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Abstract
Multiple dispatch uses the run time types of more than one
argument to a method call to determine which method body
to run. While several languages over the last 20 years have
provided multiple dispatch, most object-oriented languages
still support only single dispatch — forcing programmers to
implement multiple dispatch manually when required. This
paper presents an empirical study of the use of multiple
dispatch in practice, considering six languages that support
multiple dispatch, and also investigating the potential for
multiple dispatch in Java programs. We hope that this study
will help programmers understand the uses and abuses of
multiple dispatch; virtual machine implementors optimise
multiple dispatch; and language designers to evaluate the
choice of providing multiple dispatch in new programming
languages.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—Procedures,
functions, and subroutines; D.1.0 [Programming Tech-
niques]: General

General Terms Design, Experimentation, Languages, Mea-
surement

Keywords double dispatch, empirical software engineering,
instanceof, multimethods, multiple dispatch

1. Introduction
All object-oriented languages provide single dispatch: when
a method is called on an object, the actual method executed is
chosen based on the dynamic type of the first argument to the
method (the method receiver, generally self, or this). Some
object-oriented languages provide multiple dispatch, where
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methods can be chosen based on the dynamic types of more
than one argument.

The goal of this paper is to understand how programmers
write programs that use multiple dispatch when it is available
— and to investigate what programmers do when it is not.
We ask two complementary questions. For multiple dispatch
programs we ask how much is multiple dispatch used? —
what proportion of method declarations dispatch on more
than one argument. For single dispatch programs, we ask
how much could multiple dispatch be used? — that is, what
proportion of methods hand-code idioms to provide multiple
dispatch, or what proportion of methods could be refactored
to use multiple dispatch if it was provided by the language.

To that end, we describe a corpus analysis of programs
written in six languages that provide multiple dispatch
(CLOS, Dylan, Cecil, Diesel, Nice and MultiJava). While
there are a range of other multiple dispatch languages (e.g.
Slate (Salzman and Aldrich 2005)), we focus on these six
languages here because we were able to obtain a corpus for
each of these languages. We use Java as a control subject in
our study. We present the result of a second analysis of a large
corpus of Java programs that do not use explicit multiple
dispatch.

The contributions of this paper are as follows: (1) a
language independent model of multiple dispatch; (2) a
suite of language independent metrics, measuring the use of
multiple dispatch; (3) the corpus analysis study using those
metrics on a collection of programs in six multiple dispatch
languages; and (4) a comparison with hand-coded multiple
dispatch in a large corpus of Java programs.

Outline. Section 2 presents the brief history and overview
of multiple dispatch including related work. Section 3
presents a language-independent model of multiple dispatch,
and defines the metrics we will use in terms of that model.
Section 4 then presents the results of our study in multiple
dispatch languages, and section 5 presents the results for
Java programs. Section 6 puts our results in perspective and
Section 7 concludes.



2. Multiple Dispatch
In single dispatch languages, such as SIMULA, Smalltalk,
C++, Java, and C], only the first argument of a method
call can participate in dynamic method lookup. In Java, for
example, the first argument of a method call is called the
receiver object, is written “before the dot” in a method call
(receiver.method(arguments)), and is called “this” inside a
method body. The class of this first argument designates the
method body to be executed. We will refer to a method body
as being specialised on the class where it is defined, and to
the class of that first formal parameter as the parameter’s
specialiser. In Java, as in most single dispatch languages,
a method’s specialiser is implicitly defined by the class
enclosing the method definition, for example:

class Car extends Vehicle {
void drive () { print(”Driving a car”); }
void collide (Vehicle v) { print(”Car crash”); }
}

In single dispatch languages, every dynamically dis-
patched method is specialised on precisely one class so
it is easy to think of methods as operations on classes. Of
course, some languages may also have non-dispatched meth-
ods (such as Java static methods) that are not dynamically
dispatched at all. Following C++, Java and C] also sup-
port method overloading, where methods may be declared
with different formal parameter types, but only the receiver
(the distinguished first argument) is dynamically dispatched.
Given this definition of the Vehicle class:

abstract class Vehicle {
void drive () { print(”Brmmm!”); }
void collide (Vehicle v) {

print(”Unspecified vehicle collision”); }
}

the following code will involve the Car class’s collide(Vehicle)
method shown above, and print ”Car crash”.

Vehicle car = new Car();
Vehicle bike = new Bike();
car.collide(bike);

The method defined in Car is called instead of the method
defined in Vehicle, because of the dynamic dispatch on the
first argument — the receiver — of the message.

Now, in a single dispatch language the ”Car crash” method
will still be invoked even if the Car class overloaded the
collide method with a different argument:

class Car extends Vehicle {
// ... as above
void collide (Bike b) { print(”Car hits bike”); } }

but in a multiple dispatch language, the ”Car hits bike” mes-
sage would be printed. Getting to the Car.collide(Bike)
method from a call of Vehicle.collide(Vehicle) requires two
dynamic choices: on the type of the first “this” argument and
on the type of the second (Vehicle or Bike) argument — this

is why these semantics are called multiple dispatch. A method
that uses multiple dispatch is often called a multimethod.

2.1 Classes and Multiple Dispatch
Methods in single dispatch languages are usually defined
in classes, and the receiver.method(arguments) syntax for
method calls supports the idea that methods are called on
objects (or that “messages are sent to objects” as Smalltalk
would put it). This does not apply to multiple dispatch
languages, however, where a concrete method body can be
specialised on a combination of classes, and so methods are
not necessarily associated with a single class. Some multiple
dispatch languages declare methods separately, outside the
class hierarchy, while others consider them part of none, one
or several classes, depending on the number of specialised
parameters. Since method bodies no longer have a one-to-
one association with classes, all parameter specialisers have
to be stated explicitly in method body definitions, as this
example in the Nice programming language (Bonniot et al.
2008) shows:

abstract Class Vehicle;
class Car extends Vehicle {}
class Bike extends Vehicle {}

void drive (Car c) {
/∗ a method specialised on the class Car ∗/
print(”Driving a car”);
}

void collide (Car c, Bike m) {
/∗ a method specialised on two classes ∗/
print(”Car hits bike”);
}

Similarly, while Java method call syntax follows Smalltalk
by highlighting the receiver object and placing it before the
method name: “myCar.drive()”, multiple dispatch languages
generally adopt a more symmetrical syntax for calls to generic
functions: “collide(myCar, yourBike);” or “drive(myCar);”, of-
ten while also supporting Java-style receiver syntax.

2.2 Single vs Multiple Dispatch
Multiple dispatch is more powerful and flexible than single
dispatch. Any single dispatch idiom can be used in a multi-
ple dispatch language — multiple dispatch semantics are a
superset of single dispatch semantics. On the other hand, im-
plementing multiple dispatch idioms will require specialised
hand-coding in a single dispatch language.

Binary methods (Bruce et al. 1995), for example, operate
on two objects of related types. The “Vehicle.collide(Vehicle)”
method above is one example of a binary method: object
equality (“Object.equals(Object)”), object comparisons, and
arithmetic operations are other common examples. In a single
dispatch language, overriding a binary method in a subclass is
not considered safe because it violates the contravariant type
checking rule for functions. For this reason, single dispatch



languages like Smalltalk generally use the double dispatch
pattern to implement binary methods, encoding multiple
dispatch into a series of single dispatches (Ingalls 1986).
Double dispatch is also at the core of the Visitor pattern
(Gamma et al. 1994) that decouples operations from data
structures.

For example, we could rewrite the collision example to
use the double dispatch pattern in Java as follows:

class Car {
void collide(Vehicle v) { v.collideWithCar(this); }

void collideWithCar(Car c) { print(”Car hits car”); }
void collideWithBike(Bike b) { print(”Bike hits car”); }
}

for the Car class, and

class Bike {
void collide(Vehicle v) { v.collideWithBike(this); }

void collideWithCar(Car c) { print(”Car hits bike”); }
void collideWithBike(Bike b) { print(”Bike hits bike”); }
}

for the Bike class.
Calling a collide method provides the first dispatch, while

the second call to a collideWithXXX method provides the
second dispatch. The arguments are swapped around so that
each argument gets a chance to go first and be dispatched
upon. External clients of these classes should only call the
collide method, while actual implementations must be placed
in the collideWithXXX methods.

The double dispatch idiom is common in languages like
Smalltalk where single dispatch is the preferred control
structure. Java’s instanceof type test provides an alternative
technique for implementing multiple dispatch. The idiom
here is a cascade of if statements, each testing an argument’s
class, and the body of each if corresponding to a multimethod
body. To return to the Car class:

class Car {
void collide(Vehicle v) {
if (v instanceof Car) { print(”Car hits car”); return; }
if (v instanceof Bike) { print(”Car hits bike”); return; }
throw Error(”missing case: should not happen”);
}
}

and the Bike class:

class Bike {
void collide(Vehicle v) {

if (v instanceof Car) {print(”Bike hits car”); return};
if (v instanceof Bike) {print(”Bike hits bike”); return};
throw Error(”missing case: should not happen”);
}
}

Compared with directly declaring multimethods, either
idiom for double dispatching code is tedious to write and

error-prone. Code to dispatch on three or more arguments is
particularly unwieldy. Modularity is compromised, since all
participating classes have to be modified upon introducing a
new class, either by writing new dispatching methods or new
cascaded if branches. The cascaded if idiom has the advantage
that it doesn’t pollute interfaces with dispatching methods, but
the methods with the cascades become increasingly complex,
and it is particularly easy to overlook missing cases.

