
LOWNESS FOR DEMUTH RANDOM

§1. No set of hyperimmune degree can be low for Demuth random.
We investigate the notion of lowness for Demuth random. In this section, we
show that no set of hyperimmune degree can be low for Demuth random. In
particular, no ∆2 set is low for Demuth random. We let Wx be the xth c.e. set,
and we identify finite strings with their code numbers. We treat Wx as a c.e.
open set, consisting of basic clopen sets. We say that [σ] ∈ Wx to mean that the
code number of σ is in Wx, and we say that a (finite) string τ ∈ Wx if τ ⊇ σ
for some [σ] ∈ Wx. Equivalently we say that τ is captured by Wx. The same
definition holds if we replace τ by an infinite binary string.

Theorem 1.1. No set of hyperimmune degree can be low for Demuth random.

Proof. Suppose A is of hyperimmune degree. Let hA be total computable
in A and non-decreasing, which escapes domination by all total computable
functions. That is, for all total computable g, ∃∞x(g(x) < hA(x)). We build a
Z ≤T A′ which is Demuth random, but not Demuth random relative to A. To
do this, we give an A-computable approximation {Zs} to Z. The construction
will try to achieve two goals. The first is to make Z Demuth random by making
Z avoid all Demuth tests. The second goal is to ensure that for infinitely many
x, there are at most hA(x) many mind changes of Zs�x. Hence Z looks like it is
ω-c.e. in A, and cannot be Demuth random relative to A.

1.1. The motivation. Before we describe the strategy used to prove theorem
1.1, let us see why an attempted construction of a c.e. set A which is low for
Demuth random fails. Let us consider a single (relativized) Demuth test {V A

x },
played by the opponent, where the index for V A

x can change hA(x) times. Now
we have to cover V A

x ⊆ Ux with a plain Demuth test {Ux}. If hA(x) = 0 for all x,
then we could just follow the construction of a c.e. set which is low for random.
We would enumerate y into A (to make A non-computable) if the associated cost
of doing so, is small. Even when hA is computable, we can always arrange the
enumerations so that V A

x ⊆ Ux eventually, because we could use hA(x) as the
bound for the index change of Ux.

The problem is that an enumeration into A not only increases the amount
we have to put into Ux, but also gives the opponent a chance to redefine hA(x).
Suppose he has defined hA(x) with use bx. At some stage we will have to commit
ourselves to a number g(x), and promise never to change the index for Ux more
than g(x) times. We would of course declare that g(x) > hA(x), but once we
do that, the opponent could challenge us to change A�bx to ensure the non-
computability of A. We have to eventually change A�bx at some x, and allow the
opponent to make hA(x) > g(x), and then we are stuck.

Note that the opponent will be likely to have a winning strategy, if hA escapes
domination by all computable functions. He could then carry out the above,
patiently waiting for an x such that hA(x) > ϕe(x) for each e, and then defeat
the eth Demuth test. This is the basic idea used in the following proof, where
we will play the opponent’s winning strategy.

1.2. Listing all Demuth tests. In order to achieve the first goal, we need
to specify an effective listing of all Demuth tests. It is enough to consider all

Received by the editors November 2, 2007.

1

2 LOWNESS FOR DEMUTH RANDOM

Demuth tests {Ux} where µ(Ux) < 2−3(x+1). Let {ge}e∈N be an effective listing of
all partial computable functions of a single variable. For every g in the list, we will
assume that in order to output g(x), we will have to first run the procedures to
compute g(0), · · · , g(x−1), and wait for all of them to return, before attempting
to compute g(x). This minor but important restriction on g ensures that:

(i) dom(g) is either N, or an initial segment of N,
(ii) for every x, g(x + 1) converges strictly after g(x), if ever,
(iii) g is non-decreasing if it is total (we can arrange for this).
By doing this, we will not miss any total non-decreasing computable function.
It is easy to see that there is a total function k ≤T ∅′ that is universal in the
following sense:

1. if f(x) is ω-c.e. then for some e, f(x) = k(e, x) for all x,
2. for all e, the function λxk(e, x) is ω-c.e.,
3. there is a uniform approximation for k such that for all e and x, the number

of mind changes for k(e, x) is bounded by{
ge(x) if ge(x) ↓,

0 otherwise.

