
MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 1

Using an Estimation of Distribution Algorithm to
Achieve Multitasking Semantic Web Service

Composition
Chen Wang, Hui Ma, Member, IEEE, Gang Chen, Member, IEEE, and Sven Hartmann, Member, IEEE,

Abstract—Web service composition composes existing web1
services to accommodate users’ requests for required function-2
alities with the best possible quality of services (QoS). Due3
to the computational complexity of this problem, evolutionary4
computation (EC) techniques have been employed to efficiently5
find composite services with near-optimal functional quality6
(i.e., quality of semantic matchmaking, QoSM for short) or7
non-functional quality (i.e., QoS) for each composition request8
individually. With a rapid increase in composition requests from9
a growing number of users, solving one composition request at10
a time can hardly meet the efficiency target anymore. Driven by11
the idea that the solutions obtained from solving one request can12
be highly useful for tackling other related requests, multitasking13
service composition approaches have been proposed to efficiently14
deal with multiple composition requests concurrently. However,15
existing attempts have not been effective in learning and sharing16
knowledge among solutions for multiple requests. In this paper,17
we model the problem of collectively handling multiple service18
composition requests as a new multi-tasking service composition19
problem and propose a new Permutation-based Multi-factorial20
Evolutionary Algorithm based on an Estimation of Distribution21
Algorithm (EDA), named PMFEA-EDA, to effectively and effi-22
ciently solve this problem. In particular, we introduce a novel23
method for effective knowledge sharing across different service24
composition requests. For that, we develop a new sampling25
mechanism to increase the chance of identifying high-quality26
service compositions in both the single-tasking and multitasking27
contexts. Our experiment shows that our proposed approach,28
PMFEA-EDA, takes much less time than existing approaches29
that process each service request separately, and also outperforms30
them in terms of both QoSM and QoS.31

Index Terms—Web service composition, QoS optimization,32
Combinatorial optimization, Evolutionary Multitasking, Estima-33
tion of Distribution Algorithm34

I. INTRODUCTION35

Service-Oriented Computing employs the concept of web36
services, i.e., self-describing web-based applications that can37
be invoked over the Internet. Since a single web service38
often fails to accommodate users’ complex requirements, Web39
service composition [1] aims to loosely couple independent40
web services in the form of service execution workflows,41

Chen Wang is with the National Institute of Water and Atmospheric
Research, Wellington 6021 New Zealand (e-mail: chen.wang@niwa.co.nz)
and the School of Engineering and Computer Science, Victoria
University of Wellington, Wellington 6041 New Zealand (e-mail:
chen.wang@ecs.vuw.ac.nz)

Hui Ma, and Gang Chen are with the School of Engineering and Computer
Science, Victoria University of Wellington, Wellington 6041 New Zealand
(e-mail: hui.ma@ecs.vuw.ac.nz; aaron.chen@ecs.vuw.ac.nz).

Sven Hartmann is with the Department of Informatics, Clausthal University
of Technology, 38678 Germany (e-mail: sven.hartmann@tu-clausthal.de).

providing value-added functionalities to end-users. Web ser- 42
vice composition is a promising research area and is highly 43
desirable given the increasing number of services available in 44
GIS [2], manufacturing [3], smartphone applications [4], [5], 45
oil and gas industry [6], IoT applications [7], [8], logistics [9] 46
and E-learning [10]. 47

Since the service execution workflows are often unknown or 48
not given in advance, many researchers have been interested 49
in fully automated service composition that automatically 50
constructs workflows with required functionalities while opti- 51
mizing the overall quality of composite services. This overall 52
quality usually refers to the functional quality (i.e., quality of 53
semantic matchmaking, QoSM for short) or the non-functional 54
quality (i.e., quality of service, QoS for short) of the composite 55
services that stand for the service composition solutions [11], 56
[12], [13], [14], [15], [16], [17], [18], [19], [20]. 57

The Web service composition problem has been proven 58
to be NP-hard [21]. To tackle such a difficult problem, 59
evolutionary computation (EC) techniques have been widely 60
used to efficiently find near-optimal composition solutions in 61
a cost-effective manner [12], [13], [14], [15], [16], [17], [18], 62
[19], [20], [22], [23], [24], [25]. These EC-based approaches 63
are mainly designed to solve one service request at a time by 64
improving users’ quality preferences quantified in the form of 65
either a single optimization objective [12], [14], [16], [17], 66
[18], [19], [20], [25] or multiple objectives [13], [15], [22], 67
[23], [24]. With the significant increase in the amount of 68
service composition requests, a common disadvantage of these 69
methods is that many service requests have to be dealt with 70
repetitively and independently. In fact, similarities across these 71
service requests that could be dealt with collectively have been 72
consistently ignored by existing methods. 73

Many service requests have identical functional require- 74
ments on inputs and outputs but may vary due to different 75
preferences on QoSM and/or QoS [26]. In a market-oriented 76
environment, service composers often strategically group rel- 77
evant service composition requests into several user segments 78
(e.g., platinum, gold, silver, and bronze user segments), and 79
each user segment presents distinguishable preferences over 80
the service composition requests. Therefore, one composite 81
service (i.e., a service composition solution) for a user segment 82
can comfortably satisfy requirements from all users belonging 83
to the same segment. In other words, any new service requests 84
arising from the same segment will be immediately served by 85
the same composite service designed a priori for that segment. 86

Herein, we use an example to demonstrate composite ser- 87

2 MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

Input:
TravelDepartureDate

TravelReturnDate
HomeCity

ConferenceCity

Service 1:
Flight Booking

Service 2:
City Hotel

Reservation
Service

Output:
FlightTicket,

HotelReservation
TaxiReservation

Ar
riv

alD
at

e

Service 3:
Taxi

Service

H
ot

el
 A

dd
re

ss

Ar
riv

alD
at

e

cost: 8 cents

cost:5 cents

(a) Composite booking service A

Input:
TravelDepartureDate

TravelReturnDate
HomeCity

ConferenceCity

Service 1:
Flight Booking

Service 4:
City Luxury

Hotel Service
with

Transportation

Output:
FlightTicket,

HotelReservation
High-quality Taxi Service

ArrivalDate

cost: 32 cents

(b) Composite booking service B

Fig. 1: Two composite booking services produced by
TripPlanner

vices for different user segments. TripPlanner is a service88
composition design system that produces composite booking89
services for many travel companies. See an example of two90
composite booking services utilized by TripPlanner in Fig. 1.91
Both composite services can be used to book airlines, hotels,92
and local transportation for travelers. Both are also composed93
by existing web services from thousands of available web94
services over the Internet. In Fig. 1, some services composed95
in composite booking service A (i.e., Service 2: City Hotel96
Reservation Service and Service 3: Taxi Service) are different97
from those composed in composite booking service B (i.e.,98
Service 4: City Luxury Hotel Service with Transportation). In99
particular, Service 4 aggregates the functionalities of Service 2100
and Service 3, providing high-quality hotel and taxi services.101
Apart from that, the cost of Service 4 (i.e., 32 cents) is102
much higher than that of Service 2 and Service 3 (i.e., 8103
+ 5 = 13 cents). Apparently, these two composite booking104
services differ in QoSM and QoS. This is important to cater for105
different users with varied QoSM and QoS requirements. For106
example, large international travel companies (i.e., platinum107
segment users of TripPlaner) often care about their customers’108
needs more than small local travel companies (i.e., bronze109
segment users of TripPlaner), by providing high-quality ser-110
vices. These high-quality services contribute to a reliable and111
accurate user experience. In other words, composite services112
with high QoSM as employed by composite service B in Fig. 1113
are preferably considered by the platinum segment users. In114
contrast, composite services with low QoSM with a trade-off115
in cost, such as the composite booking service A, is preferred116
by bronze segment users of small local travel companies. From117
the perspective of service providers, they should distinguish118
different types of companies and provide different segment119
offers (i.e., composite services) to different segments.120