2.3 Multiple Dispatch Languages
Multiple dispatch was pioneered by CommonLoops (Bobrow
1983; Bobrow et al. 1986) and the Common Lisp Object
system (CLOS) (Bobrow et al. 1988), both aimed at extending
Lisp with an object-oriented programming interface. The
extensions were meant to integrate “smoothly and tightly
with the procedure-oriented design of Lisp” (Bobrow et al.
1986) and facilitate the incremental transition of code from
the procedural to the object-oriented programming style.

The basic idea is that a CLOS generic function is made
up of one or more methods. A CLOS method can have
specialisers on its formal parameters, describing types (or
individual objects) it can accept. At run time, CLOS will
dispatch a generic function call on any or all of its arguments
to choose the method(s) to invoke — the particular methods
chosen generally depend on a complex resolution algorithm
to handle any ambiguities.

Several more recent programming languages aim to pro-
vide multimethods in more object-oriented settings. Dy-
lan (Feinberg 1997) is based on CLOS. Dylan’s dispatch
design differs from CLOS in that it features optional static
type declarations which can be used to type generic functions,
that is, to constrain their parameters to something more spe-
cific than <object>, the root of all classes in Dylan. Dylan
also omits much of the CLOS’s configurability, treating all
arguments identically when determining if a generic function
call is ambiguous.

Cecil (Chambers 1992) is a prototype-based programming
language that features symmetric multimethods and an op-
tional static type system. Cecil treats each method as encap-
sulated within every class upon which it dispatches. This way
a method is given privileged access to all objects of which it
is a part. This is different from, e.g. Java, where methods are
part of precisely one class and also unlike CLOS or Dylan in
which methods are not part of any class.

Diesel (Chambers 2006) is a descendant of Cecil and
shares many of its multiple dispatch concepts. The main
differences to Cecil are Diesel’s module system (unlike Cecil,
Diesel method bodies are separate from the class hierarchy
and encapsulated in modules) and explicit generic function
definitions (which bring it closer to CLOS). As in Dylan and
Cecil, message passing is the only way to access an object’s
state.

The Nice programming language (Bonniot et al. 2008)
strives to offer an alternative to Java, enhancing it with
multimethods and open classes. In Nice, operations and



state can be encapsulated inside modules, as opposed to
classes. Message dispatching is based on the first argument
and optionally on any other arguments.

MultiJava (Clifton et al. 2000) extends Java with multi-
methods and open classes. MultiJava retains the concept of a
privileged receiver object to associate methods with a single
class for encapsulation purposes, however, the runtime selec-
tion of a method body is no longer based on the receiver’s
type alone. Rather, any parameter in addition to the receiver
can be specialised.

2.4 Related Work
There are of course many other multiple dispatch languages,
which we have not been able to include in our study: space
does not permit us to describe them all here. Parasitic Multi-
methods (Boyland and Castagna 1997) is an earlier extension
to Java that provides multiple dispatch. Kea (Mugridge et al.
1991) was the first statically typed language with multiple
dispatch. Smalltalk has been extended with multiple dispatch
(Foote et al. 2005) while Dutchyn et al. (2001) modified the
Java virtual machine to treat static overloading as dynamic
dispatch. Slate (Salzman and Aldrich 2005) provides multiple
dispatch in a Self-like setting.

Alternatives to multiple dispatch range from classical dou-
ble dispatch (Ingalls 1986) and the Visitor pattern (Gamma
et al. 1994) to visitor-oriented programming (Palsberg and
Drunen 2004) and dispatching on tuples of objects (Leavens
and Millstein 1998). Predicate dispatching generalises mul-
tiple dispatch to include field values and pattern matching
(Chambers and Chen 1999), while aspect-oriented program-
ming (Kiczales et al. 1997, 2001) is based around pointcuts
that can dispatch on almost any combination of events and
properties in a program’s execution.

Multiple dispatch studies are less widespread than multiple
dispatch implementations — Kempf, Harris, D’Souza, and
Snyder’s early 1987 study of CLOS is one notable exception.
The efficiency of implementation has been evaluated (Kidd
2001; Foote et al. 2005) as part of larger projects: Cunei and
Vitek (2005) include a recent comparison of the efficiency of
a range of multiple dispatch implementations.

Corpus analysis is a widely used empirical software en-
gineering research method. There are many recent examples
addressing program topology (Potanin et al. 2005; Baxter
et al. 2006), mining patterns (Fabry and Mens 2004; Gil and
Maman 2005), object initialisation (Unkel and Lam 2008),
aliasing (Ma and Foster 2007), dependency cycles (Melton
and Tempero 2007), exception handling (Cabral and Marques
2007), and non-nullity (Chalin and James 2007).

3. Methodology
In this section we describe the methodology underlying our
studies. We begin by introducing a language-independent
model for multiple dispatch, describe each of the multiple
dispatch languages in terms of that model, and give a Java

Generic Function Concrete Method

Name

SpecialiserSignature

dispatches to(CM)→ 

1

1

specialised
(spec)↓

*

1

1..*

1..*

belongs to (GF)  
←

Figure 1. A Model for Multimethod Analysis. GF refers to
generic function, CM refers to concrete method, and spec
refers to specialiser.

example as a control. We then use the model to define metrics
for multiple dispatch.

3.1 Modelling Dynamic Dispatch
We begin by describing a language-independent model of
dynamic dispatch. The model, shown in Figure 1, is designed
to allow us to compare multiple dispatch consistently across
different programming languages. The model’s terminology
has been chosen to match general usage, rather than following
any particular programming language. Section 3.3 will use
the model to define the metrics that can be used across a
range of programming languages. We now present the main
entities of the model in turn.

Generic function A generic function is a function that may
be dynamically dispatched, such as a CLOS generic function,
a Smalltalk message, or Java method call. Each generic
function will have one or more concrete methods associated
with it: calling a generic function will invoke one (or more)
of the concrete methods that belong to that function. Generic
functions are identified by a name and a signature. Some
languages allow a generic function to be defined explicitly
(e.g. CLOS’s defgeneric), whereas in other languages (such
as Java) they are implicit and must be inferred from method
definitions.

Some languages also automatically generate generic func-
tions as accessors to all field declarations. Because we wish
to focus on programmer specified multiple dispatch methods,
we omit automatically generated accessors from our analysis.

Name Generic functions and concrete methods are referred
to by their names. In our model, a name is always “fully-
qualified”, that is, if a namespace is involved then that infor-
mation is part of the name. To avoid ambiguity, our analyses
always compute fully-qualified names where necessary.

Signature The permissible arguments to a generic function
are defined by that function’s signature, and all the concrete
methods belonging to a generic function must be compatible
with that signature. In languages with only dynamic typing,
a generic functions signature may be simply the number
of arguments required by the function: some language’s
signatures additionally support refinements such as variable



language typing GF term GF dfn CM term CM grouped in GF multi accessor
CLOS dyn generic function explicit method name a no auto
Dylan opt generic function explicit method name a no auto
Cecil opt method implicit method body name+#args no auto
Diesel opt function explicit method name+#args no auto
Nice static method declaration implicit method implementation name+#args+types yes –
MultiJava static method family implicit method name+#args+types no –
Java static method call implicit method body name+#args+types yes –
Smalltalk dyn message implicit method name(+#args) b no –
a All argument lists (lambda lists) must be congruent. b Smalltalk message selectors encode the number of arguments to the message.

Figure 2. Multimethods across languages. Columns describe language name; static, dynamic, or optionally static typing; the
terminology used for “generic function” (GF); whether generic function definitions are explicit or implicit; the term used for
“concrete method” (CM); how concrete methods are grouped into generic functions (i.e. how a generic function signature is
defined); whether one concrete function can be part of multiple generic functions; and whether the language automatically
generates accessor messages (which we elide from our analysis).

length argument lists or keyword arguments. In languages
with (optional or mandatory) static type systems, a generic
function’s signature will also define static types for each
formal argument of the function.

Some languages have implicit parameters (such as the
“receiver” or “this” parameter in traditional object-oriented
languages such as SIMULA, Smalltalk, Java, C++, C#).
In our model, these parameters are made explicit in the
signature (hence our use of the term “function”). In the case
of traditional object-oriented languages, the receiver is the
first formal parameter position.

Concrete method A concrete method gives one code body
for a generic function — roughly corresponding to a function
in Pascal or C, a method in Java or Smalltalk, or CLOS
method. As well as this code, a concrete method will have
a name and an argument list — the argument list must be
compatible with the signature of its generic function (as
always depending on the rules of a particular language). A
concrete method may also have a specialiser for each formal
argument position. The rules of each language determine
the generic function(s) to which a given concrete method
belongs.

Specialiser Formal parameters of a concrete method can
have specialisers. Specialisers are used to select which con-
crete method to run when a generic function is called. When
a generic function is called, the actual arguments to the call
are inspected, and only those concrete methods whose for-
mal specialisers match those arguments can be invoked in
response to the call. Specialisers can describe types, singleton
objects, or sets of objects and types (details depend on the
language in question).

