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Abstract

When developing object-oriented classes, it is difficult
to determine how to best reallocate the members of
large, complex classes to create smaller, more cohesive
ones. Clustering techniques can provide guidance on
how to solve this allocation problem; however, inap-
propriate use of clustering can result in a class struc-
ture that is less maintainable than the original. The
ExtC Visualizer helps the programmer understand
the class structure by visually emphasizing impor-
tant features of the class’s members and their inter-
relationships. More importantly, it helps users see
how various clustering algorithms group the class’s
members. These insights help a programmer choose
appropriate techniques for refactoring large classes.

Keywords: Software visualization, clustering, refac-
toring, graph, maintainability

1 Introduction

Code maintenance is expensive. Some studies (Yip &
Lam 1994) indicate that over 65% of the cost of soft-
ware is maintenance. We address a common mainte-
nance problem in object-oriented systems - the pres-
ence of large, complex classes with many methods
and attributes (a.k.a. members). This paper de-
scribes our research in visualizing how the members
of large classes can be re-organized using clustering
techniques. Using the outputs of the clustering pro-
cess, programmers can refactor their large classes and
improve their software.

Fowler (Fowler et al. 1999) defines refactoring as
“a change made to the internal structure of software
to make it easier to understand and cheaper to mod-
ify without changing its observable behavior”, and he
identifies a large class as being one of the “bad smells”
in software that indicate likely problems. Fowler rec-
ommends using the Extract Class refactoring to dis-
tribute the methods and attributes from the large
class into appropriate new classes.

Our research is primarily concerned with deter-
mining how methods and attributes can be reallo-
cated, so that class-oriented refactorings like Extract
Class can be applied. As part of this, we want to help
the programmer see the important characteristics of
these class members and their inter-relationships, and
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based on these, how they can be recombined to form
more smaller, more cohesive classes.

Many tools, including our ExtC1 tool (Extract
C lass), help programmers see potentially important
characteristics of an object-oriented class through the
use of color, shape, and size, as well as through the
relationships between the members as depicted in
graphs. While such displays are helpful, large classes
tend to produce crowded displays that obscure the
underlying structure. Moreover, some intraclass re-
lationships are complex and involve many methods
and attributes. What is needed is a display that em-
phasizes the most important relationships within the
class, including complex ones.

Clustering algorithms can help deal with the com-
plexity. Clustering algorithms provide the ability for
grouping things based on their characteristics, so we
can use them to discover the underlying class struc-
ture that is critical for refactoring. However, there
are many potentially useful clustering algorithms, and
these can produce widely varying results depending
on the algorithm chosen, how the algorithms are pa-
rameterized, and on the characteristics of the under-
lying data upon which the algorithms operate.

Some programmers may be content to see the out-
comes of the clusterings and then use these as the
bases of new classes via an Extract Class refactoring.
Other programmers will prefer to see the clustering
algorithm in action, either to see how closely the algo-
rithm’s functioning matches their intuition, or to see
whether some intermediate results might suit them
better as the basis for new classes.

Our ExtC tool can show particular incremental
clustering algorithms in action (Figure 1). The user
can control when these algorithms combine (or sepa-
rate) members. This provides the ability to see the
groups produced by the clustering algorithm. More-
over, because the user sees when members are com-
bined (and to a limited extent, why they are com-
bined), he can determine how much this matches his
intuition.

The remainder of this paper is structured as fol-
lows. Section 2 provides some background. Section 3
covers the visualization features of the ExtC tool,
while Section 4 discusses observations we made while
using ExtC to analyze a number of open source soft-
ware projects and the insights we gathered based on
the visualizations. Section 5 discusses related work.
The final section contains our conclusions and dis-
cusses potential future work.

1available from http://code.google.com/p/ext-c/



Figure 1: The ExtC GUI

2 Background

This section gives a brief background of some soft-
ware metrics that are relevant to clustering. It then
discusses clustering and how it is relevant to refac-
toring. We discuss related work in visualization in
Section 5.