The problem demonstrated above is clearly a multitasking121
problem. In line with this problem, we specifically consider122
multiple related service composition tasks, each of which cor-123
responds to a separate user segment with different preferences124
(e.g., QoSM preference). A very recent work [26] proposed to125
handle such problems with multiple user segments collectively,126

where each segment captures the vital preference differences in 127
terms of QoSM. They also adopted an emerging EC computing 128
paradigm, namely, the multi-factorial evolutionary algorithm 129
(MFEA) [27]. Building on MFEA, a permutation-based multi- 130
factorial evolutionary algorithm (PMFEA) was developed to 131
support inter-task solution sharing via assortative mating. 132
This is particularly achieved by using crossover and mutation 133
operators. See ALGORITHM 3 in APPENDIX A for technical 134
details. 135

However, empirical studies showed that the performance 136
gain achievable by PMFEA is not prominent in compari- 137
son to single-tasking algorithms, indicating that assortative 138
mating has limited effectiveness in promoting constructive 139
inter-task knowledge sharing. To tackle this limitation, we 140
will propose a new technique to extract knowledge jointly 141
from promising solutions to different tasks in the form of 142
a series of related Node Histogram Matrices (NHMs). The 143
learned NHMs can be further utilized by the Estimation of 144
Distribution Algorithm (EDA) to search for promising regions 145
of the solution space effectively. Note that existing EDA-based 146
approaches for service composition have never been designed 147
to extract and utilize knowledge from multiple tasks. In this 148
paper, we will propose the first Permutation-based Multi- 149
Factorial Evolutionary Algorithm based on EDA (PMFEA- 150
EDA) to simultaneously solve several fully automated service 151
composition tasks for multiple user segments. PMFEA-EDA 152
features the use of innovative inter-task knowledge sharing 153
techniques and solution sampling methods, all designed to 154
improve the effectiveness and efficiency of the algorithm for 155
multitasking service composition. The contributions of this 156
paper are as follows: 157

1) We propose a new algorithm (named PMFEA-EDA) to 158
handle multiple service requests with respect to sev- 159
eral pre-determined user segments jointly. Our algorithm 160
significantly outperforms existing methods by explicitly 161
learning and sharing knowledge across solutions for dif- 162
ferent service requests (i.e., tasks). Particularly, PMFEA- 163
EDA iteratively builds a set of single-tasking NHMs. 164
Each NHM captures the knowledge of good solutions 165
with respect to one task. Meanwhile, to facilitate knowl- 166
edge sharing across different tasks, PMFEA-EDA also 167
learns multitasking NHMs in association with every two 168
tasks with similar preferences on QoSM (i.e., adjacent 169
tasks). To the best of our knowledge, this is the first time 170
that a combined set of single-tasking and multitasking 171
NHMs is utilized for effectively handling the multitasking 172
optimization problem. 173

2) We propose a new sampling mechanism over a combined 174
set of single-tasking and multitasking NHMs to construct 175
new composite services from these NHMs. This new sam- 176
pling mechanism inspired by the principle of assortative 177
mating in [27] is introduced in PMFEA-EDA to over- 178
come the difficulty of using the node histogram-based 179
sampling algorithm in a multitasking context. By using 180
this mechanism, we can also effectively maintain high 181
population diversity and prevent our method from pre- 182
mature convergence. To the best of our knowledge, this 183

WANG et al.: USING AN ESTIMATION OF DISTRIBUTION ALGORITHM TO ACHIEVE MULTITASKING SEMANTIC WEB SERVICE COMPOSITION 3

is the first time that sampling over a combined set of184
single-tasking and multitasking NHMs is used to balance185
between exploration and exploitation of the evolutionary186
search process in a multitasking context.187

3) We evaluate the effectiveness and efficiency of our pro-188
posed approach by conducting experiments to compare it189
against state-of-the-art approaches, including a pure mul-190
titasking one, a pure single-tasking one and a non-evolu-191
tionary one. We also analyze the effectiveness of knowl-192
edge sharing across adjacent tasks in terms of its impact193
on the aggregated quality of obtained solutions for the194
different tasks. This is achieved by experimentally com-195
paring PMFEA-EDA without knowledge sharing (named196
PMFEA-EDA-WOT) with PMFEA-EDA.197

The remainder of the paper is organized as follows:198
Sect. II reviews some related work on semi-automated/fully199
automated web service composition problems in single-200
tasking and multitasking contexts. Sect. III formulates service201
composition problems in single-tasking and multitasking202
contexts. Sect. IV presents an overview of the proposed203
PMFEA-EDA method and illustrates important components204
of this method. Sect. V demonstrates the effectiveness and205
efficiency of our PMFEA-EDA by comparing it against recent206
algorithms. Sect. VI discusses the main conclusions reached207
by our contribution and insights that guide the future work.208

209

II. RELATED WORK210

Web service composition is performed using two strategies:211
semi-automated web service composition and fully-automated212
web service composition. The first one assumes a pre-defined213
service composition workflow, which consists of abstract ser-214
vice slots that specify the required functionalities for atomic215
web services, is known and selects an atomic service for each216
of the abstract service slots. The second one does not assume217
a workflow of abstract service slots is known and constructs a218
workflow simultaneously with atomic service selection. Appar-219
ently, compared to semi-automated web service composition,220
fully-automated web service composition is more difficult, but221
it also opens new opportunities to improve QoS and QoSM222
without being restricted to a pre-defined workflow.223