Let k(e, x)[s] denote the approximation for k(e, x) at stage s. Denote Ue
x =

Wk(e,x), where we stop enumeration if µ(Wk(e,x)[s]) threatens to exceed 2−3(x+1).
Then for each e, {Ue

x} is a Demuth test, and every Demuth test is one of these.
To make things clear, we remark that there are two possible ways in which
Ue

x [s] 6= Ue
x [s+1]. The first is when k(e, x)[s] = k(e, x)[s+1] but a new element is

enumerated into Wk(e,x). The second is when k(e, x)[s] 6= k(e, x)[s+1] altogether;
if this case applies we say that Ue

x has a change of index at stage s + 1.
1.3. The strategy. Now that we have listed all Demuth tests, how are we

going to make use of the function hA? Note that there is no single universal
Demuth test; this complicates matters slightly. The eth requirement will ensure
that Z passes the first e many (plain) Demuth tests. That is,

Re : Z is captured by U0
x , U1

x , · · · , Ue
x for only finitely many x.

Re would do the following. It starts by picking a number re, and decide on
Z�re . This string can only be captured by Uk

x for x ≤ re and k ≤ e, so there
are only finitely many pairs 〈k, x〉 to be considered; let Se denote the collection
of these. If any Uk

x ∈ Se captures Z�re , we would change our mind on Z�re .
If at any point in time, Z�re has to change more than hA(0) times, we would
pick a new follower for re, and repeat, comparing with hA(1), hA(2), · · · each
time. The fact that we will eventually settle on a final follower for re, will follow
from the hyperimmunity of A; all that remains is to argue that we can define an
appropriate computable function at each Re.

Suppose that r0
e , r1

e , · · · are the followers picked by Re. The required com-
putable function P would be something like P (n) =

∑
k≤e

∑
x≤rn

e
gk(x), for if

P (N) < hA(N) for some N , then we would be able to change Z�rN
e

enough times
on the N th attempt. There are two considerations. Firstly, we do not know
which of g0, · · · , ge are total, so we cannot afford to wait on non converging com-
putations when computing P . However, as we have said before, we can have a
different P at each requirement, and the choice of P can be non-uniform. Thus,
P could just sum over all the total functions amongst g0, · · · , ge.

The second consideration is that we might not be able to compute r0
e , r1

e , · · · ,
if we have to recover rn

e from the construction (which is performed with oracle
A). We have to somehow figure out what rn

e is, external to the construction.
Observe that however, if we restrict ourselves to non-decreasing g0, g1, · · · , it
would be sufficient to compute an upperbound for rn

e . We have to synchronize
this with the construction: instead of picking rn

e when we run out of room to

LOWNESS FOR DEMUTH RANDOM 3

change Z�rn−1
e

, we could instead pick rn
e the moment enough of gk(x) converges

and demonstrates that their sum exceeds hA(rn−1
e). To recover a bound for say,

r1
e externally, we compute the first stage t such that all of gk(x)[t] has converged

for x ≤ r0
e and gk total.

1.4. Notations used for the formal construction. The construction uses
oracle A. At stage s we give an approximation {Zs} of Z, and at the end we
argue that Z ≤T A′. The construction involves finite injury of the requirements.
R1 for instance, would be injured by R0 finitely often while R0 is waiting for
hyperimmune permission from hA. We intend to satisfy Re, by making µ(Ue

x ∩
[Z�r]) small for appropriate x, r. At stage s, we let re[s] denote the follower used
by Re. At stage s of the construction we define Zs up till length s. We do this
by specifying the strings Zs�r0[s], · · · , Zs�rk[s] for an appropriate number k (such
that rk[s] = s − 1). We adopt the convention of r−1 = −1 and α�−1= α�0= 〈〉
for any string α. We let Se[s] denote all the pairs 〈k, x〉 for which Re wants to
make Z avoid Uk

x at stage s. The set Se[s] is specified by

Se[s] = {〈k, x〉 | k ≤ e ∧ rk−1[s] + 1 ≤ x ≤ re[s]}.

Define the sequence of numbers

Mn =
2n∑

j=n

2−(1+j),

these will be used to approximate Zs. Roughly speaking, the intuition is that
Zs(n) will be chosen to be either 0 or 1 depending on which of Zs�_

n 0 or Zs�_
n 1

has a measure of ≤ Mn when restricted to a certain collection of Ue
x .

