
ON SUPERSETS OF NON-LOW2 SETS

KLAUS AMBOS-SPIES, ROD G. DOWNEY AND MARTIN MONATH

Abstract. We solve a longstanding question of Soare by show-
ing that if d is a non-low2 computably enumerable degree then d
contains a c.e. set with no r-maximal c.e. superset.

1. Introduction

A longstanding programme in computability theory explores the re-
lationship between the computably enumerable degrees and the lattice
of computably enumerable sets. A great deal of Soare’s classic text [6]
is devoted to this analysis. For example, if a is high then a contains a
maximal c.e. set, and no non-high c.e. degree contains a maximal set1,
as proven in the ground-breaking paper of Martin [4].
One of the fundamental themes is that low and low2 sets resemble

computable sets in that, for example, low2 c.e. sets have maximal su-
persets. Here A is low if A0 ⌘T ;0 and A is low2 if A00 ⌘T ;00. Indeed, if
A is c.e. and low, then the lattice of c.e. supersets of A is isomorphic to
the lattice of c.e. sets (Soare [7]) and this is long conjectured to be true
for the supersets of low2 sets, but this much harder question remains
open (see Soare [6], Ch. X and XVI, for example).
On the other hand, low2 seems to be a demarcation point. Non-

low2 sets have certain domination properties which are certainly useful
in the structure of the global degrees. For example, non-low2 degrees
bound 1-generic degrees, and are complemented below, whereas there
are minimal low2 degrees. See, for example, Lerman [3].
For the c.e. sets, in 1976, Shoenfield [5] proved that non-low2 c.e.

degrees contain c.e. sets with no maximal c.e. supersets, and Lachlan
[2] showed that low2 c.e. sets have maximal supersets. Thus there
is an elementary di↵erence between properties of low2 c.e. sets and
some non-low2 c.e. sets. Indeed, Shoenfield’s Theorem shows that a
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1Recall M is maximal if it is c.e. and co-infinite and no c.e. set splits M meaning
that if W is c.e. and W ◆ M then either M =⇤ W or W =⇤ !.
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certain natural set called the deficiency set, has no hyperhypersimple
c.e. superset.

One of the natural variations on being maximal is what is known
as r-maximal. We recall that a co-infinite c.e. set D is r-maximal if
for all computable sets X, X [ D =⇤ !, or X [ D =⇤ !. That is no
computable set splits D.

In this paper we solve a question first stated in 1987 by Soare [6],
p. 233. Soare asks to classify the class of c.e. sets with no r-maximal
supersets. In this paper we show that the classification aligns with that
of those with no maximal supersets.

Theorem 1.1. Suppose that a is a c.e. non-low2 degree. Then a con-

tains a c.e. set D with no r-maximal superset.

The techniques we use are quite di↵erent than the mysterious ones
of Shoenfield [5], and build on ideas of Downey and Shore [1].

2. The Proof

The proof of Theorem 1.1 uses some general machinery developed
by Downey and Shore [1] for working below a non-low2 c.e. degree. We
will need to discuss some of these ideas to make the current paper self
contained.

In the global degrees, there is a well known technique of working
below a non-low2 degree using escape functions. A degree d  0

0 is
non-low2 i↵ for every function h T ;0, there is a function g computable
in d such that g is not dominated by h. This characterization is used
for constructions related to d as follows: Relying on specific properties
of the requirements to be met, one defines “in advance” a function h
which gives an appropriate “search space” inside of which one should
look for witnesses to satisfy some requirements. This function will be
computable from ;0 due to the specific nature of the relevant require-
ments. Now if d is non-low2, there is a strictly increasing function g
computable in d not dominated by h. The idea then is to use g to
d-computably bound searches and hence make the construction an or-
acle one computable in d. By the way g and h have been constructed,
the fact that g(x) > h(x) infinitely often guarantees that, by a priority
argument, we get to meet all the requirements. The classical example
of this is showing that all non-low2 degrees bound 1-generics, where we
use a function h for which h(x) says: for all strings � of length x and
all e  x, compute a stage where if � has an extension in Ve, the e-th
c.e. set of strings, we can see it by stage s. Then if we take a non-low2

set D there is a function g T D which infinitely often escapes this
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function. We use g(x) as our search space to figure out which require-
ment to pursue. Then a standard finite injury argument works (see e.g.
Lerman [3], Downey and Shore [1]).