A. Literature on single-tasking semi-automated approaches224

Non-EC service composition techniques try to identify225
optimal composite services by using some general optimiza-226
tion techniques, such as Integer Linear Programming (ILP),227
dynamic programming, and reinforcement learning. However,228
due to the larger number of decision variables, non-EC service229
composition techniques, such as ILP, may lead to exponen-230
tially increased complexity and cost in computation [28]. Be-231
sides that, QoS of composite services in ILP-based approaches232
is calculated by summing up the individual QoS score of233
every component service. Such a QoS calculation is not always234
appropriate. Machine learning approaches have been proposed235
for service composition. [29], [30], [31] develop service com-236
position approaches based on deep reinforcement learning237
to adaptively construct composite services at the execution238

stage in response to QoS changes. However, these approaches 239
only work for semi-automated service composition, where a 240
composite service workflow must be provided in advance by 241
users. As we have seen above, none of these existing works 242
on automated web service composition can solve multiple 243
semantic service requests with different QoSM constraints. 244
Therefore, effective and efficient approaches are needed to 245
solve multitasking semantic service composition. 246

A variety of EC techniques have been demonstrated to 247
be highly promising in solving single-tasking semi-automated 248
web service composition. This is because EC techniques are 249
particularly useful in practice as they can efficiently find ”good 250
enough” (i.e., near-optimal) composite services. Based on the 251
number of objectives to be optimized via these EC techniques, 252
two subgroups of works are classified, i.e., single-tasking 253
single-objective and single-tasking multi-objective EC-based 254
semi-automated web service composition. One subgroup aims 255
to find composite services with an optimized unified score. 256
For example, some works jointly optimize QoS and QoSM as 257
an unified score [32], [33], [34]. The other subgroup aims to 258
produce a set of trade-off composite services with different 259
objectives, e.g., time and cost [35]. 260

The single objective and multiple objectives are optimized 261
using various EC techniques, e.g., Genetic Algorithm (GA) 262
[33], [35], [36], [37] and Particle Swarm Optimization (PSO) 263
[23], [38]. For example, [36] investigates a semi-automated 264
approach with a vector-based representation in multi-objective 265
GA. Two multi-objective GAs (called E3-MOGA and X-E3) 266
are proposed in this work. Particularly, E3-MOGA is designed 267
to search for equally distributed Pareto-optimal solutions in the 268
multi-objective space, while X-E3 is designed to search for 269
Pareto-optimal solutions that can reveal the maximum range 270
of trade-offs, covering extreme solutions in the search space. 271

B. Literature on multitasking semi-automated approaches 272

A new EC computing paradigm, namely multi-factorial 273
evolutionary algorithm (MFEA) [27] has been introduced 274
recently. MFEA can solve multiple combinatorial optimization 275
tasks concurrently and produce multiple solutions, with one 276
for each task. MFEA searches a unified search space based on 277
a unified random-key representation over multiple tasks and 278
transfers implicit knowledge of promising solutions through 279
the use of simple genetic operators across multiple tasks. The 280
implicit knowledge transformation is achieved by performing 281
crossover on two randomly selected parents solutions from two 282
different tasks. This mechanism is called assortative mating. 283
Apart from that, offspring is only evaluated on one task that is 284
determined by its parents based on vertical cultural transmis- 285
sion. See ALGORITHM 3 in APPENDIX A and ALGORITHM 4 286
in APPENDIX B for technical details. 287

MFEA has shown its efficiency and effectiveness in several 288
problem domains [11], [39], [40], [41]. To meet the efficiency 289
and cost requirements, [11] reports the first attempt that 290
employs MFEA to solve multiple service composition tasks 291
together. [11] optimizes QoS for two unrelated service requests 292
simultaneously using MFEA, achieving competitive results 293
compared to single-objective EC techniques. However, this 294

4 MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

work cannot support fully automated service composition,295
where the service execution workflow is unknown or not296
given by the users. Furthermore, the number of tasks to be297
optimized concurrently is relatively small (i.e., two tasks).298
In this paper, we will propose a multi-factorial evolutionary299
algorithm (PMFEA) to solve more than two fully automated300
service composition tasks concurrently.301

C. Literature on single-tasking fully automated approaches302

Graph search [42], [43], [44], [45], [46], [47] is an alterna-303
tive approach to fully automated service composition. Graph304
search works on searching composite services, which are305
constructed by subgraphs or paths from a service dependency306
graph. Constructing such a service dependency graph may307
suffer from the scalability issue when dealing with a large308
service repository with complex service dependencies. This309
issue can get even worse when QoS optimization is considered310
[48]. To consider multiple quality criteria in QoS, a recent311
work, named PathSearch [43], proposes an improved path-312
based search method over a graph [42]. Particularly, a node313
(i.e., an atomic service) associated with a higher rank is314
preferred in a path construction, and nodes are ranked based on315
the concept of dominance over multiple QoS quality criteria.316
In this paper, we will compare PMFEA-EDA with the state-317
of-the-art graph search technique, i.e., PathSearch [43].318

Evolutionary single-tasking fully automated service compo-319
sition has been well studied in the majority of existing EC-320
based works. In particular, each service composition request is321
processed independently by using single-objective [12], [17],322
[14], [16], [19], [25] or multi-objective EC techniques [13],323
[15].324

In the single-objective single-tasking setting, most of the325
existing service composition approaches used conventional EC326
techniques, which rely on the use of the implicit knowledge327
of promising solutions based on one or more variations of ge-328
netic operators on parent individuals. For example, tree-based329
composite solutions in [12], [14], [19], [25] are produced330
using implicit knowledge defined by one or more variations of331
GP-based genetic operators on parent individuals. Apart from332
these conventional EC techniques, other approaches, such as333
[20], sample high-quality composite solutions using explicit334
knowledge that is learned by a distribution model, e.g., Node335
Histogram Matrix (NHM). Their experiment demonstrates that336
learning an NHM of promising solutions does help to find337
near-optimal solutions. In the multi-objective single-tasking338
settings, there are very limited works, to the best of our339
knowledge, [13], [15], [24] are the three recent attempts along340
this research direction. Very recently, an EDA-guided local341
search has been proposed that constructs distribution models342
from suitable Pareto front solutions and other good candidate343
solutions [24]. This approach can effectively and efficiently344
produce much better Pareto optimal solutions compared to345
other state-of-art methods [15], [13].346

D. Literature on multitasking fully automated approaches347

As discussed in Sect. II-B, [11] reported the first attempt348
to optimize QoS for two unrelated service requests simulta-349
neously in semi-automated service composition. To overcome350

the limitations in [11], [26] proposed a multi-factorial evo- 351
lutionary algorithm (PMFEA) to solve more than two fully 352
automated service composition tasks concurrently. Compared 353
to single-tasking approaches, this method requires only a 354
fraction of time. However, this work did not significantly 355
outperform single-tasking approaches in finding high-quality 356
solutions through the use of implicit learning. Motivated by the 357
existing attempts to address multitasking service composition 358
problems, with the aim to jointly find high-quality solutions 359
for all tasks. In this paper, we will propose a PMFEA-EDA 360
to support explicit knowledge learning and explicit knowledge 361
sharing across different tasks. 362

III. PRELIMINARIES 363

A. Single-tasking Semantic Web Service Composition 364

We review the formulation of the single-tasking semantic 365
web service composition problem. The following definitions 366
are also given in [20]. 367

