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Abstract—Container technology has become a new trend in
both software industry and in cloud computing. Containers sup-
port a fast development of web applications and their potential to
reduce energy consumption in data centers. However, since con-
tainers are usually first deployed in virtual machines (VMs) and
VMs are deployed in physical machines, the container allocation
is a new two-level allocation problem. Current research overly
simplifies the container allocation into one-level and uses simple
rule-based approaches to solve the problem. This paper, first,
provides a novel definition of the two-level container allocation
problem. Then, we develop a hybrid approach of using genetic
programming hyper-heuristics combined with human-designed
rules to solve the problem. The simulation-based experiments
show that the our hybrid approach is able to significantly reduce
the energy consumption than the solely use human-designed
rules.

Index Terms—container allocation, server consolidation, Cloud
resource allocation, genetic programming, hyper-heuristic

I. INTRODUCTION

Along with the fast increasing in popularity of micro-
services and server-less architecture [1], container-based
clouds [2] have become a hot topic in cloud computing.
Compared to Virtual Machine (VM)-based clouds, which runs
a unique operating system and libraries for each application,
container technology achieves a fast developing, testing, and
deployment by sharing a host OS among applications.

In addtion, containers can be used to reduce energy con-
sumption from data centers [2], however, the problem of
container allocation is new and difficult to solve. To reduce
energy consumption of data centers, containers are be allocated
to fewer number of physical machines (PMs). Compared
to VM-based clouds, container allocation is a new problem
because of the two-level structure. In container-based clouds,
containers are first deployed in VMs, then VMs are deployed
in PMs while in VM-based clouds, VMs are directly deployed
to PMs. Consequently, previous allocation methods in VM-
based clouds cannot be directly applied in container-based
clouds. In each level, the allocation can be seen as a vector
bin packing problem [3] which is NP-complete.

Current research on container allocation has disadvantages
on both problem definition and solutions. From the problem

perspective, most research either simplifies the two-level prob-
lem to one-level [4], [5] or lacks critical factors such as affinity
constraints in their problem definition [6]. The major drawback
of these simplifications is that they can only be applied
in narrow scenarios where all containers can be co-located.
However, one of the most important feature of container is that
they have various affinity constraints such as security level and
Operating System requirements [7]. Hence, it is an urgent to
have a generalized two-level problem definition of container
allocation.

From the solution perspective, current works mostly apply
AnyFit-based algorithms [8], [9] which have limited search
space, instead, a reservation-based technique is more promis-
ing. AnyFit-based algorithms [10], such as BestFit and FirstFit
, has been widely applied in on-line bin packing problems
for their simplicity [11]. However, a major drawback of
AnyFit-based algorithms is that these algorithms only select
the existing bins unless no bin is available [12]. This strat-
egy limits the search space, therefore, these algorithms can
hardly find the optimal solution. To resolve this drawback,
a reservation technique is proposed by Lee and et al [13].
They Harmonic-Fit algorithm have shown better performance
in one-dimensional on-line bin packing than the AnyFit-
based algorithms. However, Harmonic-Fit algorithm cannot
be applied in container allocation problem because it can not
decide when to create a VM and which type of VM is suitable.

Hence, this research, first, provides a novel problem def-
inition of the two-level container allocation problem. This
novel problem definition introduces various new key features
of container allocation such as affinity constraints and VM
overheads. Then, we focus on developing a hybrid approach
of using both Genetic programming-based hyper-heuristic
(GPHH) and human-designed rules to solve the two-level
container allocation problem. Specifically, we use GPHH to
automatically generate rules for allocating containers to VMs,
and use human-designed rules for allocating VMs to PMs.

We propose a learning algorithm: a GPHH approach be-
cause, first, our previous work [14] have shown that GPHH
is able to learn the workload patterns from historical data.
Therefore, it can generate rules which adapt to the current



workloads while human-designed rules may have poor perfor-
mance facing various real-world workloads. Second, GPHH
overcomes the design for complex allocation rules by training
in an off-line fashion and applying in an on-line fashion.