2.1 Metrics

Software metrics are used to measure various aspects
of software. We are particularly interested in mea-
suring cohesion (how well software elements fit to-
gether), which has proven useful for identifying prob-
lematic software (Lanza & Marinescu 2006, Simon
et al. 2001, Wettel & Lanza 2008, Tsantalis & Chatzi-
georgiou 2009, Cassell et al. 2009) and for evaluating a
modified software system relative to the original one.
Furthermore, because one of our goals is improved co-
hesion for the new classes, an understanding of how
these metrics work can help us devise algorithms to
improve cohesion.

There are many such metrics described in the lit-
erature (Briand et al. 1997, Chae et al. 2000, Zhou
et al. 2002, 2004). While many just consider the num-
ber of interactions between methods and attributes,
some also consider the pattern of method and at-
tribute interactions within a class. For example, the
Cohesion Based on Member Connectivity (CBMC)
metric (Chae et al. 2000) represents the access pat-
terns between methods and attributes as a graph,
and calculates the cohesiveness based on the num-
ber of nodes that need to be removed to fragment
the graph. Closely related to CBMC is ICBMC (Im-
proved CBMC) (Zhou et al. 2002), which fragments
the graph by removing edges rather than nodes. Met-
rics such as these offer insights into the underlying

structure of classes which can be exploited for deter-
mining how to extract new classes via clustering.

2.2 Clustering

Unsupervised clustering (Jain et al. 1999, Witten &
Eibe 2001) is useful for identifying subsets of data
that may represent coherent concepts. In the context
of correcting poorly designed classes, the data to be
clustered consists of the classes’ members. The clus-
tering algorithms use information about the affinity
of the classes’ members to group them. These groups
can be used as the basis for forming cohesive classes,
either in a large-scale class reorganization (Anquetil
et al. 1999, Mitchell & Mancoridis 2006, Serban & Cz-
ibula 2008) or on a smaller scale, using the Extract
Class refactoring (Cassell et al. 2009).

There are many different kinds of clustering tech-
niques described in the literature. Berkhin (Berkhin
2002), for example, lists over 20 categories and sub-
categories of clustering algorithms. Each algorithm
has its own strengths, and because they have distinct
ways of operating, different algorithms often produce
different results with the same data set. (In fact, some
algorithms are heuristic-based, so they may produce
different results on different runs over the same data.)
This section briefly reviews two categories of algo-
rithms that we are investigating for use in refactoring
- agglomerative and divisive clustering. Agglomera-
tive clustering is a “bottom up” approach to cluster-
ing, while divisive clustering is “top down”.

2.2.1 Agglomerative Clustering

Agglomerative clustering starts with seed entities and
adds closely related entities to them until some stop-
ping criterion is reached. The algorithms typically



determine what constitutes a closely related entity us-
ing a distance function (or similarity function). En-
tities that are closest (most similar) are combined,
distances are recalculated, and the process repeats.

The effective use of agglomerative clustering de-
pends on important choices regarding the parameters
to these algorithms:

1. Feature set - the characteristics of the entities to
be evaluated

2. Distance function - a function that measures the
distance between the entities based on their fea-
ture set

Part of this parameterization involves the representa-
tion of the clusters, i.e., how one defines the feature
set of the cluster and how the distance function takes
those into account when computing the distance be-
tween groups or between groups and individual enti-
ties.

For the purpose of restructuring classes, the enti-
ties to be clustered are generally attributes and meth-
ods, which are themselves dissimilar. This raises the
issue of how one calculates the distance between an
attribute and a method or between groups that are
combinations of attributes and methods.

Several researchers have used a Jaccard similarity
metric (Simon et al. 2001, Serban & Czibula 2008)
for this. A Jaccard similarity metric calculates simi-
larity by dividing the number of features two entities
have in common by the number of featues total. As
an example, one can assign slightly different feature
sets to methods and attributes. The feature set for
an attribute might include the attribute itself and the
methods that access it, whereas the feature set for a
method might include the method itself and the at-
tributes it accesses. When a cluster is formed, its
feature set becomes the merged features of its com-
ponents.

We discuss how some other researchers have used
this approach in Section 5, while Section 3.2.2 dis-
cusses our visualization of agglomerative clustering.

2.2.2 Divisive Clustering

Divisive clusterers work by splitting large groups into
smaller ones. There are many divisive clustering tech-
niques; this paper discusses betweenness clustering,
which is a graph-based technique that has been ap-
plied to many domains (Girvan & Newman 2002), in-
cluding object-oriented software (Dietrich et al. 2008,
Cassell et al. 2009). One major difference between
agglomerative and betweenness clustering is that the
latter does not rely on similarity or distance functions
that operate on the data.