A semantic web service (service, for short) is considered 368
as a tuple S = (IS , OS , QoSS) where IS is a set of service 369
inputs that are consumed by S, OS is a set of service outputs 370
that are produced by S, and QoSS = {tS , ctS , rS , aS} is a 371
set of non-functional attributes of S. The inputs in IS and 372
outputs in OS are parameters modeled through concepts in 373
a domain-specific ontology O. The attributes tS , ctS , rS , aS 374
refer to the response time, cost, reliability, and availability of 375
service S, respectively, which are four commonly used QoS 376
attributes [49]. 377

A service repository SR is a finite collection of services 378
supported by a common ontology O. 379

A composition task (also called service request) over a 380
given SR is a tuple T = (IT , OT) where IT is a set of 381
task inputs, and OT is a set of task outputs. The inputs in 382
IT and outputs in OT are parameters that are semantically 383
described by concepts in the ontology O. Two special atomic 384
services Start = (∅, IT , ∅) and End = (OT , ∅, ∅) are always 385
included in SR to account for the input and output of a given 386
composition task T . 387

We use matchmaking types to describe the level of a match 388
between outputs and inputs [50]. For concepts a, b in O the 389
matchmaking returns exact if a and b are equivalent (a ≡ b), 390
plugin if a is a sub-concept of b (a ⊑ b), subsume if a is a 391
super-concept of b (a ⊒ b), and fail if none of the previous 392
matchmaking types is returned. In this paper, we are only inter- 393
ested in exact and plugin matches for robust compositions. As 394
argued in [34], plugin matches are less preferable than exact 395
matches due to the overheads associated with data processing. 396
For plugin matches, the semantic similarity of concepts is 397
suggested to be considered when comparing different plugin 398
matches. 399

A robust causal link [51] is a link between two matched 400
services S and S′, denoted as S → S′, if an output a (a ∈ OS) 401
of S serves as the input b (b ∈ OS′) of S′ satisfying either 402
a ≡ b or a ⊑ b. For concepts a, b in O, the semantic similarity 403
sim(a, b) is calculated based on the edge counting method in 404
a taxonomy like WorldNet [52]. Advantages of this method are 405
simple calculation and accurate measure [52]. Therefore, the 406

WANG et al.: USING AN ESTIMATION OF DISTRIBUTION ALGORITHM TO ACHIEVE MULTITASKING SEMANTIC WEB SERVICE COMPOSITION 5

matchmaking type and semantic similarity of a robust causal407
link is defined as follows:408

typelink =

{
1 if a ≡ b (exact match)
p if a ⊑ b (plugin match)

(1)

simlink = sim(a, b) =
2Nc

Na +Nb
(2)

with a suitable parameter p, 0 < p < 1, and with Na, Nb409
and Nc, which measure the distances from concept a, concept410
b, and the closest common ancestor c of a and b to the top411
concept of the ontology O, respectively. However, if more than412
one pair of matched output and input exist from service S to413
service S′, typee and sime will take on their average values.414

The QoSM of a composite service is obtained by aggregat-415
ing over all the robust causal links as follows:416

MT=

m∏
j=1

typelinkj (3)

SIM=
1

m

m∑
j=1

simlinkj
(4)

Formal expressions as in [53] are used to represent service417
compositions. The constructors •, ∥, + and ∗ are used to418
denote sequential composition, parallel composition, choice,419
and iteration, respectively. The set of composite service ex-420
pressions is the smallest collection SC that contains all atomic421
services and that is closed under sequential composition,422
parallel composition, choice, and iteration. That is, whenever423
C0, C1, . . . , Cd are in SC then •(C1, . . . , Cd), ∥ (C1, . . . , Cd),424
+(C1, . . . , Cd), and ∗C0 are in SC, too. Let C be a composite425
service expression. If C denotes an atomic service S then426
its QoS is given by QoSS . Otherwise the QoS of C can427
be obtained inductively as summarized in Table I. Herein,428

p1, . . . , pd with
d∑

k=1

pk = 1 denote the probabilities of the429

different options of the choice +, while ℓ denotes the average430
number of iterations. Therefore, QoS of a composite service,431
i.e., availability (A), reliability (R), execution time (T), and432
cost (CT) can be obtained by aggregating aC , rC , tC and ctC433
as in Table I.434

In the presentation of this paper, we mainly focus on435
two constructors, sequence • and parallel ∥, similar as most436
automated service composition works [54], [14], [55], [56] do,437
where composite services are represented as directed acyclic438
graphs (DAGs). The nodes of the DAG correspond to those439
services (also called component services) in service repository440
SR that are used in the composition. Let G = (V,E) be a441
DAG-based service composition solution from Start to End,442
where nodes correspond to the services and edges correspond443
to the matchmaking quality between the services. Often, G444
does not contain all services in SR. The decoded DAG allows445
easy calculation of QoS in Table I and presents users with a446
complete workflow of service execution [20]. For example, the447
response time of a composite service is the time of the most448
time-consuming path in the DAG.449

When multiple quality criteria are involved in decision450

making, the fitness of a solution is defined as a weighted sum 451
of all individual criteria in Eq. (5), assuming the preference 452
of each quality criterion based on its relative importance is 453
provided by the user [57]: 454

F (C) = w1M̂T + w2
ˆSIM + w3Â+

w4R̂+ w5(1− T̂) + w6(1− ĈT)
(5)

with
∑6

k=1 wk = 1 (wk ⩾ 0). This objective function is 455
defined as a comprehensive quality model for service com- 456
position. We can adjust the weights according to the user’s 457
preferences. M̂T , ˆSIM , Â, R̂, T̂ , and ĈT are normal- 458
ized values calculated within the range from 0 to 1 using 459
Eq. (6). To simplify the presentation, we also use the notation 460
(Q1, Q2, Q3, Q4, Q5, Q6) = (MT,SIM,A,R, T,CT). Q1 461
and Q2 have a minimum value of 0 and a maximum value 462
of 1. The minimum and maximum value of Q3, Q4, Q5, and 463
Q6 are calculated across all the relevant services, which are 464
discovered using a greedy search technique in [54], [14]. 465

Q̂k =


Qk−Qk,min

Qk,max−Qk,min
if k = 1, . . . , 4 and Qk,max −Qk,min ̸= 0,

Qk,max−Qk

Qk,max−Qk,min
if k = 5, 6 and Qk,max −Qk,min ̸= 0,

1 otherwise.
(6)

The goal of single-tasking web semantic service composition 466
is to find a composite service expression C⋆ that maximizes 467
the objective function in Eq. (5). C⋆ is hence considered as 468
the best solution for a given composition task T . 469

B. Multi-tasking Semantic Web Service Composition 470

In this paper, we study the semantic Web Service 471
Composition problem for Multiple user segments with dif- 472
ferent QoSM Preferences (henceforth referred to as WSC- 473
MQP). This problem is also defined in [26]. WSC-MQP is 474
perceived as an evolutionary multitasking problem that aims 475
to optimize K composition tasks concurrently with respect to 476
K user segments. 477