If P is an expression we append [s] to P , to refer to the value of the expression
as evaluated at stage s. When the context is clear we drop the stage number
from the notation.

1.5. Formal construction of Z. At stage s = 0, we set r0 = 0 and re ↑ for
all e > 0, and do nothing else. Suppose s > 0. We define Zs�rk[s] inductively;
assume that has been defined for some k. There are two cases to consider for
Rk+1:

1. rk+1[s] ↑: set rk+1 = rk[s] + 1, end the definition of Zs and go to the next
stage.

2. rk+1[s] ↓: check if
∑

〈e,x〉∈Sk+1[s]
2rk+1ge(x)[s] ≤ hA(rk+1[s]). The sum is

computed using converged values, and if ge(x)[s] ↑ for any e, x we count it
as 0. There are two possibilities:
(a) sum > hA(rk+1): set rk+1 = s, and set rk′ ↑ for all k′ > k + 1. End

the definition of Zs and go to the next stage.
(b) sum ≤ hA(rk+1): pick the leftmost node σ ⊇ Zs�rk[s] of length |σ| =

rk+1[s], such that
∑

〈e,x〉∈Sk+1[s]
µ(Ue

x [s]∩ [σ]) ≤ Mrk+1[s]. We will later
verify that σ exists by a counting of measure. Let Zs�rk+1[s]= σ.

We say that Rk+1 has acted. If 2(a) is taken, then we say that Rk+1 has failed
the sum check. This completes the description of Zs.

1.6. Verification: Clearly, the value of the markers r0, r1, · · · are kept in
increasing order. That is, at all stages s, if rk[s] ↓, then r0[s] < r1[s] < · · · < rk[s]
are all defined. From now on when we talk about Zs, we are referring to the fully
constructed string at the end of stage s. It is also clear that the construction
keeps |Zs| < s at each stage s.

Lemma 1.2. Whenever step 2(b) is taken, we can always define Zs�rk+1[s] for
the relevant k and s.

Proof. We drop s from notations, and proceed by induction on k. Let Υ
be the collection of all possible candidates for Zs�rk+1 , that is, Υ = {σ : σ ⊇

4 LOWNESS FOR DEMUTH RANDOM

Z�rk
∧ |σ| = rk+1}. Suppose that k ≥ 0:∑

σ∈Υ

∑
〈e,x〉∈Sk+1

µ(Ue
x ∩ [σ]) =

∑
〈e,x〉∈Sk+1

∑
σ∈Υ

µ(Ue
x ∩ [σ])

≤
∑

〈e,x〉∈Sk+1

µ(Ue
x ∩ [Z�rk

]) ≤
∑

〈e,x〉∈Sk

µ(Ue
x ∩ [Z�rk

]) +
rk+1∑

x=rk+1

∑
e≤k+1

µ(Ue
x)

≤ Mrk
+

rk+1∑
x=rk+1

2−2x (since k ≤ rk) ≤ Mrk
+

rk+rk+1∑
x=2rk+1

2−(1+x)

=
2rk+1∑

x=rk+1

2−(1+x)2rk+1−rk (adjusting the index x) = Mrk+1 |Υ|.

Hence, there must be some σ in Υ which passes the measure check in 2(b) for
Z �rk+1 . A similar, but simpler counting argument follows for the base case
k = −1, using the fact that the search now takes place above Z�rk

= 〈〉. a

Lemma 1.3. For each e, the follower re[s] eventually settles.

Proof. We proceed by induction on e. Note that once xe′ has settled for
every e′ < e, then Re will get to act at every stage after that. Hence there is a
stage s0 such that

(i) re′ has settled for all e′ < e, and
(ii) re receives a new value at stage s0.

Note also that Re will get a chance to act at every stage t > s0, and the only
reason why re receives a new value after stage s0, must be because Re fails the
sum check. Suppose for a contradiction, that Re fails the sum check infinitely
often after s0.

