
Adversarial and Online Algorithms

by

Matthew Askes

A thesis
submitted to Victoria University of Wellington

in fulfilment of the requirements for the degree of
Master of Science
in Mathematics.

Victoria University of Wellington
2022

Abstract

In this thesis we explore a variety of online and adversarial algorithms.
We primarily explore the following online and adversarial algorithms; the
perfect code game, adversarial online colouring, the chain decomposition
game, and strongly online graphs.

The perfect code game is a new adversarial game played on graphs in
which players take turns constructing perfect codes. We provide definitions
for perfect codes and the perfect code game, along with some motivation
from coding theory. We will prove upper bounds for both cycle and path
graphs. We also prove an upper bound for graphs of bounded pathwidth.
Finally, we explore the perfect code game in graphs of bounded degree.

Wewill create a new game called the adversarial online colouring game, this
game takes elements from both online and adversarial algorithms. We will
begin with some discussion and a definition of adversarial online colouring.
We will then prove several results related to graph degree. We conclude with
a proof that the adversarial online colouring game on trees is determined
only by the number of colours and the number of vertices (assuming that
both players have a chance at winning).

The chain decomposition game is another adversarial game, but this time
played on partial orders. We introduce the chain decomposition game and
demonstrate two results relating to upper and lower bounds for the game.
We also prove a result on the online adversarial version of the game.

We introduce strongly online graphs and graph colouring as a new al-
gorithmic parameterization to online graph colouring. A strongly online
graph is an online graph where at each stage 𝑠 we can see a ball of increasing
radius about each vertex. We will prove several bounds (upper and lower)
on the online chromatic number of strongly online graphs. For example, we
show that every strongly online graph can be coloured in twice its chromatic
number. We prove that every strongly online graph with even pathwidth 𝑘
can be online coloured with 2𝑘 + 1 colours. Then, after introducing a natural
notion of strongly online pathwidth, we prove that there is a strongly online
graph with no finite strongly online path decomposition.

i

Contents

1 Introduction 1
1.1 Algorithms . 1

1.1.1 Bin Packing . 1
1.1.2 Planar Graphs . 2

1.2 Definitions Related to Graphs . 2
1.3 Adversarial Algorithms . 3

1.3.1 The Colouring Game . 3
1.3.2 General Definition of Adversarial 4

1.4 Online Algorithms . 4
1.4.1 Online Colouring . 5
1.4.2 General definition of Online . 5

1.5 Pathwidth and Treewidth . 6
1.5.1 Treewidth . 7
1.5.2 Pathwidth . 8

1.6 Chapters . 9

2 The Perfect Code Game 11
2.1 Perfect Codes . 11

2.1.1 Coding and Information Theory 12
2.2 Perfect Code Game . 13
2.3 Path and Cycle Graphs . 13
2.4 Graphs of Bounded Pathwidth . 17
2.5 Graphs of Bounded Degree . 18

3 Adversarial Online Colouring 19
3.1 Adversarial Online Colouring . 19
3.2 Alternative Presentations . 20
3.3 Maximum Degree . 21
3.4 Bipartite Graphs . 23
3.5 Trees . 24

4 The Chain Decomposition Game 27
4.1 Chain Decompositions . 27
4.2 Adversarial Game . 28
4.3 Online Partial Orders . 30
4.4 Online Adversarial . 30

iii

Contents

5 Strongly Online Graphs 33
5.1 Highly Computable Graphs . 34
5.2 Online Graphs and an Analogy . 35
5.3 Strongly Online Graphs . 36

5.3.1 Colouring Strongly Online Graphs 37
5.4 Suspected Improvements . 39
5.5 Lower Bounds . 40

5.5.1 Online with Lookahead . 42
5.6 Graphs with Bounded Pathwidth . 43

5.6.1 Strongly Connected . 49
5.7 Strongly Online Path Decompositions . 50

6 Conclusion 57
6.1 Other work . 57

iv

List of Figures

1.1 A graph of treewidth 2 . 7
1.2 A tree decomposition of Figure 1.1 . 7
1.3 A graph of pathwidth 1 . 8
1.4 A graph of pathwidth 3 . 8
1.5 An interval graph with clique width 4 . 9

2.1 The Hamming graph 𝐻(3, 2) with a perfect code 12
2.2 The Path Graph 𝑃𝑛+2 . 14
2.3 Bob splitting the graph into two games 15
2.4 The cycle graph 𝐶8 and its equivalent path graph, 𝑃(7)+2 16
2.5 The path graph 𝑃𝑛 . 17
2.6 The graph 𝐺 . 18
2.7 The extended path graph 𝑃2𝑛 . 18

3.1 The star graph 𝑆9 along with 9 isolated vertices 20
3.2 The partially coloured graph, 𝐺 . 22
3.3 The structure of the anti-matching in 𝑇 25
3.4 The structure of 𝑇 . 26

4.1 The Hasse diagram of the ladder Poset 31

5.1 A maze . 36
5.2 A tree that cannot be four coloured (numbers representing colours, and

vertices not in a 𝐹𝑖 omitted) . 38
5.3 The first 4 paths for 𝐻𝑠,4 when 𝑘 = 3 . 40
5.4 The graph 𝐻𝑠,𝑞 for 𝑘 = 3 . 41
5.5 The graph 𝐻𝑠 for 𝑘 = 3, with colours . 41
5.6 The bags 𝑃𝑙 and 𝑃𝑟 . 45
5.7 The graph 𝐻𝑠,𝑛+1 with edges coloured for clarity 47
5.8 The graph 𝐻𝑠 for pathwidth 3 . 48
5.9 The graph 𝐺 . 52
5.10 The new vertices added to the paths . 52
5.11 The initial 𝑛(2𝑛 + 1) paths and the presented vertices (in black) 54
5.12 The connections between vertices (paths) for 𝑛 = 3 54
5.13 The bags in 𝒬 and the bags corresponding to the path 𝑣𝑖–𝑣2𝑛+2−𝑖 55

v

Chapter 1

Introduction

1.1 Algorithms
Mathematical algorithms are at the heart of computer science and hence at the heart
of modern society. An algorithm is a sequence of basic instructions that define some
procedure. This could be something simple such as an algorithm for searching a list, or
more complicated like finding an optimal delivery route for a postal service. A ‘normal’
algorithm has access to the entire problem structure and operates alone. However, there
are many problems for which this is not true. For example, if you have a robot navigating
a large maze then the robot has no knowledge about the sections that it hasn’t explored.
In these situations special types of algorithms are needed. It is these special algorithms
we are concerned with. This thesis will be dedicated to the theory of adversarial and
online algorithms on graphs and related structures. We deduce that most of the problems
we study have been not considered before. These problems are the latest in a long history
stretching back to Turing 1936 [1] and his work on universal computing machines.

1.1.1 Bin Packing

Consider the bin packing problem. Suppose you have a bunch of items of various shapes
and sizes along with several bins. Each bin can hold only a limited volume. Your goal is
to pack the items into the least number of bins possible. The bin packing problem is a
famous NP-complete problem [2]. Given the bin packing problem, how might you solve
it? Noting this is an important problem, we explain three common algorithms.

Brute force: Try every possible combination of items and bins. Then take the best
one (smallest number of bins). Brute force gives you an optimal result. However,
the complexity of this algorithm is Ω(2𝑛).

Greedy: Order the items from largest to smallest. Fix some order on the bins.
Working from largest to smallest, place each item in the smallest bin that will
accept the item. In effect we are greedily picking the biggest item and placing it in
a bin. The greedy algorithm has complexity (O(𝑛 log 𝑛)). The solutions generated
using the greedy algorithm use at most 11/6 times the optimal number of bins [3].

First fit: Fix some order on the bins. Place each item as it arrives in the smallest

1

Chapter 1. Introduction

bin that will accept the item. First fit is a fast algorithm (O(𝑛)) but gives solutions
worse than the greedy algorithm. The solutions generated use at most 1.7 times
the optimal number of bins [4].

First fit is an example of an online algorithm. Suppose you, your family, and some friends
are going on holiday. You are in charge of packing the cars. However, no-one is organised
and they give you items one at a time. Whenever you are given an item you must
irrevocably decide which car to put the item in. You could use the first fit algorithm to
pack the cars. You can do this by placing an item is the first car that it will fit in.

1.1.2 Planar Graphs

Another problem we consider is planar graph colouring. A planar graph is a graph
that can be drawn on the plane without edges crossing. Every planar graph contains a
4-colouring [5]. But, can we algorithmically colour a planar graph with four colours? yes
we can, if the graph is finite.

You could try every possible colouring until you found one that worked. But what if the
graph was countably infinite? Could we still find a colouring? It turns out we cannot.
Specifically we have the following theorem.

Theorem 1.1 (Bean 1976 [6]). There is a 3-colourable, computable1 planar graph which,
for all 𝑘 has no computable 𝑘-colouring.
1.2 Definitions Related to Graphs
We need to take a moment to define some concepts related to graphs.

A graph 𝐺 = (𝑉 , 𝐸) is a set of vertices 𝑉 (𝐺) along with a set of edges 𝐸(𝐺). An edge(𝑢, 𝑣) ∈ 𝐸 is a pair of vertices. A simple graph is a graph with at most 1 edge between each
pair of vertices and no loops (edges starting and ending at the same vertex). We will only
be considering countable, simple, non-directed graphs. We will refer to both infinite and
finite graphs, this should be clear from context. As a rule of thumb, we deal with finite
graphs in adversarial situations, and (countably) infinite graphs in online situations.

The neighbourhood of a vertex 𝑣 is the set of all vertices adjacent to 𝑣, is denoted 𝑁(𝑣) ={𝑢 ∈ 𝑉 ∶ (𝑢, 𝑣) ∈ 𝐸}. The closed neighbourhood of a vertex 𝑣 is the neighbored of 𝑣 along
with 𝑣, and is denoted 𝑁[𝑣] = 𝑁(𝑣) ∪ {𝑣}. The degree of a vertex 𝑣 is the number of
neighbours of 𝑣, and is denoted 𝛿(𝑣) = |𝑁 (𝑣)|. The degree of a graph is the largest degree
of all its vertices and is denoted Δ(𝐺) = max𝑣 ∈ 𝑉 𝛿(𝑣). The degree of a graph may also be
referred to as just Δ when it is clear which graph we are referring to.

Let 𝐺 = (𝑉 , 𝐸) be a graph, and 𝑈 ⊂ 𝑉. The neighbourhood of 𝑈 is the set of all vertices not
in 𝑈 that are adjacent to a vertex in 𝑈, and is denoted𝑁(𝑈) = {𝑣 ∈ (𝑉 ⧵𝑈) ∶ ∃𝑢 ∈ 𝑈(𝑢, 𝑣) ∈ 𝐸}.
The closed neighbourhood of 𝑈 is the neighbourhood of 𝑈 along with 𝑈, and is denoted𝑁[𝑈] = 𝑁(𝑈) ∪ 𝑈. For 𝐻 the subgraph of 𝐺 induced by 𝑈 we will abuse notation slightly
and write 𝑁(𝐻) to mean the subgraph of 𝐺 induced by 𝑁(𝑈). We will also write 𝑁[𝐻] to
mean the subgraph induced by 𝑁[𝑈].

1We are omitting a formal definition of computable. For an overview see Section 5.1, or Turing 1936 [1]

2

1.3. Adversarial Algorithms

We formally define a colouring as follows.

Definition 1.2 (Proper 𝑘-Vertex Colouring). Let 𝐶 = {1, … , 𝑘} be a set of colours. A 𝑘-
vertex colouring of a graph 𝐺 = (𝑉 , 𝐸) is a mapping 𝑐∶ 𝑉 → 𝐶. A proper 𝑘-vertex colouring
of 𝐺 = (𝑉 , 𝐸) is a mapping 𝑐∶ 𝑉 → 𝐶 such that for any two vertices 𝑢, 𝑣 ∈ 𝑉, if (𝑢, 𝑣) ∈ 𝐸,
then 𝑐(𝑢) ≠ 𝑐(𝑣).
When referring to graph colourings we will henceforth be referring to proper 𝑘-vertex
colourings for some 𝑘. A colouring 𝑐 ∶ 𝑉 → 𝐶 is called partial if it is not defined on all
the vertices of a graph. That is, 𝑐 is a partial function.

Definition 1.3 (Chromatic Number). The chromatic number, χ(𝐺), of a graph 𝐺 is the
smallest integer 𝑘 such that 𝐺 has a proper 𝑘-vertex colouring.

1.3 Adversarial Algorithms
An adversarial algorithm (a.k.a. competitive algorithms and games) is a two-player2 game
where the players have differing/conflicting goals. For example, suppose it is Alice’s job
to manage deliveries for a pâtisserie, Le Petit Flour. Alice’s goal is to deliver pastries
to every café in her route as quickly possible. That is, she needs to create an efficient
delivery schedule. In a non-adversarial situation, Alice would simply have a system or
algorithm for determining which café she delivers to next. However, suppose instead she
had a partner, Bob, who gets to decide every second delivery. Bob has been bribed by a
rival bakery and is attempting to sabotage Le Petit Flour. He sabotages Le Petit Flour by
choosing cafés in such a way that the delivery schedule becomes infeasible. This is an
adversarial situation and Alice will need a new algorithm that will minimize the damage
done by Bob. Such an algorithm would be an adversarial algorithm.

It is useful to think of such adversarial algorithms as a game between two players, Alice
and Bob. Alice and Bob would take turns constructing an object (e.g. a function). When it
makes it clearer we will use Alice to refer to the algorithm attempting to construct an
object, and Bob as the algorithm as the attempting to destroy/hinder the construction. For
example, if we are trying to adversarial 𝑘-colour a graph, then Alice wants a colouring
using at most 𝑘 colours and Bob trys to force more than 𝑘 colours.

1.3.1 The Colouring Game
Adversarial games model many structures in computing where we imagine an opponent
trying to hinder our progress. One common example of an adversarial situation is the
colouring game. Let 𝐺 be a graph, and 𝐶 a set of colours. Beginning with Alice, Alice and
Bob take alternating turns. On their turn they choose an uncoloured vertex, 𝑣, and assign𝑣 a colour from 𝐶 such that no two adjacent vertices in 𝐺 have the same colour. This
continues until one of two win conditions are met. First, Alice wins if all the vertices are
coloured. Second, Bob wins if there is a vertex that cannot be coloured with the available
colours.

Definition 1.4 (Game Chromatic Number). For a graph 𝐺 the game chromatic number,χg(𝐺), is the smallest number of colours such that Alice will always win the colouring

2It is possible to have more than two players, but we will only concern ourselves with two player versions.

3

Chapter 1. Introduction

game on 𝐺.
Every finite planar graph has a 4-colouring algorithm. What if we are adversarial colouring
the planar graph? Then we would need at least 17 colours to adversarial colour every
planar graph (currently, it is not known if this bound is tight).

Theorem 1.5 (Zhu 2008 [7] and Kierstead and Trotter 1994 [8]). For any planar graph𝐺, it’s game chromatic number is χg(𝐺) ≤ 17. Further, there is a planer graph with game
chromatic number 7.

In Chapter 3 we will explore a further algorithmic parameterization of the colouring
game.

1.3.2 General Definition of Adversarial
An adversarial problem is a tuple (𝐼 , 𝑆, 𝑞, 𝑡) such that 𝐼 is a finite structure encoded as a
string in some alphabet, 𝑆 is the set of all valid (partial) solutions viewed as strings in
some (possibly different) alphabet, 𝑞∶ 𝑆 → ℕ is a function mapping each solution to a
score, and 𝑡 ∈ ℕ a target score. For example, in the colouring game, 𝐼 is a code for a
finite graph, and 𝑆 the set of all codes for valid (partial) colourings on 𝐼, 𝑞(𝑠) would be the
number of colours used by 𝑠 ∈ 𝑆 and 𝑡 is some target score.

For 𝜎 and 𝜏 strings encoding some structures, we abuse notion slightly and write 𝜎 ≺ 𝜏 if
the structure encoded by 𝜏 extends the structure encoded by 𝜎. For example, if 𝜎 and 𝜏
are graphs then 𝜎 ≺ 𝜏 means 𝜎 is a subgraph of 𝜏. Or, if 𝜎 and 𝜏 are functions then 𝜎 ≺ 𝜏
means 𝜎 is 𝜏 restricted to 𝜎’s domain.

An algorithm or strategy for an adversarial problem (𝐼 , 𝑆, 𝑞, 𝑡) is a computable function𝜑𝐼∶ 𝑆 → 𝑆, such that for all 𝜎 ∈ 𝑆, we have 𝜑𝐼(𝜎) ∈ 𝑆 and 𝜎 ≺ 𝜑𝐼(𝜎). For example, in the
colouring game a strategy is a way of extending any (partial) colouring of 𝐼 to another
colouring of 𝐼, such that the new colouring is valid.

A solution (a.k.a winning strategy) for an adversarial problem (𝐼 , 𝑆, 𝑞, 𝑡) is a strategy 𝜑𝐼
such that for any strategy 𝜓𝐼 the function 𝜑𝐼 ∘ 𝜓𝐼 has the following properties,

1. For all 𝜎 ∈ 𝑆, 𝜑𝐼 ∘ 𝜓𝐼(𝜎) ∈ 𝑆
2. For all 𝜎 ∈ 𝑆, 𝜎 ≺ 𝜑𝐼 ∘ 𝜓𝐼(𝜎)
3. For all 𝜎 ∈ 𝑆, 𝑞(𝜑𝐼 ∘ 𝜓𝐼(𝜎)) ≤ 𝑡

The strategy 𝜑𝐼 can be interpreted as a strategy for Alice, who is attempting to construct
some solution 𝜎 such that the score of sigma (𝑞(𝜎)) is at most 𝑡. Because if the score goes
above 𝑡, then Bob will win. For example, in the colouring game a solution is a strategy for
Alice, such that no matter what strategy Bob employs the colourings are always proper
and never use more than 𝑡 colours.
1.4 Online Algorithms
Consider again, Le Petit Flour. Bob has been found out and was promptly fired. In an
attempt to repair the damage done by Bob, Alice has a new way of scheduling deliveries.
When a café places an order, Alice will irrecoverably assign them a delivery slot. This is

4

1.4. Online Algorithms

an online situation because the cafés are arriving in an online manner. Unfortunately for
Alice, this means the efficiency of her delivery schedule gets much worse.

An online situation can be considered any situation where a structure is arriving as a
sequence of small distinct pieces. Online situations are abound in computer science.
They can be found in everything from robot navigation to network configuration. Any
situation that has partial information can be considered online.

An online algorithm, 𝐀, is a strategy that responds to a sequence of inputs such that
each output is an extension of the previous and is irrevocable. After seeing 𝑡 inputs, the
algorithm must give the 𝑡-th output.

It is useful to consider that the inputs are generated by a malevolent entity. This turns the
online situation into a game (again played between Alice and Bob). Alice is responding
to pieces of data determined by Bob.

As an example of an online problem we will define online graph colouring along with
some results.

1.4.1 Online Colouring
The most common type of online situation we will deal with is online graph colouring.

Definition 1.6 (Online Graph). An online (presentation of a) graph 𝐺≺ is a countable
(possibly infinite) graph 𝐺 = (𝑉 , 𝐸) and ≺ a linear order on 𝑉. The order ≺ is called the
presentation order of 𝐺. Let 𝐺≺𝑠 = (𝑉𝑠, 𝐸𝑠) denote the online subgraph induced by the≺-least 𝑠 elements 𝑉𝑠 = {𝑣1 ≺ ⋯ ≺ 𝑣𝑠} in 𝐺≺.
We call the subgraph 𝐺≺𝑠 induced by ⋃𝑡 ⪯ 𝑠{𝑣𝑡} of 𝐺, the processed subgraph.

An online algorithm colours the online graph 𝐺≺ in stages. At stage 𝑠 the vertex 𝑣𝑠 is
revealed and must be irrevocably assigned a colour using only the information in 𝐺≺𝑠 . If
it is clear from context which graph and ordering we are referring to we may write 𝐺≺𝑠 as𝐺𝑠.
As we have seen, when adversarial colouring planar graphs, more colours are needed.
How many extra colours are need to online colour planar graphs? To online colour a
planar graphs with 𝑛 vertices requires O(log(𝑛)) many colours. Thus an infinite graph
would require infinitely may colours to online colour.

1.4.2 General definition of Online
An online structure is some structure 𝐴 along with a filtration (or online presentation){𝐴1, 𝐴2, 𝐴3… } where 𝐴𝑠 has universe {1, … , 𝑛} and is the induced substructure of 𝐴 as
identified by {1, … , 𝑠}, such that 𝐴 = ⋃𝑠𝐴𝑠.
An online problem is a triple (𝐼 , 𝑆, 𝑠)where 𝐼 is the space of inputs (i.e. the filtration) viewed
as strings in some alphabet of some online structure, 𝑆 is the set of all possible outputs
viewed as strings in some (possibly different) alphabet, and 𝑠 is a function which maps
each input to the set of valid solutions.

For example, in online colouring, 𝐼will be codes for finite graphs, and 𝑆 codes for colourings.
Then 𝑠 maps each graph to valid colourings. This leads us to the following definition.

5

Chapter 1. Introduction

Definition 1.7 (Downey, Melnikov and Ng 2021 [9]). An online solution (a.k.a. online
algorithm) for an online problem (𝐼 , 𝑆, 𝑠) is a computable function 𝑓∶ 𝐼 → 𝑆 with the
following properties,

1. For all 𝜎 ∈ 𝑆, 𝑓 (𝜎) ∈ 𝑠(𝜎)
2. If 𝜎 ≺ 𝜏, then 𝑓 (𝜎) ≺ 𝑓 (𝜏)

An online algorithm is a function that for every input gives a valid solution, and if one
input extends another then so do the corresponding outputs.