Different from the composition task defined in the single- 478
tasking context, a composition task in the multitasking context 479
is a tuple Tj = (IT , OT , intervalj) where IT is a set of task 480
inputs, OT is a set of task outputs, intervalj is an interval 481
based on QoSM for j ∈ {1, 2, . . . ,K}. The inputs in IT and 482
outputs in OT are parameters that are semantically described 483
by concepts in an ontology O. The interval intervalj = 484
(QoSMa

j , QoSM b
j], j ∈ {1, 2, . . . ,K} and QoSMa

j , QoSM b
j 485

are lower and upper bounds of QoSM for each user segment. 486
Different user segments can be distinguished by their pref- 487
erences on QoSM. The preferences of each user segment is 488
defined as an interval, such as QoSM ∈ (0.75, 0.1]. 489

[26] introduces a neighborhood structure over Tj , where 490
j ∈ {1, 2, . . . ,K}. This neighborhood structure is determined 491
based on the tasks whose segment preferences on QoSM are 492
adjacent to each other. For example, in Fig. 2, we consider 493
K = 4 and let T1, T2, T3 and T4 be the four composition 494
tasks corresponding to interval1 ∈ (0, 0.25], interval2 ∈ 495
(0.25, 0.5], interval3 ∈ (0.5, 0.75] and interval4 ∈ (0.75, 1], 496
respectively. Therefore, the adjacent tasks of T2 are T1 and 497

6 MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

TABLE I: QoS calculation for a composite service expression C.

C = rC = aC = ctC = tC =

•(C1, . . . , Cd)
d∏

k=1
rCk

d∏
k=1

aCk

d∑
k=1

ctCk

d∑
k=1

tCk

∥ (C1, . . . , Cd)
d∏

k=1
rCk

d∏
k=1

aCk

d∑
k=1

ctCk
MAX{tCk

|k ∈ {1, ..., d}}

+(C1, . . . , Cd)
d∏

k=1
pk · rCk

d∏
k=1

pk · aCk

d∑
k=1

pk · ctCk

d∑
k=1

pk · tCk

∗C0 rC0
ℓ aC0

ℓ ℓ · ctC0 ℓ · tC0

T3, whose segment preference on QoSM (i.e., interval1 and498
interval3) are adjacent to that of T2 (i.e., interval2).499

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙) 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙* 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙+ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙,

0 0.25 0.5 0.75 1

𝑇) 𝑇* 𝑇+ 𝑇,Tasks

Segment preferences

(𝐼0, 𝑂0 , 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙)) (𝐼0, 𝑂0 , 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙*) (𝐼0, 𝑂0 , 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙+) (𝐼0, 𝑂0 , 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙,)

Fig. 2: Example of the neighborhood structure over four
tasks

The goal of multitasking semantic web service composition500
is to find the K best solutions concurrently with one for each501
user segment.502

C. Multifactorial Optimization503

MFEA is a new evolutionary paradigm that considers K504
optimization tasks concurrently, where each task affects the505
evolution of a single population. In MFEA, a unified represen-506
tation for the K tasks allows a unified search space made for507
all the K tasks. This unified representation of solutions can be508
decoded into solutions of the individual tasks. The following509
definitions are also given in [27] and capture the key attributes510
associated with each individual Π. For simplicity, we assume511
that all the tasks are maximization problems (see details in512
Section III-B).513

Definition 1: The factorial cost fΠ
j of individual Π mea-514

sures the fitness value with respect to the K tasks, where515
j ∈ {1, 2, . . . ,K}.516

Definition 2: The factorial rank rΠj of individual Π on517
task Tj , where j ∈ {1, 2, . . . ,K}, is the position of Π in518
the population sorted in descending order according to their519
factorial cost with respect to task Tj .520

Definition 3: The scalar fitness φΠ of individual Π is521
calculated based on its best factorial rank over the K tasks,522
which is given by φΠ = 1/min

j∈{1,2,...,K}rΠ
j

.523
Definition 4: The skill factor of individual Π denotes the524

most effective task of the K tasks, and is given by τΠ =525
argminj{rΠj }, where j ∈ {1, 2, . . . ,K}.526

Based on the scalar fitness, evolved solutions in a popu-527
lation can be compared across the K tasks. In particular, an528
individual associated with a higher scalar fitness is considered529
to be better. Therefore, multifactorial optimality is defined as530
follows:531

Definition 5: An individual Π⋆ associated with factorial cost532
{f⋆

1 , f
⋆
2 , . . . , f

⋆
K} is optimal iff ∃j ∈ {1, 2, . . . ,K} such that533

f⋆
j ≥ fj(Π), where Π denotes any feasible solution on task 534
Tj . 535

IV. PMFEA-EDA METHOD 536

We first present an outline of PMFEA-EDA for WSC-MQP 537
in Sect. IV-A. Subsequently, we will discuss the two main 538
innovations of this method: constructing and learning NHMs 539
for effective exploration of the solution space over multiple 540
tasks; and a new sampling mechanism to balance the trade-off 541
between exploration and exploitation in a multitasking context. 542

To learn a single-tasking NHM with respect to each task, we 543
assign composite solutions to different solution pools based 544
on their skill factors. Therefore, every solution pool stores 545
promising solutions for one task. On the other hand, as shown 546
in [26], solutions that are promising for one task can be used 547
to evolve new solutions for its adjacent tasks (whose QoSM 548
preferences are close). Due to this reason, we also prepare 549
additional solution pools to store solutions that are promising 550
for every two adjacent tasks. Every two adjacent tasks are 551
identified as the most suitable tasks for knowledge sharing. 552
Therefore, learning multitasking NHMs of these additional 553
pools allows knowledge to be shared across adjacent tasks 554
(see details in Sect. IV-C). 555

Moreover, we propose a sampling mechanism to balance 556
exploration and exploitation. Particularly, a random sampling 557
probability (rsp) is predefined to determine which NHM will 558
be used to build new solutions. This mechanism is inspired 559
by assortative mating in [27], where a random probability is 560
defined for the occurrence of crossover on two parent solutions 561
from the same skill factor or different skill factors. 562

The generation updates used in PMFEA-EDA are illustrated 563
in Fig. 3. From the current population in Fig. 3, one sampled 564
offspring population is created and further combined with the 565
current population to produce the next population that only 566
keeps the fittest solutions. Particularly, this sampled offspring 567
population is formed from new solutions that are sampled from 568
both single-tasking and multitasking NHMs. These NHMs are 569
learned from multiple solution pools that consist of solutions 570
assigned based on their skill factors. 571

A. Outline of PMFEA-EDA 572

The outline of PMFEA-EDA is shown in ALGORITHM 1. 573
We first randomly initialize m permutation-based Πg

k solu- 574
tions, where 0 ≤ k < m and g = 0. Each solution is 575
represented as a random sequence of service indexes ranging 576
from 0 to |SR|−1, and SR is a service repository containing 577