Some concrete method parameters may have no specialiser
(they are unspecialised) — the method is applicable for any
argument values supplied to those parameters. In contrast, in a
class-based object-oriented language, every instance method
will belong to a class, and its distinguished first “receiver”

argument will be specialised to that class. For example, this
is true for every non-static, non-constructor method in Java;
Java statics and constructors are not specialised.

Dynamic specialisers are closely related to generic func-
tion signatures in statically typed languages: whenever a
generic function is called, its actual arguments must conform
to the types described by its signature. Depending on the
language, specialisers may or may not be tied into a static
type system.

Dispatch When a generic function is called at run time,
it must select the concrete method(s) to run. In our model,
this is a dynamic dispatch from the generic function to its
concrete methods. If this dispatch is based on the type of one
argument, we call it single dispatch; if on the type of more
than one argument, multiple dispatch. If a generic function
has only a single concrete method, then no dynamic dispatch
is required: we say the function is monomorphic or statically
dispatched.

3.2 Modelling Programming Languages
To ground our study, we now describe how the features of
each of the languages we analyse are captured by the model.
The crucial differences between the languages can be seen as
whether they offer static typing, dynamic typing, or optional
(static) typing; the number of generic functions per method
name; and whether a concrete method can be in more than one
generic function. These details are summarised in Figure 2,
which also gives an overview of terminology used by each
language, with Java and Smalltalk for comparisons.

CLOS CLOS (Bobrow et al. 1988) fits quite directly into
our model. CLOS generic functions are declared explic-
itly, and then (concrete) methods are declared separately;
both generic functions and methods lie outside classes. Each
generic function is identified by its name (within a names-
pace), so all methods of the same name belong to the same
generic function. CLOS requires “lambda list congruence”:



Abbrev Name basis description
DR Dispatch Ratio generic function number of methods in the generic function
CR Choice Ratio concrete method number of methods in the same generic function
DOS Degree of Specialisation concrete method number of specialisers
RS Rightmost Specialiser concrete method rightmost specialised argument position
DOD Degree of Dispatch generic function number of specialisers required to dispatch to a concrete method
RD Rightmost Dispatch generic function rightmost specialiser required to dispatch to a concrete method

Figure 3. Metrics

all methods must agree on the number of required and op-
tional parameters, and the presence and names of keyword
parameters (Lamkins and Gabriel 2005).

Dylan Dylan’s dispatch design (Feinberg 1997) is similar
to CLOS in most respects, including concrete methods be-
ing combined via explicit generic function definitions, and
similar parameter list congruency conditions. Dylan supports
optional static type checking, and specialisers and static type
declarations are expressed using the same syntax. When defin-
ing a concrete method, the type declarations serve as dynamic
specialisers if they are more specific than the types declared
by the generic function.

Cecil Cecil (Chambers 1992) generic functions (multimeth-
ods) are declared implicitly, based on concrete method def-
initions, and each concrete method is contained within one
generic function. Unlike CLOS, a generic function comprises
concrete methods of the same name and number of argu-
ments: generic functions with the same name but different
parameter counts are independent. Like Dylan, Cecil supports
optional static type declarations, but unlike Dylan, different
syntactic constructs are used to define static type declarations
and dynamic specialisers. A parameter can incur a static type
definition, specialisation, or both.

Diesel Diesel (Chambers 2006) is a descendant of Cecil,
however generic functions are declared explicitly (called func-
tions). Each Diesel function can have a default implementa-
tion, which in our model corresponds to a concrete method
with no specialised parameters. Additional concrete methods
(simply called methods) can augment a function by specialis-
ing any subset of its parameters.

Nice Nice (Bonniot et al. 2008) is a more recent multiple
dispatch language design based on Java. A Nice generic
function (method declaration) supplies a name, a return type
and a static signature. Different concrete methods (method
implementations) can exist for a declaration. When defining
a concrete method, the parameter type declarations serve as
dynamic specialisers if they are different to (that is more
specific than) the types stated in the method declaration.

MultiJava MultiJava (Clifton et al. 2006) is an extension
of Java that adds the capability to dynamically dispatch
on other arguments in addition to the receiver object. A
generic function (also called method family) consists of a

top method, which overrides no other methods, and any
number of methods that override the top method. Any method
parameter can be specialised by specifying a true subtype of
the corresponding static type or a constant value.

Java Java is of course a single dispatch, statically typed
class-based language that we include as a control. Java uses
the term “method” for both generic functions (method call)
and concrete methods (method bodies). Generic functions are
defined implicitly, and depend on the names and the static
types of their arguments.

Smalltalk Smalltalk is not part of our study but we include
it in the table as a comparison. Smalltalk introduced the
terms message roughly corresponding to implicitly defined
generic function, and method for concrete method. Smalltalk
is dynamically typed, and every message is single dispatched
(even the equivalent of constructors and static messages,
which are sent dynamically to classes). Every method name
(or selector) defines a new generic function, and the names
encode the number of arguments to the message.

3.3 Metrics
Our study approaches multimethods and multiple dispatch
from a programmer’s point of view by analysing source code
available publicly, mostly under open-source licenses. We
focus on method definitions which we will examine statically.
We do not examine method calls or dynamic aspects of a
program (e.g. frequency of method calls through a call site,
frequency of invocations per method) although we would like
to see these aspects covered in future studies.

To study multiple dispatch across languages we define
metrics based on our language independent model. Figure 3
summarises the metrics we define in this section.

3.3.1 Dispatch Ratio (DR)
We are most interested in measuring the relationships between
generic functions and concrete methods. Any number of
concrete methods can belong to a given generic function,
giving the basic metric dispatch ratio DR(g) = |CM(g)|—
the number of concrete methods that belong to the generic
function g. DR measures, in some sense, the amount of choice
offered by a generic function: monomorphic functions will
have DR(g) = 1, while polymorphic functions will have
DR(g) > 1.



We are usually not interested in the measurements from
the above metrics for individual generic functions or concrete
methods, but rather we want to know about their distribution
over a given application, or even collection of applications.
We can report the measurements as a frequency distribution,
that is, for a value dr, what proportion of generic functions
g have DR(g) = dr. Frequency distributions provide infor-
mation such as: what proportion of generic functions have
exactly 1 concrete method.

Across whole applications or corpora, we use the basic
DR metric to define an average dispatch ratio across each
corpus. The average dispatch ratio DRave — the average
number of concrete methods that a generic function would
need to choose between is:

DRave =

∑
g∈G DR(g)

|G|

where G is the set of all generic functions. The intuition
behind DRave is that if you select a generic function from a
program at random, to how many concrete methods could it
dispatch?

3.3.2 Choice Ratio (CR)
Because a generic function with a DR > 1 necessarily
contains more methods than a monomorphic generic function,
we were concerned that DRave can give a misleading low
figure for programs where some generic functions have many
more concrete methods than others.

For example, consider a program with one generic func-
tion with 100 concrete methods, DR(g1) = 100, and another
100 monomorphic methods DR(g2..101) = 1. For this pro-
gram, DRave = 1.98, even though half the concrete methods
can only be reached by a 100-way dispatch.

To catch these cases, we define the choice ratio of a
concrete method m to be the total number of concrete
methods belonging to all the generic functions to which m
belongs:

CR(m) = |
⋃

g∈GF (m)

CM(g)|

Note that this counts each concrete method only once, even
if it belongs to multiple generic functions. A corpus-wide
average, CRave can be defined similarly:

CRave =

∑
m∈M CR(m)

|M|

whereM is the set of concrete methods. The intuition behind
CRave is that if you select a concrete method from a program
at random, then how many other concrete methods could have
been dispatched instead of this one?

3.3.3 Degree of Specialisation (DOS)
The degree of specialisation of a concrete method simply
counts the number of specialised parameters:

DOS(m) = |spec(m)|

where spec(m) is the set of argument positions of all spe-
cialisers of the method m (we will later write speci(m) for
the i’th specialiser). DOS can also be extended to an average,
DOSave in the obvious manner, over all concrete methods.

Dynamically specialising multiple method parameters is a
key feature of multiple dispatch: DOS measures this directly.
Pure functions without dynamic dispatch, like Java static
methods, C functions, or C++ non-virtual functions, will
have DOS = 0. Singly dispatched methods like Java instance
methods, C++ virtual functions, and Smalltalk methods will
have DOS = 1. Methods that are actually specialised on
more than one argument will have DOS > 1.

3.3.4 Rightmost Specialiser (RS)
Programmers read method parameter lists from left to right.
This means that a method with a single specialiser on the
last (rightmost) argument may be qualitatively different to a
method with one specialiser on the first argument. To measure
this we define the rightmost specialiser:

RS(m) = max(spec(m))

If a method has some number of specialised parameters
(perhaps none) followed by a number of unspecialised pa-
rameters, then RS = DOS; where a method has some unspe-
cialised parameters early in the list, and then some specialised
parameters, RS > DOS. The capability to specialise a pa-
rameter other than the first distinguishes multiple dispatch
languages from single dispatch languages. RS can, for exam-
ple, identify methods that use single dispatching (DOS=1)
but where that dispatch is not the first method argument. Once
again, we can define a summary metric RSave by averaging
RS over all concrete methods.