Instead, betweenness clustering separates a con-
nected graph into disconnected subgraphs by remov-
ing edges based on mathematical characteristics of
the original graph. The subgraphs produced consti-
tute the clusters. In a previous paper (Cassell et al.
2009), we discuss how we used betweenness cluster-
ing on the intraclass dependency graphs of some open
source projects to recommend refactorings. We dis-
cuss betweenness clustering in the context of our vi-
sualizations in Section 3.2.2.

It is worth noting that betweenness clustering is
similar in spirit to the ICBM technique (Zhou et al.
2002) for measuring cohesion, which relies on deter-
mining the cut sets for a graph. In fact, the creators
of ICBMC mention that it could be used as a basis
for class restructuring.

Figure 2: ExtC Architecture

3 ExtC Visualizer

3.1 Architecture

ExtC is designed to work as a plug-in in the Eclipse
development environment (Shavor et al. 2003) as
shown in Figure 2. In addition to providing an over-
all architecture via its plug-in oriented development
framework, Eclipse provides extensive capabilities for
code navigation and for programmatically processing
Java code.

The Eclipse plug-in framework allows us to make
use of third-party plug-ins. For example, we have
enhanced the open-source Eclipse Metrics2 plug-
in (Sauer & Boissier 2010) to gather additional met-
rics and to store those metrics in a database. The
Derby plug-in (Schaub 2008) provides ExtC access to
that database.

ExtC uses the JUNG graph frame-
work (O’Madadhain et al. 2003) for many graph-
related tasks, including graph processing algorithms,
layout, and manipulation. It further provides the
capability of reading and writing graphs in either Pa-
jekNet or GraphML (Brandes & Pich 2005) format,
so they can be read by other graphing packages.

Classes selected in the ExtC user interface have
their intraclass dependency graphs shown in an ExtC
graph display (Figure 3) while the corresponding code
is loaded into Eclipse. In addition, the output of the
clustering can be used as an input to an Extract Class
refactoring tool, although this is currently a manual
step.

3.2 Graphical User Interface

The ExtC GUI provides several views of the classes.
The metrics view provides a tabular display of met-
ric data pertaining to the classes of interest, while
the dependency graph view (Figure 4) allows one to
explore the relationships between a class’s members.
The agglomerative clustering view (Figure 5) and the
betweenness clustering view (Figure 6) help the user



Figure 3: The ExtC Graph View

see how those clustering algorithms work on the un-
derlying member data.

Its interactive graph display makes use of 2D
graphics and color where the user can perform var-
ious manipulations (panning, scrolling, resizing, node
movement, etc.). The clustering views have much
the same capabilities, but also provide animations
showing how the clustering algorithms work on the
class’s members. The animation capabilities will be
discussed more thoroughly in Section 3.2.2.

3.2.1 Graph Display

The ExtC graph display (Figure 3) helps the user vi-
sualize the intraclass relationships between methods
and attributes based on a static analysis of the code in
a Java file. Each node represents either a method (cir-
cle), an attribute (star), or a group of members (tri-
angle). Edges between nodes indicate either a method
directly calling a method, or a method directly access-
ing an attribute. Colors indicate the allowable access
to a member. For this figure, green indicates public,
yellow indicates protected, and red indicates private;
these colors are user configurable. The borders of the
nodes indicate where the member is defined. A heavy
border indicates that the member was defined in the
class being examined, a lighter border indicates an
inherited member, and a dashed border indicates a
member defined in an inner class.

The user can alter the display of the graph as a
whole by choosing any of several graph layout algo-
rithms. Different layouts highlight different aspects of
the graph structure. For example, Figure 4(a) shows
how a shallow structure displayed within a directed

acyclic graph (DAG) layout makes it easy to iden-
tify “data classes” that provide access to attributes
but that have little logic. After the initial layout,
the user can move nodes using the mouse or choose
another layout to redisplay.

Our tool provides an interface where the user can
choose to size nodes by various criteria, for example,
by their out degree. (This can be useful in helping to
identify large “brain methods” (Lanza & Marinescu
2006) that contain too much functionality.) Current
bases for sizing include in-degree, out-degree, and hub
and authority scores (Kleinberg 1999).