WANG et al.: USING AN ESTIMATION OF DISTRIBUTION ALGORITHM TO ACHIEVE MULTITASKING SEMANTIC WEB SERVICE COMPOSITION 7

Current population Solution pools

Combined Population

Sampled offspring population via multiple NHMs

…

Single-tasking NHMs

Multi-tasking NHMs

Sampling Sampled offspring population

Next population

Learn NHMs

Assign solutions

Fittest solutions

0 ⋯ 10
⋮ ⋱ ⋮
32 ⋯ 2

3 ⋯ 24
⋮ ⋱ ⋮
42 ⋯ 1

3 ⋯ 24
⋮ ⋱ ⋮
3 ⋯ 45
13 ⋯ 4
⋮ ⋱ ⋮
9 ⋯ 8

…

……

Fig. 3: Generation updates in PMFEA-EDA

ALGORITHM 1. PMFEA-EDA for WSC-MQP
Input : Tj , K, and gmax

Output: A set of composition solutions
1: Randomly initialize population Pg of m permutations

Πg
k as solutions (where g = 0 and k = 1, . . . ,m);

2: Decode each Πg
k into DAG Ggk using the decoding

method;
3: Calculate f

Πg
k

j , rΠ
g
k

j , φΠg
k and τΠ

g
k of Πg

k over Tj ,
where j ∈ {1, 2, . . . ,K};

4: Encode each solution Πg
k in Pg with another

permutation Π′g
k;

5: while g < gmax do
6: Generate offspring population Pg+1

a via multiple
NHMs learning and sampling using
ALGORITHM 2 ;

7: Decode solutions in Pg+1
a into DAG Gg+1

k using
the decoding method;

8: Calculate fΠg+1
k of solutions in Pg+1

a on the
selected tasks related to the skill factors
determined in its corresponding NHM;

9: Encode each solution Πg
k in Pg with an another

permutation Π′g
k;

10: Pg+1 = Pg ∪ Pg+1
a ;

11: Update r
Πg+1

k
j , φΠg+1

k and τΠ
g+1
k of offspring in

Pg+1;
12: Keep top half the fittest individuals in Pg+1 based

on φΠg+1
k ;

13: Return the best Π⋆
j over all the generations for Tj ;

registered web services. For example, a permutation is repre-578
sented as Π = (π1, . . . , πt, . . . , πn) such that πb ̸= πd for all579
b ̸= d. Every permutation-based solution will be decoded into580
a DAG-based solution Ggk for interpreting its service execution581
workflow using a decoding method proposed in [17]. Based on582
Ggk , we can easily determine f

Πg
k

j , rΠ
g
k

j , φΠg
k and τΠ

g
k of Πg

k583
over task Tj , where j ∈ {1, 2, . . . ,K}. Afterwards, we encode584
each solution Πg

k in Pg into another permutation Π′g
k based585

on its decoded DAG form Ggk (see details in Sect. IV-B). This 586
encoding step is essential and enables reliable and accurate 587
learning of an NHM [20]. The iterative part of PMFEA- 588
EDA comprises lines 6 to 12, which are repeated until a 589
maximum generation gmax is reached. During each iteration, 590
we generate an offspring population Pg+1

a via multiple NMHs 591
using ALGORITHM 2 (see details in Section IV-C). Again, 592
the same decoding and encoding techniques are employed to 593
these solutions in Pg+1

a . Afterwards, we evaluate the fitness 594
fΠg+1

k of solutions in Pg+1
a on the task related to the imitated 595

tasks skill factor, which is determined based on the principle 596
of vertical culture transmission [27]. In particular, the skill 597
factor of every produced solution is determined based on 598
its corresponding NHM, where it is sampled from. We then 599
produce the next population Pg+1 by combining the current 600
population Pg and the offspring population Pg

a . Consequently, 601

we update r
Πg+1

k
j , φΠg+1

k and τΠ
g+1
k of the combined popu- 602

lation Pg+1, and keep half of the population Pg+1 based on 603
φΠg+1

k . When the maximum generation gmax is reached, the 604
algorithm returns the best Π⋆

j over all the generations for Tj . 605

B. Permutation-based representation 606

Permutations were utilized in the domain of fully automated 607
service composition to indirectly represent a set of service 608
composition solutions [16], [26]. Such a permutation, however, 609
needs to be interpreted. For that, a forward graph building 610
algorithm [17] is used to map a permutation to a DAG. 611

Since different permutations could be mapped to the same 612
DAG, these permutations can lead to conflicts in learning the 613
knowledge of service positions for one composition solution in 614
NHM. As suggested in [20], we encode the permutation into 615
a nearly unique and more reliable service permutation based 616
on the decoded DAG, compared to its original permutation. 617
Particularly, we produce this new permutation by combining 618
two parts. One part comprises indexes of component services 619
in the DAG, sorted in ascending order based on the longest 620
distance from Start to every component service of the DAG 621
while the second part comprises indexes of the remaining 622

8 MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

services in the permutation not utilized by the DAG, see details623
in [20].624

Example 1. Let us consider a composition task T =625
({a, b}, {e, f}) and a service repository SR consisting of626
six atomic services: S0 = ({e, f}, {g}, QoSS0), S1 =627
({b}, {c, d}, QoSS1), S2 = ({c}, {e}, QoSS2), S3 =628
({d}, {f}, QoSS3

), S4 = ({a}, {h}, QoSS4
) and S5 =629

({c}, {e, f}, QoSS5
). The two special services Start =630

(∅, {a, b}, ∅) and End = ({e, f}, ∅, ∅) are defined by a given631
composition task T . Fig. 4 illustrates an example of producing632
a DAG from decoding a given permutation [4, 1, 0, 2, 3, 5] and633
producing another permutation [1, 2, 3, 4, 0, 5].634

𝑺𝟑
Input: d
Output: f

3

𝑺𝟏
Input: 𝑏

Outputs: c,d

1

𝑺𝟎
Inputs: e,f
Output: g

0

𝑺𝟐
Input: c

Output: e

2

𝑺𝟒
Input: a

Output: h

4

4

1

2

3

Start End

𝑰𝑻: { a, b } 𝑂+ 	: { e, f }

1st

2nd

3rd

4th

𝑺𝟓
Input: c

Output: e, f

5

𝑺𝟑
Input: d
Output: f

3

𝑺𝟏
Input: 𝑏

Outputs: c,d

1

𝑺𝟎
Inputs: e,f
Output: g

0

𝑺𝟐
Input: c

Output: e

2

𝑺𝟒
Input: a

Output: h

4

𝑺𝟓
Input: c

Output: e, f

5

Fig. 4: Decoding a permutation into a DAG

In the example, we check the satisfaction on the inputs635
of services in the permutation from left to right. If any636
services can be immediately satisfied by the provided inputs637
of composition task IT , we remove it from the permutation638
and add it to the DAG with a connection to Start. Afterwards,639
we continue checking on services’ inputs by using the IT and640
outputs of the services, and add satisfied services to the DAG.641
We continue this process until we can add End to the graph.642
In the last phase of the decoding process, some redundant643
services, such as 4, whose outputs contribute nothing to End,644
will be removed. In addition, this DAG is encoded as a new645
permutation [1, 2, 3, 4, 0, 5] consisting of two parts: one646
part [1, 2, 3] corresponds to a service discovered by the647
discussed sorted method on the DAG and another part [4, 0, 5]648
corresponds to the remaining atomic services in SR, but not649
in the DAG. Furthermore, we also permit the encoding [1, 2,650
3, 0, 4, 5], as no information can be extracted from the DAG651
to determine the order of 0, 4, and 5.652

