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Abstract. Containers have gain popularity because they support fast
development and deployment of cloud-native software such as micro-
services and server-less applications. Additionally, containers have low
overhead, hence they save resources in cloud data centers. However, the
difficulty of the Resource Allocation in Container-based clouds (RAC)
is far beyond Virtual Machine (VM)-based clouds. The allocation task
selects heterogeneous VMs to host containers and consolidate VMs to
Physical Machines (PMs) simultaneously. Due to the high complexity,
existing approaches use simple rule-based heuristics and meta-heuristics
to solve the RAC problem. They either prone to stuck at local optima or
have inherent defects in their indirect representation. To address these
issues, we propose a novel group genetic algorithm (GGA) with direct
representation and problem-specific operators. This design has shown
significantly better performance than the state-of-the-art algorithms in
with a wide range of test datasets.

Keywords: cloud resource allocation · container placement · energy
consumption · group genetic algorithm.

1 Introduction

Container-based clouds [15] have quickly become a new trend in cloud comput-
ing. Compared to Virtual Machines (VMs), containers (e.g. docker) cause much
fewer overheads. This feature is critical for modern cloud-native applications,
such as microservices and serverless applications, as they are developed in a
decoupling and scalable manner. Cloud providers also welcome containerization
because resource utilization can be improved by sharing a VM with multiple ap-
plications. Consequently, higher utilization of resources leads to the lower energy
consumption of cloud data centers, therefore, containers can help to achieve a
green cloud [4].

Cloud providers apply server consolidation [22] strategies in resource alloca-
tion to improve the utilization of cloud resources. Server consolidation strategies
aim to allocate applications to a minimum number of Physical Machines (PMs),
to reduce energy consumption. In container-based clouds, it is much difficult than
in VM-based clouds because of the higher granularity of the allocation problem.
Server consolidation in VM-based clouds involves one level of allocation, i.e. a
set of VMs is allocated to PMs directly while container-based clouds involve
two levels of allocation, i.e. a set of containers is allocated to a set of VMs with
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various types, and the VMs are allocated PMs. In the remaining of this paper,
we use Resource Allocation in Container-based clouds (RAC) to represent the
consolidation problem. In terms of difficulty, the two levels of allocation are both
vector bin packing problems which are NP-hard [23]. Moreover, resource alloca-
tion in the first level, e.g., VM type selection, impacts the resource allocation in
the second level.

Since it is impossible to find the optimal solution for a large scale RAC
problem (e.g. over 1000 containers), existing studies mainly apply rule-based
heuristics [7, 12, 15, 23], and meta-heuristics algorithms [2, 5, 20] to find near-
optimal solutions. Rule-based heuristics are greedy so they prone to stuck at
local optimal solutions and they perform differently when facing various settings
of VM types from multiple cloud providers. The meta-heuristics are promising
algorithms. However, the current research either focuses on allocating containers
directly to PMs problem or uses indirect representation which is inefficient in
the searching process.

GGA was proposed by Falkenauer [3] and inspired many studies in solving the
VM allocation problem [11, 21]. Different from the standard GA, GGA applies
a variable length of chromosome and domain-specific genetic operators such as
inversion and rearrangement. GGA is designed for bin packing problem and uses
a direct representation which avoids a decoding process. However, GGAs [3,17]
can only solve one-level problems.

This research aims at proposing a novel Group GA (GGA) for the RAC prob-
lem to minimize the energy consumption. The proposed GGA approach provides
the functionality of selecting VM types. Also, it has a direct representation and
problem-specific operators to address the limitations of the dual-chromosome
GA approach. To achieve our aim, we set up the following objectives:

1. To propose a new representation for the RAC problem,

2. To develop new genetic operators including gene-level crossover, unpack,
rearrangement, and merge.

3. To evaluate our proposed approach by comparing it with the state-of-the-
art algorithms: Rule-based (FF&BF/FF) approach [23] and two variations
of dual-chromosome GA [20] approaches.

The paper is organized as follows. Section 2 gives a background of our method-
ology and discusses related studies of the RAC problem. Section 3 presents the
model of the problem. Then, section 4 describes the proposed GGA approach.
Section 5 illustrates the experiment design, results, and analysis. Section 6 sum-
marizes the contributions and discusses the future works.