3.3.5 Degree of Dispatch (DOD)
The degree of dispatch is the number of parameter positions
required for a generic function to select a concrete method.
The key point here is that specialising concrete method pa-
rameters does not by itself determine whether that parameter
position will be required to dispatch the generic function. This
is because all the concrete methods in the generic function
could specialise the same parameter position in the same way.
Similarly, if only one concrete method specialises a parame-
ter position, that position could still participate in the method
dispatch even if no other concrete method specialises that
parameter — the other concrete methods acting as defaults.

The DOD metric counts the number of parameter positions
where two (or more) concrete methods in a generic function
have different dynamic specialisers. In general, these are the
positions that must be considered by the dispatch algorithm.



DOD(g) = |P |, where i ∈ P iff ∃m1,m2 ∈ CM(g)
such that speci(m1) 6= speci(m2)

We can once again define a summary metric DODave as
the average over all generic functions. If DRave and CRave

measure the amount of choice involved in dispatch, then
DODave measures the complexity of that choice.

3.3.6 Rightmost Dispatch (RD)
Finally, by analogy to RS, we can define RD: the rightmost
parameter a generic function actually dispatches upon.

RD(g) = max(P ),
where i ∈ P iff ∃m1,m2 ∈ CM(g)
such that speci(m1) 6= speci(m2)

RD is to RS as DOD is to DOS: the “DO” versions count
specialisers of methods, or dispatching positions of generic
functions, while the “R” versions consider only the right-
most position. RD for a generic function will usually be the
maximum RS of that function’s methods, unless every con-
crete method in the generic function specialises the rightmost
parameter in the same way. For the whole corpora, we can
report RDave as the average RD across all generic functions.

3.4 Example
To illustrate the metrics, consider the following simple multi-
ple dispatch example written in Gwydion Dylan:

define class <vehicle> ... ;
define class <car> (<vehicle>) ... ;
define class <sports−car> (<car>) ... ;

// DR = 2, DoD = 1, RD = 2
define generic collide(v1 :: <vehicle>, v2 :: <vehicle>);
// CR = 2, DoS = 1, RS = 1
define method collide(sc :: <sports−car>, v :: <vehicle>) ... ;
// CR = 2, DoS = 1, RS = 2
define method collide(v :: <vehicle>, c :: <car>) ... ;

// DR = 4, DoD = 3, RD = 3
define generic

pileup(v1 :: <vehicle>, v2 :: <vehicle>, v3 :: <vehicle>);
// CR = 4, DoS = 2, RS = 3
define method

pileup(sc :: <sports−car>, v :: <vehicle>, c :: <car>) ... ;
// CR = 4, DoS = 2, RS = 2
define method

pileup(sc :: <sports−car>, c :: <car>, v :: <vehicle>) ... ;
// CR = 4, DoS = 3, RS = 3
define method

pileup(c :: <car>, c :: <car>, c :: <car>) ... ;
// CR = 4, DoS = 0, RS = 0
define method

pileup(v :: <vehicle>, v :: <vehicle>, v :: <vehicle>) ... ;

These are two generic functions (collide and pileup) with two
and four concrete methods respectively. The values for the

metrics relevant to each declaration are in the comments
above them.

DR is 2 for collide and 4 for pileup because that is the
number of concrete methods each of these generic functions
contains. Obviously, each of the concrete methods has a
respective CR of 2 and 4. However the difference can be
observed if we try and count the DRave and CRave for this
Dylan example. DRave = (2 + 4)/2 = 3 is the dispatch
ratio for this program that examines each generic function.
CRave = (2 + 2 + 4 + 4 + 4 + 4)/6 = 3.33 is the choice
ratio for this program that examines each concrete method.
This means that the choice of alternative concrete methods
for each method is larger than the average number of methods
per generic function.

DOS is calculated for each concrete method by examining
the number of specialisers, while RS records the position
of the rightmost specialiser (accounting in particular for the
second concrete method collide that does a single dispatch
on a second argument). Averages for DOS and RS give us
(1+1+2+2+3+0)/6 = 1.5 and (1+2+3+2+3+0)/6 =
1.83 respectively.

Finally, DOD and RD are measured at the level of generic
functions. DOD records the number of generic function’s
arguments that can be potentially specialised by one or
more of the concrete methods and RD records the rightmost
position used by a specialiser. Their averages are (1+3)/2 =
2 for the DODave and (2 + 3)/2 = 2.5 for the RDave.

4. Multiple Dispatch Languages
For this study we have gathered a corpus of 9 applications
written in 6 languages that offer multiple dispatch (Figure 4).
Most are compilers for the respective language — they are
all too often the only applications of significant size that we
could obtain. CLOS is notably distinct in this respect and
the corpus could be expanded by several CLOS projects. We
opted to cover a broad spectrum of languages rather than
weighting this study towards one language. The MultiJava-
based Location Stack (Hightower 2002) is a framework for
processing measurements from a network of geographical
location sensors.

We applied the metrics defined in Section 3.3 to our
corpus: the results are summarised in Figure 11. As is
often the case when measuring real code, we had to make
assumptions about exactly what to measure. One assumption
was with respect to the auto-generated field accessors some
languages provided (see Figure 2). As our interest is in how
programmers interact with language features, we did not
measure these accessors. All of the languages studied here
come with standard libraries. Our measurements of each
application included the contribution due to the libraries (in
contrast with the Java measurements, see Section 5). The
Nice language compiler compiles both Nice and Java source
code into Java bytecode. The compiler itself is written partly
in Java, partly in Nice. For this study, we only consider



Language Application Domain Version Concrete methods Generic functions
Dylan Gwydion compiler 2.5 svn:12/03/2008 6621 3799
Dylan OpenDylan compiler 1.0beta5 svn:27/04/2008 5389 2143
CLOS SBCL compiler 0.9.16 861 363
CLOS CMUCL compiler 19d 1031 512
CLOS McCLIM toolkit/library 0.9.5 5400 2222
Cecil Vortex compiler 3.3 15212 6541
Diesel Whirlwind compiler 3.3 11871 5737
Nice NiceC compiler 0.9.13 1615 1184
MultiJava LocStack framework 0.8 735 491

Figure 4. Size of applications in corpus
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Figure 5. Dispatch ratio (DR) frequency distribution, ex-
pressed as a percentage of all generic functions with a given
DR measurement.

native Nice methods, since only these have multiple dispatch
potential.

4.1 Dispatch Ratio
The Dispatch Ratio distribution for all applications is shown
in Figure 5. Seven applications in six different languages fol-
low a similar distribution with 65%–93% of generic functions
having a single concrete method. The shares for generic func-
tions with two (2%–20%), three (3%–6%) and more methods
decrease rapidly. The exceptions here are CMUCL and Mc-
CLIM (both Common Lisp projects), which have a 60%-share
of generic functions with 2 alternative implementations that
is roughly double the proportion of generic functions with
one single concrete method, but otherwise have a similar
shape to the other 7 applications. We are not measuring the
use of non-generic functions in CLOS applications, so we
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Figure 6. Dispatch ratio (DR) distribution, log-log scale

hypothesize that some monomorphic functions in these appli-
cations may be implemented by non-generic functions. It is
also notable that these two projects are quite different in size,
McCLIM being roughly 5 times the size of CMUCL in terms
of concrete methods, yet their distributions are very similar.

The curves shown in Figure 5 are reminiscent of power
law distributions. As the curves are fairly close to each other,
we show all values on the same log-log scale (Figure 6). The
strong indication of a straight line is further evidence of the
possibility that power laws are being followed.

The DRave and CRave values for the applications in our
corpus are shown in Figure 11. Six of the applications have
a DRave measurement of at least 2, indicating that for every
generic function, on average a dispatch decision must be
made between two concrete functions. The results for CRave

show considerable variance. On average, any concrete method
in Vortex is part of dispatch decision with 60 or so other
methods, whereas for NiceC it would be only with 3.5 other
methods.

4.2 Specialisation
Figure 7 shows, for each application, what proportion of
generic functions have a given DOS measurement. At the top
are the highest DOS values measured for the respective appli-
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Figure 7. Degree of specialisation (DOS) distribution of
concrete methods across applications. The lowest block in
each stack is the proportion with DOS measurement of 0, the
next, the proportion with 1, and so on. The value at the top
of each stack indicates the highest DOS measured for this
application.

cation. While it is quite common for methods to specialise up
to 3 parameters, we found generic functions that specialise
7 (OpenDylan, “make−source−location”), 8 (Whirlwind,
“resolve8”) and 20 (Gwydion, “parser:production 113”) pa-
rameters. There is also a considerable range for the proportion
of generic functions with no specialisation across the applica-
tions.

The results for the RS metric are shown in Figure 8. Since
they are not significantly different from DOS numbers, we
conclude that programmers generally specialise parameters
left-to-right, then follow with unspecialised parameters.

4.3 Dispatch
Figure 9 shows the degree of dispatch (DOD). Again exclud-
ing CMUCL and McCLIM, most applications have similar
levels (2.7–6.5%) of multiple dispatch (DOD > 1), and sin-
gle dispatch (13–32%). The share of generic functions that
are not required to dispatch dynamically ranges from 64% to
93%; this corresponds nicely with the 65%–93% of generic
functions having a single concrete method and thus a dis-
patch ratio of 1. The Nice compiler has the lowest proportion
of multiple dispatch (1%) among the analysed applications,
even though we have excluded that part of the source written
in Java. On average, across all measured applications, we
found that around 3% of generic functions utilise multiple
dispatch (DOD > 1) and around 30% utilise single dispatch
(DOD = 1).
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Figure 8. Rightmost specialiser (RS) distribution of con-
crete methods across applications. The value at the top of
each stack indicates the highest RS measured for this appli-
cation.