In addition to the options on how to display
the nodes representing the class’s members, the user
also has options regarding whether to display cer-
tain members. For example, users may decide that
methods inherited from Java’s Object class (toString,
equals, etc.) are not relevant to their analysis of the
behavior of the class and may choose to exclude them.
This reduces “noise” in the graph and makes it easier
to see the relationships between the class members
that provide the main functionality.

ExtC also provides an interface where the user can
choose to “condense” nodes that should be considered
as a group. Currently, there are two supported con-
densations (1) nodes representing methods involved
in recursive cycles, and (2) nodes representing meth-
ods required by interfaces or superclasses.

Interfaces and superclasses impose constraints on
clustering, e.g. a single class must implement all of
the methods specified in an interface. Consider Fig-
ure 4(b). This dependency graph looks like it could be
split into two meaningful groups by eliminating three
edges near the middle. However, if one condenses all



(a) DAG View

(b) Default View - No Condensation

(c) Default View - With Condensation

Figure 4: Dependency Graph Displays

methods imposed by interfaces and superclasses into
a single triangular node, one gets the graph in Fig-
ure 4(c). This “hub and spoke” arrangement is less
amenable to splitting via edge removal.

3.2.2 Clustering

The clustering views (Figures 5 and 6) have many of
the same features as the graph view, including show-
ing the dependency graph of a class. The primary
difference between the graph view and the clustering
views is the capability for animation. By manipu-
lating a slider at the bottom of the screen, the user
indicates the number of iterations of the clustering
algorithm that he wants to execute. This may cause
clusters of nodes to form on the screen. The exact
graphical effect of moving the slider will depend on
the clustering algorithm being used.

The visualizations for agglomerative and between-
ness clustering are independent, but complementary.

Because the algorithms operate in a different man-
ner and can produce different results, seeing the algo-
rithms in action helps the programmer choose those
clustering results that best match his intuition and
use these as the basis for forming new classes.

Agglomerative Clustering

Agglomerative clustering starts with individuals and
merges them together into groups. Many clustering
systems (Jain et al. 1999) show the results of agglom-
eration as dendrograms, which are tree-based struc-
tures. Each level in the tree indicates the merger of
existing clusters of one or more elements. ExtC in-
cludes such a tree-based display. It also provides a dis-
play that shows the agglomeration algorithm acting
on the software dependency graph. The graph is cus-
tomized for our software task in that it shows the un-
derlying dependencies between the class’s members,
but only shows the distances between linked nodes,
rather than for all node pairs.

The display for the agglomerative clustering is sim-
ilar to that of the graph view, with the following dif-
ferences. Circular nodes represent unclustered mem-
bers and are labeled with the member name. Clus-
tered nodes are polygons. Clusters of only two mem-
bers are represented as triangles while larger clus-
ters are represented by polygons where the number
of sides is equal to the number of members in the
cluster. Cluster nodes are labeled with the names of
one of their members followed by one or more addi-
tonal special characters. The edges in the graph are
labeled with the distances between the nodes.

The user controls the clustering via a slider. Mov-
ing the slider to the right causes more more clusters to
form, and the distance values on the edges to change.

Figure 5 shows agglomerative clustering in action.
For this example, we have created a distance func-
tion that produces a small distance for the nodes that
have few links except to each other. At each iteration,
the two nearest nodes are merged. The node that is
farthest from the center is removed, while the more
central one “absorbs” it and changes shape. After the
merge step is completed, the edge weights (distances)
are recalculated. While this is happening, a separate
pane is simultaneously displaying a dendrogram-like
tree that shows the hierarchical structure of the clus-
ters formed thus far.

Figure 5(a) shows the dependency graph before
the first aggregation step. The first seven iterations of
aggregation are not shown. They are relatively unin-
teresting as the nodes on the outskirts of the graph are
being clustered with their neighbors, and no cluster
has more than three members. Figure 5(b) shows the
graph after the seventh iteration. Figure 5(c) shows
the graph after eight clustering iterations, when the
first group of four is formed. Figure 5(d) shows the
formation of a new group of two, and 5(e) shows the
merger of that group with the group of four.