1.5 Pathwidth and Treewidth
In general online algorithms on general graphs are very hard. In an attempt to make the
problems easier we look for important parameterizations. For both adversarial and online
algorithms, various parameterizations about shape are important. Kierstead 1998 [10]
and Gasarch 1998 [11] both give ample evidence for this. For example, for a graph
treewidth, pathwidth, degeneracy (see Section 3.1 for definition), and maximum degree
are all important. This is because they provide measured improvements in online and
adversarial algorithms. As we will see in later chapters, graphs of bounded treewidth (or
pathwidth) often have good (relative to general graphs) bounds for both adversarial and
online algorithms

The concept of treewidth was an important by-product of the famous work by Robertson
and Seymour 1986 [12]. Treewidth offers us a useful way of parameterizing problems
using graph structure. Fundamentally treewidth is a measure of how ‘tree-like’ a graph is.
So, a graph with treewidth 1 is a tree, and the higher the tree width the less ‘tree-like’ the
graph.

There are many graph parameters that are either equivalent to treewidth or have bounded
treewidth. For example, a graph with treewidth 𝑘 has vertex separation number 𝑘 and
interval thickness 𝑘 + 1. However, we will be focusing primarily on treewidth. For an
overview of these alternative parameters, see Bodlaender 1998 [13].

One of the great benefits of treewidth is many hard problems become easier on graphs
with bounded treewidth. More specifically, certain NP-complete and NP-hard problems
have polynomial solutions for bounded treewidth (but still exponential in treewidth). For
example, the following problems have polynomial solutions for bounded treewidth.

Independent set [14].
Find the smallest subset 𝑋 of 𝑉 such that no two vertices in 𝑋 are adjacent.

Vertex cover [15].
Find the smallest subset 𝑋 of 𝑉 such that every edge is incident to a vertex in 𝑋.

Dominating set [14].
Find the smallest subset 𝑋 of 𝑉 such that every vertex is adjacent to a vertex in 𝑋.

An algorithm is called fixed parameter tractable (FPT) if it’s running time is 𝑓 (𝑘) ⋅ 𝑛O(1)
where 𝑓 is an arbitrary function depending only on 𝑘 and 𝑛 is the input size. Many problems
when parameterized by treewidth have FPT algorithms [16]. We note that finding the

6

1.5. Pathwidth and Treewidth

treewidth of a graph is NP-complete. However if a graph has known pathwidth then
there are polynomial algorithms to find tree decompositions [17].

It also turns out that many real life structures have small treewidth. For example, Yamagu-
chi, Aoki and Mamitsuka 2003 [18] analysed 9712 chemical compounds from the LIGAND
database and found that all bar 1 had treewidth 3 or less (the lone exception had treewidth
4). Hence, we find that many real world problems that are hard have efficient algorithms
when they are parameterized by treewidth.

1.5.1 Treewidth

We will now formally define treewidth.

Definition 1.8 (Tree decompsition). A tree decomposition (𝒳, 𝑇) of a graph 𝐺 = (𝐸, 𝑉) is
a tree, 𝑇, along with a collection of subsets of 𝑉, 𝒳 = {𝑋1, … , 𝑋𝑛}, indexed by vertices in 𝑇
such that ⋃𝑖 𝑋𝑖 = 𝑉 and 𝑋 has the following properties,

1. For every edge (𝑢, 𝑣) ∈ 𝐸, there is a bag 𝑋𝑖 such that 𝑢, 𝑣 ∈ 𝑋𝑖.
2. If 𝑥,𝑦, and 𝑧 are vertices in 𝑇 and 𝑧 is on the unique path from 𝑥 to 𝑦, then 𝑋𝑥 ∩𝑋𝑦 ⊆𝑋𝑧.

The width of a tree decomposition is one less than the maximum size of any bag in 𝒳.

Definition 1.9 (Treewidth). The treewidth of a graph 𝐺 is the minimum width of a tree
decomposition of 𝐺. A graph with bounded treewidth 𝑘 is a graph with treewidth less than
or equal to 𝑘.
Definition 1.10 (𝑘-tree). A 𝑘-tree is a graph that has treewidth 𝑘 and has maximal edges
with respect to treewidth.

𝑎 𝑏
𝑐

𝑑
𝑒 𝑓𝑔ℎ

𝑖 𝑗 𝑘
𝑙𝑚

𝑛
𝑜𝑝

𝑞

Figure 1.1: A graph of treewidth 2

𝑑𝑔ℎ 𝑑𝑒𝑓
𝑎𝑑𝑏

𝑎𝑏𝑐 𝑏𝑐𝑚 𝑐𝑘𝑚𝑘𝑙𝑚
𝑖𝑗𝑐
𝑞𝑖𝑗

𝑚𝑜𝑝

𝑘𝑙𝑛

Figure 1.2: A tree decomposition of Fig-
ure 1.1

In the offline case, every graph with treewidth 𝑘 can be 𝑘+1 coloured. But in the colouring
game 3𝑘 + 2 [19] colours are needed. And an online algorithm requires O(log(𝑛)) many
colours to colour a graph with 𝑛 vertices [6].

7

Chapter 1. Introduction

1.5.2 Pathwidth

Pathwidth is a parameter related to treewidth. While treewidth measures how ‘tree-like’
a graph is pathwidth measures how ‘path-like’ a graph is.

Definition 1.11 (Path Decomposition). A path decomposition 𝒳 = {𝑋1, … , 𝑋𝑛} is a series
of bags of vertices such that,

1. Every vertex is in some bag.

2. For every edge (𝑢, 𝑣) there is a bag that contains both 𝑢 and 𝑣.
3. If 𝑋𝑖, 𝑋𝑗, 𝑋𝑘 are all bags such that 𝑖 < 𝑗 < 𝑘 then 𝑋𝑗 ⊆ (𝑋𝑖 ∩ 𝑋𝑘).

That is a path decomposition is a tree decomposition where the underlying tree is a path
graph.

Definition 1.12 (Pathwidth). The pathwidth of a graph 𝐺 is the minimum width of any
path decomposition of 𝐺. A graph with bounded pathwidth 𝑘 is a graph with pathwidth
less than or equal to 𝑘.
Definition 1.13 (𝑘-path). A 𝑘-path is a graph that has pathwidth 𝑘 and has maximal
edges with respect to pathwidth 𝑘.
For example, the graph in Figure 1.3 has the path decomposition (set notation omitted for
clarity), 𝑎𝑏, 𝑏𝑒, 𝑏𝑑, 𝑏𝑔, 𝑏𝑓 , 𝑏𝑐, 𝑐ℎ, ℎ𝑖, ℎ𝑗
and the graph in Figure 1.4 has the path decomposition,𝑎𝑏𝑐𝑑, 𝑑𝑐𝑒ℎ, 𝑑𝑒𝑓 ℎ, 𝑑𝑓 𝑔ℎ, 𝑑𝑔ℎ𝑖

𝑎𝑏
𝑐

𝑑𝑒 𝑓 𝑔ℎ
𝑖 𝑗

Figure 1.3: A graph of pathwidth 1

𝑎
𝑏 𝑐

𝑑
𝑒𝑓 𝑔

ℎ

𝑖
Figure 1.4: A graph of pathwidth 3

Many results for graphs of bounded treewidth have better bounds when restricted to
graphs bounded pathwidth. For example, for a graph with pathwidth 𝑘,

• The colouring game requires 3𝑘 + 1 colours (see Theorem 1.14).

• Strongly online colouring requires 2𝑘 + 1 colours (if 𝑘 is even, see Theorem 5.15).

• Online colouring requires 3𝑘 + 1 colours [20].

8

1.6. Chapters

Interval graphs

Interval graphs are an equivalent characterisation to pathwidth. That is, every graph
with pathwidth 𝑘 is a subgraph of an interval graph with interval width 𝑘 + 1.
Interval graphs are graphs defined from a series of closed intervals in the real numbers. A
graph 𝐺 = (𝑉 , 𝐸) is an interval graph if every vertex 𝑣𝑖 in 𝑉 is associated with an interval(𝑎𝑖, 𝑏𝑖) ⊂ ℝ and (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 if and only if the intervals (𝑎𝑖, 𝑏𝑖) and (𝑎𝑗, 𝑏𝑗) intersect. For an
example see Figure 1.5.

𝑎 𝑏 𝑐 𝑑𝑒 𝑓

𝑎
𝑏 𝑐

𝑑
𝑒

𝑓

Figure 1.5: An interval graph with clique width 4

The clique width of an interval graph is the size of its maximum clique. The interval
width of a graph 𝐺 is the minimum clique width of all interval graphs that contain 𝐺 as a
subgraph. It is shown in Faigle et al. 1993 [21] that for any graph with interval width 𝑤,
we have χg(𝐺) ≤ 3𝑤 − 2. Building on this result, Kierstead 2000 [22] uses an algorithm
called the Activation Strategy to prove the same result. The pathwidth of a graph is one
less than its interval width [13]. This then gives us Theorem 1.14.

Theorem 1.14. For 𝐺 be a graph of pathwidth 𝑘, χg(𝐺) ≤ 3𝑘 + 1
1.6 Chapters
We begin in Chapter 2 by introducing an adversarial game based on the dominating set
and the independent set games. This adversarial game is called the perfect code game. We
explore some motivation from coding theory before proving several results related to
path and cycle graphs. We then conclude with a theorem about pathwidth and a theorem
about bounded degree.

In Chapter 3, we explore a new area, the intersection of online and adversarial algorithms.
We define a new algorithmic parameterisation called adversarial online. As far as this
author is aware, there has been no previous study in this area. We begin with some notes
about online colouring along with definitions for adversarial online colouring. We explore
some alternative ways of presenting the graphs. Next we prove several results related to
bounded degree. To conclude we look at a theorem about adversarial online colouring
trees.

9

Chapter 1. Introduction

In Chapter 4, we briefly explore the chain decomposition game, where we attempt to
construct chain decompositions of partial orders. We make note on the relation between
the decomposition game and the game colouring number of incompatibility graphs. We
also make some comments on online chain decomposition. We finish this chapter with
some notes on adversarial online colouring.

Finally, in Chapter 5, we explore a new notion related to online algorithms, and strongly
online graphs. We begin with some background from highly computable graph theory.
We provide a definition of strongly online graphs. Then, we prove a result about strongly
online trees. We then prove a lower bound for general graphs related to their chro-
matic number. We explore several results about strongly online colouring graphs with
bounded pathwidth. To finish, we introduce a natural notion of a strongly online path
decomposition and prove several related theorems.

10

Chapter 2

The Perfect Code Game

In this chapter, we will begin our analysis of adversarial games and algorithms on graphs.
We do so with a game we call the perfect code game. In this game players take turns
constructing a perfect code. All results in this chapter are new and are due to this author.

We begin by providing definitions for perfect codes and the perfect code game, along
with some motivation from coding theory. We will then prove upper bounds for both
cycle and path graphs. Next we show an upper bound for graphs of bounded pathwidth.
Finally, we explore the perfect code game in graphs of bounded degree.

2.1 Perfect Codes

Suppose it is Alice’s job to construct a radio network in a rural area. She places radio towers
at people’s houses. Each tower provides radio coverage to itself and the neighbouring
homes. The problem is, if two towers have overlapping coverage, then the interference
between the towers interferes with the whole network. Thus, no two towers can provide
coverage to the same house. Is it possible to place towers in such a way that every house
receives coverage? Consider a graph such that the houses are vertices and two houses
share an edge if a tower placed at one provides coverage to the other. In such a graph, a
set of houses that provide cover to the entire area is an example of a perfect code.

Definition 2.1 (Perfect Code). For a graph𝐺 = (𝑉 , 𝐸), a perfect code in𝐺 is an independent
subset 𝐶 of 𝑉 such that every vertex in 𝑉 is either in 𝐶 or adjacent to exactly one vertex in𝐶.
Further motivation comes from areas such as coding theory (see Section 2.1.1) and resource
allocation in computer systems (for example, see Livingston and Stout 1988 [23]).

There is no standard notation for perfect codes. The name perfect code comes from the
study of error correcting codes in coding and information theory. The the terminology
for and the idea of perfect codes was introduced by Biggs 1973 [24]. Perfect codes also
arise from work in graph theory where they are known as efficient dominating sets [25],
independent perfect dominating sets [26], or perfect dominating sets [27].

11

Chapter 2. The Perfect Code Game

2.1.1 Coding and Information Theory

Perfect codes have other uses beyond graph theory. One such area is coding theory. As
further motivation we will briefly explore these alternative uses/origin.

Suppose we are trying to send a message to a friend. One way to do this is to associate
each symbol in our message to a binary string and transmit this string. Over a robust
network the chance the message is corrupted along the way is low. However, if we are
sending a message a long way or over an unreliable network our message could end up
scrambled. For example, suppose you are trying to send a message to a spacecraft on
the edge of our solar system. We need some way way of encoding our message that is
capable of detecting and possibly correcting errors. This is the realm of coding theory.

A code 𝐶 is a subset of 𝔽𝑛𝑟 where 𝔽𝑟 is a finite field with 𝑟 elements. The strings in 𝐶 are
called codewords. For any two codewords 𝑥 and 𝑦 the Hamming distance between 𝑥 and 𝑦
is the number of places in which they differ. For example, (1, 1, 1, 1) and (1, 1, 2, 2) have
Hamming distance 2.
A code 𝐶 is 𝑒-error detecting if, whenever a codeword incurs at least 1 and at most 𝑒 errors,
the resulting string is not a codeword. A code 𝐶 is 𝑒-error correcting if, when given a
string 𝑥 with at most 𝑒 errors, the codeword with minimum Hamming distance to 𝑥 is the
intended codeword.

Definition 2.2 (Perfect Code in Vector Space). A code 𝐶 is called perfect if for every code𝑢 ∈ 𝔽𝑛𝑟 there is exactly one codeword with Hamming distance 1 from 𝑢.
A perfect code differs from a 1-error correcting code in that it requires every string to be
within Hamming distance 1 from a codeword.

Definitions 2.1 and 2.2 are equivalent via Hamming graphs. The Hamming graph 𝐻(𝑛, 𝑟)
is a graph with vertices indexed by elements of 𝔽𝑛𝑟 and an edge between two vertices if
the corresponding strings have Hamming distance 1. In order to find a perfect code in 𝔽𝑛𝑟
we can find a perfect code in the graph 𝐻(𝑛, 𝑟), and vice versa. For example see Figure 2.1.

000 001

010 011

100

010

111

101

Figure 2.1: The Hamming graph 𝐻(3, 2) with a perfect code

We can now see that, as demonstrated in Biggs 1973 [24], graphs are a natural setting
for perfect codes. Henceforth, we will only focus on perfect codes in graphs. For more
information about codes and coding theory we direct the reader to Hamming 1986 [28].

12

2.2. Perfect Code Game

2.2 Perfect Code Game
To inspire the idea of the perfect code game suppose the local council assigns Alice a
partner, Bob. Alice and Bob take turns to place towers. But Bob has his own podcast and
hates radio towers. So he decides to make it his personal mission to disrupt the network.
He must still obey the rules, that is, he must place towers such that no house is covered
twice. However, Bob will attempt to place towers in such a way that the resulting network
is not a perfect code. Is it possible for Alice to place towers in such a way that forces
coverage of the entire area? If not, then how much of the area can Alice guarantee will
be covered?

Definition 2.3 (Perfect Code Game). Let 𝐺 = (𝑉 , 𝐸) be a graph, 𝐶 ⊆ 𝑉 a (possibly partial)
perfect code that we initialise to the empty set, and 𝑡 a target score. In the perfect code
game Alice and Bob take turns adding a vertex 𝑣 to 𝐶 such that 𝐶 ∪ 𝑣 is independent and
dominates at least one new vertex exactly once. The game continues until either 𝐶 forms
a perfect code or cannot be enlarged further. At the end of the game, let 𝑠 be the number
of vertices not dominated by 𝐶. Alice wins if 𝑠 ≤ 𝑡, and Bob wins if 𝑡 < 𝑠.
Note that if we have a target score 𝑡 = 0 then Alice wins if and only if 𝐶 forms a perfect
code.

Definition 2.4 (Perfect Code Game Number). For a graph 𝐺, the perfect code game number
PCodeg(𝐺) is the minimum target score in the perfect code game such that Alice has a
winning strategy 1 when Alice has the first move. Similarly, PCode′g(𝐺) is the perfect code
game number on 𝐺 when Bob has the first move.

2.3 Path and Cycle Graphs
The path 𝑃𝑛 is the graph with 𝑛 vertices, 𝑣1, … , 𝑣𝑛, where for all 𝑖 < 𝑛, there is an edge
joining 𝑣𝑖 and 𝑣𝑖+1. A cycle is a path with the extra edge (𝑣1, 𝑣𝑛), turing the path into a
circle.

Path and cycle graphs are very simple graphs and have simple upper bounds. However,
before we bound the perfect code game number for paths and cycles, we introduce
Lemma 2.5.

We say that a vertex 𝑣 is blocked if it is undominated and cannot be played when playing
the perfect code game. That is, 𝑣 ∉ 𝐶 and 𝑁(𝑣) ⊆ 𝑁 (𝐶), where 𝐶 is a (possibly partial)
perfect code. If Alice or Bob can play a vertex 𝑣 that results in a vertex 𝑢 being blocked,
then we say 𝑣 blocks 𝑢.
Lemma 2.5. Let 𝑃𝑛+2 be a path graph with 𝑛+2 vertices such that 𝑛 ≥ 5. If 𝐶 ⊂ 𝑉(𝑃𝑛+2) is
a perfect code containing exactly the leftmost and rightmost vertices of 𝑃𝑛+2 (i.e. 𝐶 = {𝑢1, 𝑢2}
in Figure 2.2), then

PCodeg (𝑃𝑛+2) ≤ 𝑛/4 + 1/4
PCode′g (𝑃𝑛+2) ≤ 𝑛/4 + 7/4

1A winning strategy for Alice is a strategy that guarantees that the game will end with Alice winning.

13

Chapter 2. The Perfect Code Game

𝑢1 𝑣1 𝑣2 𝑣3 𝑣4 𝑣4 𝑣6 𝑣7 𝑣8 𝑣𝑛−1 𝑣𝑛 𝑢2…
Figure 2.2: The Path Graph 𝑃𝑛+2

Proof. We will prove this by induction on 𝑛 for both PCodeg and PCode′g simultaneously
on the partially dominated 𝑃𝑛+2. It is not possible for 𝑛 = 1, as 𝑣1 will be dominated twice,
so we will demonstrate the cases 𝑛 = 2, 3, … , 7. The red vertices represent the possible
moves. It is clear to see that for all 𝑛 ≤ 7 each possible move blocks the same number of
vertices. 𝑃𝑛+2𝑛
2

3

4

5

6

7

PCodeg(𝑃𝑛+2)
0

1

2

0

1

2

PCodeg
′(𝑃𝑛+2)
0

1

2

0

1

2

Thus, for 𝑛 = 5, 6, 7, PCodeg (𝑃𝑛+2) ≤ 𝑛/4 + 1/4 and PCode′g (𝑃𝑛+2) ≤ 𝑛/4 + 7/4, as desired.
Note that for 𝑛 = 4, PCodeg (𝑃4+2) = 2 ≰ 4/4 + 1/4 = 1.25. But, as we will see later this
will not matter.

Now assume that the inductive hypothesis holds for all 𝑘 < 𝑛. First, we will show that in
the Alice start game PCodeg (𝑃𝑛+2) ≤ 𝑛/4 + 1/4.
Alice’s strategy is to play the vertex 𝑣6. This splits the graph into two games. One game
has 𝑘 = 5 unplayed vertices and will always end with PCodeg (𝑃5+2) = 0. The other has𝑘 = 𝑛 − 6 unplayed vertices. As PCodeg (𝑃𝑘 +2) ≤ PCode′g (𝑃𝑘 +2) we assume that Bob
has the first move in the 𝑘 = 𝑛 − 6 game. Assuming 𝑘 ≠ 4, by the inductive hypothesis
Alice has a winning strategy on 𝑃(𝑛−6)+2 with PCode′g (𝑃(𝑛−6)+2) ≤ (𝑛 − 6)/4 + 7/4. Thus
we have

PCodeg (𝑃𝑛+2) ≤ PCodeg (𝑃5+2) + PCode′g (𝑃(𝑛−6)+2)≤ 0 + (𝑛 − 6)/4 + 7/4= 𝑛/4 + 1/4
If 𝑘 = 4, then we have 𝑛 = 10 and

PCodeg (𝑃10+2) ≤ PCodeg (𝑃5+2) + PCode′g (𝑃(4)+2)= 0 + 2< 10/4 + 1/4 = 2.75
Therefore for all 𝑛 ≥ 5

PCodeg (𝑃𝑛+2) ≤ 𝑛/4 + 1/4
14

2.3. Path and Cycle Graphs

Next, we show that for the Bob start game PCode′g (𝑃𝑛+2) ≤ 𝑛/4 + 7/4.
Suppose Bob plays vertex 𝑣𝑖.