2 Related Work and Background

This section first reviews related works of the resource allocation in container-
based clouds. Then, we provide a brief background of GGA [3].
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2.1 Related Works

Current studies solve the RAC problem with two types of method, rule-based
approaches, and meta-heuristics approaches. Piraghaj [15], Kaur [7], Mann [13],
Liu [10] and Zhang [23] treat the problem as a dynamic problem and propose
AnyFit-based (e.g. First Fit, Best Fit) approaches to solve the problem. The
proposed rules evaluate the candidate VMs and VM types to decide which VM
to choose or which VM type to create. Overall, from the problem’s perspective, as
Wolke et al. [22] suggested, dynamic approaches are useful in some scenarios such
as container migration and inferior in other scenarios such as initial container
allocation. From the methods’ perspective, the rules have a poor generality. Their
performance varies when applying them to different settings of VM types (see
Section 5.4). Another drawback is that these greedy rules are easily stuck at
local optimal solutions.

A few meta-heuristics have been proposed, but they are either focus on one-
level allocation problem such as [5, 9], or uses an indirect representation [2, 20].
Guerrero et al. [5] propose an NSGA-II-based approach for a four-objective allo-
cation problem. Lin et al. [9] propose an ant colony algorithm-based approach for
the problem. In their models, containers are allocated directly to PMs without
considering VMs. Tan et al. [2,20] propose two meta-heuristic approaches for the
RAC problem, an NSGA-II-based and a dual-chromosome GA (DGA) approach.
These approaches use indirect representations and they require a decoding pro-
cess to interpret the representation to a solution. Overall, these algorithms search
in the genotype space.

The current meta-heuristics have two shortcomings. The first drawback is
that they [5, 9] only consider the one-level structure which inherently leads to
local optimal solutions. The second drawback is that the decoding process of [20]
can easily break the solutions (good combination of containers and VMs) from
the previous generation. Therefore, it is hard to perform a directed search. As
a consequence, the algorithms with indirect representation cannot find local
optimal solutions efficiently.

Therefore, because of these drawbacks in the literature, we propose a meta-
heuristic with a direct representation to solve the two-level RAC problem. The
next section discusses the background of the GGA and explains how it can be
adapted to our problem and meets our goal.

2.2 Group Genetic Algorithm (GGA)

GGA was proposed by Falkenauer [3] to solve the bin packing problem. GGA
overcomes a major defect, the redundant encoding problem, in the ordering
GA [16]. The ordering GA uses an encoded representation and the decoding
process highly relies on items rather than the numbering of groups. For example,
using two letters A and B to represent distinct groups, AAB and BBA are two
solutions. However, in terms of grouping, these two solutions have the same
meaning – the first two items are in the same group and the third item is in
another group. To solve the redundant problem, GGA proposes a variable-length
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representation. The new crossover, mutation, and inversion operators directly
operate on groups instead of items. Later on, Quiroz-Castellanos [17] embeds
heuristics into the algorithm to speed up the search procedures.

GGA has been successfully applied to solve many bin packing problems such
as ordering batch problems in warehouse [8], VM placement problem [6,11], and
assembly line balancing problem [18]. However, it has not to be used to solve any
two-level vector bin packing problems. Our RAC problem is a two-level vector
bin packing problem. It is promising to adopt GGA’s framework and propose
problem-specific operators to solve our problem.

3 Problem Model

Resource Allocation in Container-based clouds problem (RAC) is a task of allo-
cating a set of containers to a set of VMs with various types, then allocating
the created VMs to a set of PMs. VM selection chooses an existing VM to al-
locate a container. VM creation selects a type of VM, creates a VM with the
selected type and allocates the container to the new VM. The types of VM are
defined by cloud providers. PM selection chooses an existing PM to allocate the
new VM. If there is no available PM, a new PM will be created and the data
center automatically allocates the new VM to the new PM. Since the PMs are
homogeneous, no decision is needed for PM creation.