Betweenness Clustering

Betweenness clustering starts with a graph and re-
moves edges to break the graph into disconnected
parts, which are the clusters. The edges removed are
those with the highest betweenness, where the be-
tweenness value is the number of shortest paths be-
tween pairs of nodes that pass through that edge. If
one considers a graph to represent information flow,
where information passes through the edges, the high
betweenness edges indicate where a graph can be cut
to maximally disrupt information flow (or equiva-



(a) Iteration 0

(b) Iteration 7

(c) Iteration 8

(d) Iteration 9

(e) Iteration 10

Figure 5: Agglomerative Clustering

lently, group together those nodes with highly shared
information).

The display for the betweenness clustering is also
similar to that of the graph view, and is based on a
demo in JUNG (O’Madadhain et al. 2003). Circu-
lar nodes represent a class’s members and are labeled
with the member name. Clusters are represented by
multiple nodes having the same color. Edges are la-
beled with their betweenness values.

The user controls edge removal via a slider. Mov-
ing the slider to the right causes more edges to be
removed from the graph, more clusters to form, and

(a) Unclustered View - Iteration 0

(b) Unclustered View - Iteration 1

(c) Clustered View - Iteration 1

Figure 6: Betweenness Clustering

the betweenness values on the edges to change.
Figure 6(a) shows a dependency graph before the

first edge has been removed by betweenness clustering
for the same class as in the prior example. In this
example, the removal of a single edge (Figure 6(b)) is
sufficient to form a new cluster of five nodes towards
the bottom right of the graph. Each cluster has a
different color.

The basic graph display can be fairly cluttered for
large classes. However, by toggling the grouping fea-
ture, the user can cause each cluster of nodes to be
put close together (Figure 6(c)). Each cluster still has
distinct colors, but now its members are arranged in a
tight circular layout. This focuses the user’s attention
on the groups and their interactions.

The most visible links now convey a different
meaning. The links between the nodes of a group
are generally obscured due to the tight packing, so
the most visible links are the grey links between clus-
ters. These indicate edges that have been removed to
separate the groups and indicate locations where the
classes to be created will be coupled.

4 Discussion

We developed ExtC primarily to help us better under-
stand the characteristics of large Java classes and how
they might be refactored into smaller, more cohesive
classes. The classes we examined came primarily from
four open source projects collected within the Qual-
itas Corpus (Heritrix, Jena, JHotDraw, and Weka)
(Qualitas Research Group 2008), as well as our own
ExtC project. Over 100 classes with at least 20 meth-
ods were examined using ExtC.

This section discusses observations we made while
using the visualizations to analyze these classes.
Based on these observations, we reached conclusions



encompassing several broad areas:

1. Domain knowledge that should be considered by
clustering algorithms to improve their ability to
aid in refactoring large classes.

2. Insights into how the clustering algorithms
worked

3. Possible improvements to the visualizations

The following subsections discuss these observations
and conclusions, organized according to the view in
which the observations were made. The subsection
on the graph view incorporates most of the observa-
tions and conclusions about (1), while the subsections
on agglomerative and betweenness clustering mostly
cover (2) and (3). In general, for each observation we
will name a single example of a class that showed the
discussed behavior, although the behavior was typi-
cally shown by multiple classes.

4.1 Graph View

4.1.1 Cohesion and Clustering

Observation: In a DAG layout, many of the “leaves”
of the graph were the expected star-shaped attributes;
however, there were also fairly many circle-shaped
methods. Upon investigating the corresponding code,
some of these methods were shown to be “no-ops”
or simple descriptors required by interfaces, while
others made heavy use of other classes. Example:
weka.gui.visualize.SVGTextAreaFigure (Weka)

Conclusion: Because most of the popular cohesion
metrics concentrate on relationships between meth-
ods and attributes within a class, these leaf methods,
and the associated calling methods, will cause mis-
leadingly low cohesion scores. This may cause sub-
optimal results when clustering using cohesion mea-
surements as part of the distance function or stopping
criteria.

4.1.2 Data Classes

Observation: Some large, noncohesive classes
are largely “data classes” composed of at-
tributes and their accessors. Example:
nz.ac.vuw.ecs.kcassell.callgraph.CallGraphNode
(ExtC)

Conclusion: Because we are primarily interested in
splitting up a class’s logic, data classes should be not
be considered. These should be detectable program-
matically.