𝑣1 𝑣𝑖−1 𝑣𝑖 𝑣𝑖+1 𝑣𝑛… …
Figure 2.3: Bob splitting the graph into two games

This splits the graph into two games (see Figure 2.3). One game contains 𝑘 = 𝑖−1 unplayed
vertices and the other 𝑘 = 𝑛 − 𝑖 unplayed vertices. Alice plays her next move according to
her winning strategy on 𝑃(𝑖−1)+2. Thus we have an Alice start game on 𝑃(𝑖−1)+2 and a
Bob start game on 𝑃(𝑛− 𝑖)+2. Then assuming 𝑖 − 1 ≠ 4 ≠ 𝑛 − 𝑖, by the induction hypothesis
we have

PCodeg (𝑃𝑛+2) = PCodeg (𝑃(𝑖−1)+2) + PCode′g (𝑃(𝑛− 𝑖)+2)≤ ((𝑖 − 1)/4 + 1/4) + ((𝑛 − 𝑖)/4 + 7/4)= (𝑖 − 1 + 𝑛 − 𝑖)/4 + 2= (𝑛 − 1)/4 + 2= 𝑛/4 + 7/4
If one of 𝑖 − 1 and 𝑛 − 𝑖 equals 4, then the inductive hypothesis doesn’t hold. Suppose that
only one of them equals 4, without loss of generality assume it is 𝑖 − 1 = 4. In this case,
Alice plays her strategy on 𝑣5, … , 𝑣𝑛, (i.e. 𝑃(𝑛−5)+2) and we have:

PCodeg (𝑃𝑛+2) = PCodeg (𝑃4+2) + PCodeg (𝑃(𝑛−5)+2)≤ 2 + ((𝑛 − 5)/4 + 1/4)= 2 + 𝑛/4 − 5/4 + 1/4= 𝑛/4 + 1≤ 𝑛/4 + 7/4
If both 𝑖 − 1 and 𝑛 − 𝑖 equal 4, then 𝑖 = 5 and 𝑛 = 9. Thus

PCode′g (𝑃(9)+2) ≤ PCodeg (𝑃(5−1)+2) + PCodeg (𝑃(9−5)+2)= 2 + 2= 4= 9/4 + 7/4= 𝑛/4 + 7/4
As desired.

Therefore for all 𝑛 ≥ 5
PCode′g (𝑃𝑛+2) ≤ 𝑛/4 + 7/4 □

Both cycle and path graphs have an upper bound of O(𝑛/4), differing only in the constants.
This comes about because once the first move is made, a cycle can be considered as a
path. This is done by ignoring the blocked vertices from the first move.

15

Chapter 2. The Perfect Code Game

Theorem 2.6. For 𝐶𝑛, a cycle graph with 𝑛 ≥ 6 vertices,
PCodeg(𝐶𝑛) ≤ 𝑛/4 + 1.5
PCode′g(𝐶𝑛) ≤ 𝑛/4

Proof. Regardless of who plays first, after the first move the partially dominated graph is
equivalent to a path graph with 𝑛 + 1 vertices where the end vertices have been played
and there are 𝑛 − 1 unplayed vertices. See Figure 2.4.

𝑣4
𝑣2 𝑣6

𝑣3 𝑣5

𝑣7𝑣1

𝑣1 𝑣2 𝑣3 𝑣4 𝑣4 𝑣6 𝑣7
Figure 2.4: The cycle graph 𝐶8 and its equivalent path graph, 𝑃(7)+2

If Alice played first, then Bob gets the first move on the remaining 𝑛 − 1 ≥ 5 vertices.
Thus, by Lemma 2.5

PCodeg(𝐶𝑛) ≤ PCode′g (𝑃(𝑛−1)+2)≤ (𝑛 − 1)/4 + 7/4= 𝑛/4 + 1.5
If Bob played first, then Alice gets the first move on the remaining 𝑛 − 1 ≥ 5 vertices.
Thus, by Lemma 2.5

PCode′g(𝐶𝑛) ≤ PCodeg (𝑃(𝑛−1)+2)≤ (𝑛 − 1)/4 + 1/4= 𝑛/4
□

Theorem 2.7. For 𝑃𝑛, the path graph with 𝑛 ≥ 5 vertices
PCodeg(𝐺) ≤ 𝑛/4 + 7/4

Proof. We demonstrate a strategy for Alice that ensures that at the end of the game there
at most 𝑛/4 + 7/4 many blocked vertices.

Consider the path graph labelled as in Figure 2.5. Alice’s first move is to play the vertex𝑣4. The only vertex 𝑣𝑗 with 𝑗 < 4 that is undominated is 𝑣1. Playing 𝑣1 doesn’t block any
vertices. Thus 𝑣1 will be played at some point, but Alice attempts to avoid playing 𝑣1.

16

2.4. Graphs of Bounded Pathwidth

𝑣1 𝑣2 𝑣3 𝑣4 𝑣5 𝑣𝑖−1 𝑣𝑖 𝑣𝑖+1 𝑣𝑛−1 𝑣𝑛… …
Figure 2.5: The path graph 𝑃𝑛

Suppose that on Bob’s turn he plays the vertex 𝑣𝑖. There are two cases, 𝑖 < 𝑛 − 5 and𝑖 ≥ 𝑛 − 5.
First, assume that 𝑖 < 𝑛 − 5. In this case, Alice plays 𝑣𝑛−3. The only vertex 𝑣𝑗 for 𝑗 > 𝑛 − 3
that is undominated is 𝑣𝑛 and playing 𝑣𝑛 doesn’t block any vertices. Alice attempts to
avoid playing 𝑣𝑛. The remaining unplayed vertices form two partially dominated Bob start
games, one on 𝑃(𝑖−5)+2 and the other on 𝑃(𝑛−4−𝑖)+2. By Lemma 2.5, Alice has winning
strategies on these games. Hence

PCodeg(𝑃𝑛) ≤ PCode′g (𝑃(𝑖−5)+2) + PCode′g (𝑃(𝑛−4−𝑖)+2)≤ (𝑖 − 5)/4 + 7/4 + (𝑛 − 4 − 𝑖)/4 + 7/4= 𝑛/4 + 5/4
Now assume 𝑖 ≥ 𝑛 − 5. This means that Bob has played a vertex 𝑣𝑛−𝑗 such that 𝑗 ∈ [0, 5].
This turns the game into an Alice start partially dominated game on 𝑃(−4+𝑛−𝑗)+2. Notice
how 𝑣𝑛−2 blocks the vertex 𝑣𝑛. By Lemma 2.5, Alice has a winning strategy on this game.
Hence

PCodeg(𝑃𝑛) ≤ PCodeg (𝑃(−4+𝑛−𝑗)+2) + 1= (−4 + 𝑛 − 𝑗)/4 + 1/4 + 1= 𝑛/4 − (𝑗 + 1)/4≤ 𝑛/5 + 5/4 for all 𝑗 ∈ [0, 5]
Therefore PCodeg(𝑃𝑛) ≤ 𝑛/5 + 5/4. □

2.4 Graphs of Bounded Pathwidth
In general, finding a perfect code in a graph is NP-complete [29]. However, for graphs of
bounded pathwidth there is a polynomial-time algorithm for finding perfect codes [30].
In light of this we would hope that for graphs of bounded pathwidth we could bound
their perfect code game number. However, this is not the case.

Theorem 2.8. For all 𝑛, 𝑘 > 0 there exists a graph 𝐺 = (𝑉 , 𝐸) such that 𝐺 has pathwidth 𝑘
and PCodeg(𝐺) ≥ 𝑛.
Proof. Let 𝐺 be the graph consisting of the complete graph 𝐾𝑘 and 𝑛 + 1 vertices all
connected to every vertex in 𝐾𝑘 (See Figure 2.6). Consider two disjoint copies of 𝐺. Bob’s
first move will be to play the vertex 𝑣𝑛+1 in which ever copy of 𝐺 Alice did not play in.
Vertex 𝑣𝑛+1 dominates 𝐾𝑘 and blocks all 𝑛 vertices 𝑣1, … , 𝑣𝑛. Therefore the game ends
with PCodeg(𝐺) ≥ 𝑛. □

17

Chapter 2. The Perfect Code Game

𝐾𝑘
𝑣1𝑣2

𝑣3 𝑣4

𝑣𝑛+1…
Figure 2.6: The graph 𝐺

2.5 Graphs of Bounded Degree
For graphs of bounded degree we also have unbounded perfect code game number.

Theorem 2.9. For all Δ, 𝑛 > 3 there exists a graph 𝐺 with maximum degree Δ and
PCodeg(𝐺) ≥ 𝑛.
Proof. Consider the path graph 𝑃2𝑛 with 2𝑛 vertices. For every vertex 𝑣 in 𝑃2𝑛 add Δ − 2
vertices adjacent to 𝑣. See Figure 2.7.

1 2 3 2𝑛 − 1 2𝑛……… … … …Δ − 2 vertices

Figure 2.7: The extended path graph 𝑃2𝑛
Bob’s strategy is to play any leaf that blocks Δ − 3 vertices. After 𝑛 rounds there will be
at least 𝑛(Δ − 3) > 𝑛 blocked vertices. □

18

Chapter 3

Adversarial Online Colouring

In this chapter we will continue our analysis of online and adversarial games. We explore
online and adversarial games in the context of graph colouring. We do this by creating
a new game called the adversarial online colouring game. All the results in this chapter
related to adversarial online colouring are new and due to this author.

The growth rate of an colouring algorithm 𝐀 is a function (normally expressed in big
O notation) that bounds the number of colours needed by 𝐀, relative to the number of
vertices. For example, Let 𝒞 a class of graphs. If 𝐀 requires 𝑛/3 + 12 colours to colour to
colour any graph in 𝒞 with 𝑛 vertices, then we say the growth rate of 𝐀 is O(𝑛).
We will begin with some discussion and a definition of adversarial online colouring. We
will then prove several results related to graph degree. We conclude this chapter with
a proof that the adversarial online colouring game on trees is determined only by the
number of colours and the number of vertices (assuming that both players have a chance
at winning).

3.1 Adversarial Online Colouring
Online colouring can be considered a game between two players, Alice and Bob. Bob
presents the vertices to Alice one at a time. Upon being presented with a vertex Alice,
irrevocably assigns it a colour. Adversarial online adds an additional hostile element to
this game. Bob is also allowed to colour every second vertex he presents. Bob must still
obey the rules of colouring. That is, he must not assign a colour 𝑐 to a vertex 𝑣 if any of𝑣’s neighbours have already been coloured with 𝑐. This is Adversarial Online Colouring.
The performance ratio of an online colouring algorithm is the ratio of the number of
colours used in the online algorithm vs the number of colours used in an optimal offline
algorithm. For example, if 𝐀 online colours a graph 𝐺 is 𝑛 colours but 𝐺 has an optimal𝑚-colouring the performance ratio of 𝐀 is 𝑛/𝑚. When online colouring arbitrary graphs,
the performance ratio is a function of the graph size. For example, online colouring a tree
with 𝑛 vertices has performance ratio O(log 𝑛) many colours [31].

As with many problems, when we see that the general problem is very hard, we can
parameterize the problem which sometimes make it more tractable Downey and Fel-

19

Chapter 3. Adversarial Online Colouring

lows 2013 [16]. In the remainder of this chapter we will look at the situation for a number
of such parameterizations. We look at bounded degree, and another situation where wew
restrict the structure of the graph. One such parameterization is 𝑑-degenerate graphs1.

Definition 3.1. A graph 𝐺 = (𝑉 , 𝐸) is 𝑑-degenerate if there is an ordering of 𝑉 such that
for all 𝑣 ∈ 𝑉, |{𝑢 ∶ 𝑢 < 𝑣, 𝑢 ∈ 𝑁 (𝑣)}| ≤ 𝑑.
For all 𝑘 there exists a 𝑑-degenerate graph 𝐺 such that 𝐺 requires 𝑘 colours to online colour.
But, the growth rate for algorithms on 𝑑-degenerate graphs often less than O(𝑛), where 𝑛
is the number of vertices.

Theorem 3.2 (Irani 1994 [33]). For 𝐺 a 𝑑-degenerate graph with 𝑛 vertices, First Fit usesO(𝑑 log 𝑛) many colours to online colour 𝐺. Further, this bound is tight.
Any graph with 𝑛 vertices can be online coloured using 𝑛 colours. Thus O(𝑛) is the
worst possible bound. O(𝑛) is the bound for many classes of graphs in adversarial online
colouring.

Consider the graph in Figure 3.1. It has pathwidth 2, treewidth 1, and is 1-degenerate, but
requires 9 colours to be adversarial online coloured.

𝑢9 𝑢2
𝑢3𝑢4𝑢5

𝑢6
𝑢7 𝑢8 𝑢1𝑣1𝑣2

𝑣3
𝑣4 𝑣5𝑣6

𝑣7
𝑣8𝑣9

Figure 3.1: The star graph 𝑆9 along with 9 isolated vertices

The strategy for Bob is to present all isolated vertices to Alice, while he colours the
vertices 𝑢1, … , 𝑢8 the colours 1 through 8. He then presents the vertex 𝑢9, which must
have colour 9. By using larger star graphs and more isolated vertices we can force more
and more colours. These obstructions lead us to Proposition 3.3.

Proposition 3.3. For all 𝑘 there exists a graph with pathwidth (treewidth, or degeneracy) 𝑘
and 𝑛 vertices that requires at least O(𝑛) many colours to adversarial online colour.

3.2 Alternative Presentations
Most classical (offline) algorithms about graphs with bounded pathwidth, treewidth, etc.,
rely on first decomposing the graph into some parsed structure. These algorithms will
then typically do some dynamic programming on the parsed structure. This approach

1𝑑-degenerate graphs are an wider class of graphs that includes bounded pathwidth and treewidth, and
planar graphs. Interestingly many results from other graph classes generalise to 𝑑-degenerate, such as
dominating set generalising from planar graphs [32].

20

3.3. Maximum Degree

culminates in Courcelle’s Theorem for graphs of bounded treewidth [34]. An example of
such a parsed structure is a tree decomposition.

As an example, we consider the online graph 𝐺≺ with pathwidth 𝑘 presented as an
implicit path decomposition. That is, if 𝐺≺ is an online graph with a path decomposition𝒫 = {𝑃1, 𝑃2, … }, then the presentation order (<) of 𝐺 presents every vertex in 𝑃1, then𝑃2 ⧵ 𝑃1, then 𝑃3 ⧵ (𝑃2 ∪ 𝑃1) and so on. This has the effect of presenting 𝐺 as a series of
bags. 𝐺 can then be adversarial online coloured in 𝑘 + 1 colours. This is because no vertex
that is presented will have more than 𝑘 many already presented neighbours. This is the
same bound as the online version. The reason for this is that by presenting the graph in
as an implicit decomposition manner we bound the number of neighbours we have seen
when a vertex is presented. It is bounded degree by stealth.

Always-connected adversarial online is a variation of adversarial online where at each
stage the given graph must be connected. Even this restriction is O(𝑛). This can be seen
by changing the star graph in Figure 3.1 for a cycle graph with a vertex in the centre and
turning the isolated vertices in to a clique with one vertex connected to the cycle. Such a
graph can be presented as always connected but still require O(𝑛) colours.
3.3 Maximum Degree
We will now look at a series of structural parameterizations. The first parameterization
we will look at is maximum degree. By bounding the degree of a graph we get a lower
bound on the number of colours needed. Theorem 3.4 essentially says that Bob will win
if there are less than half as many colours as the max degree.

Theorem 3.4. Let 𝐺 be a graph with maximum degree Δ. Then at least ⌈(Δ − 1)/2⌉ + 1 many
colours are required to adversarial online colour 𝐺. Thus adversarial online colouring isO(Δ).
Proof. Let 𝐺 be a graph with maximum degree Δ. It suffices to show there is a winning
strategy for Bob with ⌈(Δ − 1)/2⌉ colours. Let 𝑣 be a vertex with 𝛿(𝑣) = Δ and 𝑢1, … , 𝑢Δ be
the neighbours of 𝑣. Bobs’ strategy is as follows.

• Present 𝑢1 to Alice. Which, without loss of generality will get colour 1.

• Colour 𝑢2 with colour 2.

• Present any uncoloured 𝑢𝑖 to Alice and colour any uncoloured 𝑢𝑗 with an unused
colour.

When this is finished 𝑣 will have2 + ⌊Δ − 22 ⌋ ≥ ⌈(Δ − 1)2 ⌉
uniquely coloured neighbours. Therefore 𝑣 cannot be coloured and Bob wins. □
In Theorem 3.4 our strategy involved Alice colouring half and Bob colouring the other
half of the neighbours of a vertex. Another strategy is to make Alice colour some vertices
that are not in the neighbours of some vertex. This allows Bob to force more needed
colours, relative to the maximum degree. If Bob wants to colour all the neighbours of a

21

Chapter 3. Adversarial Online Colouring

vertex without interference from Alice then he needs one more than 3 times the degree
of that vertex. This is witnessed by Theorem 3.5.

Theorem 3.5. Let 𝐺 = (𝑉 , 𝐸) be a graph. If there exists a vertex 𝑣 ∈ 𝑉 such that |𝑉 | ≥3𝛿(𝑣) + 1 and for all 𝑢 ∈ 𝑁 (𝑣), 𝛿(𝑢) ≤ 𝛿(𝑣) then 𝐺 requires at least 𝛿(𝑣) many vertices to
adversarial online colour.

Proof. Let 𝑣 be a vertex such that |𝑉 | ≥ 3𝛿(𝑣) + 1 and for all 𝑢 ∈ 𝑁 (𝑣), 𝛿(𝑢) ≤ 𝛿(𝑣). Let𝛿(𝑣) = 𝑘.
Denote 𝑁(𝑣) = {𝑣1, 𝑣2, … , 𝑣𝑘}.
In every round, Bob presents a vertex in 𝑉 ⧵ 𝑁 [𝑣] to Alice, and colours the least 𝑖 such
that 𝑣𝑖 is uncoloured.
Suppose we want to colour 𝑣𝑖. Thus 𝑣1, … , 𝑣𝑖−1 have all been coloured. 𝛿(𝑣𝑖) ≤ 𝑘 and there
are at least |𝑉 | − |𝑁 [𝑣]| = 3𝑘 − (𝑘 + 1) = 2𝑘 − 1
vertices in 𝐺\𝑁[𝑣].
The vertex 𝑣𝑖 is connected to 𝛿(𝑣𝑖) − 1 ≤ 𝑘 − 1 vertices in 𝐺\𝑁[𝑣], and 𝑖 − 1 vertices in𝐺\𝑁[𝑣] have already been coloured. Thus there must be at least(2𝑘 − 1) − (𝑘 − 1) − (𝑖 − 1) = 𝑘 − 𝑖 + 1 ≥ 1
uncoloured vertices in 𝐺\𝑁[𝑣] that are not adjacent to 𝑣𝑖. Let 𝑢 be such a vertex. See
Figure 3.2

𝐺\𝑁[𝑣]

𝑣

𝑣1
𝑣𝑖−1𝑣𝑖
𝑣𝑛−1𝑣𝑛

…
…

𝑢

Figure 3.2: The partially coloured graph, 𝐺
22

3.4. Bipartite Graphs

Present 𝑢 to Alice. If Alice colours 𝑢 a colour from the set {1, … , 𝑖 − 1}, then Bob colours 𝑣𝑖
with the colour 𝑖. Otherwise Alice has coloured 𝑢 a colour not seen before. Without loss
of generality let it be 𝑖. Bob colours 𝑣𝑖 with the colour 𝑖.
Thus each vertex 𝑣𝑖 has colour 𝑖. Hence when all the vertices in 𝑁(𝑣) have been coloured,𝑣 has 𝑘 many uniquely coloured neighbours. Thus 𝑣 requires a 𝑘 + 1-th colour. Therefore𝐺 requires 𝑘 + 1 colours to adversarial online colour. □

We also get Corollary 3.6 because the second condition in Theorem 3.5 is vacuously true
when |𝑉 | ≥ 3Δ + 1.
Corollary 3.6. Let 𝐺 = (𝑉 , 𝐸) be a graph with maximum degree Δ and |𝑉 | ≥ 3Δ + 1. Then𝐺 requires Δ + 1 many colours to adversarial online colour.

3.4 Bipartite Graphs
A graph 𝐺 = (𝑉 , 𝐸) is called bipartite if 𝑉 can be partitioned into two sets 𝐴 and 𝐵 such
that there are no edges joining two vertices in in the same set. The complete bipartite
graph 𝐾𝑛,𝑚 is a bipartite graph with vertex sets 𝐴 and 𝐵 where |𝐴| = 𝑛,|𝐵| = 𝑚, and every
vertex in 𝐴 is connected to every vertex in 𝐵.
Definition 3.7 (Matching). Let 𝐺 = (𝑉 , 𝐸) be a graph. A matching 𝑀 ⊆ 𝐸 is a set
of independent edges, that is a set of edges that share no common vertices. We write𝑢 = 𝑀(𝑣) (and 𝑣 = 𝑀(𝑢)) to denote that (𝑢, 𝑣) ∈ 𝑀. A matching is perfect if every vertex
in 𝑉 is incident to some edge in the matching.

Theorem 3.8. Let 𝐺 = (𝐴, 𝐵, 𝐸) be the complete bipartite graph 𝐾𝑛,𝑛 with all the edges
from a perfect matching from 𝐴 to 𝐵 removed. Then 𝐺 requires 𝑛 colours to adversarial
online colour.

Proof. Let 𝐴, 𝐵 be a partition of 𝐾𝑛,𝑛 with all the edges from a perfect matching, 𝑀, from𝐴 to 𝐵 removed Bob’s strategy is as follows.

• Present some uncoloured 𝑣 ∈ 𝐴 to Alice.

• Bob colours 𝑀(𝑣) what ever colour 𝑣 has.
By doing this, after every round every vertex is incident to another colour. Thus the last
two vertices must be coloured the 𝑛-th colour. □

As every vertex in 𝐾𝑛,𝑛 has degree 𝑛, Alice can always colour 𝐾𝑛,𝑛 with 𝑛 colours. This
means Theorem 3.8 is the worst possible bound.

One theorem about bipartite graphs that we will need later is the following famous
theorem by Hall.