Figure 10 shows the rightmost dispatched parameter (RD).
This generally follows DOD, although the proportions are
often a little higher for RD ≥ 2. This shows that a significant
number of single-dispatched generic functions have their
dispatch decision made on the second or beyond argument
supplied in the call.

Figure 11 provides the averages of each of the metrics
for all the multimethod applications to show relationships
between the metrics. As can be seen, RD is generally a
little larger than the degree of dispatch (DOD) — RD ≥
DOD by definition (because dispatch must occur on the
RD’th argument, but there could be arguments to the left
of it that do not dispatch). RS is higher than DOS for the
same reason. The specialiser metrics DOS and RS will
also generally be below the dispatch metrics DOD and
RD, because generic functions dispatch on positions where
methods are specialised, but not all specialised positions
will dispatch if all concrete methods specialise the same
argument position in the same way. Indeed, this appears to
be the case in Gwydion Dylan leading to the large values in
figures 7 and 8, such as a maximum 20 specialisers: many
of these specialisers are common to all the methods in the
generic function, and are in effect acting as static (non-
dispatching) type declarations for those method arguments.
(Strictly, specialiser and dispatch metrics are not comparable,
as dispatch metrics average over generic functions while
specialisation metrics average over concrete methods).



Gwydion OpenDylan SBCL CMUCL McCLIM Vortex Whirlwind NiceC LocStack
DRave 1.74 2.51 2.37 2.01 2.43 2.33 2.07 1.36 1.50
CRave 18.27 43.84 26.57 4.31 7.61 63.30 31.65 3.46 8.92
DOSave 2.14 1.23 1.11 0.85 0.98 1.06 0.71 0.33 1.02
RSave 2.24 1.34 1.23 0.89 1.11 1.10 0.78 0.34 1.08
DODave 0.20 0.39 0.42 0.69 0.78 0.36 0.32 0.15 0.08
RDave 0.24 0.48 0.45 0.71 0.86 0.41 0.37 0.15 0.11

Figure 11. Metrics: averages across applications
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Figure 9. Degree of dispatch (DOD) distribution of generic
functions across applications. The value at the top of each
stack indicates the highest DOD measured for this applica-
tion.

5. Multiple Dispatch in Java
In order to understand how representative our results from
the previous section are, it is useful to determine to what de-
gree multiple dispatch is needed. We examine a mainstream
language, namely Java, and determine how often program-
mers use some mechanism to simulate multiple dispatch. Our
methodology is to establish the common idioms, and then
measure the use of these idioms in a standard corpus. The
release of the corpus that we used for this study has 100
applications in it (Qualitas Research Group 2008). The mea-
surements we present here are for just the latest release of
each application in the corpus. We also measure these appli-
cations using the applicable metrics from Section 3.

As with the multimethod languages, we do not measure
any code that is automatically generated, but unlike the
multimethod languages we could only measure that code that
is distributed as an application independent of the standard
library (JRE) and any third-party libraries. This is due to
the fact that the JRE is significantly larger that many of the

 0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GwydionOpenDylan SBCL CMUCL McCLIM Vortex Whirlwind NiceC LocStack

6 5 4 4 6 7 8 4 3

0
1
2
3+

Figure 10. Rightmost dispatch (RD) distribution of generic
functions across applications. The value at the top of each
stack indicates the highest RD measured for this application.

applications, and we felt its measurements would mask those
of the application.

5.1 Double Dispatch
As illustrated in Section 2, a common approach to providing
multiple dispatch in single dispatch languages is the double
dispatch pattern described by Ingalls (1986). We can get an
idea of to what degree double dispatch is used by measuring
the occurrence of the double dispatch pattern. We refer to
methods that match this pattern as double dispatch candidates.
The characteristics of the double dispatch pattern that we use
to identify its use are:

1. The this object is passed as an actual parameter to a
method invoked on one of the formal parameters to the
double dispatch candidate.

2. The type of the formal parameter of the invoked method
is different from the actual parameter passed.



3. There is more than one child (either through extends
or implements) of the formal parameter of the invoked
method containing the same method.

The first characteristic by itself will produce many false
positives. This pattern occurs very frequently when set-
ting up a mutual relationship between two objects. For ex-
ample, in antlr the class antlr.preprocessor.Hierarchy has a
method public void addGrammar(Grammar gr) whose first
statement is gr.setHierarchy(this). Inspection of Grammar
class indicates that all that is happening is a “setter” is being
used to set up a mutual relationship between a Grammar and
a Hierarchy object.

The key to avoiding the “setter” situation is to realise
that a true double dispatch pattern applies to hierarchies of
types (Shape and Port in the case of the example). The sec-
ond and third characteristics provide heuristics for establish-
ing that the hierarchies exist. We also rule out the use of
java.lang.Object as the formal parameter type as meeting the
double dispatch pattern.

We do our measurements on bytecode rather that source, in
part due to the difficulty in getting high-fidelity parsers (Irwin
2007) and in part due to having existing bytecode analysis
tools available. We only examined methods written for the
application for which double dispatch could take place, that
is, we did not examine synthetic methods, native methods,
constructors, static methods, and abstract methods. We do
examine private (and generally non-public) methods to allow
for the possibility that the double dispatch has been factored
into a private method.

5.1.1 Results for double dispatch
Of the 100 applications we measured, 30 have at least one
candidate method, that is, at least one method that has the
pattern described above. Figure 12 shows those applications,
the number of candidate methods, and the number of methods
examined. We have checked each case and in the fourth
column give our assessment as to whether or not one of
the candidates is indeed intended to provide double dispatch.
Note that “Yes” only means that at least one candidate could
be considered use of double dispatch (sometimes by a very
generous interpretation), but not necessarily all do.

In some cases (azureus) the appearance of the pattern
does not seem to be due to deliberate use of double dispatch,
whereas in others (eclipse) it does (in this case an example of
the Visitor pattern). The number of candidate methods is not
a useful indicator of the use of double dispatch — a relatively
high number does not indicate its use (azureus again), and
nor does a lower number indicate non-use (emma is a Visitor
pattern).

Our results clearly have a number of false positives —
many candidates are not in fact an actual use of double dis-
patch. False negatives are also possible. Because character-
istic 1 requires that the invoked method be on a formal pa-
rameter to a candidate, if the parameter is assigned to a local

Application DDC M DD
aoi 2 5122 No
aspectj 1 9647 No
azureus 14 17553 No
colt 1 2783 No
derby 10 17224 Yes
drjava 1 9491 No
eclipse 77 102231 Yes
emma 2 943 Yes
freecol 1 3625 No
gt2 26 15980 Yes
informa 6 832 No
itext 1 4931 No
jedit 1 4361 No
jhotdraw 1 1672 No
jre 28 77563 Yes
jrefactory 80 1939 Yes
jruby 19 6681 Yes
jtopen 1 21360 Yes
jung 4 2456 No
megamek 4 4515 No
nakedobjects 9 7581 Yes
pmd 3 2126 Yes
poi 14 6239 Yes
pooka 4 3426 Yes
proguard 26 3306 Yes
quartz 2 1575 No
sandmark 1 5400 No
squirrel 1 6465 No
velocity 5 1296 Yes
xalan 10 7935 Yes

Figure 12. Number of double dispatch candidate methods
(DDC), Number of methods examined (M), Manual assess-
ment of whether at least one candidate is an actual use of
double dispatch (DD).

variable and the invocation done on the local, such methods
will not be considered candidates. We have not seen an ex-
ample of this, and it seems unlikely that such situations will
occur when actually doing double dispatch. We believe the
results presented represent upper bounds on the actual use of
double dispatch.

5.2 Cascaded instanceof

An alternative to the use of the double dispatch pattern is to
“manually” do the dispatch through the use of the instanceof
operator. Again an example was given in Section 2. In this
case we consider a method to be a cascaded instanceof
candidate if it contains two applications of instanceof to
the same formal parameter of a method. We require two
applications because we have found many uses of single
uses of instanceof within a method that do not appear to be



Application % CIC M DDC,DD
junit 0.51 2 391
myfaces 0.57 27 4779
jpf 0.58 5 867
jedit 0.62 27 4361 1,No
freecol 0.63 23 3625 1,No
jsXe 0.65 3 465
displaytag 0.65 5 769
gt2 0.65 104 15980 26,yes
jung 0.65 16 2456 4,No
aspectj 0.65 63 9647 1,No
eclipse 0.69 707 102231 77,Yes
jchempaint 0.75 27 3624
quartz 0.76 12 1575 2,No
megamek 0.82 37 4515 4,No
colt 0.93 26 2783 1,No
antlr 0.96 19 1987
jruby 1.00 67 6681 19,Yes
axion 1.32 32 2419
argouml 2.28 216 9484

Figure 13. Applications with more than 0.5% methods being
cascaded instanceof candidates (CIC). The last column
repeats the relevant double dispatch data from figure 12.

simulating multiple dispatch. We examined the same set of
methods as we did for the double dispatch pattern.