We consider this method in the context of c.e. degrees. The natural
idea we pursue is to use the global characterization of non-low2 and
then approximate the functions g and h via the Limit Lemma. Now we
will be given a c.e. set D =

S
s Ds of non-low2 degree and a “witness”

function h for the satisfaction of some requirements. Again h T ;0.
We apply the Limit Lemma to h so that h(x) = lims h(x, s) with h(x, s)
a computable approximation to h. Again, since D is not low2, there
will be a function g T D not dominated by h which we can also
approximate via the Limit Lemma. Since g T D, there is a reduction
�(D) = g. The problem is that, as h(x) only equals lims h(x, s) and
g(x) only equals lims g(x, s), we must be able to “correct” our mistakes.
This is a serious problem since the objects we need to construct must
not only be computable from D but also c.e.

The main idea in the constructions from Downey and Shore [1] is
that we must be able to correct the mistakes that occur when g(x, s)
does not have its final value by dumping elements into the set we are
constructing whenever g(x, s) or even D � g(x, s) changes where g(x, s)
is the standard approximation of �(D). (In fact, below we will choose
a c.e. member D of the given non-low2 degree a such that D has the
desired dumping property.) Moreover, as in [1], for our construction
we will require that our computable approximations h(x, s) and g(x, s)
have certain nice properties like monotonicity (see the construction
below for details).
Having explained some of its basic features we now turn to the proof

of Theorem 1.1.

Proof of Theorem 1.1. Fix any c.e. set A in the given non-low2 c.e.
degree a, let f be a computable 1-1 function enumerating A, and let

D = {t : 9 s > t(f(s) < f(t))}
be the deficiency set of A w.r.t. f . Since D ⌘T A (see Soare [6], p.81),
it su�ces to show that no superset of D is r-maximal. So, for the
remainder of the proof, fix a coinfinite c.e. superset W of D. It su�ces
to define a c.e. splitting (X0, X1) of !, i.e., c.e. sets X0 and X1 such
that

(1) X0 [X1 = ! and X0 \X1 = ;

(hence X0 is computable and X1 = X0), which meet the requirements

R2e+i : 9 x � e (x 2 Xi \W )
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for e � 0 and i  1. Note that this ensures that X0\W and X0\W are
infinite. So the computable set X0 witnesses that W is not r-maximal.
In the remainder of the proof we construct the desired c.e. sets X0 and
X1 by a finite injury argument.

Let {Ds}s�0 be the natural enumeration of D defined by D0 = ; and

Ds+1 = Ds [ {x  s : f(s+ 1) < f(x)}.
As in [1]’s proof that D has no maximal superset, the crucial property
of this enumeration is that if x is enumerated into D at stage s + 1
then all elements of the interval (x, s] not yet in D also enter D at stage
s+ 1:

(2) x 2 Ds+1 \Ds )
�
x  s & [x, s] ✓ Ds+1

�

(namely, if r 2 (x, s] then f(r) > f(x) as x /2 Dr and so r 2 Ds+1). In
the following we refer to this property as the dump property of {Ds}s�0.

The function h is defined by recursion as follows. Given a computable
enumeration {Ws}s�0 of W such that Ds ✓ Ws ⇢ ! � s, let

h(0) = 0

and

(3)
h(x+ 1) = µs > tx (W \ [tx, s) 6= ;)

where tx = µt > h(x) (Wt � h(x) = W � h(x)).
Then, for any number x,

(4) x  h(x) < tx < h(x+ 1),

(5) Wtx � h(x) = W � h(x),
and

(6) W \ [tx, h(x+ 1)) 6= ;.
We will work with computable approximations h(x, s) and tsx of h(x)

and tx, respectively, recursively defined as follows. Let h(0, s) = h(0) =
0 for s � 0 and, let