C. NHMs Learning and Sampling653

Considering K composition tasks in PMFEA-EDA, we654
learn 2K−1 NHMs based on promising solutions for sampling655
new candidate solutions. Every entry of NMHs roughly counts656
the number of times that a service index appears in the position657
of the permutation over all promising solutions in the pool.658
Among the NHMs, there are K single-tasking NHMs and K-1659
multitasking NHMs. With respect to each NHM, a separate660
solution pool will be maintained by PMFEA-EDA to keep661

track of useful solutions for building the corresponding NHM. 662
For example, considering the example of the four composition 663
tasks discussed in Sect. III-B, i.e., T1, T2, T3 and T4, 7 pools 664
must be initialized for the four composition tasks and three 665
adjacent task pairs (i.e., T1 and T2, T2 and T3, and T3 and 666
T4). 667

Moreover, a parameter rsp is used to determine whether 668
multitasking or single-tasking NHMs are selected for sam- 669
pling. Particularly, a value of rsp close to 0 implies that 670
single-tasking NHMs are more frequently used to build new 671
solutions, while a value close to 1 implies that multitasking 672
NHMs are used with high probability to build new solutions 673
for two adjacent tasks.

ALGORITHM 2. Multiple NHMs learning and sampling
over K tasks
Input : Pg

Output: Pg+1
a

1: Initialize a set of empty Aq for each task and every
two adjacent tasks;

2: Assign each solution Π′g
k in Pg to Aq based on its

skill factor φΠ′g
k ;

3: Learn 2K − 1 NHMs NHMg
q from the 2K − 1 Aq;

4: while |Pg+1| ≤ m do
5: rand ← Rand(0, 1);
6: if rand < rsp then
7: Select one NHM from multitasking NHMs

randomly;
8: else
9: Select one NHM from single-tasking NHMs

randomly;

10: Sample one solution Πg+1
k from the selected NHM

and put the solution into Pg+1;
11: Πg+1

k inherts the skill factor based on the selected
NHM;

12: Return offspring population Pg+1
a ;

674
The outline of multiple NHMs learning and sampling over 675

K tasks is summarized in ALGORITHM 2. We first initialize 676
a set of empty solution pools Aq , where 1 ≤ q ≤ (2K − 1). 677
Afterwards, we assign these encoded solutions to these pools 678
based on the solutions’ skill factors τΠ

′g
k . For example, if τΠ

′g
k 679

= 1, this solution Π′g
k is assigned to two pools, one for task 680

T1, and the other is for both tasks T1 and T2. Afterwards, 681
we learn 2K − 1 NHMs from the 2K − 1 pools respectively 682
(see details in Subsection IV-D). The iteration part comprises 683
lines 5 to 12. This iteration will not stop until m new solutions 684
are constructed to form the offspring population Pg+1

a . During 685
the iteration, rsp is used to determine whether one NHM is 686
randomly selected from the 2K − 1 single-tasking NHMs or 687
multitasking NHMs. The selected NHM is used to build one 688
solution. Hence, the skill factor of the newly created solution 689
will also be determined by the associated tasks with the chosen 690
NHM, inspired by the principle of vertical culture transmission 691
[27]. After all iterations have been completed, ALGORITHM 2 692
returns the newly produced population Pg+1

a required in line 693
6 of ALGORITHM 1. 694

WANG et al.: USING AN ESTIMATION OF DISTRIBUTION ALGORITHM TO ACHIEVE MULTITASKING SEMANTIC WEB SERVICE COMPOSITION 9

D. Application of Node Histogram-Based Sampling695

We employ node histogram-based sampling [58] as a tool696
to create new permutations from the selected NHMs in Step 7697
or 9 in ALGORITHM 2. Node Histogram-Based Sampling can698
effectively sample new and good candidate composite services699
from every Node Histogram Matrix learnt in each generation.700
This is because the learnt Node Histogram can capture the701
explicit knowledge of a set of promising composite services in702
every generation with respect to each task and every adjacent703
task.704

An NHM learned from solutions in each pool Aq at gener-705
ation g, denoted by NHMg

q , is an n× n-matrix with entries706
egi,r as follows:707

egi,r =

m−1∑
k=0

δi,r(Π
′g
k) + ε (7)

δi,r(Π
′g
k) =

{
1 if πi = r
0 otherwise

(8)

where i, r = 0, 1, . . . , n−1, ε = m
n−1bratio is a predetermined708

bias, and n = |SR|. Roughly speaking, entry egi,r counts the709
number of times that service index πi appears in position r of710
the permutation over all solutions in pool Aq .711

Example 2. Let’s consider a pool Aq at generation g. This
pool is assigned with m permutations. For m = 6, an example
of Ag

q may look as follows.

Ag
q =


Πg

0

Πg
1

Πg
2

Πg
3

Πg
4

Πg
5

 =


1 2 3 4 0 5
0 1 2 3 4 5
0 1 2 3 4 5
4 3 0 1 2 5
4 3 0 1 2 5
2 1 3 0 4 5


Consider bratio = 0.2, m = 6, and n = 6, then ε = 0.24.712

Thus, we can calculate NHMg
q as follows:713

NHMg
q =


2.24 1.24 1.24 0.24 2.24 0.24
0.24 3.24 1.24 2.24 0.24 0.24
2.24 0.24 2.24 2.24 0.24 0.24
2.24 2.24 0.24 2.24 0.24 0.24
0.24 0.24 2.24 0.24 4.24 6.24


We use one entry eg0,0 = 2.24 as an example to explain714

the meaning behind this value. The integer part 2 states that715
service S0 appears twice in the first position over all the716
permutations in Ag

q . The decimal part 0.24 = 6 ∗ 0.2/(6− 1)717
is the bias ε.718

Once we have computed NHMg
q , we use node histogram-719

based sampling (NHBSA) [58] to sample new candidate720
solutions Πg+1

k for the population Pg+1
a , see ALGORITHM 5721

in APPENDIX C for technical details. Afterwards, the same722
decoding part discussed in Sect. IV-B will be employed723
on each newly sampled permutation to ensure its functional724
validity in its corresponding DAG form.725