In the static setting of RAC problem, a set of containers C = {c1, . . . , cn}
arrives to the cloud to be allocated. Each container ci has a CPU occupa-
tion ζcpu(ci), a memory occupation ζmem(ci). There is a set of VM types Γ =
{τ1, . . . , τm} that can be selected to allocate the containers. Each VM type τj
has a CPU capacity Ωcpu(τj) and a memory capacity Ωmem(τj). Also, it has
a CPU overhead πcpu(τj) and memory overhead πmem(τj), indicating the CPU
and memory occupation for creating a new VM of that type. There is an unlim-
ited set of PMs P = {p1, . . . , } for allocating the created VMs. Each PM pk has
a CPU capacity Ωcpu(pk) and a memory capacity Ωmem(pk).

The static RAC problem is subject to the following constraints:

1. Each container is allocated to one VM.
2. Each created VM is allocated to one PM.
3. For each created VM, the total CPU and memory occupations of the contain-

ers allocated to that VM does not exceed the corresponding VM capacity.
4. For each PM, the sum of the CPU and memory capacities of the VMs allo-

cated on the PM does not exceed the corresponding PM’s capacity.

The energy consumption is calculated as follows:

E =

K∑
k=1

Ek, (1)

where Ek is the energy consumption of the kth PM (K is the number of PM
used).
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Ek is calculated as follows:

Ek = Eidlek + (Efullk − Eidlek ) · µcpuk , (2)

where Eidlek and Efullk indicate the energy consumption of the kth PM per time
unit if it is idle and fully loaded, respectively. µcpuk indicates the CPU utilization
level of the kth PM. µcpuk is calculated as follows.

µcpuk =

∑L
l=1

(∑m
j=1 π

cpu(τj) · zjl +
∑n
i=1Ω

cpu(ci) · xil
)
· ylk

Ωcpu(pk)
, (3)

where xil, ylk and zjl are binary decision variables, and L is the number of created
VMs. xil takes 1 if ci is allocated to the lth created VM, and 0 otherwise. ylk
takes 1 if the lth created VM is allocated to the kth PM, and 0 otherwise. zjl
takes 1 if the lth created VM is of type j, and 0 otherwise.

The static RAC problem is to find resource allocation with minimal overall
energy consumption as shown as follows.

min

K∑
k=1

Ek, (4)

s.t.

L∑
l=1

xil = 1, ∀ i = 1, . . . , n, (5)

K∑
k=1

ylk = 1, ∀ l = 1, . . . , L, (6)

m∑
j=1

zjl = 1, , ∀ l = 1, . . . , L, (7)

n∑
i=1

ζres(ci)xil ≤
m∑
j=1

Ωres(τj)zjl,

∀ l = 1, . . . , L, res ∈ {cpu,mem},
(8)

L∑
l=1

m∑
j=1

Ωres(τj)zjl ≤ Ωres(pk),

∀ k = 1, . . . ,K, res ∈ {cpu,mem},

(9)

xil, ylk, zjl ∈ {0, 1}, (10)

where constraints (5) and (6) indicate that each container (or new created VM)
is allocated to exactly one created VM (or PM). Constraint (7) indicates that
each created VM must belong to a type. Constraint (8) implies that the total
occupation of all the containers allocated to each created VM does not exceed
its corresponding capacity. Constraint (9) indicates that the total capacity of the
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created VMs allocated to each PM does not exceed its corresponding capacity.
Constraint (10) defines the domain of the decision variables.

The energy calculation of the model is used in the fitness function of our
proposed algorithm. The constraints of the model are used in the algorithm to
ensure the solutions are valid.

4 The Proposed Group GA for the RAC Problem

This section describes our GGA approach for the RAC problem which includes
a group representation and three problem specific operators.

4.1 Overall Framework

Algorithm 1: Group genetic algorithm for the RAC problem

Input : a set of containers, a set of VM types, a list of PMs,
Output: an allocation of containers

1 population ← Initiailization;
2 gen← 0 ;
3 for gen does not reach the maximum generation do
4 fitness evaluation(population);
5 new population ← elitism(population);
6 while has not fill the new population do
7 parents ← tournament selection(population);
8 children ← gene-level crossover(parents);
9 unpack(children);

10 merge(children);
11 add children to the new population

12 end
13 gen← gen + 1;

14 end
15 return an allocation of containers;

The algorithm (see Algorithm 1) starts with the initialization of a popula-
tion. The individual is represented as a list of PMs. Then, the algorithm enters a
loop of evolution where each loop is called a generation. In each generation, indi-
viduals are evaluated with a fitness function (Eq.(1)). Then, the top individuals
are preserved and copied to the new population with Elitism [1]. Tournament
selection [14] is used to direct the population to the high-fitness region. Then,
we proposed three problem-specific operators, gene-wise crossover, unpack, and
merge. These operators modify the individuals so that they can perform an
effective search in the solution space.