(7)
h(x+ 1, s) = µs0 > tsx (Ws \ [tsx, s

0) 6= ;)
where tsx = µt > h(x, s)(Ws � h(x, s) ✓ Wt � h(x, s)).

for x, s � 0. Note that

(8) x  h(x, s) < tsx < h(x+ 1, s) < tsx+1,

(9) h(x, s)  h(x, s+ 1) & tsx  ts+1
x ,

(10) h(x, s) 6= h(x, s+ 1) ) Ws+1 � h(x, s) 6= Ws � h(x, s),
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(11) Ws+1 � h(x, s) 6= Ws � h(x, s) ) ts+1
x � s+ 1,

and

(12) lim
s!1

h(x, s) = sup
s!1

h(x, s) = h(x) and lim
s!1

tsx = sup
s!1

tsx = tx

hold for all x, s � 0. For the sake of completeness, the rather straight-
forward proofs of (8) - (12) are given in the appendix.

Obviously, h T W hence h T ;0. So, since D is not low2, there is a
function ĝ T D not dominated by h. For the construction we replace
ĝ(x) by a D-computable function g(x) majorizing ĝ(x) which has a
more amenable computable approximation g(x, s). The properties of
the function g(x) and its approximation g(x, s) which are crucial for
the construction of the desired c.e. sets X0 and X1 are given in the
following claim.

Claim 1. There are total functions g(x) and g(x, s) such that the

unary function g is not dominated by h, i.e.,

(13) 91x (h(x) < g(x)),

the binary function g(x, s) is computable and approximates g(x) from

below, i.e.,

(14) g(x) = sup
s!1

g(x, s) = lim
s!1

g(x, s),

and, for any numbers x and s,

(15) g(0, s) = g(0) = 0,

(16) x  g(x, s)  g(x+ 1, s) & g(x, s)  g(x, s+ 1),

and

(17)
g(x, s) < g(x, s+1) ) (Ds+1 � g(x, s) 6= Ds � g(x, s) & g(x, s+1) > s).

Proof of Claim 1. Since h T ;0 and D is not low2, we may fix a func-
tion ĝ T D not dominated by h where w.l.o.g. ĝ is nondecreasing,
ĝ(0) = 0 and ĝ(x) � x for x � 0. Then there is a Turing functional
� with use function � such that ĝ = �D and such that, for any set X,
�X(0) #, �X(0) = �X(0) = 0 and
(18)

�X(x) # ) 8x0  x(�X(x0) # & x0  �X(x0)  �X(x0)  �X(x))
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for any number x � 0. Moreover, we may choose a computable enu-
meration {�s}s�0 of � such that, for any set X, �X

0 (0) # and

(19) �X
s (x) # ) 8x0  x(�X

s (x
0) # & �X(x0)  s)

for any number x and any stage s.
It follows that, for the function u(x, s) defined by

u(x, s) = µu � s (�Du
u (x) #),

u is total and computable, u(0, s) = s for all numbers s, and

(20) x  u(x, s)  u(x+ 1, s) & u(x, s)  u(x, s+ 1)

and

(21) 8x0  x(�
Du(x,s)

u(x,s) (x0) #).
hold for all numbers x and s.

Now, for the definition of the functions g(x) and g(x, s), we recur-
sively define the binary function g(x, s) by letting

g(x, s) =

8
><

>:

u(x, s) if s = 0 or s > 0 and

9x0  x (Ds � �Dg(x0,s�1)(x0) 6✓ Dg(x0,s�1)),

g(x, s� 1) otherwise

and we let
g(x) = lim

s!1
g(x, s).

It remains to show that these functions have the required properties.
Obviously the binary function g(x, s) is total and computable. More-
over, for any x and s, g(x, s) = u(x, t) for some t  s. In the following
we let txs be the least such number t.