The overall goal is to propose a hybrid approach of using
GPHH and human-designed rules to reduce more energy
consumption than solely use human-designed rules on the two-
level container allocation problem. More specifically, we have
the following objectives:

1) Introduce a novel problem definition for two-level con-
tainer allocation;

2) Develop a hybrid approach of GPHH and human-
designed rules;

3) Evaluate our proposed approach by comparing it with
human-designed rules on benchmark datasets;

II. RELATED WORK

A. Drawbacks on the Problem Definition

Previous works on container allocation problem mainly have
two types of issue. First, some research simplifies the two-
level allocation problem into one-level by allocating containers
directly to PMs [15], [16]. The major drawback for this
simplification is that their allocation approaches can only be
used in a narrow range of scenarios. More generally, containers
are allocated to VMs instead of PMs due to the affinity
constraints of containers.

The affinity constraint is a critical issue in container-based
clouds. This is because, compared to VMs, containers have
more requirements such as distinct Operating Systems (OSs),
software libraries, and different levels of security []. Since
containers are naturally running in different environment, not
all containers can be co-located. Virtual machines could pro-
vide a stronger security and performance isolation as well as
OSs [17]. Therefore, to resolve the typical container allocation
scenarios, a generalized model for container allocation should
include two levels: containers to VMs and VMs to PMs.

The second type of issue in current research is that, although
some research considers the two-level structure , they lack
some critical factors such as VM overhead [6], [18] and affin-
ity constraints [8]. VM overheads is generated by hypervisor
which consumes a certain portion of resources (CPU and
memory). Creating tiny VMs (e.g one VM for each container)
leads to a large amount of VM overheads, on the other hand,
creating large VMs may also lead to unused resources because
not all containers can be co-located. This trade-off is the core
issue in the container allocation problem. Some research has
the awareness of overheads [19], but they did not provide much
analysis.

Therefore, this research first provides a novel problem defi-
nition to the two-level container allocation problem. We break
the two-level problem into four decision making procedures:
VM creation and selection, PM creation and selection with the
consideration of VM overheads and affinity constraints.

B. Existing allocation methods

Existing research [6], [8] on container allocation problem
mostly rely on AnyFit-based algorithms [11] with human-
designed rules for all four decision making procedures.
AnyFit-based algorithms, such as BestFit and FirstFit, are
greedy algorithms. A human-designed rule acts like a score
function which assigns a score to a solution. For example,
in one-dimensional bin packing, we may define a rule as a
bin with fewer residual resources earns a higher score. Then,
a BestFit algorithm iteratively evaluates all bins and selects
the bin with the highest score to allocate the item. In multi-
dimensional bin packing, however, it is not obvious how to
combine multiple resources into a single value so that all
dimensional resources can be effectively used.

Mann’s [8] applied six rules (such as sub, sum, and
product) for VM selection. For VM creation, they apply a just-
fit approach which selects the smallest possible VM for each
container. Piraghaj et al [6] apply Least Full Host Selection for
VM selection and apply a Largest approach for VM creation.
For PM selection, both research apply a FirstFit algorithm.

From the literature of VM allocation, volume rule is intro-
duced by Wood et al. [9]. They choose target PMs based on the
least volume = 1

1−cpu ∗
1

1−mem . Energy-aware BestFit [20]
and Least Full Host Selection algorithm [6] essentially are the
same algorithm because the Energy-aware approach uses the
energy evaluate function (see in Eq.1) is proportional to the
CPU usage of a PM.

In our previous work [14], we have shown the performance
of sub, sum, and random rules on three datasets. The
experiments indicate that human-designed rules cannot adapt
to different scenarios in the real world data centers.

C. Genetic Programming

Genetic programming [21] is an evolutionary computation
technique, inspired by biological evolution, to automatically
find computer programs for solving a specific task. In a GP
population, each individual represents a computer program. In
each generation, these programs are evaluated by a predefined
fitness function, which accesses the performance of each
program. Then, individuals will go through several genetic
operators such as selection, crossover, and mutation. A number
of top individuals will survive to the next generation while
others will be discarded.

