
A Genetic Programming Hyper-heuristic
Approach for online Resource Allocation in

Container-based Clouds

Boxiong Tan, Hui Ma, Yi Mei

Victoria University of Wellington, Wellington, New Zealand,
{Boxiong.Tan, Hui.Ma, Yi.Mei}@ecs.vuw.ac.nz

Abstract. The popularity of container-based clouds is its ability to de-
ploy and run applications without launching an entire virtual machine
(VM) for each application. Such a container supports a fast deployment
of applications, which brings the potential to reduce the energy consump-
tion of data centers. With the goal of energy reduction, it is more diffi-
cult to optimize the allocation of containers than traditional VM-based
clouds because of the finer granularity of resources. Existing methods
have shown poor performance in dealing with both balanced and un-
balanced resources. In this paper, we first compare three human-design
heuristics and show they cannot handle balanced and unbalanced re-
sources scenarios well. We propose a learning-based algorithm: genetic
programming hyper-heuristic (GPHH) to automatically generate a suit-
able heuristic for allocating containers in an online fashion. The results
show that the proposed GPHH managed to evolve better heuristics than
the human-designed ones in terms of energy consumption in a range of
cloud scenarios.

Keywords: cloud computing, resource allocation, energy consumption,
genetic programming, hyper-heuristic

1 Introduction

A container-based cloud [1] is a promising new technology for both software and
cloud computing industries. Containers are beneficial for cloud providers because
they can potentially reduce the energy of data centers [2]. Energy reduction is
achieved by deploying more applications in fewer physical machines (PMs).

Although container-based clouds have better energy efficiency, the complexity
for allocating both containers and VMs is much higher than solely managing
VMs. In a container-based cloud, a typical PM may host multiple VMs with
different operating systems. Each VM hosts multiple containers. This box-inside-
box structure forces us to break down the container allocation process into two
levels: containers to VMs and VMs to PMs.

To address the high complexity, this work considers a simplified structure
and focuses on the challenge of the container allocation problem. Many cloud
providers (e.g. Amazon) skip VM level and deploy containers directly to PMs.
Moreover, we consider an online container allocation in which the request come

2 Boxiong Tan et al.

in real time, and the information of each request (e.g. CPU and memory demand)
is unknown until the request arrives.

Existing approaches [2] apply AnyFit-based algorithms with human-designed
greedy rules such as sub and sum (detailed discussed in Section 2). We argue
that the goal for resource allocation in clouds is to minimize the accumulated
energy consumption instead of the cutting-point energy. It is critical to con-
sider the order of creating new PMs when allocating containers [3]. Therefore,
the container allocation problem can be treated as a scheduling task. Existing
human-designed rules, therefore, may not be suitable for the scheduling task.

To address the drawbacks of human-design rules and the high design dif-
ficulty, we propose a learning algorithm: Genetic programming-based hyper-
heuristic (GPHH) to automatically design scheduling rules using the information
of a data center. To apply GPHH in the container allocation problem, we need
to develop new terminal sets and fitness function.

In this paper, our contributions are:

– We compare the widely used human-designed greedy rules: sub, sub, and
random in container allocation. This comparison provides an important in-
sights. Therefore, we need to develop a learning algorithm to automatically
generate rules to adapt all scenarios.

– We develop a GPHH for generating rules for online container allocation.

2 Background

Problem description: The container allocation problem can be described as,
for a given set of t containers, each of which arrives at a time i, 0 <= i <= t, the
overall objective of container allocation is to allocate containers to PMs so that
during the period of time of allocation, the accumulated energy consumption of
PMs E =

∑t
i=1

∑p
j=1 Pj · [ucpu(j) > 0] are minimized.

Assuming that we have t containers to be allocated into p Physical Machines
(PMs). Each container i has a CPU demand Ai and a memory occupation Mi.
Each PM j ∈ {1, · · · , p} has a CPU capacity PAj and a memory capacity PMj .
A PM can host multiple containers. We consider all PMs have the same size of
CPU capacity and memory.

Energy consumption Pj is the energy consumption of a PM j. [ucpu(j) > 0]
returns 1 if ucpu(j) > 0 (PM j is active), and 0 otherwise.

Pj is determined by a widely used energy model Pj = α · Pmax + (1 − α) ·
Pmax · ucpu(j) [4]. The CPU and memory utilization of PM j are denoted as

ucpu(j) =
∑t

i=1(xij · Ai) and umem(j) =
∑t

i=1(xij ·Mi). Where xij is a binary
value (e.g. 0 and 1) denoting whether a container i is allocated on a PM j.