Next we show that (15), (16) and (17) hold.
For a proof of (15) it su�ces to note that g(0, s) = g(0, 0) = u(0, 0) =

0 since �Ds(0) = 0 for all numbers s.
The individual parts of (16) are shown as follows. The relation

x  g(x, s) is immediate since x  u(x, txs) by (20). For a proof of
g(x, s)  g(x, s + 1) w.l.o.g. assume that g(x, s) 6= g(x, s + 1). Then
tsx  s and ts+1

x = s+1, hence g(x, s)  g(x, s+1) by (20). The proof of
g(x, s)  g(x+1, s) is by induction on s. If s = 0 then g(x, s) = u(x, s)
and g(x + 1, s) = u(x + 1, s), and the claim is immediate by (20). So
fix s > 0. Since, by inductive hypothesis, g(x, s� 1)  g(x+ 1, s� 1),
w.l.o.g. we may assume that g(x, s) 6= g(x, s � 1) or g(x + 1, s) 6=
g(x + 1, s � 1). If the former holds then g(x, s) is defined according
to the first case of the definition. But, by definition, this implies that
g(x+1, s+1) is defined according to this case too, hence txs = tx+1

s = s.
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If the latter holds, then tx+1
s = s while txs  s. So, in either case, the

claim follows by (20).
Finally, for a proof of (17), fix x and s such that g(x, s) < g(x, s+1).

Then, by definition, there is a number x0  x such that

(22) Ds+1 � �Dg(x0,s)(x0) 6✓ Dg(x0,s).

Then, in particular, g(x0, s)  s. Moreover, by g(x0, s) = u(x0, tx
0

s ),

and by (21), �
Dg(x0,s)
g(x0,s) (x0) #. Hence, by (19) and (16), �Dg(x0,s)(x0) 

g(x0, s)  g(x, s). So it su�ces to show

(23) Ds+1 � �Dg(x0,s)(x0) 6✓ Ds.

For a contradiction assume that (23) fails. Then, by (22), g(x0, s) < s,
hence g(x0, s) = g(x0, s� 1), and

Ds � �Dg(x0,s)(x0) 6✓ Dg(x0,s).

But, by definition of g, this implies that g(x0, s) = u(x0, s) � s, a
contradiction.

It remains to show that the unary function g(x) is total and that (14)
and (13) hold. For this sake, by choice of ĝ and by (17), it su�ces to
show that, for given x, there is a stage sx such that g(x, s) = g(x, sx+1)
for all s > sx and ĝ(x)  g(x, sx + 1).
Fix s0x such that, for any x0  x, �Ds0x (x0) is defined and Ds0x �

�D(x0) = D � �D(x0). Then �Ds(x0) = �D(x0) and �Ds(x0) = �D(x0) 
s0x for all numbers x0  x and s � s0x. So we may fix sx � s0x such that
Dsx � m = D � m for m = max{�Ds(x0) : x0  x & s � 0 & �Ds(x0) #}.
To show that g(x, s) = g(x, sx + 1) for s > sx, for a contradiction fix
s � sx such that g(x, s+ 1) 6= g(x, s). Then there is some x0  x such
that Ds+1 � �Dg(x0,s)(x0) is not contained in Dg(x0,s). By choice of sx
this implies that g(x0, s) < sx. So, just as in the proof of (17), we may
argue that g(x0, sx) = u(x0, sx) � sx contrary to (17).
Finally, for a proof of ĝ(x)  g(x, sx + 1), for a contradiction as-

sume that g(x, sx + 1) < ĝ(x). Note that, by definition of � and
by choice of sx, ĝ(x) = �D(x) = �Ds

s (x)  s for all s � sx + 1
(where the last inequality holds by (18) and (19)). On the other

hand, by definition of g, �
Dg(x,sx+1)

g(x,sx+1) (x) #, hence (by (18) and (19))