5.2.1 Results
All but 16 applications show at least some use of the
instanceof pattern described above. Figure 13 shows those
19 applications that have more than 0.5% of their methods
being cascaded instanceof candidates (the remaining results
are omitted for space reasons). As in the case of the double
dispatch pattern, there are some that do not appear to be
simulating multiple dispatch (jsXe for example) but others
(antlr for example) that clearly could be rewritten to use
double dispatch (and more generally multimethods). Of par-
ticular interest is argouml. Not only does it have the highest
proportion of its methods with the instanceof pattern, it also
has a considerable number of uses of instanceof that don’t
match the pattern we measure and also apparently also has
no use of double dispatch. We suspect much of this could be
reduced through use of double dispatch but it would require
considerable refactoring.

It would seem that multiple dispatch is more often being
simulated in Java using cascading instanceof rather than
double dispatch, although we note two (xalan, jruby) that
appear to use both. In both those cases the double dispatch
pattern are associated with the use of the visitor pattern.

As with double dispatch candidates, the cascading
instanceof candidates must have the application of
instanceof to a parameter of the candidate. Sampling of the
code in the corpus suggests that it is possible that instanceof
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Figure 14. Degree of specialisation (DOS) for Java applica-
tions; measurements as a proportion of total concrete meth-
ods.

be applied to local variables. Such situations would not be
considered candidates in our measurements. We also require
at least two applications of instanceof. It is likely that even
a single use of instanceof may correspond to a crude double
dispatch. This means we are likely to have more false nega-
tives for the cascading instanceof results than for the double
dispatch results. Nevertheless we believe the results we have
are upper bounds on the use of cascading instanceof as a
means to provide multiple dispatch.

5.3 Metrics Results
We now present the measurements from the metrics presented
in Section 3.3 for our Java corpus. For those metrics based
on the presence of specialisers, in Java the only parameter
that can be specialised is the “this” parameter. It is possible
that no parameters are specialised, namely in the case of
static methods and constructors. This means that in the
standard interpretation of Java, rightmost specialiser (RS)
will be either 0 or 1, and the rightmost dispatch (RD) will
be 0 or 1 exactly when RS is 0 or 1. So the proportion
of functions having RS and RD measurements of 0 is the
proportion of generic functions that are either static methods
or constructors, measurements we give below.

Unlike the double dispatch and cascading instanceof mea-
surements, for the metrics discussed here we must measure
static methods and constructors. We also must measure ab-
stract methods, which do have a specialiser. We do not mea-
sure synthetic and native methods, and we do not measure
private methods.

We can consider the use of either double dispatch or
cascaded instanceof as providing specialisation on a second
parameter, giving a RS of 2. However, as our results above
show, even if we consider presence of the double dispatch or
cascaded instanceof pattern as actually simulating multiple
dispatch (which we know is not the case), then it is rare that
even 1% of the functions will have an RS measurement of
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Figure 15. Degree of dispatch (DOD) for Java applications;
measurements as proportion of total generic functions.

2. Accordingly, for clarity we will only give the results for
measurements of 0 or 1.

Degree of specialisation (DOS) is also either 0 or 1 in
the standard interpretation of Java, exactly when RS is 0 or
1. Figure 14 shows the results for DOS as applied to our
Java corpus. The bars are ordered in increasing size of the
applications, as measured by number of generic functions.
What is somewhat surprising is how large the proportion of
functions have DOS of 0. All applications have at least 15%
of generic functions being constructors and static methods
(the lowest being derby at 15.7%). The application with the
largest proportion of DOS being 0 is jasml (67.3%). It seems
that the presence of static methods accounts for many of these
results. Half the applications have more than 40% of the DOS
measurements due to static methods; the lowest is 11.7%
(trove) and the highest is 80.5% (mvnforum).

As with DOS the degree of dispatch (DOD) metric will
only provide measurements of 0 or 1. However, in this
case non-static methods and non-constructors can have a
measurement of 0 if there is not more than 1 concrete method
belonging to the generic function. Figure 15 shows the
DOD measurements as a proportion of the generic functions.
It shows that rarely (6 of the 100 applications) does the
proportion of generic functions with more than 1 concrete
method get to even 10%, that is, usually less than 10% of
methods are overridden. However, recall that user-defined
methods that override standard library or third-party library
are not counted in our measurements.

For the remaining metrics we need to determine what
are generic functions in Java. Unlike the other languages
there is no specific concept on which to base the decision, so
we appeal to the definition given in Section 3, and identify
generic functions with any possible method call. Figure 16
illustrates the consequences of this definition. Focusing only
on the generic functions associated with A and B, there are
seven generic functions — the two default constructors, and
the 5 possible calls that can take place as shown in the body
of Main#uses(A,B).

class A {
public void methodA() {}
public void inherited() {}

}

class B extends A {
public void methodB() {}
public void inherited() {} // overrides from A

}

class Main {
public void uses(A anA, B aB) {

anA.methodA(); // GF: methodA(A)
anA.inherited(); // GF: inherited(A)
aB.methodB(); // GF: methodB(B)
aB.inherited(); // GF: inherited(B)
aB.methodA(); // GF: methodA(B)
}

}

Figure 16. Java example of generic functions. The generic
functions being called at each callsite are shown in the
comments.

For illustration, we will name generic functions with the
“functional” form of the possible method calls, that is, making
the implicit “this” argument type explicit, as shown in the
comments in the figure. For example, there is the generic
function methodB(B) and it contains the concrete method
B.methodB(). All generic functions except inherited(A) con-
tain only one concrete function. inherited(A) contains two
concrete methods, A.inherited() and B.inherited(), as either of
these could be executed at the second callsite.

The last callsite in the example requires more discussion.
It is a legal call, and so by our definition it is a generic
function. However, in the given example, the only concrete
method it contains is A.methodA(), as that is the method
inherited by B. At first glance this seems odd, however it
must be this way. If we consider the generic function at this
callsite to be methodA(A) then, if a new class inherits from B
and overrides inherited(), the generic function at the callsite
would have to change, despite neither B nor Main changing.
So our conclusion is that the generic function called at the
last callsite of the example must be methodA(B) (and this
is in fact how it will be compiled, as an invokevirtual on
B.methodA()). We have explored other possible definitions
and these also have issues and as we had to make a choice,
chose that presented here. However it does suggest that more
work is needed to unify the concept of generic function (and
specialiser) across all programming languages.

Figure 17 shows the measurements for DRave with the
definition of generic function as described above. All of the
measurements are at least 1 or greater. The smallest is in fact
1 (jasml), indicating that no methods in this application are
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Figure 17. Average dispatch ratio (DRave) for Java applica-
tions.
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Figure 18. Dispatch ratio (DR) percentage distribution for
Java applications, log-log scale.

overridden. The largest is 1.44 (proguard). The median is
1.11 (marauroa).

Figure 18 shows the distribution of dispatch ratio (DR)
over all generic functions over all Java applications analysed
shown on a log-log scale. In all, there are 1,927,036 generic
functions represented, of which 4.97% have more than 1
concrete method. The generic function with the most concrete
methods (926) is from eclipse. The distribution shows the
classic power law shape (along the same lines as Figure 6 in
Section 4).

Finally, the results for average choice ratio (CRave) are
shown in Figure 19. The smallest value is 1.0 (for jasml, as
we would expect from the previous results), the largest is 77.1
(jruby), and the median is 3.2 (jspwiki).

One point to note is that we have presented the Java
results in order of application size as measured by number
of generic functions. There is no obvious trend in any of the
measurements with respect to size.
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Figure 19. Average choice ratio (CRave) for Java applica-
tions.

6. Discussion
There are a number of inferences which can be drawn from
the results presented in the last two sections. Perhaps the
most obvious is that many of the metric values are low: other
than CMUCL and McCLIM, every language we measured
had more than 60% monomorphic generic functions; less
than 10% of functions dispatch on two or more arguments
(Figure 9). This is reflected in dispatch ratio DRave values:
no language had more than 2.5 concrete methods for each
generic function (Figure 11). Furthermore, the DRave values
for the multimethod languages (1.50–2.51, except Nice, 1.36)
exceed those for Java (median 1.11, max 1.44). We may
also see some effects of the maturity of applications being
measured. CMUCL and McCLIM are the most mature of the
9 multiple dispatch applications, and they exhibit the most
dynamic dispatch (around 70% in Figure 8, whereas the next
closest is less than 40%).

The choice ratio CRave provides an alternative view of the
amount of dispatch in the systems we studied: counting how
many alternative concrete methods could have been reached
by a dispatch. Here again we see Java’s values are consistently
lower than those of the multimethod languages, although the
figures are larger overall. The larger CRave values — even
in Nice, every method on average could have dispatched
to three alternative methods — not only demonstrates the
skewed dispatch ratio distribution shown in Figure 5, but also
demonstrates the value of the CR metric: while dispatching
does not appear that important when measured by generic
functions, it is more important measured by methods (because,
of course, one dispatching generic function will have at least
two methods to dispatch to).