4.1.3 “Special” Members

Observation: Some of the nodes with the most links
corresponded to methods that were not really part of
the “business logic” of the class. These include nodes
that represented “informational” methods (calls to
loggers, toString, ...) and nodes that represented
“generic” methods that consider most if not all of
the fields (e.g. clone, equals, initialization meth-
ods), and probably cross-cutting concerns. Example:
net.n3.nanoxml.XMLElement (JHotDraw)

Conclusion: To help clarify the fundamental logic of
the class to the user, it is highly beneficial to remove
nodes that are not part of the “business logic”, but
are connected to many other nodes. Such nodes may

not have a large effect on the ultimate results, but
they do decrease efficiency and introduce noise.

It would be nice to be able to automatically dis-
pose of informational nodes, but this is difficult.
For example, one could automatically eliminate clone
from consideration. However, some of the code we
have analyzed does most of its cloning work in a re-
lated method that clone calls. To adjust for the va-
garies of highly connected nodes, we added a filter to
the UI that enables the user to indicate nodes that
should not be displayed.

Furthermore, many of these special members
should not be moved exclusively to one of the split
classes, but should themselves be split between the
new classes. For example, each new class will likely
want its own logging class, toString methods, etc.

4.1.4 Method Chains and Clustering Criteria

Observation: Many call graphs have “chains” of
method calls, where each method in the chain calls
only one other method from the class, terminating
with a method acessing a single variable. Example:
com.hp.hpl.jena.graph.impl.GraphBase (Jena)

Conclusion: If there is a member that is only con-
nected to a single other member, those members
should be clustered. An agglomerative clusterer’s dis-
tance function should capture this idea.

4.2 Agglomerative Clustering

Based on our tentative conclusion that chains of
methods should be clustered, we decided to run some
agglomerative clustering experiments where the dis-
tance function was primarily based on the number
of edges on the shortest path between nodes, with a
fractional secondary distance being added based on
the number of edges each node had. (The secondary
distance was to ensure that nodes with many con-
nections would be joined after those that were more
exclusively linked.)

4.2.1 “Fast-forwarding” Needed

Observation: Many of the initial groupings are
somewhat obvious, as the nodes with only one
connection are combined with their neighbors.
For large classes, this makes the beginning
of the animation fairly uninteresting. Exam-
ple: com.hp.hpl.jena.rdf.model.impl.StatementBase
(Jena)

Conclusion: We should provide a user option for
“fast-forwarding” past specified kinds of agglomera-
tions. It may be useful to provide options for fast
forwarding, e.g. until a group of a specified size is
reached.

4.2.2 Distance Functions

Observation: Squares (indicating three clustering
steps) were appearing on the graph while there were
still singly connected circles (indicating an unclus-
tered member). This indicates that when there are
multiple chains of nodes in the original graph, a sin-
gle chain might be involved in multiple clusterings
before another chain is involved in any. Example:
weka.gui.beans.CostBenefitAnalysis (Weka)

Conclusion: A distance function that only looks at
the current state of the graph and ignores the original
state may give counterintuitive results.



4.2.3 Handling of Deprecated Methods

Observation: Some of the first nodes to be agglomer-
ated involved deprecated methods.

Conclusion: Deprecated methods need to be a spe-
cial case for class refactoring. Presumably, they
were deprecated, because they could not be safely
removed from the class. Visually, these should be
grouped with the other condensed nodes. Exam-
ple: org.apache.commons.httpclient.HttpConnection
(Heritrix)

4.2.4 Variable Results

Observation: Running the same algorithm on the
same data multiple times can give varying re-
sults. This occurs when multiple edges each
have the same (smallest) distance. Example:
weka.classifiers.functions.RBFNetwork (Weka)

Conclusion: Nondeterminism is troubling. This could
be eliminated in many cases by having a more precise
distance function. On the other hand, when two dis-
tances are the same, or nearly so, the user might pre-
fer seeing the alternative clusterings. This warrants
further study.