�Dg(x,sx+1)(x)  �Dg(x,sx+1)(x)  g(x, sx + 1). By assumption we may
conclude that �Dg(x,sx+1)(x) < �Dsx+1(x), g(x, sx + 1) < sx + 1 and
Dsx+1 � �Dg(x,sx+1)(x) 6✓ Dg(x,sx+1) (hence Dsx+2 � �Dg(x,sx+1)(x) 6✓
Dg(x,sx+1)). It follows by definition of g that g(x, sx+2) = u(x, sx+2) �
sx + 2 > g(x, sx + 1), a contradiction.
This completes the proof of Claim 1. ⇤
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For the remainder of the proof fix g(x) and g(x, s) as in Claim 1.
We call a number x (truly) good if h(x) < g(x), and we call x good

at stage s if h(x, s) < g(x, s). Note that (by (13)) there are infinitely
many truly good numbers x and, by (12) and (14), a number x is good
i↵ it is good at infinitely many stages i↵ it is good at all su�ciently
large stages. By the former we may inductively define good numbers
xn such that x0 is the least good number and xn+1 is the least good
number > g(xn). (Note that, by h(0) = g(0) = 0 and by (8), 1  xn 
h(xn) < g(xn) < xn+1 for any number n � 0.) We will ensure that, for
n = 2e+ i,

(24) W \ [txn�1, g(xn)) ✓ Xi

holds (where txn�1 is defined according to (3)). By trueness of xn and
(6) this implies that Rn is met.

In order to achieve this, in the course of the construction we assign
approximations of xn to requirement Rn - called followers. At any stage
s + 1 of the construction at which a new approximation xs+1

n of xn is
assigned to Rn as follower we enumerate the numbers < g(xs+1

n , s+ 1)
which haven’t been put into X0 or X1 at previous stages into Xi (where
n = 2e+i). We will argue that if a number in the interval [txn�1, g(xn))
has been previously put into X1�i by some other requirement then, by
the dump property, a later change of D will cause this number to enter
D (hence W ) whence this will not a↵ect satisfaction of (24).

If it seems that an approximation is not correct or the corresponding
g-value is not yet final then we cancel the follower as well as the existing
lower priority followers (we say that we initialize Rn and the lower
priority requirements) and we later assign a new follower. If defined,
we let xs

n denote the follower of Rn at the end of stage s (and we write
xs
n " otherwise). At any stage s there is a number m � 0 such that

the requirements Rn with n < m are the ones which have a follower,
and 1  xs

0 < xs
1 < · · · < xs

m�1 (if m > 0). For convenience, we let
xs
�1 = 0. Xi,s denotes the finite part of Xi enumerated by the end of

stage s. The construction will ensure that Xi,s ✓ ! � s.
Using the above introduced notation, the formal construction is as

follows.

Stage 0 is vacuous, i.e., X0,s = X1,s = ; and no requirement has
a follower (i.e., x0

n " for n � 0).

Stage s+ 1. The stage consists of two steps.
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Step 1. For any requirement Rn which has a follower xs
n at

the end of stage s, Rn is initialized and xs
n is cancelled if,

for some number n0  n, xs
n0 is not good at stage s + 1 or

there is a number x  xs
n0 such that g(x, s) < g(x, s+ 1).

Step 2. Requirement Rn requires attention via x if the
following hold.

(i) Rn is the highest priority requirement which does not
have a follower after Step 1.

(ii) x � 1 and x is good at stage s+1, i.e., h(x, s+1) <
g(x, s+ 1).

(iii) x > g(xs
n�1, s+ 1).

(iv) g(x, s+ 1)  s+ 1.

If Rn requires attention then declare that Rn becomes ac-
tive at stage s + 1; for the least x such that Rn requires
attention via x, appoint xs+1

n = x as Rn-follower; and let

Xi,s+1 = Xi,s [
�
[0, g(x, s+ 1)) \X1�i,s

�

X1�i,s+1 = X1�i,s

where i = 0 if n is even and i = 1 if n is odd.

If no requirement requires attention, let Xi,s+1 = Xi,s for
i  1. In any case, for any follower xs

n0 defined at the end
of stage s and not cancelled in Step 1, xs+1

n0 = xs
n0 .

In the remainder of the proof we will show that the sets X0 and X1

have the required properties. Obviously, the sets X0 and X1 are c.e.
and disjoint. So it su�ces to show that X0 [ X1 = ! and that the
requirements Rn are met. In order to show this we prove a series of
claims.