GPHH has been successfully applied in a variety of prob-
lems. Xie et al [22], [23] propose a GPHH for storage location
assignment problem. Liu et al [24] and Jacobsen-Grocott et
al [25] use GP to design heuristics for arc routing problem.
Mei solves a stochastic team orienteering problem with GPHH
[26]. These literature show that GP has been successfully used
for generating rules in various problems. Therefore, we also
apply GPHH in our problem.

In summary, this work mainly focuses on a new container
allocation model which addresses the four drawbacks in cur-
rent research. In addition, instead of using human-designed
allocation rules, we propose a Genetic Programming hyper-



Fig. 1: The container allocation procedure.

heuristic approach to automatically generate rule to solve the
VM selection and creation problems.

III. PROBLEM DESCRIPTION

In the two-level container allocation problem, containers
arrive at data center during time duration of t1 and t2. The
overall objective is to allocate containers to existing virtual
machine (VMs) or creating new VMs, then allocate new VMs
to physical machines (PMs), so that the accumulated energy
consumption of all PMs is minimized.

The container allocation problem is separated into four
decision making procedures: VM selection and creation, PM
selection and creation (see Fig 1). VM selection chooses
existing VMs to allocate containers when the chosen VM
satisfies the requirement of the container. VM creation chooses
a type of VM, which is predefined by cloud providers, then
creates the VM to allocate the container. After a new VM is
created, PM selection chooses existing PMs to allocate the
VMs. Similar to VM creation, PM creation chooses a type of
PM and allocate the new PM to the data center.

To evaluate a container allocation process, we apply ac-
cumulated energy used in our previous work [14]. The ac-
cumulated energy is calculated by aggregating the energy
consumption of all activated PMs throughout the time duration
t2− t1. That is, whenever a container is allocated, we add the
energy consumption of all PMs. The energy model of a PM
(Eq.1) is widely used model proposed by Fan [27]. In their
energy model, P idle and Pmax are the energy consumption
when a PM is idle and fully used. utcpu(d) is the CPU
utilization of a PM d at time t.

P td = P idled + (Pmaxd − P idled ) · utcpu(d) (1)

The resource entities: containers, VMs and PMs have the
following features. Each entity has two types of resources:
CPU and memory. This work considers a data center with
homogeneous PMs, which means all PMs have the same CPU
and memory capacities, and heterogeous VMs, which means
different types of VMs. Each type of VM is predefined with a
tuple of resources. In addition to resource capacity, VM has a

unique feature of VM overhead. VM overhead represents the
resources consumed by a hypervisor. The overheads are also
represented tuples of resources for each type of VM. Each
VM runs a type of Operating System (OS). The type of OS
is also predefined by a cloud provider. For containers, unlike
Piraghaj’s approach [6] which uses three types of containers
for all applications, we consider one-on-one mapping between
applications and containers. That is, we define the domain of
containers’ resource requirement between 1 to the capacity of
PMs. Therefore, the definition of container is much flexible
and more realistic [28]. Each container has an OS requirement,
which means it can only be deployed in a VM which runs the
same OS.

We consider three types of constraints in the model. First,
similar to other models [6], the total resource requirement of
containers cannot exceed the capacity of the target VM. The
aggregate resource requirement of VMs cannot exceed the
capacity of the target PM. Second, a container can only be
deployed once. Third, we define an affinity constraint where
containers can only be deployed in OS-compatible VMs.

IV. METHODOLOGY

This section describes our GPHH approach for on-line
container allocation problem. We first describes the simulation
model of VM selection and creation. Then, we describe two
GPHH frameworks for VM selection and the combined VM
selection and creation.