Constraints: A container can be allocated on a PM if and only if the PM j
has enough resources required by the container.The other constraint is that
each container can only be deployed once.

Human-designed rules for online container allocation: AnyFit
algorithms [2] are greedy-based algorithms and use human-designed rules for

GPHH for VM selection 3

evaluating an allocation.Mann’s [2] applied six rules (such as sub, sum, and
product) for container allocation. However, the different effects of these rules
have not been shown. Therefore, it motivates us to explore the effectiveness of
the most used rules – sum and sub – in solving the problem of container
allocation problem.

Sum is the most commonly used rule in multi-dimensional bin packing. It can
be represented as resourceA+resourceB in the two-dimensional case. Resources
A and B are the residual resources of a chosen bin after the item has been
allocated. The smaller the function result, the better the candidate bin. This
heuristic tries to minimize the residual resources in all dimensions. It is based on
a simple assumption that less residual resource results in fewer number of used
bins.

Sub is designed to maintain the balance in a bin. It can be represented as
|resourceA − resourceB|. Similar to sub, we prefer a smaller function value.
sub rule tries to minimize the difference between the two resources. With the
assumption of balanced resource allocation can lead to fewer bins.

In summary, the performance of these simple rules has not been well studied.
Because of their simplicity, we believe they cannot fully capture the complex
behavior of diverse resource requirements and temporal effect. Therefore, these
two reasons motivate us to investigate a learning method: GPHH using the
information from a data center to generate rules.

3 GPHH for online Container Allocation

This section describes the training, testing process, GPHH function and terminal
nodes, and fitness function.

Fig. 1: The overview of GPHH training and testing process

Training and testing: both training and testing processes rely on the
simulation of container allocation for evaluating the quality of rules (see
Fig. 1). The simulation includes two parts: data center initialization and
container allocation. Data center initialization randomly initializes a data
center with PMs and containers. Without initialiazation, allocation algorithms
perform similarily. Container allocation process allocate containers to the PM
according to a BestFit-based algorithm (see Algorithm 1). The rule decides
the goodness of a candidate PM.

4 Boxiong Tan et al.

For training, we follow a standard GP framework (details in [5]), which in-
cludes initialization, evaluation, crossover, mutation, and reproduction, to gen-
erate allocation rules. For testing, we run GP 30 times to generate 30 rules with
different random seeds. Each evolved rule is applied on the test instances. The
accumulated energy of each test instance is then normalized with the benchmark
sub rule with equation normalized Eevolve = Eevolve

Esub
. Then, for each instance,

we calculate the average normalized accumulated energy from 30 runs. Lastly, we
applied the paired Wilcoxon test to calculate the statistic significance between
the evolved rules and the benchmark rules (sub, sum, and random).

Algorithm 1: BestFit framework for the evolved rules

Input : container, A list of available PMs, features of the data center
Output: The best PM

1 BestPM = nil;
2 bestF itness = nil;
3 while PMi in PMs do
4 fitness =Rule(container, PMi, features);
5 if fitness > bestFitness then
6 bestF itness = fitness;
7 BestPM =PMi;

8 end
9 i = i + 1;

10 end
11 return BestPM ;

Function, Terminal Sets, and Fitness function: Our function set includes
{+,−,×} and the protected ÷ which returns 1 when divided by 0. Terminal
set includes four features. The CPU and memory requirement of a container
and the residual CPU and memory from a PM. Residual CPU and memory are
calculated as the current PM’s resources subtract the resource requirement of
the container.

We calculate the fitness function fitness function =
∑training instances

k=1
E
t

training instances .
The fitness value represents the average increase in energy consumption after
allocating a container. Therefore, it is free from the bias of the randomize initial
data center.

4 Experiments

We design three scenarios (see Table 1) for two objectives: testing whether exist-
ing rules can work well in container allocation and evaluate the proposed GPHH.

Experiment settings: Each of the three scenarios includes 100 of test
instances. They are splitted equally into training and testing set. Each test
instance consists of 200 containers to be allocated. The scenario with
unbalanced containers and PMs is the most common scenario in the real world
because of the diverse applications. We use a real-world dataset (AuverGrid
trace) to generate test instances of unbalanced container scenario.