4.2 Representation
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Fig. 1: Representation

The representation of an individual (see Fig-
ure 1) is a complete solution for a RAC prob-
lem. The individual consists of a list of PMs.
Each PM consists of a list of VMs and each
VM has a list of containers. This represen-
tation can be directly evaluated without us-
ing any decoding process. More importantly,
the direct representation can be modified by
heuristics at a specific point, e.g. switch two
containers’ allocation, without changing the
structure of the entire solution. Therefore,
the disadvantage of indirect representation in
dual-chromosome GA [20] can be avoided.

4.3 Initialization

The design of initialization aims at producing a diverse population of solutions.
For each individual, we first randomly generate a permutation of containers.
Then, we allocate containers to VMs using the First-Fit heuristic. If there is no
VM available, we create a VM with a random type. Lastly, a list of VMs is allo-
cated to PMs with First-Fit. This representation ensures a diverse combination
of containers and VMs. It also locates the solutions in a relatively high-quality
region with First Fit instead of Next Fit. This is because Next Fit does not
guarantee a VM or a PM is filled while First Fit guarantees that. Therefore, the
average quality obtained by First Fit is much better than Next Fit.

4.4 Gene-level Crossover

To inherit the useful parts from parents, one must define what is a “good gene”.
In the bin packing problem, a good gene is at bins’ level where well-filled bins
can lead to fewer bins [17]. Similarly, highly utilized PMs could lead to fewer
PMs in the allocation problem. Therefore, our good gene is defined as a PM
with high utilization. In our case, we apply the crossover twice according to the
utilization of CPU and memory respectively and generate two children.

The gene-level crossover preserves the highly utilized PMs from both parents.
In the beginning, we sort the PMs in both parents according to PMs’ utilization
of CPU or memory in descending order. Then, the crossover compares the PMs
from two parents in pairwise (see Fig.2). The winner’s PM of the pair will be
preserved. Preservation includes three steps. First, the crossover copies the VMs
combination inside the PM including the types and number of VMs. Second, the
crossover checks whether a container from the original VM has been allocated
in the previous PMs. If the container has been allocated, then the container will
not be allocated again. In the end, some containers may not be allocated to
PMs. They are called free containers. These free containers are reallocated with
an operator called rearrangement which will be introduced in the next section.
After all the containers have been allocated, empty PMs and VMs are removed
from an individual.
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Fig. 2: Gene-level crossover

Fig. 2 shows an example of the gene-level crossover. We first sort the PMs
from parents according to their CPU utilization. Then, we compare PMs and
preserve the structure of PM 1, PM 2’, and PM 3’. The containers in PM 1 are
preserved while the duplicated containers in PM 2’ and PM 3’ are removed. In
the end, containers 3 and 5 become free containers and they will be allocated to
these PMs using the rearrangement operator.

4.5 Rearrangement

Rearrangement inserts free items to bins. In the beginning (see Alg 2), we sort
the containers according to the product of their normalized resources (see Eq.11)
in ascending order. Then, we check that in each VM, whether the smallest two
containers can be replaced by the target container. If so, we replace the small
containers with the target container. Otherwise, check the next VM. After re-
placing, we have two smaller containers need to be allocated. At this point, we
apply First-Fit (FF) & Random Creation (RC) / First-Fit (FF) heuristics to
allocate them. The FF&RC/FF means, we first use FF to allocate containers to
VMs. If no VM is available, we randomly create a new VM to allocate containers
and use FF to allocate the new VM to PMs.