A. Simulation Model of VM Selection and Creation

This paper focuses on minimizing the energy consumption
of VM selection and creation from on-line container allocation
(discussed in Section II-B) instead of migration. Therefore,
we create a stimulation to train and test algorithms. All the
experiments in this paper are based on the simulation model,
which has been used in our previous work [14]. Here are the
simulation configurations.

1) Assume an infinite number of available VMs/PMs that
can be used

2) Containers arrive uniformly between t1 and t2
3) Arrival containers must be allocated immediately
4) Overload threshold of VM/PM is 100%, this value does

not affect the behavior of algorithms
5) No weights of containers, which means they are equally

important
6) Five types of VMs (see Table I) and homogeneous PMs
In each simulation, we start with a randomly initialized

data center. The randomly initialized data center contains a
set of containers run on VMs/PMs. Then, a set of predefined
containers arrive at the data center one by one. Since we
simulates an on-line allocation, no information of the future
container is exposed to the allocation algorithm. The allocation
procedure is depicted in Fig 1.

The allocation procedure (see Fig 1) includes two decision
steps: allocate containers to VMs (blues lines) and VMs to
PMs (red lines). Each step includes two alternative choices.
In containers to VMs level, we either select an existing VM



TABLE I: Configuration of VMs

VM size CPU (MHz) Memory (MB)

xSmall 825 250
Small 825 500

Medium 825 800
Large 1650 800
xLarge 3300 4000

according to a VM selection rule f(x) or create a new VM
from a list of VM types based on a VM creation rule g(x).
If a container is allocated to an existing VM, the allocation
procedure ends. Otherwise, a new VM is created. In VMs
to PMs level, we either select an existing PM based on PM
selection rule h(x) or create a new PM based on PM creation
rule k(x) to host the new VM. These rules act like a ranking
function which assigns a value to each candidate VM/PM or
VM types. Then, the container/VM will be allocated to the
VM/PM with the highest value.

This work focuses on the containers to VMs level and
employs human-designed rules in VMs to PMs level. In PM
selection, we employ First Fit [12] which allocates the VM
to the first PM with enough resources starts from the oldest
PM. In PM creation, since we consider homogeneous PMs,
the creation rule is straightforward – create the same size of
PM when no existing PM is available.

After each container allocation, we will update the accumu-
lated energy consumption by adding up the current energy of
the data center. The simulation stops when all the predefined
containers are allocated. Then, the performance measure is the
accumulated energy consumption of all used PMs. Although
this simulation is relatively simple, it still reflects the key
issues of on-line container allocation such as two-level of on-
line vector bin packing.

The data center initialization is designed for two reasons.
First, in real-world data centers, allocating a set of containers
to an empty data center rarely happens. In most of cases,
containers are allocated to existing PMs instead of solely
creating new PMs. Second, in order to test the robustness of
allocation algorithms, we create distinct initial data center for
each simulation. Therefore, we can test whether an allocation
algorithm is sensitive to the initial state.

To reliably measure the effectiveness of evolved rules,
a large number of simulation are usually needed [29] (e.g
30 to 50 simulation are usually needed). Therefore, in our
experiments, we use two sets of simulation, each has 50, are
used for training and testing. The training set is used to train
GPHH and the test set is used to examine the performance of
rules on unseen data. In this on-line allocation case, we cannot
identify the best rule with the training performance because
the risk of over-fitting.

B. Basic Framework of GP

Fig 2 shows the procedure of a basic GP framework. The
framework is similar with other Evolutionary algorithms, ex-
cept that GP uses a special representations of individuals (i.e.
GP trees). The framework starts from randomly initializing

Fig. 2: The work flow of a basic GP

Fig. 3: The tree-based representation of the sub rule |vmCPU −vmMem|

a population of rules. Then, every rule will be evaluated
using the simulation. The fitness of each rule is measured by
applying the rule on the training set. If a rule earns the best
fitness value (in our case, the minimum fitness value), then
this rule is considered as the best rule in this generation. If the
stopping condition is met (i.e., maximum generation in GP),
GP will stop and output the best rule; otherwise, the population
go through a selection method which selects rules from the
population with a probability based on their fitness. These
selected individuals then participate in the genetic operators.
Genetic operators, such as mutation, crossover, and reproduc-
tion, have two purposes. First, crossover and mutation allow
the individual rules to explore the search space by changing
the structure of the rules. Second, reproduction retains the
rules with good fitness values by bringing them to the next
generation.