Hall’s Marriage Theorem (Hall 1935 [35]). Let 𝐺 = (𝑈 , 𝑉 , 𝐸) be a bipartite graph. There
is a matching from 𝑈 to 𝑉 if and only if for every 𝐴 ⊆ 𝑈|𝑁 (𝐴)| ≥ |𝐴|

23

Chapter 3. Adversarial Online Colouring

3.5 Trees
Trees have neither bounded degree, pathwidth, nor degeneracy. This might lead us
to suspect that adversarial online colouring of trees could be bounded by one of these
parameters, but this is not the case. A tree is adversarial online 𝑘-colourable if and only if
it has at most 2𝑘 − 2 vertices (so long as 𝑘 is not too small or large).

Theorem 3.9. Fix a tree 𝑇 = (𝑉 , 𝐸)with maximum degree Δ and 𝑘 such that Δ ≥ 𝑘 > Δ/2+1.
Then 𝑇 can be adversarial online coloured in 𝑘 colours if and only if|𝑉 | ≤ 2𝑘 − 2
We have Δ ≥ 𝑘 ≥ Δ/2 because, Alice will trivially win if 𝑘 > Δ and Bob will win if 𝑘 ≤ Δ/2+1
by Theorem 3.4. So to avoid trivialities we restrict 𝑘.
Proof. We show the forward direction by contrapositive. So, assume |𝑉 | > 2𝑘 − 2. It
suffices to show there is a winning strategy for Bob with 𝑘 colours.

As 𝑘 is at most the maximum degree of 𝐺 there is some vertex 𝑣 ∈ 𝑉 such that 𝛿(𝑣) ≥ 𝑘.
Fix some such 𝑣 ∈ 𝑉. Fix some 𝑋 ⊆ 𝑁(𝑣) such that |𝑋 | = 𝑘. Note that|𝑉 − 𝑋 − 𝑣| = 𝑛 − 𝑘 − 1≥ (2𝑘 − 1) − 𝑘 − 1= 𝑘 − 2
Therefore we can take some 𝑌 ⊆ 𝑉 − 𝑋 − 𝑣 such that |𝑌 | = 𝑘 − 2. Every vertex in 𝑌 is
connected to at most one vertex in 𝑋. Thus for every 𝐴 ⊆ 𝑌, the set 𝐴 is not connected
to at least 𝑘 − 1 > |𝑌 | ≥ |𝐴| vertices in 𝑋. Therefore by Hall’s theorem, there is an
anti-matching2 𝑀 from 𝑌 to 𝑋 (ignoring all anti-edges in 𝑋 and 𝑌). Note that |𝑀| = 𝑘 − 2.
See Figure 3.3.

Let 𝑢1, 𝑢2 be the two vertices in 𝑋 − range(𝑀). Bob’s strategy is as follows.

1. Present 𝑢1 to Alice. Without loss of generality, 𝑢1 will get colour 1.

2. Colour 𝑢2 colour 2.

3. For each (𝑎, 𝑏) ∈ 𝑀, present 𝑎 ∈ 𝑌 to Alice. Let 𝑐(𝑎) = 𝑖. If 𝑖 has not been used in𝑁(𝑣), then Bob colours 𝑏 ∈ 𝑁 (𝑣) with 𝑖. If 𝑖 has already been used in 𝑁(𝑣), then
Bob colours 𝑏 with any colour not used in 𝑁(𝑣).

Step 3 ensures that for every 𝑏 ∈ range(𝑀), Bob colours 𝑏 a colour not seen in 𝑁(𝑣).
Thus, when Bob has coloured all of range(𝑀) 𝑣 will have 𝑘 uniquely coloured neighbours.
Hence whenever 𝑣 is revealed, it cannot be coloured, and Bob wins. Therefore we have a
winning strategy for Bob.

We will now show the reverse direction by induction on 𝑛, the number of vertices in the
tree. That is, we show that for any Δ ≥ 𝑘 > Δ/2 + 1, if 𝑛 ≤ 2𝑘 − 2, 𝑇 can be adversarial
online coloured in 𝑘 colours.

2An anti-matching in a graph 𝐺 is a matching in the complement graph of 𝐺.
24

3.5. Trees

𝑣

……
𝑌 ⊆

𝑋

Figure 3.3: The structure of the anti-matching in 𝑇
For the base case, assume that 𝑛 = Δ + 1. Then 𝑇 is a star graph and can be adversarial
online coloured in Δ/2 + 1 < 𝑘 colours.

For the inductive step, assume that any tree with 𝑛 ≤ 2𝑘 − 2 vetices can be adversarial
online coloured in 𝑘 colours. Let 𝑇 = (𝑉 , 𝐸) be a tree such that |𝑉 | = 𝑛 + 1 ≤ 2𝑘 − 2.
Let 𝑣 ∈ 𝑉 be a vertex of degree at least 𝑘. We will show that when 𝑣 is revealed it has at
most 𝑘 − 1 uniquely coloured neighbours. Without loss of generality, we can assume that𝑣 is the last vertex coloured.

Let 𝑢 be the vertex coloured immediately before 𝑣. If 𝑢 ∉ 𝑁 (𝑣), then 𝑇\𝑢 has 𝑛 vertices.
Therefore by the inductive hypothesis, 𝑇\𝑢 can be adversarial online coloured in 𝑘 colours.
That is 𝑣 has at most 𝑘−1 uniquely coloured neighbours in 𝑇\𝑢. Hence when 𝑢 is coloured,𝑣 has at most 𝑘 − 1 uniquely coloured neighbours in 𝑇. See Figure 3.4.

Note that when 𝑢 is revealed it has at most 𝛿(𝑢) − 1 revealed neighbours. Further,𝛿(𝑢) − 1 ≤ |𝑉 − 𝑁[𝑣]|≤ (𝑛 + 1) − 𝑘 − 1≤ (2𝑘 − 2) − 𝑘 − 1= 𝑘 − 3
Suppose that 𝑢 ∈ 𝑁 (𝑣). Either Alice coloured 𝑢 or Bob coloured 𝑢. First, assume Alice
coloured 𝑢. By the inductive hypothesis, 𝑇\𝑢 can be adversarial online coloured in 𝑘
colours. That is, 𝑣 has at most 𝑘 − 1 uniquely coloured neighbours. As 𝑢 is adjacent to at
most 𝑘 − 3 coloured vertices there is at least one colour that 𝑢 is not adjacent to. Alice
colours 𝑢 the least colour that has already been used. This will not increase the number of
uniquely coloured neighbours of 𝑣. Therefore 𝑣 will have at most 𝑘 − 1 uniquely coloured
neighbours.

25

Chapter 3. Adversarial Online Colouring

𝑣
𝑢…

≤ |𝑉 | − 𝑘 − 1
vertices

≥ 𝑘 vertices

𝑉 − 𝑁[𝑣]

𝑁 (𝑣)

Figure 3.4: The structure of 𝑇
Now suppose Bob coloured 𝑢. As Bob plays on even turns there must have been an odd
number of vertices in 𝑇. As 2𝑘 − 2 is always even, 𝑛 + 1 ≤ 2𝑘 − 3. Therefore 𝑇\𝑢 has𝑛 ≤ 2𝑘 − 4 = 2(𝑘 − 1) − 2 vertices. Hence 𝑇\𝑢 can be adversarial online coloured in 𝑘 − 1
colours. That is, 𝑣 has at most 𝑘 − 2 uniquely coloured neighbours. Thus regardless of the
colour of 𝑢, 𝑣 will have at most 𝑘 − 1 uniquely coloured neighbours.

Therefore every vertex in 𝑇 has at most 𝑘 − 1 uniquely coloured neighbours revealed
before it, and thus 𝑇 can be adversarial online coloured in 𝑘 colours. □

26

Chapter 4

The Chain Decomposition Game

In this chapter, we explore another adversarial game, but this time played on partial orders.
We call this game the chain decomposition game. It is worth noting that this game could
also accurately be called the Dilworth game. This name would be appropriate considering
that the game is an extension of a famous theorem by Dilworth.

Partial orders can be found in all corner of mathematics. Partial orders have their uses in
everything from algebra, to model theory, and set theory. The applications go beyond
and through to computer science and operations research. One important structural
aspect of partial orders is called a chain decomposition. Chain decompositions are a
way of decomposing the partial order into linear subsets. A seminal theorem relating
to chain decompositions is Dilworth’s Theorem. One benefit of Dilworth’s Theorem is
that it allows for a theory of dimension for partial orders [36]. This theorem has been
extensively studied with many proofs and application. For an overview of some of these
see Bogart, Greene and Kung 1990 [37]. Even online (and effective) versions have been
studied in great detail (some examples include [38, 39, 40, 41]). However, one aspect that
has been overlooked is an adversarial version. We call this adversarial version the chain
decomposition game.

We will begin this chapter with some definitions and a proof of Dilworth’s Theorem. We
will then introduce the chain decomposition game and demonstrate two results relating
to upper and lower bounds for the game. To conclude we prove a result on the online
adversarial version of the game.

4.1 Chain Decompositions
Before we can state Dilworth’s theorem, we need some definitions.

Definition 4.1. A relation ≤ on a set of elements 𝑃 is a partial order if it is,

1. Reflexive: For all 𝑥 ∈ 𝑃 𝑥 ≤ 𝑥.
2. Antisymmetric: If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥 then 𝑥 = 𝑦.
3. Transitive: If 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑧 then, 𝑎 ≤ 𝑧.

27

Chapter 4. The Chain Decomposition Game

Definition 4.2. A chain in a partial order 𝑃 is a subset such that all the elements are
comparable. An anti-chain in a partial order 𝑃 is a subset such that all the elements are
incomparable.

Definition 4.3. A chain decomposition of a partial order 𝑃 is a set of chains 𝐷1, 𝐷2, … , 𝐷𝑛
such that all 𝐷𝑖 are disjoint and ⋃𝑖 𝐷𝑖 = 𝑃.
Definition 4.4. The width of a partial order 𝑃 is the size of the largest anti-chain in 𝑃
and is denoted 𝜔(𝑃).
Dilworth’s Theorem (Dilworth 1950 [42]). A finite partially ordered set 𝑃 can be decom-
posed into 𝑤 chains, where 𝑤 is the width of 𝑃.
Over the years there have been many new proofs of Dilworth’s Theorem. For example, in
Dantzig and Hoffman 1956 [43], the authors prove Dilworth’s Theorem using a linear
programing approach. Fulkerson 1956 [44] provides a proof based off a theorem by König.
We present a proof by Galvin 1994 [45] that provides a good clear overview.

Proof (Galvin 1994 [45]). We show this by induction on the size of 𝑃. The theorem is
trivially true when 𝑃 contains a single element. So, assume 𝑃 is non-empty and let 𝑥 be
any maximal element in 𝑃. Suppose 𝑃 ′ = 𝑃 ⧵ {𝑥} has width 𝑛. Then by the induction
hypothesis, 𝑃 can be covered in 𝑛 chains, 𝐶1, … , 𝐶𝑛.
For each 𝑖 ∈ [1, 𝑛] let 𝑥𝑖 be the maximal element in 𝐶𝑖 such that 𝑥𝑖 is contained in an𝑛-element antichain. We claim that 𝐴 = {𝑥1, … , 𝑥𝑛} is an antichain. Assume for a con-
tradiction that 𝐴 is not an antichain. Then there are 𝑥𝑖, 𝑥𝑗 ∈ 𝑃 such that 𝑥𝑖 ≤ 𝑥𝑗. There
is some antichain 𝐴′ of size 𝑛 that contains 𝑥𝑗 but not 𝑥𝑖. There must be some element𝑥′𝑖 ∈ 𝐴′ ∩ 𝐶𝑖. By the maximality of 𝑥𝑖, we get 𝑥′𝑖 ≤ 𝑥𝑖. Thus 𝑥′𝑖 ≤ 𝑥𝑖 ≤ 𝑥𝑗, which contradicts
the fact that 𝐴′ is an antichain. Therefore 𝐴 is an antichain.

If 𝐴 ∪ {𝑥} is an antichain, then {𝑥}, 𝐶1, … , 𝐶𝑛 is a chain cover of size (𝑛 + 1) and we are
done. Otherwise, assume 𝐴 ∪ {𝑥} is not an antichain. We show there is a chain cover of
size 𝑛. There is some 𝑖 ∈ [1, 𝑛] such that 𝑥 > 𝑥𝑖. Then 𝐷 = {𝑥} ∪ {𝑦 ∈ 𝐶𝑖 ∶ 𝑦 ≤ 𝑥𝑖} is a
chain. By our choice of 𝑥𝑖, the set 𝑃 ⧵ 𝐷 contains no 𝑛-element antichain. Therefore by
induction, 𝑃 ⧵ 𝐷 is the union of 𝑛 − 1 chains since 𝐴 ⧵ {𝑥𝑖} is an antichain of size 𝑛 − 1 in𝑃 ⧵ 𝐷. Hence 𝑃 can be covered in 𝑛 chains, as desired. □

4.2 Adversarial Game

The chain decomposition game is played on a partial order 𝑃 as follows. Fix 𝑛 boxes. The
value 𝑛 serves as a parameter determining how many chains we are constructing. 𝑛 is
chosen before the game begins. Starting with Alice, the players take turns placing some
element in 𝑃 into a box such that all the elements in each box are comparable. The game
ends when one of two win conditions are meet. First, Alice wins if all the elements have
been placed into boxes. In this case, the boxes represent a chain decomposition. Second,
Bob wins if on any turn there is an element that cannot be placed into any box.

Definition 4.5. The game width of a partial order 𝑃, denoted 𝜔𝑔(𝑃), is the smallest
number of boxes needed such that Alice has a winning strategy on 𝑃.

28

4.2. Adversarial Game

Unfortunately infinitely many chains would be required for Alice to always win the chain
decomposition game on every partial order. The following theorem was first proved
by Krawczyk and Walczak 2015 [46] in the context of colouring incompatibility graphs
(defined later).

Theorem 4.6 (Krawczyk and Walczak 2015 [46]). For all 𝑘 there exists a partial order 𝑃 of
width 2 such that 𝑘 ≤ 𝜔𝑔(𝑃).
Chain decompositions and colouring certain types of graphs are intimately related. We
have the following definition.

Definition 4.7 (Gilmore and Hoffman 1964 [47]). Let 𝑃 be a partial order. The incom-
parability graph of 𝑃 is a graph 𝐺 = (𝑉 , 𝐸) such that 𝑉 is the set of elements in 𝑃 and(𝑢, 𝑣) ∈ 𝐸 if and only if (𝑢, 𝑣) ∉ 𝑃 and (𝑣 , 𝑢) ∉ 𝑃.
That is, the incompatibility graph of a partial order 𝑃 is a graph where two vertices are
connected if the elements corresponding to these vertices are not related in 𝑃.
In a partial order for every pair of comparable elements 𝑥 and 𝑦 either 𝑥 ≤ 𝑦 or 𝑥 ≥ 𝑦. In
a graph each vertex is only adjacent to it’s neighbours. Hence, a partial order contains
more information than it’s incomparability graph. One example where this fact is used is
in the proof of Theorem 1.14.

Fora partial order 𝑃, there is a one to one correspondence between chain decompositions
of 𝑃 and colourings of the incomparability graph of 𝑃. This means the game width and
the game chromatic number are the same.

Theorem 4.8 (Folklore see [48]). Let 𝑃 be a partial order with width 𝑤 and 𝐺 the incom-
patibility graph of 𝑃. Then 𝜔𝑔(𝑃) = χg(𝐺)
Proof. It suffices to show that there is a reduction from chain decomposition to colouring
in the incomparability graph, and vice versa.

Fix 𝑃 some partial order and 𝐺 it’s incomparability graph. Let 𝐶1, … , 𝐶𝑤 be a chain
decomposition of 𝑃. Every element in 𝐶𝑖 is comparable, and so in 𝐺 forms an independent
set. Thus if each 𝐶𝑖 is coloured with the colour 𝑖, we have a 𝑤-colouring of 𝐺.
Let 𝑐 ∶ 𝑉 → [1, 𝑤] be a colouring of 𝐺. As every element in 𝑐−1(𝑖) is independent, 𝑐−1(𝑖)
forms a chain in 𝑃. Thus each colour from 𝑐 determines a chain in 𝑃. Therefore we have a
chain decomposition of 𝑃 into 𝑤 chains. □
Theorem 4.8 effectively says that the chain decomposition game is exactly the same as
the colouring game on incomparability graphs. For example, because interval orders1

have incomparability graphs as interval graphs, we get Corollary 4.9.

Corollary 4.9. Let 𝑃 be a finite interval order with width 𝑤. Then𝜔𝑔(𝑃) ≤ 3𝑤 − 2
Proof. By Faigle et al. 1993 [21], every interval order of interval width 𝑤 has χg(𝐺) ≤ 2𝑤−2.
Therefore 𝜔𝑔(𝑃) ≤ 3𝑤 − 2 by Theorem 4.8. □

1An interval order is a partial order whose incomparability graph is an interval graph.

29

Chapter 4. The Chain Decomposition Game

4.3 Online Partial Orders
All proofs of Dilworth’s Theorem seem to need global understanding of the structure of
the partial order. As we mentioned in the introduction in online situations we will only
have partial information and need to assign, in this case, a chain to each presented vertex
of the online partial ordering. We recall the definition of an online partial order.

Definition 4.10. An online partial order 𝑃≺ is a partial order 𝑃 and a linear order on the
elements of 𝑃, ≺. Let 𝑃≺𝑠 be the partial order induced by the first 𝑠 elements in 𝑃≺.
Definition 4.11. Let 𝑃≺ be an online partial order. An online chain decomposition 𝐷 of 𝑃≺
is a sequence of chain decompositions 𝐷1, 𝐷2, … where each 𝐷𝑖 is a chain decomposition
of the first 𝑖 elements in 𝑃≺, and 𝐷𝑖+1 is an extension of 𝐷𝑖.
Theorem 4.8 might lead us to suspect that the online width of a partial order is the same
as the online chromatic number of its incomparability graph. However, this is not the
case.

The first upper bound on the online chain decomposition was from Kierstead 1981 [38].
They show there exists an online algorithm that partitions any online partial order of width𝑤 into at most (5𝑤 − 1)/4 chains. This is a rather large exponential bound. Subexponential
online algorithms have been found. The first was found by Bosek and Krawczyk 2010 [40]
(𝑤16 log𝑤 many chains). Later this bound was improved by Bosek and Krawczyk 2015 [49]
to 𝑤13 log𝑤 many chains. Then again by Bosek et al. 2018 [50] to 𝑤6.5 log𝑤 +7. Currently
the best upper bound is due to Bosek and Krawczyk 2021 [39]. They show 𝑤O(loglog𝑤)
many chains are needed.

In the next section, we will look at a new variation of online algorithms for Dilworth’s
Theorem, where we imagine an online algorithm that is also adversarial.

4.4 Online Adversarial
With the online and adversarial versions in mind, we can take a look at the adversarial
online version of chain decompositions. Unfortunately, there is not much to be said about
adversarial online chain decompositions.

Theorem 4.12. For all 𝑘 there is an interval order of width 2 that cannot be online adversarial
partitioned into fewer than 𝑘 chains.
Proof sketch. Let 𝑃 be the ladder order with 2𝑘 vertices, see Figure 4.1. 𝑃 has width 2.
Present 𝑥1 to Alice. Alice places 𝑥1 in chain 1, We (Bob) places 𝑦1 in chain 1.
For stage 𝑖 Present Alice 𝑥𝑖. The element 𝑥𝑖 is incomparable to 𝑦𝑖−1 and thus cannot go
into chain 𝑖. Thus 𝑥𝑖 goes into chain 𝑖. Bob places 𝑦𝑖 into chain 𝑖. Thus by induction there
will be 𝑘 many chains as a new chain is needed everytime Alice is presented an element.
Each chain can be seen as a ‘rung’ in the ladder (the pair 𝑥𝑖 and 𝑦𝑖). □

30

4.4. Online Adversarial

𝑥1
𝑥2
𝑥3

𝑥𝑘 …

𝑦1
𝑦2
𝑦3

𝑦𝑘…

Figure 4.1: The Hasse diagram of the ladder Poset

31

Chapter 5

Strongly Online Graphs

In the preceding chapters, we have seen the effect of structural parameterizations (such
as bounded pathwidth) of graphs on the online performance of online algorithms. In this
chapter we introduce strongly online graphs and graph colouring as a new algorithmic
parameterization to online graph colouring. This new idea is an analog of notions from
computable graph theory [51]. All the results in this chapter that relate to strongly online
graphs are new and due to this author unless otherwise stated.

Online algorithms have no information about future events1. At any stage we can only
see an induced subgraph. It is this subgraph that we have already coloured. However, in
many situations and problems we would expect more information about future vertices.
For example, in online bin packing we have no knowledge of what items we will be
placing into bags before they arrive. However, it is reasonable to expect that we would
have some information about the upcoming items. We may be able to see the items before
they arrive, or they may be arriving in a predictable pattern. This extra information we
are provided with would also change your choice of algorithms. For example, if you
are told that all the items will arrive in order of descending size then by using a greedy
algorithm you can get a more optimal packing.

As with many situations we would expect to have more information about future events
than simply an induced subgraph. This leads us to introduce the notation of strongly
online algorithms and graphs. A strongly online graph is an online graph where at each
stage we can see the neighbours of every vertex we could see at the previous stage along
with the neighbours of the vertex we must colour at this stage.

The addition of this extra information allows us to get better bounds than normal online
colouring of graphs.