Monomorphic vs Polymorphic methods It seems that espe-
cially in Java, but also in other languages, there will be many
generic functions that do not dispatch: static methods, con-
structors, but also auxiliary methods, methods that provide
default argument values in languages without variable argu-



ment lists or keyword arguments. On the other hand, there
will be a significant number of generic functions that do dis-
patch to three or more different concrete methods — and the
methods belonging to those functions make up a substantial
fraction of the program’s methods. The Template Method
pattern (Gamma et al. 1994), for example, will contribute to
this effect, as only “hook methods” should be overridden in
subclasses, while methods providing abstract, concrete, and
primitive operations will not be overridden.

Our metrics cannot say anything about how important
multiple dispatch (or even single dispatch) is to program
design: simply that many methods are monomorphic, and
most of the remainder are single dispatch. Those dispatching
methods may be crucial to the functioning of a particular
program — as well as Template method, many other patterns
(Visitor, Observer, Strategy, State, Composite) are about
scaffolding a well-chosen dynamic dispatch with lots of
relatively straightforward non-dispatching code.

Another point here is that a language specification does
not dictate a programming style: just supporting multiple (or
even single) dispatch in a programming language doesn’t
mean it will be used in programs, the Nice compiler being
a prime example. On the other hand, the multiple dispatch
corpora generally exhibit more single dispatch than most of
the Java corpus.

Style Comparing RD and DOD metrics in Figure 11 we
see that some corpora (primarily McCLIM, Gwydion and
OpenDylan, but also LocStack, Vortex and Whirlwind) have
significantly higher values for rightmost dispatched parameter
RD than they do for degree of dispatch DOD. This means
that some generic functions’ argument lists must have some
non-dispatching parameters “to the left of” the dispatching
parameters — a contrast to single-dispatch languages where
the dispatch is always on the single leftmost parameter.
For example, programs could contain two-argument generic
functions which dispatch on the second argument but not on
the first.

In the case of McCLIM, this must partly be explained
by the fact that the CLIM Standard (McKay and York
2001) explicitly requires some types of generic functions
to dispatch on their second arguments (setfs and mapping
functions). More generally, multiple dispatch gives more
options to API designers, who can choose argument order
to reflect application semantics rather than be restricted
by having to place a dispatching argument first. In sin-
gle dispatch languages, code can fall into a “Object Verb
Subject” order: rectangle.drawOn(window). Here, Rectangle
must come first, purely because the code needs to dis-
patch on Rectangle to draw different kinds of figures. In
multiple dispatch languages, this could equally be written
window.draw(rectangle) matching the “Subject Verb Object”
word order commonly used in English, or perhaps “Verb Sub-
ject Object” draw(window,rectangle). Multiple dispatch lan-
guages offer this flexibility, even where only single dispatch

is required, and our metrics demonstrate that programmers
take advantage of this flexibility.

Java Idioms Our detailed analysis of Java idioms shows
that there is significantly more use of instanceof than we
expected — recall that we only count methods with multiple
applications of instanceof to a parameter, meaning that
applications to a non-parameter, including fields, and single
uses within a method are not counted.

Multiple dispatch is being simulated by use of instanceof
rather than via explicit double dispatching, and when double
dispatch is used, it is in implementations of the Visitor pattern.
It is not clear if this is because double dispatch is largely
unknown by most programmers, or whether concern over
the performance of double dispatch has lead programmers
to prefer use of instanceof — although double dispatch will
often be faster than instanceof (Foote et al. 2005; Cunei and
Vitek 2005).

We surmise (we cannot tell from just the corpus data)
the reasons why programmers seem to prefer instanceof to
double dispatch. Dispatch is in some sense an implementation
issue, but especially in Java, where objects have explicit and
documented interfaces, dispatching methods pollute their
classes interfaces, reducing classes cohesion and increasing
coupling. Although instanceof cascades may be slower than
double dispatching, and are certainly less extensible, by
being localised to a single class they are significantly more
straightforward to code than double dispatching. This may
account for the relative popularity of each idiom.

Multiple dispatch benefits Adding multiple dispatch to a
programming language can help improve the expressiveness
by providing a first class alternative to either double dispatch
or cascaded instanceof. Multiple dispatch is considered one
of the possible solutions to the expression problem (Wadler
1998; Zenger and Odersky 2005). Clifton et al. show how
multimethods can be used to help with binary methods,
event handling, tree traversals, and implementing finite state
machines (Clifton et al. 2006, Section 5.1).

An Historical Perspective Figure 20 is taken directly from
Kempf, Harris, D’Souza, and Snyder (1987) published at
OOPSLA’87. This paper evaluates CommonLoops (the fig-
ures report on PCL CommonLoops and PCL’s BeatriX graph-
ics library). Our studies replicate the corpus analysis from that
research, but 20 years later and across a number of languages
and metrics. Comparing Figures 5, 7, and 20, the similarity of
the distributions is striking. Although both systems share the
same heritage — Lisp-based multiple dispatch languages and
GUI libraries for those languages — there are also significant
differences: we have analysed recent releases of CLOS and
McCLIM, versions at least twenty years later than PCL and
BeatriX as studied in 1987. The more recent programs are
also much larger than their 1987 counterparts: where PCL
has 91 generic functions, CLOS has 512; BeatriX has 143
while McCLIM has 2222. Taken together, these results show
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metaclass kernel, and can presumably be specialized by a 
programmer implementing a new language through 
another metaclass. One measure of this hypothesis is to 
see how many new methods were defined on 
unoverloaded generic functions during the COOL 
development. Looking at the COOL implementation, 
only one method was defined on a CommonLoops 
metaclass method which previously was not overloaded 

Fig. 4 plots the results of measuring the percentage of 
total methods that discriminated on zero6 or more 
arguments, and is thus a measure of how often the 
implementers used multimetbods. As can be seen, in both 
the CommonLoops system itself and in the window 
system application, methods discriminating on a single 
argument, or classical methods, were used far more often 
than multimethods. Whether or not this was duesto the 

6. A method discrimintaing on zero arguments is a default method, and 
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other method with the same name. 
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implementers’ experiences with classical methods in 
other object-oriented languages is open to question, but 
presumably as developers become more experienced with 
multimethods, multimethod usage may increase. 

In the CommonLoops kernel, the maximum number of 
arguments discriminated on was two. Despite the limited 
use of multiargument dispatching, many of these methods 

are in a critical part of the method definition code where 
dispatching on both a discriminator object and a method 
object logically makes sense, since the operation to be 
performed may vary according to the classes of both the 
discriminator and the method If multiargument 
dispatching were removed, either a dispatching class 
would be required or the methods on the method and 
discriminator classes would be required to differentiate 
using a case analysis on the class of the nonself argument. 
A more accessible example of how multimethods can 
simplify code when method behavior requires dispatching 
on two arguments is given in Section 5. 

In contrast, as mentioned previously, most of the 
multiargument dispatching in BeatriX is used for type 
checking. An indication of this was the fact that only 
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Figure 20. Equivalents of dispatch ratio (DR) and degree of specialisation (DOS) metrics for CommonLoops and BeatriX.
Reprinted from Kempf, Harris, D’Souza, and Snyder, OOPSLA’87.

that, at least as far as generic functions are concerned, CLOS
programming practice is consistent over the last 20 years.

Evidence based language design

I have always remark’d, that the author pro-
ceeds for some time in the ordinary ways of reason-
ing. . . when all of a sudden I am surpriz’d to find, that
instead of the usual copulations of propositions, is, and
is not, I meet with no proposition that is not connected
with an ought, or an ought not.

David Hume, A Treatise of Human Nature, 1739.

Hume’s Law states that normative (prescriptive) state-
ments — in this case, statements about how programs ought
to be written — cannot be justified exclusively by descriptive
statements. Our corpus analyses are descriptive: they tell us
about how programs are written, but cannot (on their own)
tell us about whether that is a “good” way to write programs,
or whether language designers should consider multiple dis-
patch (or even single dispatch) as a language feature worth
retaining. In this paper, we do not try to make any of these
claims — we do not even claim whether high or low values
for metrics are desirable: our metrics characterise program
structures: they do not attempt to measure program quality.

Nonetheless, there seem to be clear advantages to inform-
ing the design of future languages with evidence drawn by
something other than anecdote, personal experience, small-
scale observational studies, or personal morality (Dijkstra
1968). Similarly, maintenance and debugging tasks – and
even teaching about programming paradigms — would surely
benefit from being based in evidence about the world as it is,
as well as the world as we would like it to be!

7. Conclusion
In this paper we present an empirical study of multiple
dispatch in existing languages. To our knowledge it is the
first cross-language corpus analysis of multiple dispatch. We
define six metrics (Dispatch Ratio, Choice Ratio, Degree of
Specialisation, Rightmost Specialiser, Degree of Dispatch,
and Rightmost Dispatch) based on a language-independent
model of multiple dispatch. We present the values of these
metrics for a corpus of programs written in six multiple
dispatch languages: CLOS, Dylan, Cecil, Diesel, Nice and
MultiJava. We compare our results with an additional study
on the use of the double dispatch pattern and cascaded
instanceof expressions in Java.

In answer to our question how much is multiple dispatch
used?, we found that around 3% of generic functions utilise
multiple dispatch and around 30% utilise single dispatch.



Determining how much these results generalise — i.e.,
how well these measurements represent the use of multiple
dispatch in other applications and languages — necessarily
requires further study, but we expect these results to provide
a benchmark for comparison.