GPHH for VM selection 5

Table 1

scenarios dataset
PM size

(CPU[MHz], Memory[MB])

unbalanced containers and PMs real-world dataset (3300, 4000)
balanced containers and unbalanced PMs synthetic dataset (3300, 3300)
balanced containers and PMs synthetic dataset (3300, 3300)

For container generation, we randomly choose pairs of CPU and memory from
the dataset with both resource requirement less than or equal to the maximum
capacity. Balanced containers are generated from an exponential distribution
with the rate λ = 0.004 in both CPU and memory. For initialization of a data
center, we randomly generate 4 to 8 running PMs. Each VM will host at least
one container. In addition, we use the corresponding dataset as the test cases
for generating the initial containers in PMs.

To compare the performance between sub and sum, we add a random rule.
The random rule chooses a random available PM instead of the best one. We
intend to compare sub and sum with the random rule as a baseline. Hence, we
can identify which rule performs badly in which scenario.

For GPHH, we use the population size of 1024. The number of generation is
100. For crossover, mutation, and reproduction, we use 0.8, 0.1, and 0.1 respec-
tively. We use tournament selection and the size of the tournament is 7.

Experiment results: In all scenarios, the evolved rules show significant
advantages than other rules (Table 2 to 4). Table 2 shows the Win-Draw-Loss
of the unbalanced containers and PMs dataset among four algorithms. sub rule
is significantly worse than all the other rules. Evolved rules dominate sub and
random, and is better than sum with a small margin.

In balanced containers and unbalanced PMs scenario(Table 3), there is no
statistic difference between sub, sum and random rules. In balanced containers
and PMs (Table 4), evolved rules dominate other rules. Both sub and sum are
significantly better than the random rule.

Table 2: real world scenarios.
evo sub sum random

evo Nah 49-0-1 30-0-20 45-0-5
sub 1-0-49 Nah 2-1-47 5-2-43
sum 20-0-30 47-1-2 Nah 40-4-6

random 5-0-45 43-2-5 6-4-40 Nah

Table 3: unbalanced PMs
evo sub sum random

evo Nah 44-0-6 41-0-9 43-0-7
sub 6-0-44 Nah 20-1-29 30-0-20
sum 9-0-41 29-1-20 Nah 33-1-16

random 7-0-43 20-0-30 16-1-33 Nah

To explain the goodness of evolved rules, Figure 4 shows the energy con-
sumption of the data center while allocating 200 containers with four rules. The
initial energy consumption are the same because of the same initialized data
center. With the allocation processing, random rule (yellow) creates a new PM
which incurs the sudden increase of energy while other rules can still allocate

6 Boxiong Tan et al.

containers to existing PMs. Similarly, sub and sum create new PMs earlier than
the evolved rule. Although, in most cases, all four rules create the same number
of PMs (not in this case), evolved rules always allocate more containers to the
existing PMs.

evo sub sum random
evo Nah 43-0-7 38-0-12 46-0-4
sub 7-0-43 Nah 23-0-27 32-0-18
sum 12-0-38 27-0-23 Nah 35-0-15

random 4-0-46 18-0-32 15-0-35 Nah

Table 4: balanced containers
and PMs

Fig. 2: The energy consumption of allocating
200 containers with four algorithms (from re-
alworld dataset, run 17, test case 27)

5 Conclusion

In this paper, we first show that exising rules for container allocation do not
perform well in dealing with real-world resource requirement and PM. Second,
we develop a new GPHH approach for container allocation to automatically
generate rules using the information of data centers.

Experiments show that the evolved rules perform significantly better the
human-designed rules in all scenarios. The evolved rules from GPHH are useful
for automatically generating rules for various scenarios in data centers. In future
work, we will investigate the container allocation in a general architecture where
multiple VMs are allocated in PMs.

References

1. D. Bernstein, “Containers and cloud: From LXC to docker to kubernetes,” IEEE
Cloud Computing, vol. 1, no. 3, pp. 81–84, 2014.

2. Z. Á. Mann, “Interplay of virtual machine selection and virtual machine placement,”
in Lecture Notes in Computer Science. Cham: Springer, 2016, vol. 9846 LNCS, pp.
137–151.

3. M. D. Cauwer, D. Mehta, and B. O’Sullivan, “The temporal bin packing problem:
An application to workload management in data centres,” in 28th International
Conference on Tools with Artificial Intelligence (ICTAI), 2016, pp. 157–164.

4. X. Fan, W.-D. Weber, and L. A. Barroso, “Power provisioning for a warehouse-sized
computer,” ACM SIGARCH Computer Architecture News, vol. 35, no. June, p. 13,
2007.

5. E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and R. Qu,
“Hyper-heuristics: a survey of the state of the art,” Journal of the Operational
Research Society, Springer, vol. 64, no. 12, pp. 1695–1724, 2013.

