-Fellows [14], Cai
et. al. [6], and Cholak-Downey [8].

7 Summary of Hardness Results in this Pa-
per

W[SAT]-Complete.

WEIGHTED PLANAR SATISFIABILITY, WEIGHTED MONOTONE SAT-
ISFTIABILITY, WEIGHTED ANTIMONOTONE SATISFIABILITY.

W[P]-Complete.

SHORT CIRCUIT SATISFIABILITY, SHORT SATISFIABILITY, k-INDUCED
3CNF SATISFIABILITY, MINIMUM AXIOM SET, WEIGHTED MONO-
TONE CIRCUIT SATISFIABILITY, CHAIN REACTION CLOSURE, t-
THRESHOLD STARTING SET, WEIGHTED PLANAR CIRCUIT SAT-
ISFIABILITY, DEGREE 3 SUBGRAPH ANNIHILATOR, k-LINEAR IN-
EQUALITIES.

AW [x] = AW [2]-Complete

43



SHORT GEOGRAPHY, SHORT NODE KAYLES.

AW /|P]-hard

COMPACT TM COMPUTATION.

References

1]

K. Abrahamson, R. Downey, and M. Fellows, “Fixed Parameter In-
tractability I1,” in Proceedings Tenth Annual Symposium on Theoretical
Aspects of Computer Science, Springer Verlag, (1993) 374-385.

K. Abrahamson, J. Ellis, M. Fellows and M. Mata,“Completeness for
families of Fixed Parameter Problems,” Proc. 30th ACM Foundations
of Computer Science (FOCS), (1989), 210-215.

J. Buss and J. Goldsmith, “Nondeterminism within P,” SIAM J. Com-
put., to appear.

L. Cai and J. Chen,“On the Amount of Nondeterminism and the Power
of Verifying,” to appear in Proceedings of Intermational Conference on
Mathematical Foundations of Computer Science (MFCS’93), 1993.

L. Cai and J.Chen, “On Fixed-Parameter Tractability and Approxima-
bility of N P-hard Optimization Problems,”to appear in Proceedings Is-
rael Conference on Theoretical Computer Science, (ISTCS’93), 1993.

L. Cai, J. Chen, R. Downey and M. Fellows, “Advice Classes of Param-
eterized Complexity,” to appear.

L. Cai, J. Chen, R. Downey, and M. Fellows, “The Parameterized Com-
plexity of Short Computation and Factorization,” to appear.

P. Cholak and R. Downey, Undecidability and Definability for Parame-
terized Polynomial Time Reducibilities,” to appear in Logical Methods,
(ed. J. Crossley, R. Shore, M. Sweedler, and J. Remmel,) Birkhauser, to
appear..

44



[9]

[10]

[11]

[12]

[13]

[14]

R. Downey, P. Evans, and M. Fellows, “Parameterized Learning Com-

plexity,” in Proceedings Sixth Annual Conference on Computational
Learning Theory, (COLT’93), 1993.

R. Downey and M. Fellows, “Fixed Parameter Tractability and Com-
pleteness,” Congr. Num., 87 (1992) 161-187.

R. Downey and M. Fellows, “Fixed Parameter Tractability and Com-
pleteness I: Basic Results,” to appear.

R. Downey and M. Fellows, “Fixed Parameter Tractability and Com-
pleteness II: On Completeness for W1],” to appear.

R. Downey and M. Fellows, “Fixed Parameter Intractability (Extended
Abstract),” Proc. 7th Conf. on Structure in Complezity Theory (1992),
36-49.

R. Downey and M. Fellows, “Fixed Parameter Tractability and Com-
pleteness I11: Some Structural Aspects of the W-Hierarchy,” to appear in
Complezity Theory, (ed. K. Ambos-Spies, S. Homer, and U. Schoning),
Cambridge University Press.

R. Downey and M. Fellows, “Parameterized Computational Feasibility,”
to appear in Feasible Mathematics II, (ed. P. Clote and J. Remmel)
Birkhauser, Boston, 1993.

R. Downey and M. Fellows, “Fixed Parameter Tractability,” monograph
in preparation.

R. Downey, M. Fellows, B. Kapron, M. Hallett, and T. Wareham, “The
Parameterized Complexity of Some Problems in Logic and Linguis-
tics,” (Extended Abstract), Submitted.

S. Even and R. Tarjan,“A Combinatorial Problem thet is Complete in
Polynomial Space,”J. Assoc. Comput. Mach., 23, (1976) 710-719.

M. Fellows and M. Hallett, “Bandwidth is hard for W1],”in preparation.

M. Fellows, M. Hallett, and H. Wareham,“DNA Physical Mapping:
Three Ways Difficult,”to appear in Proceedings First Furopean Sym-
posium on Algorithms, 1993.

45



[21]

[22]

[23]

[24]

[25]

[20]

[27]

[28]

[29]

[30]

[31]

M. Fellows and N. Koblitz, “Fixed Parameter Complexity and Cryptog-
raphy,”to appear in Proceedings of the Tenth Annual Conference on Al-
gebraic Algorithms and Error-Correcting Codes (AAECC’93) Springer
Verlag, 1993.

M. R. Fellows and M. A. Langston, “On Search, Decision and the Ef-
ficiency of Polynomial-Time Algorithms.” In Proc. Symp. on Theory of
Computing (STOC) (1989), 501-512.

M. R. Fellows and M. A. Langston, “An Analogue of the Myhill-Nerode
Theorem and Its Use in Computing Finite Basis Characterizations.” In
Proc. Symp. Foundations of Comp. Sci. (FOCS) (1989), 520-525.

M. R. Garey and D. S. Johnson, “The Rectilinear Steiner Tree is N P-
Complete,”SIAM J. Appl. Math., 32 (1977) 826-834.

M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of N P-Completeness (Freeman, San Francisco, 1979).

C. Kintala and P. Fischer, “Refining Nondeterminism in Relativised
Polynomial Time Bounded Computations,” SIAM J. Comput., 9, (1980)
46-53.

P. Kolaitis and M. Thakur, “Approximation Properties of N P Minimiza-
tion Problems,” Proceedings Sixth Annual Structure in Complexity The-
ory Conference. IEEE Publ. (1991) 353-366.

D. Lichtenstein, “Planar Formulae and their uses,” SIAM J. Computing,
11, (1982) 329-343.

C. Papadimitriou and M. Yannakakis,“On Limited Nondeterminism
and the complexity of the V-C Dimension,” Proceedings Eighth Annual
Structure in Complexity Conference, IEEE Publ. (1993) 12-18

K. Regan, “Finite Substructure Languages,” Proceedings Fourth Annual
Structure in Complezity Theory Conference, (1989) 87-96.

N. Robertson and P. D. Seymour, “Graph Minors XIII. The Disjoint
Paths Problem,” to appear.

46



[32] N. Robertson and P. D. Seymour, “Graph Minors XV. Wagner’s Con-
jecture,” to appear.

[33] T. J. Schaefer, “Complexity of Some Two-person Perfect Information
Games,” J. Comput. Sys. Sci. 16 (1978), 185-225.

47