Claim 2. If xs
n # then xs

n�1 #, xs
n is the least number > g(xs

n�1, s)
which is good at stage s, and g(xs

n, s)  s. Hence, by (16) and (8),

(25) xs
n�1  g(xs

n�1, s) < xs
n  h(xs

n, s) < g(xs
n, s)  s.

Proof. The straightforward proof is by main induction on s and side
induction on n. ⇤
Next we show that any requirement Rn eventually obtains the good

number xn defined above as permanent follower (i.e., there is a stage
s such that xn is appointed as Rn-follower at stage s and Rn is not
initialized at any greater stage, hence xn = xs0

n for all s0 � s).
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Claim 3. xn is the permanent follower of requirement Rn.

Proof. The proof is by induction on n. Fix n and assume the claim
to be correct for n0 < n. Fix s0 minimal such that the following hold.

(a) For any n0 < n and any stage s � s0, xn0 is the follower of Rn0

at the end of stage s, i.e., xn0 = xs
n0 .

(b) For any x  xn, h(x, s0) = h(x) and g(x, s0) = g(x)  s0.

Then, for s � s0, xn is the least number > g(xn�1, s) which is good
at stage s. So, if Rn has no follower at the end of stage s0, then Rn

requires attention at stage s0+1 and xn becomes appointed. If Rn has
a follower x at the end of stage s0 then x = xn by Claim 2. In either
case, it follows with (b) that Rn will not be initialized later. So the
follower xn is permanent. ⇤

Note that, by Claim 3 and by (16), all numbers  xn have entered
X0 or X1 by the end of the first stage at which xn becomes appointed
as Rn-follower. So, by limn!1 xn = !, X0 [ X1 = !. It remains to
show that the requirements Rn are met. For this sake we first prove
another auxiliary claim.

Claim 4. Let n � 1 and let sn be minimal such that no requirement

Rn0 with n0 < n becomes active or is initialized after stage sn. Then

the following hold.

(A) For n0 < n and s � sn, xs
n0 = xn0, xn0 is good at stage s and

g(xn0 , s) = g(xn0)  sn.
(B) xn�1 is appointed as Rn�1-follower at stage sn.
(C) xsn

n ".
(D) For s � sn, g(x0, s) = g(x0) for all x0  xn�1 and h(x0, s) =

h(x0) and tsx0 = tx0 for all x0 < xn�1 (where tsx0 and tx0 are

defined in (7) and (3), respectively).
(E) X0,sn [X1,sn ✓ ! � g(xn�1).

Proof. For a proof of part (A), fix n0 < n. By choice of sn and
by Claims 1 and 3, xs

n0 = xn0 and g(xn0 , s) = g(xn0) for all stages
s � sn. The other items of (A) follow by Claim 2. Part (B) follows
by minimality of sn and by construction, and part (C) is immediate
by (B). The first part of (D) is immediate by choice of sn. For a proof
of the second part, for a contradiction assume that there are numbers
x0 < xn�1 and s � sn such that h(x0, s) < h(x0, s+ 1) or tsx0 < ts+1

x0 . By
(10) and by definition of tsx0 this implies that Ws+1 � h(x0, s) 6= Ws �
h(x0, s). (Namely, if h(x0, s) < h(x0, s + 1) then this is immediate by
(10); and if h(x0, s) = h(x0, s + 1) and tsx0 < ts+1

x0 then this follows by
definition of tsx0 .) So, by (11), we may conclude that ts+1

x0 � s+1, hence
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h(x0 + 1, s + 1) > s + 1 by definition. Since x0 + 1  xn�1 and since
xn�1 is good this implies that g(xn�1) > s+ 1 > sn contrary to (A).

This leaves (E). For a contradiction, assume that there is a number
y � g(xn�1) such that y 2 X0,sn [ X1,sn . By (B), only numbers <
g(xn�1) are enumerated into X0 and X1 at stage sn. So there must be
a stage s + 1 < sn, a requirement Rm, and a number x such that x
becomes appointed as Rm-follower at stage s+1 and y < g(x, s+1) 
s+ 1.