C. Representation

This paper uses the traditional GP tree to represent rules.
An example of the sub rule |vmCPU − vmMem| is given
in Fig 3. For evolving rules with GP, the terminal set design
has been demonstrated that including irrelevant features can
deteriorate the performance [30]. In contrast, relevant features
can lead to a significant improvement [31]. Table II shows the
terminal set and function set used by GP to construct rules.

We design the attributes for VM selection according to
Burke’s research on one-dimensional bin packing problem
[32]. For the combined of VM selection and creation, we
design two extra attributes. vmMemOverhead and vmCpuOver-
head returns the amount of CPU/memory overhead when the
rule creates a new VM. If the evolved rule selects an existing



TABLE II: Terminal and Function sets of GP

Symbol Description

Attributes for VM selection

leftVmMem VM memory - container memory requirement
leftVmCpu VM CPU - container CPU requirement
coCpu container CPU requirement
coMem container memory requirement

Extra Attributes for VM selection and creation

vmMemOverhead memory overhead of VM
vmCpuOverhead CPU overhead of VM

Function set +,-,×, protected %

VM then the overhead is 0. The reason that we design these
attributes is because the major difference between selecting
an existing VM and creation is the extra overhead. For the
function set, we use four basic arithmetic to construct rules
(the protected division returns a value of 1 when division by
0).

D. Fitness Function

When evaluating each individual (Step 2 in Fig 2), the
fitness function is defined as follows:

fitness =

∑|training instances|
k=1

AEnormalized

N

|training instances|
(2)

where AE is the accumulated energy of a training instance
normalized by a benchmark rule. N is the number of contain-
ers in this training instance. With AEnormalized

N , we calculate
the average AE of a training instance. Then, we average the
AE of all training instances.

The normalization is shown as follows:

AEnormalized =
AE

AEbenchmark rule
(3)

where we normalize the AE of the evolved rule with the
AE of a benchmark rule. The reason that we use normalized
AE is because different training instances may have major
differences in AE. It is unfair to use the aggregation of AE
of all training instances to compare algorithms.

For example, we applied two algorithms A and B on two
training instances α and β. With algorithm A, we obtain
AEα = 35000 and AEβ = 2500. With algorithm B, we obtain
AEα = 30000 and AEβ = 7500. As we may see, although
two algorithms obtain the same aggregation of AE = 37500,
it is unfair to say A and B perform the same. Because, in α,
the AE difference between A and B is only 16.7%, but in
β, the difference is 200%. If we use a benchmark algorithm
C (AEα = 32500, AEβ = 5000) to normalize A and B.
For A, the aggregation of normalized AE is 35000/32500 +
2500/5000 = 1.58 and for B, the aggregation of normalized
AE is 30000/32500 + 7500/5000 = 2.42. Since we aim at
minimizing the energy, it is easy to see that algorithm A
performs much better than B.

E. Framework for the Combined VM Selection and Creation

The framework for the combined VM selection and creation
is designed for a generalized two-level container allocation
shown in Algorithm 1. In this framework, we solve the
selection and creation in a single step. In line 3, we append
five empty VMs (one for each VM type) into the existing VM
list. Consequently, the selection rule also evaluates the empty
VMs and compares their values with the existing VMs.