Our rearrangement operator is inspired by [17] to avoid the drawback of
First Fit (FF) and further improve the structure of a VM. In the bin packing
problem, FF-based approaches [3,17] have been widely used. However, a simple
FF-based approach cannot change the existing structure of a bin. Hence, the
replacement heuristic is developed. The core idea of the replacement heuristic
is that the smaller items are easier to allocate. Therefore, if we can replace a
big container with smaller ones, which can be easily allocated to existing VMs
without creating a new VM.
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R =
ζcpu(ci)

Ωcpu(pk)
· ζ

mem(ci)

Ωmem(pk)
(11)

Algorithm 2: Rearrangement operator

Input : a target container, a list of PMs,
Output: a list of PMs

1 Sort the containers in all VMs according to Eq.11 in ascending order;
2 for each VM do
3 if the two smallest containers in each VM can be replaced by the target

container then
4 Replace two containers with the target VM;
5 Allocate two containers with FF&RC/FF ;
6 return a list of PMs;

7 end

8 end
9 Allocate the target container with FF&RC/FF ;

10 return a list of PMs;

4.6 Unpack

Unpack operator eliminates low-utilized PMs and reallocates their containers.
This operator prevents premature convergence and introduces new gene compo-
nent into the current population.

The operator has two steps. First, it calculates the probability of unpacking
a PM according to Eq.(12). The PM with high CPU utilization has a smaller
chance to be unpacked. Second, it unpacks PMs in a roulette wheel style. After
unpacking, the free containers are reallocated with the rearrangement operator.

probability =
1−Ωcpu(pk)∑K
k=1 1−Ωcpu(pk)

(12)

The unpack operator is adaptive with the evolution process. In the beginning,
the average utilization of PMs is low, therefore, more PMs are unpacked. As the
population evolved, high utilized PMs move to the head of an individual and
have a low chance to be unpacked. Therefore, the good genes are preserved and
new genes are introduced by the rearrangement operator.

4.7 Merge

The merge operator replaces small VMs with a bigger one to reduce the free
resources in PMs. Free resources represent the resources that have not been
allocated to any VMs. The merge operator can improve the utilization of PM
by reducing the free resources in PMs as well as the overheads from VMs.
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Merge operators have two alternative functionalities, merge and enlarge. In
the first one, it goes through all the PMs and checks whether the two smallest
VMs can be replaced by a larger VM type. If it is possible, all the containers are
migrated from these two small VMs to the new larger VM and the small VMs
are removed. If we cannot replace two VMs with a larger one, we attempt to
replace the smallest VM with a larger one. The large VM type is also selected
randomly.

5 Experiment

The overall goal of the experiment is to test the performance of our proposed
GGA in terms of energy consumption. We conduct experiments on a real-world
dataset and compare the results with three benchmark algorithms (a rule-based
approach FF&BF/FF and two variations of the dual-chromosome GA). Then,
we analyze the performance of these approaches and explain the pros and cons
of them. Details are shown below.

5.1 Dataset and Test instance

We design 8 test instances (see Table 1) which allocates an increasing number
of containers (from 200 to 1500) in two sets of VM types. We use a real-world
application trace (AuverGrid trace [19]) as the resource requirements of contain-
ers. To generate the containers’ resource requirements, we select the first 400,000
lines of the trace from the original datasets. Then we filtered the trace to exclude
the containers that require more resources than the largest VM. The last step
randomly samples resource requirement and use them as the containers.

For the settings of PMs and VMs, we assume homogeneous PMs which have
8 cores and the total capacity is [13200 MHz, 16000 MB]. The maximum energy
consumption for the PM is set to 540 KWh. This setting has been used in [12].
We design two sets of VM types (see Table 2), a real-world VMs (20 types
from Amazon EC2) and a synthetic set of VMs (10 types). The real-world VM
types are proportional whereases the synthetic ones are random. The CPU and
memory of synthetic VM types are sampled from [0, 3300 MHz] and [0, 4000
MB] representing the capacity of one core.

Table 1: Test instances

instance VM types number of containers instance VM types number of containers

1 synthetic VM types 200 5 real-world VM types 200
2 synthetic VM types 500 6 real-world VM types 500
3 synthetic VM types 1000 7 real-world VM types 1000
4 synthetic VM types 1500 8 real-world VM types 1500
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Table 2: VM types

real world VM types

VM types [CPU, Memory] VM types [CPU, Memory] VM types [CPU, Memory] VM types [CPU, Memory]