In this chapter we will only consider countable locally finite graphs. That is, graphs𝐺 = (𝑉 , 𝐸) where |𝑉 | ≤ ℵ0 and for any vertex 𝑣 ∈ 𝑉, 𝛿(𝑣) is finite.
1It is possible for an online algorithm to have some information that looks like it is about future events.

For example, online with lookahead (see Section 5.5.1) can be interpreted as seeing into the future. However
lookahead is more accurately described as waiting. Another possibility is that we know that the graph has
some property (e.g. the graph is a tree), this is only a promise not foresight.

33

Chapter 5. Strongly Online Graphs

Summary

We will begin this chapter by providing further motivation from and comparisons to
highly computable graph theory. We will use this as a launching point to prove several
bounds (upper and lower) on the online chromatic number. For example, we show that
every strongly online graph can be coloured in twice its chromatic number. Next, we
show how graph of bounded pathwidth have improved bounds. Proving every strongly
online graph with pathwidth 𝑘, where 𝑘 is even, can be online coloured with 2𝑘 +1 colours.
Then, after introducing a natural notion of strongly online pathwidth, we prove that there
is a strongly online graph with no finite strongly online path decomposition.

5.1 Highly Computable Graphs
We will omit a formal definition of what it means to be computable, but direct the reader
to Turing 1936 [1]. For our purposes, we consider a function 𝑓∶ ℕ → ℕ to be computable
if we can write a finite algorithm that computes 𝑓 and halts on any input. We are only
considering functions with domain ℕ. A subset of the natural numbers is computable if
there is a computable function that halts on any input and tells us if the input is in the set.
For a graph 𝐺 = (𝑉 , 𝐸) we can consider its vertex set as a set of natural numbers, each
number identifying a vertex. Then each edge in 𝐸 is a pair of natural numbers, and by
using a pairing function we can consider each edge as a natural number. Hence 𝐸 can be
considered as a subset of ℕ. In this way we can encode all (countable) sets (that we will
consider) as subsets of ℕ. Thus 𝐺 is computable if both 𝑉 and 𝐸 are computable sets of
natural numbers.

Computable graphs are natural objects to construct and ponder the action of algorithms
on. In this spirit we consider, when do computable graphs have computable colourings?
That is, when is there an algorithm 𝐀, such that when given any vertex in any computable
graph𝐀will compute the colour of that vertex? A computable 𝑘-colouring is a computable
function 𝑓∶ 𝑉 → {1, … , 𝑘} such that 𝑓 −1(𝑖) is an independent set for all 𝑖 ∈ [1, 𝑘]. It is not
always the case that having a 𝑘-colouring guarantees there is a computable 𝑘-colouring.
For example, while every planar graph is 4-colourable, there exists computable planar
graphs which are not 𝑘-colourable for any 𝑘 [6].

Another notion we are motivated to introduce from computable graph theory is, what
happens when a graph is ‘more computable’. For example, what if for every vertex 𝑣, there
is an algorithm 𝐴 such that 𝐴(𝑣) = 𝛿(𝑉)? The notion of ‘more computable’ was motivated
by a desire to expand algorithms from finite combinatorics to infinite graphs. There is
further motivation to find under what conditions (both algorithmic, and structural) do
computable graphs have desired properties (e.g. computable colourings). For an overview
of these notions see Gasarch 1998 [11]. One such notion introduced by Bean 1976 [6]
is highly computable graphs2. A computable graph 𝐺 = (𝑉 , 𝐸) is highly computable if
the function 𝛿(𝑣)∶ 𝑉 → ℕ is also computable. This means a highly computable graph is
locally finite (every vertex has finite degree) and the neighbour relation is computable.
That is, 𝑁(𝑣) is a computable set for all 𝑣 ∈ 𝑉. To compute 𝑁(𝑣) we enumerate through 𝑉
looking for neighbours of 𝑣, and once 𝛿(𝑣) many neighbours have been found we have

2In the literature the term highly recursive graph is often used. However, in keeping with more modern
terminology we call these graphs highly computable.

34

5.2. Online Graphs and an Analogy

found 𝑁(𝑣).
There has been much work in the area of computable graph theory, for some examples
see Schmerl 1980 [52], Kierstead 1981 [51], or surveys Gasarch 1998 [11] and Kier-
stead 1998 [10]. The overall theme in this area is asking, what structure do we need to
have in our graph to give us a computable colouring? Or, how bad does the colouring get
when we consider more parameters?

There is a strong connection between online algorithms and computable graph theory
(Kierstead 1998 [10]). In this vein many results in computable graph colourings transfer to
online colouring. For example, consider the proofs of the following, where the computable
version gives rise to the online version.

• Kierstead and Trotter 1981 [53]:

‣ Every computable interval order of width 𝑤 can be partitioned into 3𝑤 − 2
computable chains.

‣ Every online interval order of width 𝑤 can be online partitioned into 3𝑤 − 2
chains.

• Kierstead 1981 [38]:

‣ Every computable partial order of width 𝑤 can be partitioned into (5𝑤 − 1)/4 com-
putable chains.

‣ Every online partial order of width 𝑤 can be online partitioned into (5𝑤 − 1)/4
chains.

• Bean 1976 [6]:

‣ There is a 3-colourable, computable planar graph which, for all 𝑘, has no com-
putable 𝑘-colouring.

‣ There is a 3-colourable, online planar graph which, for all 𝑘, has no online𝑘-colouring.
In this notion we will introduce a new algorithmic parameterization we call strongly
online (this is defined below in Section 5.3). This is an online analog of highly computable.
We would hope that in the spirit of the above results we would get a nice translation
from highly computable to strongly online. However, as we will see, results about highly
computable graphs do not tend to transfer to strongly online. For example, perfect, 𝑘-
colourable, highly computable graphs are computably 𝑘 + 1 colourable. However, there is
a perfect, 𝑘-colourable, strongly online graph that is not 𝑘 + 1-colourable.
5.2 Online Graphs and an Analogy
Suppose you find yourself navigating a large maze. The maze can interpreted as a graph,
with vertices as cells and edges between cells if you can move from one to the other. In
a classical online setting you may find a cell 𝑥. Then at later stages more cells may be
reveled connecting to 𝑥. In effect new egresses have opened up in the maze. This is clearly
not realistic. For this situation to be true, the maze would have to be magical.

Now suppose instead that the maze is fair (i.e. not magical). Any time a cell in the maze
is revealed you can see all the egresses from this cell. The egresses that you can see do

35

Chapter 5. Strongly Online Graphs

Figure 5.1: A maze

not change. In effect every time a vertex is revealed you get all the neighbours of that
vertex as well. This leads us to the notion of (locally) strongly online graphs

5.3 Strongly Online Graphs
Definition 5.1 (Strongly Online Graph [Downey and Askes]). For 𝐺 = lim𝑠 𝐺𝑠 we define
the strongly online graph 𝐺 as follows.

1. A locally strongly online graph is an online graph 𝐺≺ with a sequence (filtration)⟨𝐻𝑠⟩𝑠 ∈ℕ such that 𝐻𝑠 = 𝑁[𝐺≺𝑠]
where 𝑣𝑠 is the vertex that must be coloured at stage 𝑠.

2. A strongly online graph is an an online graph 𝐺≺ with a sequence (filtration)⟨𝐻𝑠⟩𝑠 ∈ℕ such that 𝐻1 is the subgraph induced by 𝑁[𝑣1] and𝐻𝑠 +1 = 𝑁[𝐻𝑠] ∪ 𝑁 [𝐺≺𝑠]
where 𝑣𝑠 is the vertex that must be coloured at stage 𝑠.

3. A (locally) strongly online graph is strongly connected if at each stage 𝑠, 𝐻𝑠 is
connected. That is, the next vertex presented (𝑣𝑠 +1) is in 𝐻𝑠.

At each stage 𝑠 we must colour 𝑣𝑠, but we can see 𝐻𝑠. Note that lim𝑠 𝐻𝑠 = lim𝑠 𝐺𝑠 = 𝐺.
In other words, a strongly online graph is an online graph where at each stage 𝑠 we can
see a ball of increasing radius about each vertex. A locally strongly online graph is an
online graph where we can see the neighbours of every vertex we must colour.

When colouring strongly online graphs we can assign a colour to vertex in 𝐻𝑠, or we
can irrevocably colour a vertex in 𝐺𝑠. Because we must colour the vertices in the online
presentation order, a simple strategy is to assign colours to vertices that we can see, but
have not been presented (i.e. not in 𝐺𝑠). Henceforth, we will not make the distinction
between assigning colours and colouring vertices. The assumption is that at each stage of
a strongly online graph we will colour the vertex 𝑣𝑠 ∈ 𝑉 (𝐺𝑠\𝐺𝑠 −1) that must be coloured
according to its assigned colour.

Likewise, when presenting/describing a strongly online graph and we do not specify
which vertex to present next, it can be assumed we are presenting a vertex in 𝑉𝑠 −1. This

36

5.3. Strongly Online Graphs

vertex has been revealed and its neighbours are in the next boundary (𝑁(𝑉𝑠 −1)). Hence,
the vertex will not interfere with later operations.

Further, for simplicity we may refer to a strongly online graph as 𝐺 = lim𝑠 𝐺𝑠 and make
no reference to a filtration. In this case 𝐺𝑠 is assumed to be the 𝑠-th stage in the filtration.

An online algorithm 𝐀 for colouring a (locally) strongly online graph 𝐺 = lim𝑠 𝐺𝑠 with
filtration ⟨𝐺𝑠, 𝐻𝑠⟩ is a computable function 𝐀∶ (𝐺𝑠, 𝐻𝑠) ↦ 𝑐 where 𝑐 is a colouring of 𝐺𝑠,
and 𝐀(𝐺𝑠 +1, 𝐻𝑠 +1)↾𝑠 = 𝐀(𝐺𝑠, 𝐻𝑠). That is, an online algorithm is a function that takes as
input 𝐺𝑠 +1 and the visible graph 𝐻𝑠 +1 and outputs a colouring of 𝐺𝑠 +1 that extends the
colouring of 𝐺𝑠.
For a strongly online graph 𝐺 = lim𝑠 𝐺𝑠 with filtration ⟨𝐻𝑠⟩ the boundary at stage 𝑠 is the
induced subgraph �̂�𝑠 = (�̂�𝑠, �̂�𝑠), where �̂�𝑠 = 𝑉𝑠 ⧵ 𝑉𝑠 −1 and �̂�𝑠 = 𝐸𝑠 ⧵ 𝐸𝑠 −1. We also note
that �̂�𝑠 = 𝐺𝑠\𝐺𝑠 −1, and �̂�𝑠 = 𝐺𝑠\𝐺𝑠 −1.
5.3.1 Colouring Strongly Online Graphs
A strategy to colour highly computable graphs introduced by Bean 1976 [6] is to colour
odd stages with one set of colours and even stages with another set. This strategy was used
to prove Theorem 5.2 in the context of highly recursive graphs. We present a modification
to the context of strongly online graphs.

Theorem 5.2. If 𝐺 is a strongly online graph, then 𝐺 can be strongly online coloured in2 χ(𝐺) colours.
Proof. Let 𝐺 = lim𝑠 𝐺𝑠 be a 𝑘-colourable strongly online graph.

We define the colouring at odd and even stages. In the even stages we use colours 1, … , 𝑘
and in the odd stages 𝑘 + 1, … , 2𝑘.
We colour 𝐺0 = ∅ with no colours.

For the even stage 2𝑠 + 2, suppose we have coloured 𝐺2𝑠 +1 using 2𝑘 colours. Let 𝑣 be the
next vertex presented. Note that 𝐺2𝑠 +2 is the subgraph induced by 𝑁[𝑉 (𝐺2𝑠 +1) ∪ {𝑣}]. At
stage 2𝑠 + 2 we can see all of 𝐺2𝑠 +2. Let �̂�2𝑠 +2 = 𝐺2𝑠 +2\𝐺𝑠. We assign every vertex in�̂�2𝑠 +2 a colour from 1, … , 𝑘. This can be done using brute force as 𝐺 is 𝑘-colourable and�̂�2𝑠 +2 is finite.

The odd stage is analogous, but we colour �̂�2𝑠 +1 with colours from 𝑘 + 1, … , 2𝑘.
This gives a colouring of 𝐺 as �̂�𝑠 is disconnected from �̂�𝑠 +2. □
Theorem 5.2 shows us that being strongly online is a much stronger property than being
online. What happens if we restrict ourselves to locally strongly online graphs? As in
the ‘vanilla’ online case, we can force arbitrarily many colours on trees and forests, as
witnessed by Corollary 5.4 and Theorem 5.3.

Because every online algorithm is a computable function, there is list of partial computable
functions, ⟨𝜑𝑒⟩, that contains all possible online algorithms. Once we can list all the online
algorithms, we can diagonalise against them. We do this by constructing infinity many
graphs 𝐴1, 𝐴2, … such that the 𝐴𝑖-th graph cannot be coloured by the 𝑖-th function (𝜑𝑖) in
our list. As each 𝐴𝑖 is a strongly online graph, 𝐴𝑖 = lim𝑠𝐴𝑖, 𝑠.

37

Chapter 5. Strongly Online Graphs

Let 𝜋 ∶ ℕ × ℕ → ℕ be a pairing function. Define a strongly online graph 𝐺 = lim𝑠 𝐺𝑠
where 𝐺𝑠 = ⋃𝑡 ≤ 𝑠𝐴𝜋−1(𝑡). We then have a graph 𝐺 = ⋃𝑖𝐴𝑖, and hence 𝐺 cannot be online
coloured by any strategy.

Theorem 5.3. For every online algorithm 𝐀 and 𝑘 ∈ ℕ there is a locally strongly online tree𝐺 that cannot be online 𝑘-coloured by 𝐀. Indeed, for forests of height 𝑛, the approximation
ratio is Ω(log 𝑛)3 which is no better than the one for normal online trees.

Proof. Fix 𝑘 ∈ ℕ and 𝐀 an online algorithm. By induction on the number of colours 𝑙 ≤ 𝑘
we construct a locally strongly online forest 𝑇 such that 𝐀 does not give a locally strongly
online 𝑘-colouring of 𝑇. We ensure at each stage 𝑙 the vertices that need the 𝑙-th colour
have not been presented yet (but will have been revealed).

For 𝑙 = 0, any single vertex is a tree and cannot be coloured with 0 colours. Let 𝐺 be a pair
of vertices 𝑎 and 𝑏 connected by an edge, and present the vertex 𝑎. Vertex 𝑏 is revealed
and requires 1 colour, as desired.

Generate 2𝑘 ⋅ 𝑘𝑘 +1 many 𝐺’s. By the pigeonhole principle, 2𝑘 ⋅ 𝑘𝑘 of the 𝑏 vertices from
these trees are the same colour. Let 𝐹0 be the set of such vertices.

By the induction hypothesis, assume that there exists 𝐹0…𝐹𝑙, such that, |𝐹𝑚| ≥ 2𝑘 − 𝑙 ⋅ 𝑘𝑘 − 𝑙,
all vertices in 𝐹𝑚 use the same colour, have not been presented, and are adjacent to 𝑚 − 1
different coloured neighbours. That is, 𝐹𝑚 uses the 𝑚-th colour.

Let 𝑋 = 𝑥1, … , 𝑥𝑛 contain 2𝑘 − 𝑙 −1 ⋅ 𝑘𝑘 − 𝑙 new vertices. Connected each 𝑥𝑖 to a unique
vertex from each 𝐹0, … , 𝐹𝑙 by presenting one of 𝑥𝑖’s new neighbours. Each 𝑥𝑖 is adjacent
to 𝑙 colours and so must get a new colour. See Figure 5.2.1 1 1 1 1 1 1 12 2 2 23 34 5

𝐹0𝐹1𝐹2𝐹3𝐹4
Figure 5.2: A tree that cannot be four coloured (numbers representing colours, and vertices
not in a 𝐹𝑖 omitted)

By the pigeonhole principle, 2𝑘 − 𝑙 −1 ⋅ 𝑘𝑘 − 𝑙 −1 many 𝑥𝑖’s must use the same colour. Let𝐹𝑙 +1 be the set of these same coloured vertices.

As 2𝑘 − 𝑙 −1 ⋅ 𝑘𝑘 − 𝑙 is less than 1/2(2𝑘 − 𝑙 ⋅ 𝑘𝑘 − 𝑙), each 𝐹𝑖 decreases in size by no more than half.
That is, each 𝐹𝑖 has |𝐹𝑖| ≥ 2𝑘 − 𝑙 −1 ⋅ 𝑘𝑘 − 𝑙 −1, as desired.
Note that once 𝑙 = 𝑘, we will generate 2𝑘 −𝑘 ⋅ 𝑘𝑘 −𝑘 = 1 tree that requires a 𝑘 + 1-th colour.
Therefore we have a forest that 𝐀 cannot 𝑘-colour.

3𝑓 (𝑥) = Ω(𝑔(𝑥)) means that 𝑓 is bounded below by 𝑔 asymptotically

38

5.4. Suspected Improvements

Finally, note that 𝑇 has O(2𝑘 ⋅ 𝑘𝑘) many vertices, and hence 𝑇 requires Ω(log(𝑛)) colours
to colour. □
Corollary 5.4 then follows as a simple corollary of Theorem 5.3 by a diagonalization
against all possible algorithms and numbers of colours.

Corollary 5.4. There is an (infinite) locally strongly online forest which cannot be online
finitely coloured.

We have seen how forests cannot be locally strongly online coloured with finitely many
colours. Is there any situation where we can finitely colour forests? In contrast to
Corollary 5.4, strongly connected online trees can be 2-coloured. This is because in a
strongly connected online tree we can use a standard strategy for colouring offline trees.

Theorem 5.5. Every strongly connected online tree is strongly 2-colourable.
Proof. Let 𝑇 = lim𝑠 𝑇𝑠 be a strongly connected online tree. We colour 𝑇 by induction on 𝑠,
the stage.

For the base case we colour 𝑣1 with 1 and 𝑁(𝑣) with 2. This colours 𝑇1.
Suppose we have coloured 𝑇𝑠. We must now colour 𝑇𝑠 +1. Let ̂𝑇𝑠 +1 = 𝑇𝑠 +1\𝑇𝑠. Colour̂𝑇𝑠 +1 with whichever colour we didn’t use in ̂𝑇𝑠.
As each 𝑣𝑠 is part of the graph we can see, it has already been assigned a colour. And, as
each ̂𝑇𝑠 is independent, we have strongly 2-coloured 𝑇. □

5.4 Suspected Improvements
We have taken strong hints from highly computable graph theory about how to proceed.
In this vein we will look a several results on highly computable graphs that show im-
provements in the context of highly computable graphs over the theorems we have seen
so far. We would hope these results transfer to strongly online graphs.

In the context of highly computable graphs we can get an improvement on Theorem 5.2,
as evidenced by Theorem 5.6.

Theorem 5.6 (Schmerl 1980 [52]). If 𝐺 is a highly computable, 𝑘-colourable graph then, 𝐺
is computably (2𝑘 − 1)-colourable.
Further improvements can be made on highly computable graphs if we restrict the class
of graphs further. Kierstead 1981 [51] takes the ideas from Theorem 5.6 and uses them to
prove Theorem 5.8.

Definition 5.7 (Perfect Graph). A graph 𝐺 is perfect if for every induced subgraph 𝐻 of𝐺, χ(𝐻) = 𝑤(𝐻), where 𝑤(𝐻) is the size of the largest clique in 𝐻.

Theorem 5.8 (Kierstead 1981 [51]). Every perfect, 𝑘-colourable, highly computable graph
is computably 𝑘 + 1 colourable.
Using Theorems 5.6 and 5.8 as templates, we can then ask the following questions.

Question 5.9. Is every 𝑘-colourable strongly online graph strongly (2𝑘 − 1)-online
colourable?

39

Chapter 5. Strongly Online Graphs

Question 5.10. Is every perfect, 𝑘-colourable, strongly online graph strongly 𝑘 + 1 online
colourable?

Unfortunately, in general, the answers to questions 5.9 and 5.10 are no. As we will see in
Section 5.5, there are graphs that require twice their chromatic number to colour.

5.5 Lower Bounds
A common strategy for highly computable algorithms is to colour every vertex we can
see at each stage, or more precisely we colour 𝐻𝑠. This strategy will not work for strongly
online graphs, as witnessed by Theorem 5.11.

Theorem 5.11. For all 𝑘 there is a strongly online 𝑘-colourable graph that cannot be strongly(2𝑘 − 1)-online coloured.
Proof. We construct the graph in stages. Let ⟨𝜑𝑒⟩ be an enumeration of all possible colour-
ings (i.e. functions ℕ ↦ [2𝑘 − 1]). At stage 𝑠, we diagonalise against 𝜑𝑠 by constructing
a strongly online graph 𝐻𝑠 that cannot be strongly online coloured by 𝜑𝑠. We then let𝐺 = ⋃𝑠 𝐻𝑠.
Stage 𝑠: Note that a strongly online graph is a sequence 𝐻𝑠,1, 𝐻𝑠,2, … . Begin by letting𝐻𝑠,1 be a 𝑘-clique. Let 𝐻𝑠, 𝑡 +1 be 𝐻𝑠, 𝑡 with another 𝑘-clique and the neighbours of each𝑘-path in 𝐻𝑠, 𝑡. See Figure 5.3. We repeat this until there are

𝑛 = 2(𝑘 − 1)(2𝑘 − 1𝑘 − 1) + 1𝑘-paths. Let this graph be 𝐻𝑠,𝑞. Let 𝑋𝑖 be the last vertices revealed in each 𝑘-path in 𝐻𝑠,𝑞.
If 𝜑𝑒 is a valid colouring of 𝐻𝑠, 𝑡 then, by the pigeonhole principle, 𝜑𝑠 must have coloured2𝑘 𝑋𝑖’s using the same set of colours. Let 𝐼 denote the set of indices of these sets.