This framework is inspired by the idea of reservation tech-
niques for bin packing problem [12]. Reservation techniques,
such as Harmonic-Fit algorithm [13] designed by Lee and et
al, have shown better performance in one-dimensional on-line
bin packing than the AnyFit-based algorithms. Harmonic-Fit
divides items into k intervals and k corresponding types of
bin. Each bin only hosts corresponding types of items. The
major disadvantage of Harmonic-Fit is the waste of resource
in those bins reserved for large items. The similarity between
our problem and Harmonic-Fit is that, as we designed an
OS affinity constraint, containers are naturally divided into
categories based on their OS requirements. We allow the
evolved rules to choose the appropriate types instead of fixing
the types of VM so that it is much flexible than Harmonic-Fit
algorithm.

We introduce two additional attributes vmMemOverhead
and vmCpuOverhead (discussed in Section IV-C). The addi-
tional attributes help GPHH to distinguish the existing VMs
and the empty VMs.

Algorithm 1: Framework for the Combined VM Se-
lection and Creation
Input : container, A list of VM types, A list of

available VMs, A list of available PMs,
Output: The best VM

1 BestVM = nil;
2 bestF itness = nil;
3 Append the VM types to the VM list as empty

VMs;
4 Filter the VMs without enough resources for this

container;
5 while VMi in VMs do
6 fitness =Rule(container, PMi);
7 if fitness > bestFitness then
8 bestF itness = fitness;
9 BestVM =VMi;

10 end
11 i = i+ 1;
12 end
13 return BestVM ;

V. DESIGN OF EXPERIMENTS

The aim of this study is to propose a GPHH approach
to one-level and two-level of on-line container allocation
problem. In the above section, we present the GPHH al-
gorithm, representation, fitness function, and two problem



TABLE III: Test instances for the combined VM selection and creation

instances number of OS scenario number of containers initialization

instance 1 2 unbalanced scenario Medium (200) 5 types of VM
instance 2 3 unbalanced scenario Medium (200) 5 types of VM
instance 3 4 unbalanced scenario Medium (200) 5 types of VM
instance 4 5 unbalanced scenario Medium (200) 5 types of VM

TABLE IV: Frequency of OS requirements

number of OS distribution (%)

2 95–5
3 50–30–20
4 62.5–17.5–15-5–4.5
5 17.9–45.4–23.6–10.5–2.6

frameworks. We conduct a set of experiments over the two
problem frameworks. In the experiments of VM selection,
we design two experiments. We first compares GPHH with
five human-designed rules over three scenarios; Second, we
examine the effect of GPHH over a larger sizes of containers.
In the experiment of the combined VM selection and creation,
we compare the GPHH approach with two human-designed
rules.

All algorithms were implemented in Java version 8 and the
experiments were conducted on an i7-4790 3.6 GHz with 8GB
of RAM memory running Linux Arch 4.14.15-1.

A. Dataset

We design 6 instances for the experiments of VM selection
(see Table ??) and 4 instances for the experiments of combined
VM selection and creation (see Table III). In the experiments
of VM selection, we use the medium size of instances 1, 3, 5
in experiment one to test the performance of rules when facing
the balanced and unbalanced data center environment. We use
instances 2,4,6 to in experiment two to test the performance
of evolved rules when allocating larger sizes of containers. In
the experiments of combined VM selection and creation, we
use instances 7∼10 in experiment three to compare the perfor-
mance of evolved rules and human-designed rules. Each of the
above instance includes 100 simulation cases as mentioned in
Section IV-A, we use 50 for training and 50 for testing. Each
case includes a number of containers listed as Medium (200
containers) and Large (1000 containers).

We use both real-world and synthetic datasets to construct
the Test instances for VM selection. We use real world work-
load trace (AuverGrid trace [33]) to construct the unbalanced
scenario. Fig 4 shows the distribution of CPU and memory
requirement of the containers in this dataset. We observe
that the memory usage is on average three times as much
as the CPU usage. Therefore, we use the real-world dataset
to represent the unbalanced resource requirement in con-
tainers. In the meanwhile, we apply an unbalanced CPU and
memory (3300, 4000) in the VM configurations to represent
the unbalanced resource capacity in VMs. We generated the
balanced resource requirement from exponential distribution
with the rate λ = 0.004 in both CPU and memory. The
reason for using this rate is because we want to have similar