Let q(n− 1) be the stage where Re fails the sum check for the nth time after
s0. In other words, q(0), q(1), · · · are precisely the different values assigned to re

after s0. Let C be the collection of all k ≤ e such that gk is total, and d be a stage
where gk(x)[d] has converged for all k ≤ e, k 6∈ C and x ∈ dom(gk). We now
define an appropriate computable function to contradict the hyperimmunity of A.
Define the total computable function p by: p(0) = 1 + max{s0, d, the least stage
t where gk(re[s0])[t] ↓ for all k ∈ C}. Inductively define p(n+1) = 1+ the least t
where gk(p(n))[t] ↓ for all k ∈ C. Let P (n) =

∑
k≤e

∑
x≤p(n) 2p(n)gk(x)[p(n+1)],

which is the required computable function.
One can show by a simple induction, that p(n) ≥ q(n) for every n, using

the fact that Re is given a chance to act at every stage after s0, as well as
the restrictions we had placed on the functions {gk}. Let N be such that
P (N) ≤ hA(N). At stage q(N + 1) we have Re failing the sum check, so that
hA(N) < hA(q(N)) <

∑
〈k,x〉∈Se

2q(N)gk(x), where everything in the last sum is
evaluated at stage q(N + 1). That last sum is clearly < P (N) ≤ hA(N), giving
a contradiction. a

Let r̂e denote the final value of the follower re. Let Z = lims Zs. We now
show that Z ≤T A′, and is not Demuth random relative to A. For each e and s,
Zs+1+r̂e�r̂e is defined, by lemma 1.2, and the fact that any value assiged to re at
stage t has to be t itself.

Lemma 1.4. For each e, |t ≥ 1 + r̂e : Zt�r̂e
6= Zt+1�r̂e

| ≤ hA(r̂e).

Proof. Suppose that Zt1�r̂e 6= Zt2�r̂e for some 1+ r̂e ≤ t1 < t2. We must have
re′ already settled at stage t1, for all e′ ≤ e. Suppose that Zt2�r̂e is to the left
of Zt1�r̂e , then let e′ be the least such that Zt2�r̂e′ is to the left of Zt1�r̂e′ . The
fact that Re′ didn’t pick Zt2�r̂e′ at stage t1, shows that we must have a change
of index for Ua

b between t1 and t2, for some 〈a, b〉 ∈ Se′ ⊆ Se. Hence, the total

LOWNESS FOR DEMUTH RANDOM 5

number of mind changes is at most 2r̂e
∑

〈a,b〉∈Se
ga(b), where divergent values

count as 0. 2r̂e represents the number of times we can change our mind from
left to right consecutively without moving back to the left, while

∑
〈a,b〉∈Se

ga(b)
represents the number of times we can move from right to left. Since Re never
fails a sum check after r̂e is picked, it follows that the number of mind changes
has to be bounded by hA(r̂e). a

By asking appropriate 1-quantifier questions of A′, we can recover Z = lims Zs,
because of lemma 1.4, and hence Z is well-defined. To see that Z is not Demuth
random in A, define the Demuth test {Vx} by the following: run the construction
and enumerate [Zs�x] into Vx when it is first defined. Subsequently each time we
get a new Zt�x, we change the index for Vx, and enumerate the new [Zt�x] in. If
we ever need to change the index > hA(x) times, we stop and do nothing. By
lemma 1.4, Z will be captured by Vr̂e

for every e.
Lastly, we need to see that Z passes all {Ue

x}. Suppose for a contradiction,
that Z ∈ Ue

x for some e and x > r̂e. Let δ be such that Z ∈ [δ] ∈ Ue
x , and let

e′ ≥ e such that r̂e′ > |δ|. Go to a stage in the construction where δ appears
in Ue

x and never leaves, and re′ = r̂e′ has settled. At every stage t after that,
observe that 〈e, x〉 ∈ Se′ , and that Re′ will get to act, in which it will discover
that µ(Ue

x ∩ [Z�r̂e′]) = 2−r̂e′ > Mr̂e′ . Thus, Re′ never pick Z�r̂e′ as an initial
segment for Zt, giving us a contradiction. a

6 LOWNESS FOR DEMUTH RANDOM

SCHOOL OF MATHEMATICS, STATISTICS AND COMPUTER SCIENCE

VICTORIA UNIVERSITY OF WELLINGTON

PO BOX 600, WELLINGTON, NEW ZEALAND