4.3 Betweenness Clustering

4.3.1 Graph Density

Observation: It is difficult to see the relative
densities of different areas of graphs that repre-
sent classes with hundreds of members. Example:
com.hp.hpl.jena.rdf.model.impl ModelCom (Jena)

Conclusion: Betweenness clustering helps by high-
lighting the less dense areas of a graph when the high
betweenness edges are removed and the edge colors
are changed.

4.3.2 Edge Weight Recalculation

Observation: When one removes the edge with the
highest betweenness value, there can be a drastic shift
in edge weights when they are recalculated. This oc-
curs when the removal of the edge disconnects two
subgraphs. The nodes that were connected by the
high betweenness edge tended to be central to the
pre-split graph. After the graph is diconnected, they
tend to be peripheral to the new subgraphs. Example:
org.archive.crawler.datamodel.CrawlURI (Heritrix)

Conclusion: Attempts to be efficient by cutting down
on betweenness recalculation may give faulty results.

4.3.3 Node Weighting Based on Method Size

Observation: The betweenness clustering algorithm
is sensitive to long chains of links. Consider the call
graph shown in Figure 7(a). Suppose the method in
the lower right is a large method that should be bro-
ken up into smaller, more maintainable pieces. After
performing several Extract Method refactorings, one
has a functionally equivalent class with the call graph
in Figure 7(b). However, betweenness clustering now
produces different groups.

Conclusion: This weakness might be addressed by
node weighting, e.g. giving nodes representing large
methods more weight than nodes representing small
methods.

(a) Before Method Extraction

(b) After Method Extraction

Figure 7: Betweenness Clustering and Method Ex-
traction

4.3.4 “Short cut” Edges

Observation: Some high betweenness edges are
just “short cuts” between some nodes that
may also be linked indirectly, therefore be-
tweenness clustering may remove edges that
were not part of the cut set. Example:
org.jhotdraw.samples.svg.io.SVGOutputFormat
(JHotDraw)

Conclusion: We had specified several a priori condi-
tions meant to ensure the quality of the proposed new
class structure. One of the heuristic criteria specified
for being an acceptable group was that the number of
nodes in the new group should be at least four times
the number of edges removed. This criterion was in-
tended to limit the amount of coupling introduced by
extracting a new class. Unfortunately, it can result
in false negatives when edges are removed from the
graph that are not part of the cut set, because these
edges do not indicate coupling between the newly cre-
ated classes.

Our original criteria should be modified as follows.
Instead of a simple 4x multiplier based on edges re-
moved, the density of the proposed clusters should
be compared with that of the subgraph from which
it came. Alternatively, only the edges removed that
were part of the cut set should be considered in the
4x calculation.

4.3.5 Betweenness and Directed Graphs

Observation: When the graph is directed, the highly
weighted edges tend to indicate those method calls
that have the largest call tree. Removing edges
just serves to isolate the busiest methods. Example:
com.hp.hpl.jena.n3.N3JenaWriterCommon (Jena)

Conclusion: Betweenness clustering on directed call



graphs is not helpful for determining how to extract
classes.

5 Related Work

There has been significant work regarding the iden-
tification and visualization of object-oriented soft-
ware that needs refactoring (Lanza &Marinescu 2006,
Wettel & Lanza 2008), but relatively little work on vi-
sualizing how these problematic classes could be im-
proved. Contributions have come from several areas.
In addition to work in visualization, there have been
contributions from the fields of refactoring, machine
learning and clustering, graph theory, metrics, and
network analysis.

The work on visualizing how object-oriented soft-
ware can be improved by refactoring has shown a
steady progression over the years. A Virtual Real-
ity Modelling Language (VRML) visualization (Si-
mon et al. 2001) can be used to present distance infor-
mation between class members in three dimensions, so
programmers might see opportunities to move meth-
ods or attributes between classes or to perform Ex-
tract Class or Inline Class refactorings. This visual-
ization shows the proximity of the classes’ members
based on a Jaccard similarity metric, but does not
explicitly show the relationships between them.

Churcher and his colleagues (Churcher et al.
2003) capture those relationships. Their 3D graphs
of classes include relationship information as links.
They point out how various graph shapes show dif-
ferent degrees of cohesion. They further note the rela-
tionship between graphs indicating low cohesion and
the possibilities for splitting a class, but they do not
provide further guidance about how that split might
be accomplished.