1 [206.25, 250] 6 [412.5, 1000] 11 [825, 2000] 16 [825, 1875]
2 [412.5, 500] 7 [825, 4000] 12 [1650, 250] 17 [1650, 3750]
3 [825, 1000] 8 [206.25, 500] 13 [1650, 500] 18 [412.5, 1312.5]
4 [1650, 2000] 9 [412.5, 2000] 14 [1650, 1000] 19 [825, 2625]
5 [412.5, 250] 10 [412.5, 4000] 15 [412.5, 937.5] 20 [2475, 2625]

synthetic VM types

1 [719, 2005] 4 [1135, 3542] 7 [1363, 2634] 10 [2100, 3013]
2 [917, 951] 5 [1231, 1989] 8 [1648, 1538]
3 [1032, 1009] 6 [1311, 3238] 9 [2047, 1181]

5.2 Benchmark Algorithms

FF&BF/FF [12, 23] uses three heuristics to allocate containers. It uses First
Fit heuristics to allocate both containers and VMs and applies a Best Fit (BF)
for selecting VM types. Whenever no available VM can host a container, the
BF selects a type of VM which has just enough resource to host the container.
Explicitly, BF selects the VM which has the minimum normalized free
resources according to Eq.13.

Free resources = min{
Ωcpu(τj)− ζcpu(ci)− πcpu(τj)

Ωcpu(pk)
and

Ωmem(τj)− ζmem(ci)− πmem(τj)

Ωmem(pk)
}

(13)

Dual-chromosome GA is a recent approach proposed in [20] to solve the
resource allocation problem in container-based clouds. This approach uses a
dual chromosome representation which includes two vectors, one represents a
permutation of containers, the other represents the selected VM types. An
individual requires a decoding process to construct the dual-chromosome into a
solution. The rest of the algorithm follows a standard GA process with
vector-based crossover and mutation operators.

This paper compares with two variations of the dual-chromosome GA with
two decoding processes. The original work [20] applies a Next Fit (NF) decoding.
We refer it as DGA-NF in the following content. We implement a different
version that applies a First Fit (FF) decoding called DGA-FF.

In the experiments, we all also compare the wasted resources in the allocation.
The wasted resources include all the free resources in both VMs and PMs as well
as the overheads used by VMs (see Eq.14).

wasted resources = min{
Ωcpu(pk)−

∑n
i=1 ζ

cpu(ci) · xil

Ωcpu(pk)
and

Ωmem(pk)−
∑n

i=1 ζ
mem(ci) · xil

Ωmem(pk)
}

(14)
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5.3 Parameter Settings

The parameter setting of GGA and two dual-chromosome GAs are listed in Table
3. In addition to the operators that we proposed, we apply Elitism with size 5
and tournament selection with size 7. To ensure that all algorithms have the
same computation time, we set the stopping criteria of all GAs to 12 seconds.

Table 3: Parameter Settings

Parameter Description

runs 30
crossover 70%
mutation rate for dual-chromosome GA 10%
elitism top 5 individuals
stopping criteria 12 seconds
Population 100
Selection tournament selection (size = 7)

All algorithms were implemented in Java version 8 and the experiments were
conducted on i7-4790 3.6 GHz with 8 GB of RAM running Linux Arch 4.14.15.
We applied the Wilcoxon rank-sum to test the statistic significance.

5.4 Results

This section illustrates the performance comparison among the four algorithms
in terms of energy consumption. Then, we explain the drawbacks of the compared
algorithms by comparing the convergence, the number of VMs and the wasted
resources in the allocation. Lastly, we compare the execution time of the four
algorithms.

The energy consumption of four algorithms running for the same amount of
time (12 seconds) are compared in Fig. 3 and Table.4. This ensures the compar-
ison is fair. Our proposed GGA approach consistently achieves the best perfor-
mance than the FF&BF/FF and two dual-chromosome GA approaches in large
instances. The DGA-FF has a similar performance with GGA in the small in-
stance (less than 1500 containers) but it performs poorly in the large instances.
The DGA-NF performs better than FF&BF/FF in most of the instances ex-
cept instance 3 and 4 (1000 and 1500 containers with synthetic VM types).
In container 200 and container 500 instances, DGA-FF and GGA have similar
performances. In larger instances, GGA has clearly show its advantages.