Considering our single dispatch study of Java programs,
to answer how much could multiple dispatch be used?, we
found that cascaded instanceof expressions are used more
often than double dispatch, but that both together are used
much less than multiple dispatch in any of the multiple
dispatch applications we studied. We consider that this result
means that Java programs would have scope to use more
multiple dispatch were it supported in the language.

Finally, our study is but a beginning in this line of research.
Our language independent model of multiple dispatch, and
the definitions of the metrics, proved more difficult to develop
that we initially expected; ensuring measurements were
comparable across languages required particular care. This
suggests there is considerable subtlety in the concepts we
are trying to model. We hope this work will inspire more
research, including quantitative and qualitative studies of
multiple dispatch languages and applications, and design
studies of languages supporting multiple dispatch, to further
our understanding of multiple dispatch in practice.

A. Corpus
A.1 Applications in Multiple Dispatch Languages
Figure 21 presents the raw measurements used to generate
Figures 5–10. It shows percentages of the total generic
functions (DR, DOD, RD) or concrete methods (DOS, RS)
for frequencies between 0 and 9 and the sum of frequencies
equal to or higher than 10. It also mentions the sources where
we obtained each application.

A.2 Java Applications
The complete list of Java applications measured in this study
is listed below. The format is application name-version id.
This is release 20080603 of the Qualitas Corpus (Qualitas
Research Group 2008).

ant-1.7.0, antlr-2.7.6, aoi-2.5.1, argouml-0.24, aspectj-1.0.6,
axion-1.0-M2, azureus-3.0.3.4, c jdbc-2.0.2, checkstyle-4.3,
cobertura-1.9, colt-1.2.0, columba-1.0, compiere-250d,
derby-10.1.1.0, displaytag-1.1, drawswf-1.2.9, drjava-20050814,
eclipse SDK-3.1.2-win32, emma-2.0.5312, exoportal-v1.0.2,
findbugs-1.0.0, fitjava-1.1, fitlibraryforfitnesse-20050923,
freecol-0.7.3, freecs-1.2.20060130, galleon-1.8.0,
ganttproject-1.11.1, gt2-2.2-rc3, heritrix-1.8.0, hibernate-3.3.0.cr1,
hsqldb-1.8.0.4, htmlunit-1.8, informa-0.6.5, ireport-0.5.2, itext-1.4,
ivatagroupware-0.11.3, jFin DateMath-R1.0.0, jag-5.0.1,
james-2.2.0, jasml-0.10, jasperreports-1.1.0, javacc-3.2,
jchempaint-2.0.12, jedit-4.3pre14, jena-2.5.5, jext-5.0,
jfreechart-1.0.1, jgraph-5.10.2.0, jgraphpad-5.10.0.2, jgrapht-0.7.3,
jgroups-2.6.2, jhotdraw-5.3.0, jmeter-2.1.1, jmoney-0.4.4,
joggplayer-1.1.4s, jparse-0.96, jpf-1.0.2, jrat-0.6,

jre-1.5.0 14-linux-i586, jrefactory-2.9.19, jruby-1.0.1,
jsXe-04 beta, jspwiki-2.2.33, jtopen-4.9, jung-1.7.1, junit-4.4,
log4j-1.2.13, lucene-1.4.3, marauroa-2.5, megamek-2005.10.11,
mvnforum-1.0-ga, myfaces core-1.2.0, nakedobjects-3.0.1,
nekohtml-0.9.5, openjms-0.7.7-alpha-3, oscache-2.3-full,
picocontainer-1.3, pmd-3.3, poi-2.5.1, pooka-1.1-060227,
proguard-3.6, quartz-1.5.2, quickserver-1.4.7, quilt-0.6-a-5,
roller-2.1.1-incubating, rssowl-1.2, sablecc-3.1, sandmark-3.4,
springframework-1.2.7, squirrel sql-2.4, struts-1.2.9,
sunflow-0.07.2, tomcat-5.5.17, trove-1.1b5, velocity-1.5,
webmail-0.7.10, weka-3.5.7, xalan-j 2 7 0, xerces-2.8.0,
xmojo-5.0.0.
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Application Metric 0 1 2 3 4 5 6 7 8 9 10+
Gwydion http:// DR 0 83.36 6.87 3.55 1.74 1.00 0.76 0.74 0.37 0.16 1.45
www.opendylan.org/ DOS 5.74 36.31 31.28 13.77 5.51 1.43 2.72 0.82 1.27 0.30 0.85
/downloading.phtml RS 5.74 35.21 31.29 13.25 6.80 0.97 2.45 0.06 2.79 0 1.45

DOD 83.36 13.90 2.61 0.11 0.03 0 0 0 0 0 0
RD 83.36 10.66 4.63 0.95 0.32 0.05 0.03 0 0 0 0

OpenDylan http:// DR 0 68.08 14.56 5.83 3.64 2.61 1.21 0.23 0.84 0.47 2.52
www.opendylan.org/ DOS 6.48 68.36 21.75 2.84 0.20 0.35 0 0.02 0 0 0
downloading.phtml RS 6.48 59.96 27.89 4.73 0.43 0.50 0 0.02 0 0 0

DOD 68.08 25.43 5.88 0.51 0.09 0 0 0 0 0 0
RD 68.08 18.71 11.15 1.73 0.28 0.05 0 0 0 0 0

SBCL http:// DR 0 63.64 21.21 6.34 2.75 1.65 0 0.55 0.83 0.28 2.75
www.sbcl.org/ DOS 7.32 75.15 16.26 1.28 0 0 0 0 0 0 0

RS 7.32 66.20 22.53 3.60 0.35 0 0 0 0 0 0
DOD 63.64 31.68 3.58 1.10 0 0 0 0 0 0 0
RD 63.64 29.20 5.51 1.38 0.28 0 0 0 0 0 0

CMUCL http://www. DR 0 34.57 57.62 2.54 1.95 1.17 0.20 0 0.20 0.39 1.37
cons.org/cmucl/ DOS 28.13 59.36 11.45 1.07 0 0 0 0 0 0 0

RS 28.13 57.32 11.93 2.33 0.29 0 0 0 0 0 0
DOD 34.77 61.91 2.54 0.78 0 0 0 0 0 0 0
RD 34.77 60.94 3.12 0.98 0.20 0 0 0 0 0 0

McCLIM http:// DR 0 24.30 59.54 6.75 3.60 1.58 1.49 0.32 0.41 0.14 1.89
common-lisp.net/ DOS 22.63 60.44 13.67 3.07 0.17 0.02 0 0 0 0 0
project/mcclim/ RS 22.63 52.06 19.56 3.83 1.07 0.67 0.19 0 0 0 0

DOD 27.54 67.24 4.82 0.36 0 0.05 0 0 0 0 0
RD 27.54 61.79 8.69 1.49 0.23 0.09 0.18 0 0 0 0

Vortex http://www. DR 0 67.89 15.87 6.15 3.38 1.73 1.04 0.89 0.43 0.29 2.34
cs.washington.edu/ DOS 12.09 71.65 14.82 1.31 0.10 0.01 0.01 0 0 0 0
research/projects/ RS 12.09 70.13 14.93 1.87 0.52 0.42 0.03 0.01 0.01 0 0
cecil/www/Release/ DOD 67.89 28.18 3.55 0.37 0.02 0 0 0 0 0 0

RD 67.89 24.90 5.61 1.24 0.28 0.03 0.03 0.02 0 0 0
Whirlwind http:// DR 0 72.86 14.35 4.92 2.75 0.96 0.78 0.68 0.44 0.21 2.06
www.cs.washington. DOS 42.67 45.10 10.85 1.26 0.11 0 0.01 0 0.01 0 0
edu/research/ RS 42.67 41.03 12.63 2.92 0.44 0.25 0.03 0.01 0.02 0 0
projects/cecil/ DOD 72.86 23.20 3.42 0.38 0.12 0 0 0 0.02 0 0
www/Release/ RD 72.86 19.89 5.32 1.29 0.38 0.19 0.03 0.02 0.02 0 0
NiceC http://nice. DR 0 86.57 7.69 2.79 0.84 0.42 0.25 0.25 0.17 0.08 0.93
sourceforge.net/ DOS 70.03 27.24 2.60 0.12 0 0 0 0 0 0 0

RS 70.03 26.01 3.59 0.25 0.12 0 0 0 0 0 0
DOD 86.57 12.42 0.84 0.17 0 0 0 0 0 0 0
RD 86.57 12.08 1.10 0.17 0.08 0 0 0 0 0 0

LocStack http:// DR 0 93.28 1.83 1.22 0.20 0.61 0.20 0.41 0 0 2.24
portolano.cs. DOS 12.52 75.24 9.93 2.31 0 0 0 0 0 0 0
washington.edu/ RS 12.52 75.24 4.08 8.16 0 0 0 0 0 0 0
projects/location/ DOD 93.28 5.30 1.43 0 0 0 0 0 0 0 0

RD 93.28 3.87 1.63 1.22 0 0 0 0 0 0 0

Figure 21. Metrics distributions for each application in corpus: dispatch ratio (DR), degree of specialisation (DOS), rightmost
specialiser (RS), degree of dispatch (DOD), rightmost dipatch (RD), expressed in percent.