𝑋1 𝑋2 𝑋3 𝑋4
Figure 5.3: The first 4 paths for 𝐻𝑠,4 when 𝑘 = 3

Let 𝐴 = ({𝑎1, … , 𝑎𝑘}, 𝐸𝐴) be a 𝑘-clique (complete graph). We let 𝐻𝑠,𝑞 +1 be 𝐻𝑠,𝑞 ∪ 𝐴 along
with edges⋃𝑖 ∈ 𝐼{(𝑢, 𝑎𝑖) ∶ 𝑢 ∈ 𝑋𝑖}. See Figure 5.4. Without loss of generality we can assume
that 𝜑𝑠 uses colours 1, … , 𝑘 − 2 to colour 𝑋𝑖. Then 𝐴 will be coloured using 𝑘 − 1, … , 2𝑘 − 1.

40

5.5. Lower Bounds

𝐴𝑖𝑋1

𝑋2

𝑋3
Figure 5.4: The graph 𝐻𝑠,𝑞 for 𝑘 = 3

We add 2𝑘 such cliques, each one connected to different 𝑋𝑖’s. Let 𝒜 = {𝐴𝑖 ∶ 𝑖 ∈ 𝐽 } be
the set all of these 𝑘-coloured cliques. Denote 𝐴𝑖 = {𝑎𝑖,1, 𝑎𝑖,2, … , 𝑎𝑖, 𝑘} where, for 𝑗 ∈ [1, 𝑘],𝜑𝑠 (⋃𝑖 ∈ 𝐽{𝑎𝑖, 𝑗}) is a single colour. Let 𝐵 = ({𝑏1, … , 𝑏𝑘}, 𝐸𝐵) be another 𝑘-clique (complete
graph). We let 𝐻𝑠,𝑞 +2 be 𝐻𝑠,𝑞 +1 ∪ 𝐵 along with the edges⋃𝑖 ∈ 𝐽 {(𝑏𝑖, 𝑎2𝑖−1,1), … , (𝑏𝑖, 𝑎2𝑖−1,𝑘 −1), (𝑏𝑖, 𝑎2𝑖,𝑘), … , (𝑏𝑖, 𝑎2𝑖,2𝑘)}
See Figure 5.5.

𝐵
𝐴1
𝐴2

𝐴3 𝐴4
𝐴5
𝐴6

Figure 5.5: The graph 𝐻𝑠 for 𝑘 = 3, with colours

This ends the construction. Each vertex in 𝐵 is connected to 𝑘 uniquely coloured neigh-
bours and is part of a 𝑘-clique, and thus cannot be 2𝑘 − 1 coloured. Therefore 𝜑𝑒 cannot
strongly online colour 𝐻𝑠. A 𝑘-colouring of 𝐻𝑠 can be found by colouring 𝐵 then using
breadth first search and the greedy strategy.

Therefore, 𝐺 = ⋃𝑠 𝐻𝑠 is a 𝑘-colourable graph that cannot be coloured by any strategy. □

41

Chapter 5. Strongly Online Graphs

The graph constructed in Theorem 5.11 has O((2𝑘 −12)) = O((2𝑘 − 1)𝑘 −1) vertices. Thus
we need O(log 𝑛) colours to strongly online colour a graph with 𝑛 vertices.

We can now see that the answer to question 5.9 is no. For the case of general graphs we
cannot do better than twice the chromatic number. However, we can do better for more
restricted classes of graphs. For example, every graph of pathwidth 1 is strongly online
colourable in 3 colours (see Theorem 5.15). As we will see in Theorem 5.15, for graphs of
even bounded pathwidth the answer to question 5.9 is yes.

5.5.1 Online with Lookahead
One restriction of strongly online colouring vs colouring highly computable graphs is
that when strongly online colouring, there is a vertex that must be coloured at each stage.
In a highly computable graph after a vertex is presented we could wait before colouring
it. It is this fact that Theorems 5.6 and 5.8 use to improve on Theorem 5.2.

The added ability to wait in highly computable graphs implies that our definition of
strongly online is limited. To rectify this, we propose an alternative version of strongly
online.

Definition 5.12 (Strongly Online Graph with Lookahead). Fix some 𝑑 ∈ ℕ, and 𝐺 =
lim𝑠 𝐺𝑠 a strongly online graph with filtration ⟨𝐻𝑠⟩𝑠 ∈ℕ. The graph 𝐺 has lookahead 𝑑 if
the vertex 𝑣𝑠 ∈ 𝐺𝑠\𝐺𝑠 −1 is the vertex that must be coloured at stage 𝑠 + 𝑑.
In short a strongly online graph with lookahead 𝑑 allows you to wait 𝑑 stages before
colouring the vertex 𝑣𝑠.
Even lookahead is not enough for strongly online graphs to have the same bounds as
highly computable graphs. To demonstrate this, consider Theorem 5.11 and its proof.
At no stage do we wait for a vertex to be irrevocably coloured. We are operating on
the colours assigned by the function we are diagonalising against. Therefore we have
Theorem 5.13.

Theorem 5.13. For all 𝑘, 𝑑 there is a strongly online 𝑘-colourable graph with lookahead 𝑑
that cannot be strongly (2𝑘 − 1)-online coloured.
Furthermore, the graph in Theorem 5.11 is perfect, of bounded degree, and bounded
treewidth. Thus, for all these classes of graphs, the bound of twice the chromatic number
is tight.

Theorem 5.14. For all 𝑘, 𝑑 there is a perfect strongly online 𝑘-colourable graph with looka-
head 𝑑, pathwidth 𝑘 − 1, and max degree 2𝑘 − 1 that cannot be strongly (2𝑘 − 1)-online
coloured.

Proof sketch. It suffices to show that the graph 𝐺 generated by Theorem 5.11 is perfect,
has pathwidth 𝑘 − 1, and max degree 2𝑘 − 1.
As every component in 𝐺 follows the same structure, we can assume, without loss of
generality, that 𝐺 is just one of these connected components. We begin by showing 𝐺 has
max degree 2𝑘 − 1. Let 𝑏 be a vertex in 𝐵. Vertex 𝑏 is connected to 𝑘 − 1 vertices inside 𝐵,
and at most 𝑘 vertices from some 𝐴𝑖’s. Thus 𝛿(𝑏) ≤ 2𝑘 − 1. Let 𝑎 be a vertex in some 𝐴𝑖.
Vertex 𝑎 is connected to 𝑘 − 1 vertices from 𝐴𝑖, 1 vertex from 𝐵, and 𝑘 − 1 vertices from

42

5.6. Graphs with Bounded Pathwidth

some 𝑋𝑖. Thus 𝛿(𝑎) ≤ 2𝑘 − 1. Let 𝑥 be some vertex in some 𝑋𝑖. Vertex 𝑥 is connected to
one vertex in 𝐴𝑖, 𝑘 − 2 vertices in 𝑋𝑖, and 𝑘 − 1 vertices from the 𝑘-path that terminates
with 𝑋𝑖. Thus 𝛿(𝑥) ≤ 2𝑘 − 1. The remaining vertices form parts of 𝑘-paths, and have at
most 2𝑘 neighbours. Therefore every vertex in 𝐺 has max degree 2𝑘 − 1.
Next we show that 𝐺 has treewidth 𝑘. Consider 𝐵 the root of a tree decomposition. Then
all the 𝐴𝑖’s are 𝐵’s children, and the 𝑋𝑖’s the 𝐴𝑖’s children. Each of these bags (𝐵, 𝐴𝑖’s, and𝑋𝑖’s) all have size at most 𝑘. Thus the width of this tree decomposition is 𝑘 − 1.
It remains to show that 𝐺 is perfect. In the tree decomposition of 𝐺 all the bags are
cliques. Bags 𝐵, 𝐴𝑖’s, and 𝑋𝑖’s are cliques by construction, and the other bags are cliques
by inspection of the graph. Thus the only way to make 𝐺 𝑙-colourable is to remove enough
vertices so that every bag has at most 𝑙 − 1 vertices in it. Hence 𝐺 is perfect. □

5.6 Graphs with Bounded Pathwidth
As we have seen, many results seem to hold because of parameterizations related to
the shape of a graph. Graphs of bounded pathwidth seem to have a nice structure. For
example, any online graph with pathwidth 𝑘 can be online coloured in 3𝑘 − 2 colours [20].
Whereas, in general, online graphs (including bounded treewidth) require arbitrarily
many colours to colour.

Every graph 𝐺 = (𝑉 , 𝐸) with pathwidth 𝑘 has degeneracy 𝑘. That is, there is an ordering
of 𝑉 such that each vertex has at most 𝑘 neighbours smaller that it. Thus, to colour 𝐺, we
can iterate along this order and greedily colour the vertices. This will use at most 𝑘 + 1
colours because every vertex will have at most 𝑘 coloured neighbours when it is coloured.
Therefore every graph with pathwidth 𝑘 can be coloured in 𝑘 + 1 colours. Hence, by
Theorem 5.2, we can colour any strongly online graph with pathwidth 𝑘 in 2𝑘 + 2 colours.
However, we can improve on 2𝑘 + 2 colours if 𝑘 is even (see Theorem 5.15). Further, for
even pathwidth this bound is tight by Theorem 5.16.

Theorem 5.15. Every strongly online graph with pathwidth 𝑘, where 𝑘 is even, is strongly
online 2𝑘 + 1-colourable.
Proof. Let 𝐺 = lim𝑠 𝐺𝑠 be a strongly online graph with pathwidth 𝑘.
Let 𝐶𝑠, 𝑡 = {1, 3, 5, 7, … , 2𝑡 − 1 if 𝑠 is odd2, 4, 6, 8, … , 2𝑡 if 𝑠 is even
At each stage 𝑠 we will colour the boundary, �̂�𝑠 = (�̂�𝑠, �̂�𝑠), with the set of colours 𝐶𝑠, 𝑙 along
with a 𝑘 + 1-th colour (which we will call white for convenience), where 𝑙 is the pathwidth
of �̂�𝑠.
When colouring �̂�𝑠 we will ensure the colour white is only used in a connected component
in �̂�𝑠 that has pathwidth 𝑘. All other components will use the colours 𝐶𝑠,𝑚+1, where 𝑚 is
the pathwidth of the connected component.

The first stage (𝑠 = 1) has pathwidth at most 𝑘 and so can be coloured appropriately with𝐶1,𝑘 and white.

43

Chapter 5. Strongly Online Graphs

Suppose we have coloured 𝐺𝑠, and we need to colour �̂�𝑠 +1. Let 𝐻 be the subgraph induced
by a connected component in �̂�𝑠 +1. Suppose 𝐻 has pathwidth 𝑚 < 𝑘. Then as the only
neighbours of 𝐻 have colours 𝐶𝑠,𝑘 and white, we can colour 𝐻 with 𝐶𝑠 +1,𝑚+1.
Now, suppose 𝐻 has pathwidth 𝑘. We must now find a way to reuse the colour white. Let𝒫 = {𝑃1, 𝑃2, 𝑃3, … } be a path decomposition of 𝑁[𝐻]. There are three cases.

(a) 𝐻 is adjacent to no connected components of width 𝑘 in �̂�𝑠.
(b) 𝐻 is adjacent to at most 1 connected component of width 𝑘 in �̂�𝑠.
(c) 𝐻 is adjacent to more than 1 connected component of width 𝑘 in �̂�𝑠.

Case (a): 𝐻 is not adjacent to any white vertices. Thus any colouring of 𝐻 using 𝐶𝑠 +1,𝑘
and white is valid.

Case (b): Let 𝑃𝑖 be a bag in 𝒫 that contains a white vertex from �̂�𝑠. Without loss of
generality, assume that 𝑖 is less than the index of any bag that contains only vertices from𝐻. That is, 𝑃𝑖 is to the left of 𝐻. We use Algorithm 5.1 to find 𝑋 ⊆ 𝑉 (𝐻) such that 𝑋 is
1-colourable, 𝐻\𝑋 has pathwidth 𝑘 − 1, and no vertex in 𝑋 is adjacent to a white vertex
in 𝐺𝑠.
Algorithm 5.1 Find the vertices of 𝐻 to colour white
1: procedure FindVertices(𝑖)
2: 𝑗 ← 𝑖
3: 𝑋 ← ∅
4: while 𝑃𝑗 ≠ ∅ do
5: if 𝑃𝐽 ⊆ 𝑉 (𝐻) and 𝑃𝑗 ∩ 𝑋 = ∅ then
6: Fix some 𝑥 ∈ 𝑃𝑗 ⧵ 𝑃𝑗 −1
7: 𝑋 ← 𝑋 ∪ {𝑥}
8: end if
9: 𝑗 ← 𝑗 + 1

10: end while
11: return 𝑋
12: end procedure

Colour all vertices in 𝑋 and the remaining vertices in 𝐻, with 𝐶𝑠 +1,𝑘.
Case (c): Assume for a contradiction that 𝐻 is connected to 3 connected components
with width 𝐾, and let 𝐷,𝐸, and 𝐹 be their induced subgraphs from �̂�𝑠 . Because each of𝐷, 𝐸, 𝐹,and 𝐻 have pathwidth 𝑘, there are bags 𝑃𝑑, 𝑃𝑒, 𝑃𝑓, and 𝑃ℎ such that 𝑃𝑑 ⊂ 𝑉 (𝐷),𝑃𝑒 ⊂ 𝑉 (𝐸),𝑃𝑓 ⊂ 𝑉 (𝐹), 𝑃ℎ ⊂ 𝑉 (𝐻), and |𝑃𝑑| = |𝑃𝑒| = |𝑃𝑓| = |𝑃ℎ| = 𝑘 + 1.
Without loss of generality, assume that 𝑑 < ℎ < 𝑒 < 𝑓. As there is a path from 𝑃ℎ to 𝐷𝑓,
every bag between 𝑃ℎ and 𝐷𝑓 must contain a vertex from 𝐻 ∪ 𝐹. This contradicts the fact
that ℎ < 𝑒 < 𝑓. Therefore 𝐻 is connected to two connected components of pathwidth 𝑘.
Claim 5.15.1. Every bag 𝑃𝑖 ∈ 𝒫 such that 𝑃𝑖 ⊆ 𝑉 (𝐻) and |𝑃𝑖| = 𝑘 + 1 has at most 𝑘 + 1/2
vertices that are adjacent to 𝑘 + 1 colours from {𝑃1, … , 𝑃𝑖−1} (or {𝑃𝑖+1, 𝑃𝑖+2, … }).

44

5.6. Graphs with Bounded Pathwidth

Proof of claim. Fix 𝑃𝑖 ∈ 𝒫 such that 𝑃𝑖 ⊆ 𝑉 (𝐻) and |𝑃𝑖| = 𝑘 + 1. Let {𝑝1, … , 𝑝𝑛} be the
vertices in 𝑃𝑖 adjacent to exactly 𝑘 + 1 colours from {𝑃1, … , 𝑃𝑖−1}.
Let 𝑃𝑗 be the greatest 𝑗 < 𝑖 such that 𝑃𝑗 contains 𝑘 + 1 colours (cannot be in 𝐻 as 𝐻 has not
been coloured). No bag between 𝑃𝑗 and 𝑃𝑖 can contain white (or else there would be a
third connected component with width 𝑘). Let 𝑦 be the white vertex in 𝑃𝑗. 𝑝1, … , 𝑝𝑛 are
adjacent to 𝑦. Further there is some bag 𝑃𝑙 such that 𝑝1, … , 𝑝𝑛, 𝑦 ∈ 𝑃𝑙.
Note that the maximum width of a connected component from �̂�𝑠 between 𝑃𝑙 and 𝑃𝑖 is𝑘 − 𝑛. Hence 𝑝1, … , 𝑝𝑛 can only be adjacent to less than 𝑘 + 1 − 𝑛 colours not in 𝑃𝑙.
In 𝑃𝑙 −1 there are only 𝑛 − 1 vertices from 𝑝1, … , 𝑝𝑛. Hence the maximum number of
colours from 𝑃𝑗 that 𝑝1, … , 𝑝𝑛 is adjacent to is 𝑘 + 1 − 𝑛.
If 𝑛 > 𝑘 + 1/2, then the number of colours not from 𝑃𝑙 and from 𝑃𝑗 is(𝑘 + 1 − 𝑛) + (𝑘 + 1 − 𝑛) < 2𝑘 + 2 − 2(𝑘 + 1/2) = 𝑘 + 1
This contradicts the fact that 𝑝1, … , 𝑝𝑛 are adjacent to 𝑘 + 1 colours from {𝑃1, … , 𝑃𝑖−1}.
Therefore 𝑛 is at most 𝑘 + 1/2. ■

Let 𝐴 and 𝐵 be the induced subgraphs of the connected components of pathwidth 𝑘 that𝐻 is adjacent to.

Let 𝑃𝑙 be the leftmost and 𝑃𝑟 the rightmost bag in𝒫 such that 𝑃𝑙 ⊆ 𝑉 (𝐻) and 𝑃𝑟 ⊆ 𝑉 (𝐻).
By Claim 5.15.1 and the fact that 𝑘 is even, 𝑃𝑙 and 𝑃𝑟 have more than 𝑘 + 1/2 vertices adjacent
to at most 𝑘 colours from �̂�𝑠. 4 See Figure 5.6.

= =

𝑅″

𝑅″
𝐿∗

𝐿′ 𝐿
𝑅∗

𝑅′𝑅
𝑃𝑙 𝑃𝑟

Figure 5.6: The bags 𝑃𝑙 and 𝑃𝑟
We define the following subsets of 𝑃𝑙 and 𝑃𝑟.

• 𝐿 ⊆ 𝑃𝑙 is the subset of 𝑃𝑙 that is not connected to 𝑘 + 1 colours from {𝑃1, … , 𝑃𝑙 −1}.
4This fact fails to be true if 𝑘 is odd. We could have exactly half of the vertices in 𝐻 connected to 𝑘 + 1

colours to the left and the other half connected to 𝑘 + 1 colours to the right. Therefore, we might not be able
to colour 𝐻

45

Chapter 5. Strongly Online Graphs

• 𝑅 ⊆ 𝑃𝑟 is the subset of 𝑃𝑟 that is not connected to 𝑘+1 colours from {𝑃𝑟 +1, 𝑃𝑟 +2, … }.
• 𝐿′ ⊆ 𝐿 such that for every 𝑥 ∈ 𝐿′, 𝑥 ∉ 𝑃𝑟.
• 𝑅′ ⊆ 𝑅 such that for every 𝑦 ∈ 𝑅′, 𝑦 ∉ 𝑃𝑙.
• 𝐿∗ = 𝑃𝑙 ⧵ 𝐿 ⧵ 𝑃𝑟.
• 𝑅∗ = 𝑃𝑟 ⧵ 𝑅 ⧵ 𝑃𝑙.
• 𝑅″ = 𝑅 ⧵ 𝑅′ (= 𝑃𝑙 ⧵ 𝐿 ⧵ 𝐿∗).

Note that |𝐿∗| = 𝑘 + 1 − |𝐿| − |𝑅″| and |𝑅′| = |𝑅| − |𝑅″|. Hence|𝐿∗| ≤ 𝑘 + 1 − |𝑘 + 1/2| − |𝑀| < 𝑘 + 1/2 − |𝑀| ≤ |𝑅′|
Thus |𝐿∗| < |𝑅′|.
Therefore any colouring of 𝐻 must have one colour that is used in both 𝐿′ and 𝑅′. Let𝑥 ∈ 𝐿′ and 𝑦 ∈ 𝑅′ be some such vertices. If both 𝑥 and 𝑦 are not adjacent to the colour
white, then we can colour these vertices white and are done.