Since g(xn�1, s + 1)  g(xn�1)  y, it follows that xn�1 < x. More-
over, by g(xn�1)  y < s + 1 and by the second part of (17) (and by
(16) and (14)),

(26) 8x0  xn�1(g(x
0, s+ 1) = g(x0) < s+ 1).

By goodness of xn0 this implies

(27) 8n0  n� 1(xn0 is good at all stages � s+ 1).

So, by Claim 2 (and by induction on n0), xs+1
n0  xn0 if xs+1

n0 is defined
(n0  n� 1). Since xn�1 < x = xs+1

m , we may conclude that m � n and

8n0  n� 1(xs+1
n0 # and xs+1

n0  xn0).

In fact,

(28) 8n0  n� 1(xs+1
n0 = xn0).

Namely, otherwise, fix n0  n� 1 minimal such that xs+1
n0 < xn0 . Then

xs+1
n0 is good at stage s + 1 (since it is a follower) but not truly good

(by (26) and by definition of xn0). So h(xs+1
n0 , s + 1) < h(xs+1

n0 ), and -
since xs+1

n0 < xn�1 - as in the proof of the second part of (D) we may
argue that g(xn�1) > s+ 1 contrary to (26).
Now, by (26), (27) and (28), no requirement Rn0 with n0 < n becomes

active or is initialized after stage s+1. By s+1 < sn, this contradicts
minimality of sn. ⇤

Claim 5. Requirement Rn is met.

Proof. Fix n = 2e+ i (e � 0, i  1). Since Rn+2 is stronger than Rn,
w.l.o.g. we may assume that n � 1. We will show that (24) holds. Since
e  n  xn � 1 and since xn is good, by (4) and (6) this guarantees
that Rn is met.
Fix sn and sn+1 (correspondingly defined for n+ 1 in place of n) as

in Claim 4. Then xsn
n ", xn becomes assigned to Rn permanently at

stage sn+1 (hence xn = xs
n for s � sn+1), and

[tsn+1
xn�1, g(xn, sn+1)) = [txn�1, g(xn)).
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By construction, this implies that all elements of [txn�1, g(xn)) which
have not been put into X0 or X1 at a previous stage are enumerated
into Xi at stage sn+1. So it su�ces to show that, for any number y,

(29) y 2 X1�i,sn+1�1 \ [txn�1, g(xn)) ) y 2 D.

Fix y as in the premise of (29). Note that g(xn�1) < txn�1 (since
g(xn�1) < xn by definition of xn and xn � 1 < txn�1 by (4)). Since Rn

does not enumerate numbers into X1�i, and since, by choice of sn, no
requirement Rn0 where n0 < n becomes active after stage sn, it follows,
by Claim 4 (E), that there is a requirement Rm wherem = 2e0+(1�i) >
n, a number x, and a stage s+1 such that sn < s+1 < sn+1, x becomes
appointed as Rm-follower at stage s+ 1, hence x = xs+1

m , and

(30) y < g(xs+1
m , s+ 1)  s+ 1 & y 62 X0,s [X1,s.

Moreover, xs+1
m is good at stage s+1, hence h(xs+1

m , s+1) < g(xs+1
m , s+

1).
By n < m and by construction, Rn has a follower x0 < x at stage s

and is not initialized at stage s+1. So xs+1
n = xs

n < x and g(xs
n, s+1) =

g(xs
n, s) where, by s � sn, xs

n�1 = xn�1 and g(xn�1) = g(xn�1, s) < xs
n.

Now distinguish between the following cases.

Case 1: xs
n < xn. Then, by g(xn�1) < xs

n < xn and by choice of xn,
xs
n is not good but (by Claim 2) xs

n is good at stage s. So there is a
stage t � s + 1 such that h(xs

n, t + 1) 6= h(xs
n, t). By (10) and by (12)

this implies Wt � h(xs
n) 6= W � h(xs

n) which in turn (by definition of
txn�1) implies that txn�1 > t. Since y  s+ 1  t, this contradicts the
choice of y. So this case cannot apply.