Noack’s thesis (Noack 2007) does describe how a
split could be done. While his primary emphasis is on
determining how to lay out call graphs to emphasize
the structure of software using clustering techniques,
he also provides several techniques for splitting the
graph to separate dense areas of the graph (similar to
betweenness clustering).

In an approach somewhat similar to ours, a group
of researchers at Massey University (Dietrich et al.
2008) use a variation of betweenness clustering to help
identify opportunities for reorganizing software mod-
ules. Based on a specification of how many edges are
to be removed, their tool suggests groupings of soft-
ware components.

None of the previously mentioned tools showed
clustering in action; however, there has been some
activity in the network analysis community. For ex-
ample, the JUNG graph framework (O’Madadhain
et al. 2003) provides a clustering demo graphically il-
lustrating how betweenness clustering works on social
network data, and we used this as the basis of our be-
tweenness clustering visualization of object-oriented
software.

Most of the work above has involved some kind
of graph-based visualization; however, it is worth
mentioning some clustering work for the purposes
of refactoring classes that is not graph-based and
does not have a significant visual component. Sev-
eral researchers have applied clustering techniques to
the problem of remodularizing software systems (An-
quetil et al. 1999, Mitchell & Mancoridis 2006), but
only recently have these techniques been applied to
refactoring classes. A Romanian team (Serban & Cz-
ibula 2008) created a system to enable experimenta-
tion with various ways of recombining attributes and
methods into classes. In most of their experiments

with agglomerative clustering, they used a Jaccard
similarity metric. Unfortunately, it can be difficult
to understand how these work without corresponding
visualizations.

6 Conclusions

Our goal is to make object-oriented software easier
to maintain by breaking large, noncohesive classes
into smaller, more cohesive ones. Because program-
mers will make the final judgment about how classes
will be organized, it is important that they see how a
particular recommendation came about. ExtC helps
by showing how clustering algorithms group (reallo-
cate) methods and attributes for the formation of new
classes.

We have provided visualizations for two major cat-
egories of clustering algorithms - agglomerative and
divisive. Our experiences using ExtC thus far have
inclined us to favor divisive clustering techniques,
like betweenness clustering, over agglomerative tech-
niques for two main reasons. First, divisive cluster-
ing matches up better with our mental model of the
task of splitting classes. When refactoring, one wants
to maintain the existing interface, so to be conserva-
tive, one generally wants to extract one new class at a
time. This is consistent with making a single division
of the graph. Secondly, divisive clustering generally
requires fewer steps than agglomerative clustering for
extracting classes. For a large class, watching the
many steps required to reach two clusters can be ex-
tremely tedious.

ExtC has provided us some useful insights into our
refactoring tasks, so we intend to enhance it. Our
main effort over the next months is to expand the
scope of ExtC beyond working on the dependency
graph of a single class. Some of the information that
can be useful for clustering involves how the studied
class is used by other classes, and how it uses other
classes. Our tool should display these relationships
and distinguish them visually from the intraclass re-
lationships.

We also want to expand our tool to be applica-
ble for other class refactorings besides Extract Class.
Move Method, Extract Subclass, and other refactor-
ings have similar requirements to Extract Class in
that they look for tight relationships (clusters) be-
tween certain members that are not well captured in
the current class structure.

In addition to expanding the scope of what ExtC
can do, we would like to make it more flexible. For
example, it would be nice if a user could add some
domain knowledge to help the clustering algorithms
generate better results. Right now, the clustering al-
gorithms work with little or no domain knowledge, i.e.
the clustering doesn’t know anything about software
and how it should be structured. As software en-
gineers we have clandestinely added some knowledge.
For instance, the call graphs themselves represent cer-
tain relationships within the software. We have also
added knowledge via our hard-coded distance func-
tions; however, an arbitrarily complex user-defined
(and domain aware) distance function could be used
to give more precise results. The challenge is to de-
termine how to let the user enter such knowledge for a
distance function. Perhaps a software domain specific
rule language can be constructed.

While there are enhancements to make, we feel
that ExtC already provides capabilities that are use-
ful to object-oriented programmers. There has been
little prior work on applying clustering algorithms to
refactoring large classes and, as far as we know, ExtC



is the first tool that suggests how to refactor software
by showing clustering in action.
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