Suppose one of 𝑥 and 𝑦 is adjacent to the colour white. Then one of 𝐿∗ and 𝑅∗ (respectively)
has one less vertex in it. Hence 𝐿′ (or 𝑅′) is one vertex larger. Therefore in any colouring
of 𝐻, there are two colours used in both 𝐿′ and 𝑅′.
By applying induction we see that either we will be able to colour 𝐻, 𝐿 = 𝑃𝑙 or 𝑅 = 𝑅𝑟.
We then use the technique from case (b) to colour 𝐻 as 𝐴 or 𝐵 effectively has pathwidth
less than 𝑘.
It remains to show that no neighbour of 𝐻 in later stages can have pathwidth 𝑘.
Claim 5.15.2. If 𝐹 is the induced subgraph of a connected component in 𝐺\𝐺𝑠 that is
connected to 𝐻, then 𝐹 has pathwidth less than 𝑘.
Proof of claim. Let 𝒬 = {𝑄1, 𝑄2, … } be a path decomposition of 𝐺. Because each of 𝐴, 𝐵,
and𝐻 have pathwidth 𝑘, there must be bags 𝑄𝑎, 𝑄𝑏, and 𝑄ℎ such that 𝑄𝑎 ⊂ 𝑉 (𝐴), 𝑄𝑏 ⊂ 𝑉 (𝐵),𝑄ℎ ⊂ 𝑉 (𝐻), and |𝑄𝑎| = |𝑄𝑏| = |𝑄ℎ| = 𝑘 + 1.
Assume for a contradiction that 𝐹 has pathwidth 𝑘. Then there is also a bag 𝑄𝑓 ⊆ 𝑉 (𝐹),
where |𝑄𝑓| = 𝑘 + 1.
In 𝐺 there are paths 𝑄𝑎 to 𝑄ℎ and 𝑄𝑏 to 𝑄ℎ. 𝑄𝑓 ∩ 𝑉 (𝐻) = 𝑄𝑓 ∩ 𝑉 (𝐴) = 𝑄𝑓 ∩ 𝑉 (𝐵) = ∅ and
so 𝑓 cannot be between 𝑎 and 𝑏 because the paths cannot pass through 𝑄𝑓. That is, 𝑎 > 𝑓
and 𝑏 < 𝑓.𝑓 cannot be greater than 𝑏 because there is a path from 𝑄𝑓 to 𝑄ℎ and 𝑄𝑏 ∩(𝑉 (ℎ)∪𝑉 (𝐹)) = ∅.
Similarly 𝑓 cannot be less than 𝑎.
This is a contradiction as 𝑄𝑓 must exist somewhere in 𝒬. Therefore 𝐹 cannot have
pathwidth 𝑘. ■

This means we can always use 𝑘 colours to colour later neighbours of 𝐻. □

46

5.6. Graphs with Bounded Pathwidth

The following result shows that for arbitrary graphs with pathwidth 𝑘, we cannot do
better than 2𝑘 + 1.
Theorem 5.16. There is a strongly online graph of pathwidth 𝑘 that is not strongly online2𝑘-colourable.
Proof. As in Theorem 5.11, we construct the graph in stages. Let ⟨𝜑𝑒⟩ be an enumeration
of all possible colourings (i.e. functions ℕ ↦ [2𝑘]). Again the graph is constructed as
disjoint components and we will diagonalise against 𝜑𝑠 by constructing a strongly online
graph 𝐻𝑠 with path width 𝑘 that cannot be strongly online coloured by 𝜑𝑠. We then let𝐺 = ⋃𝑠 𝐻𝑠. We return to the construction of component 𝐻𝑠 which is constructed in stages𝑒.
Stage 𝑒: Recall that a strongly online graph is a sequence 𝐻𝑠,1, 𝐻𝑠,2, …𝐻𝑠, 𝑒 −1… . We
construct a series of 𝑘-paths, each with vertices 𝑥1, 𝑥2, 𝑥3, … and all the edges of the form(𝑥𝑖, 𝑥𝑗) such that 𝑖 − 𝑗 < 𝑘. Let {𝑃1, 𝑃2, 𝑃3, … } denote the set of all such 𝑘-paths. Let 𝐻𝑠,1
contain 𝑃1 with 𝑘 vertices. Let 𝐻𝑠, 𝑖+1 contain 𝑃𝑖+1 with 𝑘 vertices and all 𝑃𝑗 such that𝑗 < 𝑖 with an extra 𝑘 vertices. See Figure 5.3 for an example when 𝑘 = 3.
We repeat this until there are 𝑛 = (2𝑘𝑘 − 1) + 1𝑘-paths. If it is the case that 𝜑𝑠 halts we will observe the online colouring it has given.
By the pigeonhole principle there are two paths whose last 𝑘 − 1 vertices have the same
colour. Denote these vertex sets 𝐴 = {𝑎1, … , 𝑎𝑘} and 𝐵 = {𝑏1, … , 𝑏𝑘}.
Without loss of generality, assume that 𝑐(𝑎𝑖) = 𝑐(𝑏𝑖) = 𝑖. Let 𝐷 = ({𝑑1, … , 𝑑𝑘 +1}, 𝐸𝐷) be
a (𝑘 + 1)-clique (complete graph). We let 𝐻𝑠,𝑛+1 = 𝐻𝑠,𝑛 ∪ 𝐷 along the edges of the form(𝑑𝑖, 𝑎𝑗) such that 𝑖 ≤ 𝑗 and (𝑑𝑖, 𝑏𝑗) such that 𝑖 > 𝑗. This forms a single 𝑘-path See Figure 5.7.

𝑑1
𝑑2 𝑑3

𝑎1
𝑎2

𝑏1
𝑏2

Figure 5.7: The graph 𝐻𝑠,𝑛+1 with edges coloured for clarity

Each vertex in 𝐷 is connected to a vertex of each colour 1, … , 𝑘 − 1 and thus must be
coloured from the colours 𝑘, … , 2𝑘. However as 𝐷 is a (𝑘 + 1)-clique it requires 𝑘 + 1
colours. Hence 𝐷 cannot be coloured. Therefore 𝐻𝑠 cannot be coloured by 𝜑𝑠.𝐻𝑠 is a series of 𝑘-paths and so has pathwidth 𝑘.
Therefore, 𝐺 = ⋃𝑠 𝐻𝑠 is a graph with pathwidth 𝑘 that cannot be coloured by any strategy.

□

In general, for graphs with odd pathwidth 𝑘 we can also do no better than 2𝑘 + 2, as
witnessed by Theorem 5.17.

47

Chapter 5. Strongly Online Graphs

Theorem 5.17. There is a strongly online graph of odd pathwidth 𝑘 that is not strongly
online 2𝑘 + 1colourable.
Proof. As in Theorem 5.11, we construct the graph in stages. Let ⟨𝜑𝑒⟩ be an enumeration
of all possible colourings (i.e. functions ℕ ↦ [2𝑘]). The graph is constructed as disjoint
components and we will diagonalise against 𝜑𝑠 by constructing a strongly online graph𝐻𝑠 with pathwidth 𝑘 that cannot be strongly online coloured by 𝜑𝑠 in 2𝑘 + 1 colours.

Note that since 𝑘 is odd 𝑘 + 1 = 2𝑙 for some 𝑙 ∈ ℕ.

Stage 𝑒: To construct 𝐻𝑠 we begin by presenting

2(2𝑘 + 1𝑘 + 1) + (2𝑘 + 1𝑙) + 2
vertices, each the center of a path that grows in length with every presented vertex.

Next we create (2𝑘 +1𝑘 +1) + 1 cliques of size 𝑘 + 1 and (2𝑘 +1𝑙) + 1 cliques of size 𝑙.
If 𝜑𝑒 halts, we will observe the following. First, there will be two cliques 𝑋1 and 𝑋2 of
size 𝑘 + 1 which use the same colours. Second, there are two cliques 𝑌1 and 𝑌2 of size 𝑙
which use the same colours. Without loss of generality, let the colours used in 𝑌1 and 𝑌2
be 1, 2, … , 𝑙, and the colours used in 𝑋1 and 𝑋2 be 1, 2, … , 𝑘 + 1.
We join the vertices coloured 1, … , 𝑙 in 𝑋1 (respectively 𝑋2) to the end of one of our
paths, call this vertex 𝑎1 (respectively 𝑎2). We do the same for the vertices coloured𝑙 + 1, … , 𝑘 + 1 in 𝑋1 (respectively 𝑋2), who join to the end of one of our paths, call this
vertex 𝑏1 (respectively 𝑏2).
Next join half of 𝑌1 (respectively 𝑋2) to some path, call this 𝑐1 (respectively 𝑐2), and the
other half to some path and call it 𝑑1 (respectively 𝑑2).

𝑐1 𝑑1

𝑏1 𝑎1 𝑏2 𝑎2

𝑐2 𝑑2

𝑋1 𝑋2

𝑌1 𝑌2𝑍

Figure 5.8: The graph 𝐻𝑠 for pathwidth 3

Next we reveal another clique, 𝑍, of size 𝑘 + 1 with vertices 𝑧1, … , 𝑧𝑘 +1. For each 𝑖 ≤ 𝑙,
join the vertex 𝑧𝑖 to every vertex in 𝑌1 and every vertex with colour greater than 𝑙 in 𝑋1.

48

5.6. Graphs with Bounded Pathwidth

For 𝑖 > 𝑙, connect 𝑧𝑖 to every vertex in 𝑌2 and every vertex with colour greater than 𝑙 in 𝑋2
See Figure 5.8 for an example.

Each vertex in 𝑍 is connected to 𝑘+1 colours (colours 1, … , 𝑙 from 𝑌𝑖 and colours 𝑙+1, … , 𝑘+1
from 𝑋𝑖) and is part of a 𝑘 + 1 sized clique. Therefore 𝑍 cannot be coloured with 𝑘 colours.

It remains to show that 𝐻𝑠 has pathwidth 𝑘. The path decomposition of 𝐻𝑠 contains the
following bags in order, along with the interpolation of any necessary vertices.

1. 𝑎1 ∪ 𝑁 (𝑎1) ∩ 𝑋1
2. 𝑋1
3. 𝑏1 ∪ 𝑁 (𝑏1) ∩ 𝑋1
4. (𝑁 (𝑋1) ∩ 𝑍) ∪ (𝑁 (𝑍) ∩ 𝑋1)
5. The path adjacent to 𝑐1
6. 𝑐1 ∪ 𝑁 (𝑐1) ∩ 𝑌1
7. 𝑌1
8. 𝑑1 ∪ 𝑁 (𝑑1) ∪ 𝑌1
9. The path adjacent to 𝑑1
10. 𝑍
11. The path adjacent to 𝑑2
12. 𝑑2 ∪ 𝑁 (𝑑2) ∪ 𝑌2
13. 𝑌2
14. 𝑐2 ∪ 𝑁 (𝑐2) ∪ 𝑌2
15. The path adjacent to 𝑐2
16. (𝑁 (𝑋2) ∩ 𝑍) ∪ (𝑁 (𝑍) ∩ 𝑋2)
17. 𝑏2 ∪ 𝑁 (𝑏2) ∩ 𝑋2
18. 𝑋2
19. 𝑎2 ∪ 𝑁 (𝑎2) ∩ 𝑋2

By the construction of 𝐻𝑠, each of these bags will contain no more than 𝑘 + 1 vertices.
Hence 𝐻𝑠 has pathwidth 𝑘.
Therefore 𝐺 = ⋃𝑠 𝐻𝑠 is a strongly online graph with odd pathwidth 𝑘 that cannot be2𝑘 + 1-coloured. □

5.6.1 Strongly Connected
By changing our presentation slightly to strongly connected, we can improve on The-
orem 5.15 for both even and odd pathwidth. But first we need a lemma.

Lemma 5.18. Let 𝐺 be a connected non-empty graph and 𝐻 a super-graph of 𝐺 such that
all vertices in 𝐻 are either in 𝐺 or areconnected to at least one vertex in 𝐺 and the pathwidth
of 𝐻 is 𝑘. Then the pathwidth of �̂� = 𝐻\𝐺 has pathwidth less than 𝑘.
Note that this lemma is essentially a single step in a strongly online graph. In a strongly
online graph 𝐻 would be the graph visible in the stage after 𝐺 was visiable.

Proof. Let𝒫 = 𝑃1, … , 𝑃𝑛 be a path decomposition of 𝐻 and 𝒬 be𝒫 with only vertices in�̂�.

Assume for a contradiction that 𝒬 has width 𝑘. Then there is a 𝑃 ∈ 𝒬 such that |𝑃 | = 𝑘 + 1.
Note that 𝑃 = 𝑃𝑖 ∈ 𝒫. There are three cases.

49

Chapter 5. Strongly Online Graphs

(1) There are bags 𝑃𝑙 and 𝑃𝑟 in𝒫 such that 𝑙 < 𝑖 and 𝑟 > 𝑖.
(2) There is a bag 𝑃𝑙 and no 𝑃𝑟 in𝒫 such that 𝑙 < 𝑖 and 𝑟 > 𝑖.
(3) There is no bag 𝑃𝑙 and a bag 𝑃𝑟 in𝒫 such that 𝑙 < 𝑖 and 𝑟 > 𝑖.

If (1) is true, then there is no path from 𝑃𝑙 to 𝑃𝑟 that does not contain a vertex in 𝑃𝑖. This
contradicts the fact that 𝐺 is connected.

Suppose (2) is true, then there is some vertex in 𝑣 ∈ 𝑃𝑖 such that 𝑣 ∉ 𝑃𝑖−1. Thus 𝑣 is not
connected to 𝐺, a contradiction.

Suppose (3) is true, then there is some vertex in 𝑣 ∈ 𝑃𝑖 such that 𝑣 ∉ 𝑃𝑖+1. Thus 𝑣 is not
connected to 𝐺, a contradiction. □

Theorem 5.19. Every strongly online graph, 𝐺, with pathwidth 𝑘 that is strongly connected
can be strongly online coloured in 2𝑘 colours.
Proof. Let 𝐺 = lim𝑠 𝐺𝑠 be a strongly online graph. For each 𝑠 ≥ 1, we colour �̂�2𝑠 with the
colours 1, … , 𝑘, and �̂�2𝑠 +1 with the colours 𝑘 + 1, … , 2𝑘.
We proceed by induction on the stage 𝑠.
For stage 1, we colour 𝑣𝑠 1.
Stage 2: Let𝒫2 be a path decomposition of 𝐺2. 𝒫2 has width 𝑘. We colour 𝐺2 by using a
greedy strategy on𝒫2 using the colours 𝑘 + 1, … , 2𝑘.
For any vertex 𝑣, denote the set of neighbours that have already been coloured as 𝑁+(𝑣)
when we attempt to colour 𝑣.
Suppose we run into a vertex 𝑣 such that 𝑁+(𝑣) = 𝑘. Let 𝐵𝑖 be the leftmost bag containing𝑣. Any 𝑢 ∈ 𝑁+(𝑣) must be in 𝐵𝑖. Because if 𝑢 ∉ 𝐵𝑖, then 𝐵𝑖 would not be the leftmost bag
containing 𝑣. Note that |𝐵𝑖| = 𝑘 + 1. By Lemma 5.18, 𝐵𝑖 cannot contain only vertices from�̂�2 (or else �̂�2 would have pathwidth 𝑘). Let 𝑢 be a vertex in 𝐵𝑖 that is not in �̂�2. Flag 𝑢
and pretend it does not exist while we finish colouring 𝐺2. Now |𝑁+(𝑣)| < 𝑘 and we can
colour 𝑣.
We now have to colour all of the flagged vertices. Let 𝑋 = 𝑥1, … , 𝑥𝑛 be the set of flagged
vertices. 𝐺2 has pathwidth 𝑘 and each 𝑥𝑖 is connected to 𝐺2\𝑋. Thus by Lemma 5.18, 𝑋
has pathwidth less than 𝑘. Therefore we can colour 𝑋 using the colours 1, … , 𝑘.
If 𝑣𝑠 needs its colour changed after we have coloured 𝑉2 swap two colours so that the
colour of 𝑣𝑠 is still 1.
Stage s: By Lemma 5.18 �̂�𝑠 has pathwidth less than 𝑘. Thus �̂�𝑠 can be coloured in 𝑘 colours.
Therefore we can 2𝑘 colour 𝐺. □

5.7 Strongly Online Path Decompositions
In light of the usefulness of widthmetrics, wewould hope that there is an online equivalent.
We introduce one such possibility for graphs in the form of strongly online pathwidth. By

50

5.7. Strongly Online Path Decompositions

adding a single new vertex to a path decomposition at each stage we can create a path
decomposition of a (infinite) graph.

Originally we had hoped that if we could find a strongly online path decomposition of
width 2𝑘, then we could use a greedy strategy to colour strongly online graphs with 2𝑘 +1
colours. However, as we will see, this did not eventuate.

Definition 5.20 (Path Decompositon Extension). Let𝒫 and 𝒬 be path decompositions.𝒬 is an extension of𝒫 (denoted𝒫 ⪯ 𝒬) if there is an injection 𝜎∶ 𝒫 → 𝒬 such that for
all 𝑃𝑖 ∈ 𝒫, we have 𝑃𝑖 ⊆ 𝜎(𝑃𝑖). For each 𝑃𝑖, 𝑃𝑗 such that 𝑃𝑖 ∩ 𝑃𝑗 ≠ ∅, if 𝑖 < 𝑗, then 𝜎(𝑃𝑖) = 𝑄𝑙
and 𝜎(𝑃𝑗) = 𝑄𝑚 for some 𝑙 < 𝑚.

Definition 5.21 (Strongly Online Path Decomposition). Let 𝐺 = lim𝑠 𝐺𝑠 be a strongly
online graph. A strongly online path decomposition is a sequence ⟨𝒫𝑠⟩𝑠 such that

(i) Each𝒫𝑠 is a path decomposition of 𝐺≺𝑠 ,
(ii) 𝒫𝑠 is an extension of𝒫𝑠 −1, and
(iii) 𝒫 = lim𝑠𝒫𝑠 is a path decomposition of 𝐺.

That is, using the information in 𝐺𝑠, the vertex 𝑣𝑠 must be place inside at least one bag.
Other vertices may be placed in bags (including vertices already in a bag), but vertices
cannot be removed.

Definition 5.22. The strongly online pathwidth of a graph 𝐺 is the smallest 𝑘 such that for
each strongly online presentation 𝐺 = lim𝑠 𝐺𝑠, 𝐺 has a strongly online path decomposition
of width at most 𝑘.
In order to construct a strongly online path decomposition of width 2𝑘, we can only make𝑘 mistakes in each bag. However, we can force arbitrarily many mistakes. This is because
mistakes can be forced by presenting long paths that join together past the point at which
we can see in the graph.

Theorem 5.23. For all Δ ≥ 4, there is a graph 𝐺 with pathwidth 2 and maximum degree Δ
that does not have a strongly online path decomposition of width less than ⌊Δ/2⌋ + 2.
Proof. Let 𝐺 be the star graph 𝑆Δ. We present the graph in Figure 5.9 from the center out.

Let each maximal path in the star starting from 𝑣 be 𝑋1, 𝑋2, … , 𝑋Δ. Once 𝑁 2[𝑣] has been
presented, let𝒫𝑠 be the path decomposition at this stage 𝑠. 𝒫𝑠 must have each path as a
piece of the decomposition. Without loss of generality, assume that the order in which
the paths appear in𝒫𝑠 is 𝑋1, 𝑋2, … , 𝑋Δ. Present vertices 𝑢1, 𝑢2, … , 𝑢⌊Δ/2⌋−1 such that vertex𝑢𝑖 joins the end of paths 𝑋𝑖 and 𝑋𝑗 where 𝑗 = ⌈Δ/2⌉ + 𝑖 + 1. See Figure 5.10.

The path(s), 𝑋⌈Δ/2⌉ (and 𝑋Δ2+1 if Δ even), in the center of𝒫𝑠 will not be joined, but will
be between the 𝑖 and 𝑗 pair. In order to extend𝒫𝑠 to𝒫𝑠 + 𝑖 and include 𝑢𝑖 every bag in the
paths between 𝑖 and 𝑗,𝒫𝑠 + 𝑖 must contain an extra vertex in the paths in𝒫𝑠 not joined to
some 𝑢𝑖. Thus each vertex 𝑢𝑖 increase the width of the path decomposition by 1. Therefore𝒫 must have width greater than or equal to ⌊Δ/2⌋ + 2. □

51

Chapter 5. Strongly Online Graphs

𝑣

… …
……
…

………
𝑋1 𝑋2 𝑋3 𝑋4 𝑋Δ

Figure 5.9: The graph 𝐺

𝑋1 𝑋2 𝑋3 𝑋4 𝑋5 𝑋6 𝑋7 𝑋8

𝑢1

𝑢2

𝑢3

Figure 5.10: The new vertices added to the paths

Theorem 5.24. For all 𝑛 ∈ ℕ, there exists a strongly online graph 𝐺 that is strongly
connected, has pathwidth 2, max degree 𝑛(𝑛 + 1) and strongly online connected pathwidth
greater than 𝑛 − 1/2.
Proof. Fix 𝑛 ∈ ℕ. We will construct in stages a graph 𝐺 = lim𝑠 𝐺𝑠 such that 𝐺 has path
pathwidth 2, max degree 𝑛(𝑛 + 1), and no strongly online path decomposition of width at
most 𝑛 − 1/2 = 𝑘, where 𝑘 is the allowed pathwidth.

Stage 1: Let 𝐺1 be the star graph 𝑆𝑛(𝑛+1) and present the center vertex 𝑣.
Stages 2 through 2𝑛(𝑛 + 1): At each stage, add a new vertex onto each of the leaves, and
present the next vertex in 𝑁 2(𝑣).
Stage 2𝑛(𝑛+1)+1: Let𝒫 be the current path decomposition. Because all of the presented
vertices are connected from this stage, the order of the bags that contain them cannot
change. Note that in 𝒫, all of the bags have size at most 𝑘 and at least 2. Hence there
must be at least 𝑛 + 1 bags and a corresponding 𝑛 + 1 vertices that belong to exactly one of

52

5.7. Strongly Online Path Decompositions

these bags. Denote these bags 𝐵1, … , 𝐵𝑛+1 and their corresponding vertices 𝑢1, … , 𝑢𝑛+1,
ordered by their appearance in𝒫;

Each 𝑢𝑖 is contained in one path 𝑋𝑖. Present any vertex and reveal 𝑘 vertices joining the
paths 𝑋𝑖 and 𝑋𝑛/2+𝑖 for each 𝑖 < 𝑛/2. This forms a series of 𝑘 cycles, each one forcing
another vertex in the bag 𝐵𝑛/2. Present the rest of the vertices and let 𝒫′ be the final
decomposition.𝒫′ must have width at least 𝑘 + 1 because each cycle forced an increase in the width by
1. Therefore 𝐺 has no path decomposition of width 𝑘. □

The proof of Theorem 5.24 is modified from Theorem 5.23 but with max degree 𝑛(𝑛 + 1).
Then when we join 𝑛 bags from the star 𝑆Δ we force one bag to have width at least⌊𝑛 − 1/2⌋ = ⌊−3/4 + √1 + 4Δ⌋.
Observe that 𝐺 is finite because once the center 𝑣 and then 𝑁(𝑣) have been presented their
order is fixed. Also note that this gives us a strongly online pathwidth of O(√Δ). Thus
we need a rather high max degree to ensure that there are 𝑛 vertices each in a unique bag.

When considering general strongly online graphs, there exist graphs that do not have
finite strongly online path decompositions.

Theorem 5.25.