TABLE V: Parameter Settings

Parameter Description

Initialization ramped-half-and-half
Crossover/mutation/reproduction 80%/10%/10%
Maximum Depth 7
Number of generations 100
Population 1024
Selection tournament selection (size = 7)

size of containers between the synthetic dataset and real-
world dataset. From the empirical study, we found the average
number of containers allocated to a PM is 15 containers in real-
world dataset. With the λ = 0.004, it gives us a similar average
number of containers allocated to a PM. We apply a balanced
CPU and memory (3300, 3300) in the VM configurations to
represent the balanced resource capacity in VMs.

In the experiments of the combined VM selection and
creation, we design 4 test instances with various number of
OS requirement to test the performance of the evolved rules.
The frequency of OSs in each instances is shown in Table IV.
We intend to simulate a real-world market share of OS [34].

We applied Wilcoxon signed rank test on all results between
GPHH and human-designed rules. We show ten test instances
because we observe a similar pattern throughout all test
instances. Therefore, we choose ten representative instances
to show the results.

Fig. 4: Resource usage frequency in the real world dataset

(a) CPU usage frequency (b) Memory usage frequency

B. Parameter Settings

Table V shows the parameters that we used in all experi-
ments. Most parameters are the standard values in GPHH field
[31]. The algorithm was implemented by ECJ [35].

C. Experiments on the Combined VM selection and Creation

This section designs an experiment to study the effect of
applying GPHH on the combined VM selection and creation
framework.

1) Comparison with two human-designed rules: This ex-
periment has two intentions. First, we try to unveil drawbacks
of human-designed rules and explain the reasons. Second, we
would like to evolve rules to find better VM creation strategies.

To compare with the benchmark algorithms, we implement
two algorithms proposed in [19] and [6]. The framework of
two algorithms is essentially a VM selection method combined
with a VM creation method. For VM selection, we implement



the sub rule. For VM creation rules, [19] designs a just-fit rule.
just-fit creates the smallest VM that can satisfy the resource
requirement of the container. [6] designs a largest rule. largest
rule first scans the PMs to find one that has enough resources
for this container. Then, it creates the largest possible VM that
can fit in this PM. The third step is to allocate the container
into the VM. We use the result from just-fit to normalize other
rules.

2) Result analysis of experiments in comparison with two
human-designed rules: Fig 5 shows the accumulated energy
comparison among three rules: evolved rules, just-fit, and
largest. The evolved rules and largest have a great advantage
than the just-fit rule. In comparison between evolved rules and
largest rule, Table VI shows that evolved rules still dominate
largest in all scenarios.

We examine the reason for the poor performance of human-
designed rules by looking at the waste of resources in PMs.
The waste resources in PMs can be divided into two parts –
unused resources and resources Overhead. As an example, we
plot the unused CPU and CPU overhead of three rules on a
test instance (from instance 10) in Fig 6. We observe that the
waste on unused CPU is almost five times more than the waste
on overhead. It shows that the unused CPU is a much crucial
factor than CPU overhead.

At the beginning (from 0 to 75 containers in Fig 6a), just-fit
performs the best because it creates smallest possible VMs for
containers to reduce the waste. However, the unused resource
accumulated fast because they are too small to be used in the
future. In the meanwhile, containers cannot be consolidated
into these small VMs. This leads to the creation of a large
number of small VMs. The VM overhead also increases fast
because it is proportional to the number of VMs. Small VMs
also prevent new VMs from consolidating in the same PM
because the PMs has insufficient resources. Consequently, the
number of PMs increases quickly. The average utilization of
CPU and memory in PMs is around 15% only.

The strategy of the largest rule reduces the unused resources
by creating the largest consecutive pieces of resources for the
future containers. However, the largest rule neglects the effect
of OS constraint. When the rule creates the largest possible
VM for a container who requires an OS with a low frequency,
it is unlikely that the VM will be filled in a long period of time
because there is not many container who also requires this type
of OS. Hence, the resources in this VM will be unused for a
long time. With largest rule, the unused resource increases
along with the number of OSs.