Due to the space limit, we show in Fig. 4 the convergence curves in terms of
computation time from instance 4 and 8. In most instances except for instance
3 and 4, the convergence curves are similar to instance 8 where we may observe
the FF&BF/FF is always flat because it has no searching process. FF&BF/FF
is also easily affected by the VM types as it performs well in the synthetic VM
types and performs poorly in the real-world data set. The DGA-NF starts with
a much higher energy consumption than other algorithms. Although DGA-NF
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Fig. 3: Comparison of the average energy consumption

Table 4: Mean and standard deviation of the test instance with 95% confident
interval.

synthetic VM types

200 500 1000 1500

FF&BF/FF 1708.0 ± 0 4244.2 ± 0 8259.5 ± 0 12176.0 ± 0
DGA-NF 1685.6 ± 0.3 3838.5 ± 1.1 8,485.3 ± 94.1 12,625.8 ± 50.6
DGA-FF 1684.6 ± 0.2 3758.4 ± 151.1 7,865.7657 ± 1.0 11,795.3957 ± 1.5

GGA 1686.0 ± 0.1 3571.4 ± 177.1 7,833.9 ± 41.1 11,490.7 ± 108.8

real-world VM types

200 500 1000 1500

FF&BF/FF 2093.2 ± 0 4635.0 ± 0 9809.2 ± 0 14500.4 ± 0
DGA-NF 1683.6 ± 0.4 4213.1 ± 1.8 9,027.9 ± 3.1 13,580.9 ± 93.9
DGA-FF 1682.3 ± 0.2 3827.8 ± 1.3 8,222.3681 ± 40.7 12,180.0944 ± 1.9

GGA 1683.1 ± 0.5 3828.2 ± 2.3 8,091.7 ± 91.1 12,083.8 ± 51.7

reaches convergence, its final fitness value cannot compete with the initial fitness
from DGA-FF and GGA. In instance 3 and 4, the DGA-NF cannot outperform
the FF&BF/FF approach. DGA-FF and GGA have a similar starting point. In
instance 4, DGA-FF and GGA have a similar pattern while GGA outperforms
in instance 8 after 1 second.

The major defect of DGA-NF is the decoding process. Compared to FF, NF
closes a bin (such as VM and PM) whenever the current item (such as container
and VM) cannot allocate to it while FF never closes a bin so that the future
items can be still put into the unfilled bins. It means that NF cannot guarantee
a VM is filled with containers. Consequently, we may observe DGA-NF starts
from a bad allocation and takes a long time to converge. Replacing NF with FF
immediately improves the performance. However, the DGA-FF is still inferior
to the GGA approach.
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Fig. 4: Comparison of the convergence

The number of VMs (left-hand side) and the wasted resources (right-hand
side) are compared in Fig.5. The FF&BF/FF always uses the greatest number
of VMs and has the highest wasted resources. For most instances, the dual-
chromosome algorithms use fewer VMs and have fewer wasted resources except
in instance 4. Our proposed GGA always uses the least number of VMs and has
the least wasted resources.

Due to the overheads and resource segmentation, the number of VMs gen-
erally proportional to the wasted resources. The FF&BF/FF always creates
a VM that has the least resources to host a container, therefore, it creates a
large number of small VMs. DGA-NF has a high wasted resource in instance 4
because DGA-NF cannot fill VMs with containers, hence, there are more free
resources in VMs and PMs than the overheads. DGA-FF and GGA use fewer
VMs. However, DGA-FF does not have the mechanism to reduce the number of
VMs.

On the other hand, among all the algorithms GGA, can generate allocation
solutions with the least wasted resources due to the merge operator. Without
deliberately merging smaller VMs into larger ones, a PM could be filled with a
large number of small VMs.

In summary, our propose GGA can find an allocation that leads to the
least energy consumption in all the test instances. The performance of dual-
chromosome GA varies with the decoding process.

6 Conclusion and Future Work

This work proposes a Group GA (GGA)-based approach to solve the resource al-
location problem in container-based clouds. The experiments show that our pro-
posed GGA approach outperforms three state-of-the-art approaches, a rule-based
FF&BF/FF approach and two variations of dual-chromosome GA in terms of
energy consumption. We propose three novel problem-specific operators, gene-
level crossover, rearrangement, and unpack. These operators have shown effec-
tiveness in searching good combinations of containers and VM types. Also, these
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Fig. 5: Number of VMs and wastes in instance 4 and 8

operators can effectively search for better solutions directly on the representa-
tion. Current operators have a high computation cost in each generation, in the
future, we will focus on improving the efficiency by applying clustering-based
preprocessing approaches.
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