1. For each online algorithm 𝐀 and finite number 𝑛, there is a strongly online (finite)
graph 𝐺 of pathwidth 2 which cannot have an online path decomposition of width 𝑛.
We can construct 𝐺 with at most 𝑂(𝑛4) many vertices.

2. There is a (infinite) strongly online graph of pathwidth 2 which cannot have an online
path decomposition.

The basic idea is, for each possible 𝜎 that can rearrange the bags from stage to stage,
present 𝑛(2𝑛 + 2) vertices that each form part of a single path. Then use 𝜎 to determine
the order in which the bags containing each of the 𝑛(2𝑛 + 2) vertices will be ordered after
we reveal all the vertices that join them. We join the paths (bags) across the middle bag 𝑛
times. This forces the middle bag to have at least 𝑛 + 1 vertices in it, as 𝜎 has made the
wrong choices.

Proof. Fix 𝑛 ∈ ℕ and 𝐀 an online algorithm. Note that at each stage 𝐀 gives us a path
decomposition of 𝐺𝑠. Because we want to force a pathwidth greater than 𝑛 − 1 every
bag has size at most 𝑛. We will force at least 1 bag to have size 𝑛 + 1. By using a pairing
function we consider 𝐀 as a way of extending a path decomposition as in Definition 5.20.
We perform a computable construction.

We construct a strongly online graph 𝐺 = lim𝑡 𝐺𝑡.
We build 𝐺 in two stages. In stage 1, we present 𝑛(2𝑛 + 1) vertices, each the center of a
path that grows in length with every presented vertex. Once this is done, let𝒫 be path
decomposition generated by 𝐀 on the currently presented vertices, this signals the start
of stage 2. See Figure 5.11.

In stage 2, there are two cases. First, if 𝐀(𝒫) does not give us a valid decomposition or a
valid extension of𝒫, then 𝐺 satisfies our requirements and we stop the construction.

53

Chapter 5. Strongly Online Graphs

𝑣1 𝑣2 𝑣3 𝑣4 𝑣2𝑛 𝑣2𝑛+1…

Figure 5.11: The initial 𝑛(2𝑛 + 1) paths and the presented vertices (in black)

Second,𝐀(𝒫) is a valid decomposition. In which case, because𝐀(𝒫) has 𝑛(2𝑛+1) vertices
divided into bags of size 𝑛, there must be 2𝑛 + 1 bags each containing a vertex not in any
of the other 2𝑛 + 1 bags. Let these bags be 𝑋1, … , 𝑋2𝑛+1, and the corresponding vertices𝑣1, … , 𝑣2𝑛+1. Without loss of generality, assume that 𝑋1, … , 𝑋2𝑛+1 are ordered by their
appearance in 𝐀(𝒫).
Each 𝑋𝑖 corresponds to a path in 𝐺. We reveal 2𝑛 vertices, each one joining the end of
two paths in 𝐺𝑒 as follows. For 𝑖 ≤ 𝑛 Join the 𝑖-th path to the (2𝑛 + 2 − 𝑖)-th and the(2𝑛 + 1 − 𝑖)-th. This forms a sort of spiral (see Figure 5.12).

𝑣4𝑣3 𝑣5𝑣2 𝑣6𝑣1 𝑣7
𝑢𝑗

Figure 5.12: The connections between vertices (paths) for 𝑛 = 3
We now stop revealing vertices in 𝐺 and present all the vertices visible in the order they
were revealed. This ends the construction of 𝐺.
We need to show that 𝐀 does not give a valid path decomposition of 𝐺. Fix 𝑖 ≤ 𝑛. Let𝑢1, 𝑢2, … , 𝑢𝑎 be the path 𝑣𝑖–𝑣2𝑛+2−𝑖. Let 𝒬 be the current path decomposition given by 𝐀.
Let 𝑈1, 𝑈2, … , 𝑈𝑏 be the bags in 𝒬 that contain a 𝑢𝑗, in the order they appear in 𝒬. Note
that 𝑢1 = 𝑣𝑖 and 𝑢𝑎 = 𝑣2𝑛+2−𝑖. Without loss of generality, we can assume that 𝑈1 = 𝑋𝑖 and𝑈𝑏 = 𝑈2𝑛+2−𝑖 (see Figure 5.13).

54

5.7. Strongly Online Path Decompositions

𝑋1 𝑋2 𝑋𝑛+1 𝑋2𝑛 𝑋2𝑛+1

𝑈1 𝑈𝑏−1 𝑈𝑏𝑈2 𝑈𝑗
… … ……

… …
Figure 5.13: The bags in 𝒬 and the bags corresponding to the path 𝑣𝑖–𝑣2𝑛+2−𝑖

Thus 𝑋𝑛+1 appears between 𝑈1 and 𝑈𝑏. Hence there must be some 𝑈𝑗 such that 𝑈𝑗 = 𝑋𝑛+1.
Therefore 𝑋𝑛+1 contains some 𝑢𝑗. Then by letting 𝑖 vary, we can see that 𝑋𝑛+1 must
contain 𝑛 + 1 vertices (one from each path along with the vertex 𝑣𝑛+1). Therefore 𝐀(𝒫)
does not give a width 𝑛 − 1 path decomposition of 𝐺.
For each 𝑖, the path 𝑣𝑖–𝑣2𝑛+1−𝑖 forces a vertex into 𝑋𝑛+1 just as above. However this
may be the same vertex forced in by 𝑣𝑖–𝑣2𝑛+2−𝑖. Thus from the 2𝑛 paths only half are
guaranteed to increase the size of 𝑋𝑛+1.𝐺 is union of 𝑛(2𝑛 + 1) paths. Because at each stage each path gets another two vertices
the 𝑖-th path has 1 + 2(𝑖 − 1) vertices. Finally we add another 2𝑛 vertices to join these
paths together. Therefore the total number of vertices is2𝑛2+𝑛∑𝑖 = 1 (1 + 2(𝑖 − 1)) + 2𝑛 = 𝑛2(1 + 2𝑛)2 + 2𝑛 = O(𝑛4)
Then by a diagonalization against all possible strategies and widths we can see that we
have a strongly online graph with no strongly online path decomposition. □

55

Chapter 6

Conclusion

In this thesis, we explored a wide variety of parameterizations related to online and
adversarial algorithms on graphs and related structures. We began with an exploration
of the perfect code game, where we proved several results relating to graph shape. We
introduced adversarial online colouring which is the intersection of adversarial and online
colouring. For adversarial online colouring we proved results relating to, but not limited
to, maximum degree, and trees. We then saw the chain decomposition game and how
it is related to the colouring game in incomparability graphs. Finally, we explored a
new algorithmic parameterization related to online algorithms, strongly online graphs.
We saw how strongly online graphs relate to highly computable graphs and explored a
wide variety of results from strongly online graphs of bounded pathwidth to strongly
connected trees.

6.1 Other work
There is much work that we would have liked to have done, but due to time limitations
did not get around to. For example, we would like to investigate online perfect codes
and adversarial online versions of perfect codes and other structures. There is much
work to be done in these areas as perfect codes have not been widely studied online and
adversarial online is a new parameterization. We explain two more areas below.

Brookes Theorem on Strongly Online Graphs

Brookes theorem states that every graph 𝐺 with max degree Δ is (Δ + 1)-colourable if 𝐺
is not an odd cycle nor contains a 𝑘 + 1 clique [54]. By Tverberg 1984 [55] the highly
computable version of Brookes theorem is also true. That is, every highly computable
graph 𝐺 with max degree Δ is computably (Δ + 1)-colourable if 𝐺 is not an odd cycle nor
contains a 𝑘 + 1 clique. We conjecture that this is not true for strongly online graphs.

Conjecture 6.1. There is a strongly online graph 𝐺 where 𝐺 is not an odd cycle, has max
degree Δ, and does not contain a 𝑘 + 1 clique, such that 𝐺 is not (Δ + 1)-colourable.
We would have liked to either proof of disprove this conjecture. However we were not
able to to time restraints.

57

Chapter 6. Conclusion

Strongly Online Partial Orders

A strongly online partial order is an online partial order 𝑃≺ where at every stage, you
can see all the minimal (or maximal) neighbours of every vertex you have previously
seen. A minimal (or maximal) neighbour of an element 𝑥 is an element 𝑦 such that 𝑥 ≤ 𝑦
(or 𝑦 ≤ 𝑥) and there is no 𝑧 such that 𝑥 < 𝑧 < 𝑦 (or 𝑥 > 𝑧 > 𝑦). Strongly online partial
orders mimic the behaviour of strongly online graphs. But, a strongly online version of𝑃’s comparability or incomparability graph would be different than the strongly online
partial order 𝑃. Even if the vertices/elements are presented in the same order. This leads
us to suspect that there could be interesting bounds related to strongly online partial
orders. However, we did not have time to include this.

58

Bibliography

[1] A. M. Turing. “On Computable Numbers, with an Application to the Entscheidung-
sproblem”. In: Proc. London Math. Soc. (2) 42.3 (1936), pp. 230–265. doi: 10.1112/
plms/s2-42.1.230.

[2] M. R. Garey and D. S. Johnson. Computers and intractability. Vol. 174. freeman San
Francisco, 1979.

[3] G. Dósa. “The Tight Bound of First Fit Decreasing Bin-Packing Algorithm Is
FFD(𝐼) ≤ 11/9OPT(𝐼) + 6/9”. In: Combinatorics, Algorithms, Probabilistic and
Experimental Methodologies. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007,
pp. 1–11. doi: 10.1007/978-3-540-74450-4_1.

[4] G. Dósa and J. Sgall. “First Fit bin packing: A tight analysis”. In: 30th International
Symposium on Theoretical Aspects of Computer Science (STACS 2013). Vol. 20. Leibniz
International Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2013, pp. 538–549. doi: 10.4230/
LIPIcs.STACS.2013.538.

[5] R. Thomas. “An update on the four-color theorem”. In: Notices of the AMS 45.7
(1998), pp. 848–859.

[6] D. R. Bean. “Effective Coloration”. In: The Journal of Symbolic Logic 41.2 (1976),
pp. 469–480. doi: 10.2307/2272247.

[7] X. Zhu. “Refined activation strategy for the marking game”. In: J. Combin. Theory
Ser. B 98.1 (2008), pp. 1–18. doi: 10.1016/j.jctb.2007.04.004.

[8] H. A. Kierstead and W. T. Trotter. “Planar graph coloring with an uncooperative
partner”. In: Journal of Graph Theory 18.6 (1994), pp. 569–584.

[9] R. G. Downey, A. Melnikov and K. M. Ng. “Foundations of Online Structure Theory
II: The Operator Approach”. In: Logical Methods in Computer Science Volume 17,
Issue 3 (2021). doi: 10.46298/lmcs-17(3:6)2021.

[10] H. A. Kierstead. “Recursive and on-line graph coloring”. In: Handbook of recursive
mathematics, Vol. 2. Vol. 139. Stud. Logic Found. Math. North-Holland, Amsterdam,
1998, pp. 1233–1269. doi: 10.1016/S0049-237X(98)80051-7.

[11] W. Gasarch. “A survey of recursive combinatorics”. In: Handbook of recursive math-
ematics, Vol. 2. Vol. 139. Stud. Logic Found. Math. North-Holland, Amsterdam, 1998,
pp. 1041–1176. doi: 10.1016/S0049-237X(98)80049-9.

59

Bibliography

[12] N. Robertson and P. D. Seymour. “Graph minors. V. Excluding a planar graph”. In:
Journal of Combinatorial Theory, Series B 41.1 (1986), pp. 92–114.

[13] H. L. Bodlaender. “A partial 𝑘-arboretum of graphs with bounded treewidth”. In:
Theoret. Comput. Sci. 209.1-2 (1998), pp. 1–45. doi: 10.1016/S0304-3975(97)00228-
4.

[14] S. Arnborg and A. Proskurowski. “Linear time algorithms for NP-hard problems
restricted to partial k-trees”. In: Discrete Applied Mathematics 23.1 (1989), pp. 11–24.
doi: https://doi.org/10.1016/0166-218X(89)90031-0.

[15] Z. Bai, J. Tu and Y. Shi. “An improved algorithm for the vertex cover 𝑃3 problem on
graphs of bounded treewidth”. In: Discrete Math. Theor. Comput. Sci. 21.4 (2019),
Paper No. 17, 13.

[16] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. 1st ed.
Texts in Computer Science. Springer, London, 2013. doi: 10.1007/978-1-4471-
5559-1.

[17] H. L. Bodlaender. “A Linear Time Algorithm for Finding Tree-Decompositions
of Small Treewidth”. In: Proceedings of the Twenty-Fifth Annual ACM Symposium
on Theory of Computing. STOC ’93. Association for Computing Machinery, 1993,
pp. 226–234. doi: 10.1145/167088.167161.

[18] A. Yamaguchi, K. Aoki and H. Mamitsuka. “Graph complexity of chemical com-
pounds in biological pathways”. In: Genome Informatics 14 (Jan. 2003), pp. 376–
377.

[19] J. Wu and X. Zhu. “Lower bounds for the game colouring number of partial 𝑘-
trees and planar graphs”. In: Discrete Math. 308.12 (2008), pp. 2637–2642. doi:
10.1016/j.disc.2007.05.023.

[20] H. A. Kierstead andW. T. Trotter. “An extremal problem in recursive combinatorics”.
In: Congressus Numerantium 33.143-153 (1981), p. 98.

[21] U. Faigle et al. “On the game chromatic number of some classes of graphs”. In: Ars
Combin. 35 (1993), pp. 143–150.

[22] H. A. Kierstead. “A Simple Competitive Graph Coloring Algorithm”. In: Journal of
Combinatorial Theory, Series B 78.1 (2000), pp. 57–68. doi: https://doi.org/10.
1006/jctb.1999.1927.

[23] M. Livingston and Q. F. Stout. “Distributing Resources in Hypercube Computers”.
In: Proceedings of the Third Conference on Hypercube Concurrent Computers and
Applications: Architecture, Software, Computer Systems, and General Issues - Volume
1. C3P. Pasadena, California, USA: Association for Computing Machinery, 1988,
pp. 222–231. doi: 10.1145/62297.62324.

[24] N. Biggs. “Perfect codes in graphs”. In: J. Combinatorial Theory Ser. B 15 (1973),
pp. 289–296. doi: 10.1016/0095-8956(73)90042-7.

[25] D. W. Bange, A. E. Barkauskas and P. J. Slater. “Efficient dominating sets in graphs”.
In: Applications of discrete mathematics (Clemson, SC, 1986). SIAM, Philadelphia, PA,
1988, pp. 189–199.

60

Bibliography

[26] G. J. Chang, C. Pandu Rangan and S. R. Coorg. “Weighted independent perfect
domination on cocomparability graphs”. In: Algorithms and computation (Hong
Kong, 1993). Vol. 762. Lecture Notes in Comput. Sci. Springer, Berlin, 1993, pp. 506–
514. doi: 10.1007/3-540-57568-5_282.

[27] M. Livingston and Q. F. Stout. “Perfect dominating sets”. In: Proceedings of the
Twenty-first Southeastern Conference on Combinatorics, Graph Theory, and Comput-
ing (Boca Raton, FL, 1990). Vol. 79. 1990, pp. 187–203.

[28] R. Hamming. Coding and Information Theory. Prentice-Hall, 1986.

[29] D. W. Bange, A. E. Barkauskas and P. J. Slater. “Efficient dominating sets in graphs”.
In: Applications of discrete mathematics (Clemson, SC, 1986). SIAM, Philadelphia, PA,
1988, pp. 189–199.

[30] M. S. Chang and Y. C. Liu. “Polynomial algorithms for the weighted perfect dom-
ination problems on chordal graphs and split graphs”. In: Information Processing
Letters 48.4 (1993), pp. 205–210. doi: 10.1016/0020-0190(93)90147-2.

[31] A. Gyárfás and J. Lehel. “On-line and first fit colorings of graphs”. In: Journal of
Graph Theory 12.2 (1988), pp. 217–227. doi: https://doi.org/10.1002/jgt.
3190120212.

[32] N. Alon and S. Gutner. “Linear Time Algorithms for Finding a Dominating Set of
Fixed Size in Degenerated Graphs”. In: Algorithmica 54 (July 2009), pp. 544–556.
doi: 10.1007/s00453-008-9204-0.

[33] S. Irani. “Coloring inductive graphs on-line”. In: Algorithmica 11.1 (1994), pp. 53–72.
doi: 10.1007/BF01294263.

[34] B. Courcelle. “The monadic second-order logic of graphs. I. Recognizable sets
of finite graphs”. In: Information and Computation 85.1 (1990), pp. 12–75. doi:
10.1016/0890-5401(90)90043-H.

[35] P. Hall. “On representatives of subsets”. In: vol. s1-10. 1. 1935, pp. 26–30. doi:
=10.1112/jlms/s1-10.37.26.

[36] D. Kelly. “On the dimension of partially ordered sets”. In: Discrete Mathematics
35.1 (1981). Special Volume on Ordered Sets, pp. 135–156. doi: 10.1016/0012-
365X(81)90203-X.

[37] K. P. Bogart, C. Greene and J. P. S. Kung. “The Impact of the Chain Decomposition
Theorem on Classical Combinatorics”. In: The Dilworth Theorems: Selected Papers of
Robert P. Dilworth. Boston, MA: Birkhäuser Boston, 1990, pp. 19–29. doi: 10.1007/
978-1-4899-3558-8_3.

[38] H. A. Kierstead. “An effective version of Dilworth’s theorem”. In: Transactions of
the American Mathematical Society 268.1 (1981), pp. 63–77. doi: 10.2307/1998337.

[39] B. Bosek and T. Krawczyk. “On-line partitioning of width 𝑤 posets into 𝑤𝑂(loglog𝑤)
chains”. In: European J. Combin. 91 (2021), p. 103202. doi: 10.1016/j.ejc.2020.
103202.

61

Bibliography

[40] B. Bosek and T. Krawczyk. “The sub-exponential upper bound for on-line chain
partitioning”. In: 2010 IEEE 51st Annual Symposium on Foundations of Computer
Science—FOCS 2010. IEEE Computer Soc., Los Alamitos, CA, 2010, pp. 347–354. doi:
10.1109/FOCS.2010.40.

[41] B. Bosek and P. Micek. “Variants of online chain partition problem of posets”. In:
Proceedings of the Second Workshop on Computational Logic and Applications (CLA
2004). Vol. 140. Electron. Notes Theor. Comput. Sci. Elsevier Sci. B. V., Amsterdam,
2005, pp. 3–13. doi: 10.1016/j.entcs.2005.06.028.

[42] R. P. Dilworth. “A Decomposition Theorem for Partially Ordered Sets”. In: Annals
of Mathematics 51.1 (1950), pp. 161–166. doi: 10.2307/1969503.

[43] G. B. Dantzig and A. J. Hoffman. “11. Dilworth’s Theorem on Partially Ordered
Sets”. In: Linear Inequalities and Related Systems. (AM-38), Volume 38. Princeton
University Press, 1956, pp. 207–214. doi: doi:10.1515/9781400881987-012.

[44] D. R. Fulkerson. “Note on Dilworth’s decomposition theorem for partially ordered
sets”. In: Proc. Amer. Math. Soc. 7 (1956), pp. 701–702. doi: 10.2307/2033375.

[45] F. Galvin. “A Proof of Dilworth’s Chain Decomposition Theorem”. In: The American
Mathematical Monthly 101.4 (1994), pp. 352–353. doi: 10.2307/2975628.

[46] T. Krawczyk and B. Walczak. “Asymmetric Coloring Games on Incomparability
Graphs”. In: Electronic Notes in Discrete Mathematics 49 (Mar. 2015). doi: 10.1016/
j.endm.2015.06.108.

[47] P. C. Gilmore and A. J. Hoffman. “A Characterization of Comparability Graphs and
of Interval Graphs”. In: Canadian Journal of Mathematics 16 (1964), pp. 539–548.
doi: 10.4153/CJM-1964-055-5.

[48] R. H. Möhring. “Algorithmic Aspects of Comparability Graphs and Interval Graphs”.
In: Graphs and Order: The Role of Graphs in the Theory of Ordered Sets and Its
Applications. Dordrecht: Springer Netherlands, 1985, pp. 41–101. doi: 10.1007/978-
94-009-5315-4_2.

[49] B. Bosek and T. Krawczyk. “A subexponential upper bound for the on-line chain
partitioning problem”. In: Combinatorica 35.1 (2015), pp. 1–38. doi: 10.1007/
s00493-014-2908-7.

[50] B. Bosek et al. “An easy subexponential bound for online chain partitioning”. In:
Electron. J. Combin. 25.2 (2018), Paper No. 2.28, 1–23. doi: 10.37236/7231.

[51] H. A. Kierstead. “Recursive colorings of highly recursive graphs”. In: Canadian
Journal of Mathematics 33.6 (1981), pp. 1279–1290. doi: 10.4153/CJM-1981-097-8.

[52] J. H. Schmerl. “Recursive colorings of graphs”. In: Canadian Journal of Mathematics
32.4 (1980), pp. 821–830. doi: 10.4153/CJM-1980-062-7.

[53] H. A. Kierstead and W. T. Trotter Jr. “An extremal problem in recursive combinat-
orics”. In: Congr. Numer. 33 (1981), pp. 143–153.

62

Bibliography

[54] R. L. Brooks. “On colouring the nodes of a network”. In: Mathematical Proceedings
of the Cambridge Philosophical Society 37.2 (1941), pp. 194–197. doi: 10.1017/
S030500410002168X.

[55] H. Tverberg. “On Schmerl’s effective version of Brooks’ theorem”. In: J. Combin.
Theory Ser. B 37.1 (1984), pp. 27–30. doi: 10.1016/0095-8956(84)90041-8.

63