The evolved rules, on the other hand, create a VM neither
from the smallest or the largest. Instead, it considers the
distribution of CPU and memory of containers and the size
of VMs’ types. Therefore, evolved rules avoid creating many
small VMs as well as creating large VMs. A detail explanation
of the behavior of rules will be discussed in Section ??.

VI. ANALYSIS AND DISCUSSION

This section focuses on analyzing the structure of the
combined rules. Most of the evolved rules are overly complex,

Fig. 5: Accumulated energy comparison (first 10 test instances) among three
rules:evolved rules, just-fit, and largest
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TABLE VI: Energy comparison between evolved rules and largest rule in
four scenarios

OS2 OS3 OS4 OS5

evo vs. largest 30-0-20 31-0-19 44-0-6 42-0-8

therefore, it is difficult to understand the insight. In order to
study the behavior of rules, we select a relatively simple rule
which evolves on instance 10. We manually simplify the rule
as shown in Fig 7. This rule obtains a fitness value of 1210.47
on test set in compare with 1596.97 from the just-fit rule and
1303.47 from the largest rule.

We consider the behavior of the rule in VM selection
and creation. In VM selection, the vmCpuOverhead is 0.
Therefore, we may further simplify the rule as coCpu ×
leftV mMem11. Since in each allocation, the coCpu does not
affect the behavior of the rule, the solely decision variable is
the leftVmMem. This makes sense because, as we mentioned
in Section V-A that the memory requirement of containers
is roughly three times higher than the CPU requirement, the
memory is the critical resource. Therefore, the rule only selects
the VM with more memory.

On the other hand, in VM creation, the vmMemOver-
head becomes a constant of 200 MB. As we normalize
all the resources with the PM’s capacity, we have the
vmMemOverhead = 0.05. Then, we assume coCpu = 0.02
since this assumption does not affect the result. This rule can
be simplified as f = 0.02 × leftV mMem11 − (1 + 0.05 ×
leftV mMem13 × leftV mCpu).

To visualize the rule, we plot it on a 3D landscape (see
Fig 8) with both leftV mMem and leftV mCpu range from
[0,1]. We observe that the value is better when leftV mMem
is closed to 1 and the leftV mCpu is closed to 0. The meaning
of the rule is to select a VM with large memory and small
CPU. By examining the Table I, we found that the Medium
type (825 MHz, 800 MB) has the highest value. Hence, during
the container allocation, this rule will compare the existing
VMs and the Medium type of VM to decide the allocation,



Fig. 6: unused CPU and CPU overhead comparison among evolved, largest,
and just-fit rules
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Fig. 7: Rule Simplification

Fig. 8: This graph shows the landscape of the GP tree: f = 0.02 ×
leftV mMem11−(1+0.05× leftV mMem13× leftV mCpu) where the
x-axis is the leftVmMem and y-axis is the leftVmCpu for a candidate VM.

which is the reason that the rule performs better than the
human-designed rules.

VII. CONCLUSION

The advent of container-based clouds brings not only the op-
portunity to improve the utilization of data centers but also the
challenge of server consolidation. The current techniques of
server consolidation in container-based clouds mostly applied
human-designed rules in VM selection and creation. These
rules often neglect the impact of the workload of applications
and the size of VMs, therefore, they lead to a low utilization
of resources.

In this paper, we have successfully developed a GPHH
system on the VM selection and creation problem for on-
line container allocation. The novelty of this system lies on
the new problem model, two allocation frameworks, and the
GP system with new fitness function and terminal set. The
experiment results verify the effectiveness of our algorithms

as compared to the state-of-the-art human-designed rules in
the literature. Our algorithm outperforms other algorithms in
terms of energy consumption. The analysis not only provides
the reasons for the poor performance from the human-designed
rules but also shows the insights from evolved rules.
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