Case 2: xs
n > xn. Then, by Claim 2, xn is not good at stage s + 1.

Since xn is good, it follows that there is a stage t � s + 1 such that
g(xn, s + 1) = g(xn, t) < g(xn, t + 1). So, by (17) and by the dump
property (2),

(31) [g(xn, s+ 1), s+ 1] ✓ D.

On the other hand, since xn < xs
n < x, xs

n is follower of Rn at stage
s+1 and x is follower of Rm at stage s+1, it holds that g(xn, s+1) <
g(xs

n, s + 1) = g(xs
n, s) and all numbers < g(xs

n, s) are in X0,s [ X1,s.
So, by the second part of (30), g(xn, s+ 1)  y < s+ 1 whence y 2 D
by (31).

Case 3: xs
n = xn. Since s + 1 < sn+1, Rn becomes initialized after

stage s+1. Since xn is good, this implies that there is a stage t � s+1
such that g(xn, s+1) = g(xn, t) < g(xn, t+1). But then we may argue
as in Case 2 that y 2 D.
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This completes the proof Claim 5 and the proof of the theorem. ⇤
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3. Appendix: Proofs of (8) - (12)

Proof of (8). The strict inequalities are immediate by definition. So,
in particular, h(x, s) is strictly increasing in the first argument, hence
x  h(x, s). ⇤

Proof of (9). The proof is by induction on x. Fix x and s and assume
the claim to be true for all numbers less than x. For the proof of the
first part, we may assume that x > 0 since h(0, s) = 0 for all stages s.
Note that tsx�1  ts+1

x�1 by inductive hypothesis and Ws+1 ✓ Ws. So, for
any number s0 > ts+1

x�1, it holds that s
0 > tsx�1 and

Ws+1 \ [ts+1
x�1, s

0) ✓ Ws \ [tsx�1, s
0).

But this implies h(x, s)  h(x, s + 1) by definition. For a proof of the
second part, note that, by the first part and by Ws ✓ Ws+1, h(x, s) 
h(x, s + 1) and Ws � h(x, s) ✓ Ws+1 � h(x, s + 1). So tsx  ts+1

x by
definition. ⇤

Proof of (10). The proof is by induction on x. Fix x and assume that
h(x, s) 6= h(x, s + 1) hence h(x, s) < h(x, s + 1) by (8). Then x > 0
and, by (8) and inductive hypothesis, we may assume that Ws+1 �
h(x � 1, s) = Ws � h(x � 1, s) and h(x � 1, s) = h(x � 1, s + 1).
It follows that tsx�1 = ts+1

x�1 hence [tsx�1, h(x, s)) = [ts+1
x�1, h(x, s)). By

h(x, s) < h(x, s + 1) and by definition of h(x, s + 1) this implies that
Ws+1 \ [tsx�1, h(x, s)) = ;. On the other hand, by definition of h(x, s),
Ws \ [tsx�1, h(x, s)) 6= ;. So Ws+1 � h(x, s) 6= Ws � h(x, s). ⇤
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Proof of (11). Assume that Ws+1 � h(x, s) 6= Ws � h(x, s). Then, by
h(x, s)  h(x, s+1), Ws+1 � h(x, s+1) 6✓ Wt � h(x, s+1) for all t  s.
So ts+1

x � s+ 1 by definition. ⇤
Proof of (12). The proof is by induction on x. Given x, by (9) it
su�ces to show that h(x, s) = h(x) and tsx = tx for all su�ciently
large s. If x = 0 then this is immediate since h(0, s) = 0 = h(0) and
ts0 = 1 = t0 for all stages s. So we may assume that x > 0 and, by
inductive hypothesis, we may fix a stage s0 such that h(x � 1, s) =
h(x � 1), tsx�1 = tx�1 and Ws � u + 1 = W � u + 1 for all s � s0
where u is minimal such that u � tx�1 and u 62 W . Then, for s � s0,
h(x, s) = u+1 = h(x). Moreover, for the least stage t > h(x) such that
Wt � h(x) = W � h(x), tsx = t = tx for all stages s � max{s0, t}. ⇤
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