E. Fitness Evaluations for K Tasks726

It is essential to include infeasible individuals (i.e., com-727
posite solutions that violate intervalj of task Tj) into each728

population since infeasible composite solutions may help to 729
find optimal solutions of other tasks. For example, we take 730
an arbitrary example of a composite service whose QoSM 731
equals 0.3. Based on the segment preferences in Fig. 2, this 732
composite service is only feasible for just one task (i.e., T2), 733
since it complies with interval2. However, this solution is 734
infeasible for the other tasks (i.e., T1, T3,and T4) as it violates 735
interval1, interval3, and interval4 respectively. We allow 736
infeasible individuals in the population, but their fitness (i.e., 737
factorial cost in a multitasking context) must be penalized for 738
tasks T1, T3, and T4 (see details in Eq. (9)). According to the 739
fitness function in Eq. (9) with respect to Tj , we guarantee 740
that fΠ

j of an infeasible individual falls below 0.5 while fΠ
j 741

of a feasible individual stays above 0.5. Eq. (11) quantifies 742
the violation of intervalj by measuring how far it is from 743
QoSM(Π) in Eq. (10). In particular, an infeasible individual 744
that violates intervalj more should be penalized more. 745

fΠ
j =

{
0.5 + 0.5 ∗ F (Π) if QoSM(Π) ∈ intervalj ,
0.5 ∗ F (Π)− 0.5 ∗ Vj(Π) otherwise.

(9)

QoSM(Π) = w7M̂T + w8
ˆSIM (10)

Vj(Π) =

{
QoSMa

j −QoSM(Π) if QoSM(Π) ≤ QoSMa
j ,

QoSM(Π)−QoSM b
j otherwise.

(11)
with

∑8
k=7 wk = 1. We can adjust the weights according 746

to the preferences of user segments. M̂T , and ˆSIM are 747
normalized values calculated within the range from 0 to 1 748
using Eq. (6). 749

To find the K best solutions with one for each task, the 750
goal of multitasking semantic web service composition is to 751
maximize the objective function in Eq. (9) concerning the K 752
tasks. 753

V. EXPERIMENTAL EVALUATION 754

To demonstrate the effectiveness and efficiency of our 755
PMFEA-EDA, we conduct experiments to compare it against 756
four recent works: one evolutionary multitasking approach 757
developed in [26]; two works [16], [20] that employed EC- 758
based single-tasking techniques; one recent non-EC work [43] 759
based on a graph traversal technique. Moreover, we also 760
study the effectiveness of knowledge sharing across adjacent 761
tasks in PMFEA-EDA to understand its impact on the quality 762
of obtained solutions for all the tasks. This is achieved by 763
experimentally comparing PMFEA-EDA without knowledge 764
sharing (named PMFEA-EDA-WOT) with PMFEA-EDA. 765

We employ a quantitative evaluation approach for study- 766
ing the effectiveness and efficiency of PMFEA-EDA 1 with 767
augmented benchmark datasets 2 (i.e., WSC08-1 to WSC08-8 768
and WSC09-1 to WSC09-5 with increasing service repository 769

1The code of PMFEA-EDA for automated web service composition is
available from https://github.com/chenwangnida/PMFEA-EDA-Code

2The two augmented benchmarks for automated web service composition
are available from https://github.com/chenwangnida/Dataset

10 MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

SR) used by the very recent studies [43], [20], [59], [26].770
The benchmark datasets originally come from WSC 08[60]771
and WSC09 [61] and were extended with real QoS attributes772
in QWS [62]. In WSC08 and WSC09, the semantics of service773
inputs and outputs are described by the OWL-S language. This774
language allows a high degree of automation in discovering,775
invoking, composing, and monitoring Web resources. Other776
web service description languages, such as WSDL, RSDL,777
OpenAI can be transformed into OWL-S [63], [64], [65].778
In other words, these different description languages can be779
supported by our algorithm technically.780

[26] defines four composition tasks for each dataset, which781
has identical IT , and OT but four different QoSM prefer-782
ences introduced at the beginning of Sect. III-B. We evaluate783
three multitasking methods: PMFEA-EDA, PMFEA-WTO,784
and PMFEA [26], and three single-tasking methods: EDA [20],785
FL [16] and PathSearch[43] (see the comparison results in786
Sect. V-A and Sect. V-B). In particular, the three multitasking787
methods are utilized to optimize the four composition tasks788
concurrently, while the three single-tasking methods are uti-789
lized to optimize each task one by one, and execution time is790
the aggregation of time spent on all tasks. We run 30 times791
of each EC-based method independently for all the datasets792
while we run 1 time of the deterministic non-EC method, i.e.,793
PathSearch [43].794

To make fair comparisons over all the methods, we use the 795
same number of evaluations in PMFEA-EDA, PMFEA-WTO, 796
PMFEA [26], EDA [20] and FL [16] for each run, i.e., the 797
population size is 30 with 200 generations. We define rsp as 798
0.2 so that every single-tasking NHM and every multitasking 799
NHM are expected to create 6 and 2 solutions, respectively, for 800
the population size of 30. Therefore, each task has roughly the 801
same number of solutions from the sampling. bratio is 0.0002 802
according to EDA [20]. Other parameters of PMFEA [26], 803
EDA [20], FL [16] and PathSearch [43] follow the common 804
settings reported in the literature. For PathSearch [43], the 805
parameter k (i.e., the number of services considered in the 806
path construction at each step) associated with this algorithm 807
is set to 7, which reported the highest quality in their paper. 808
All the weights in Eq. (5) and Eq. (10) follow PMFEA [26]: 809
w1 and w2 are set equally to 0.25, and w3, w4, w5, w6 are all 810
set to 0.125, these weights are set to properly balance QoSM 811
and QoS; w7 and w8 are set to 0.5, these weights are set 812
to balance all quality criteria in QoSM. In general, weight 813
settings are decided to reflect user segments’ preferences. We 814
have conducted tests with other weights and observed similar 815
results to those reported below. 816

All the methods are run on a grid engine system (i.e., N1 817
Grid Engine 6.1 software) that performs tasks via a collection 818
of computing resources, i.e., Linux PCs and each PC with 819

TABLE II: Mean fitness values of solutions per task for our approaches in comparison to PMFEA [26], EDA [20], FL [16]
and PathSearch [43] for WSC08 (Note: the higher the fitness the better)

Task T1

Method PMFEA-EDA PMFEA-EDA-WTO PMFEA [26] EDA [20] FL [16] PathSearch [43]
WSC08-1 0.164706 ± 0.002087 0.159196 ± 0.002385 0.163224 ± 0.001179 0.165277 ± 0.000297 0.163771 ± 0.00133 0.150044
WSC08-2 0.190545 ± 0 0.186381 ± 0.003009 0.183607 ± 0.005647 0.190513 ± 0.000119 0.186696 ± 0.004012 0.148601
WSC08-3 0.135325 ± 0.000218 0.132964 ± 0.000276 0.133842 ± 0.000569 0.134644 ± 0.00019 0.13494 ± 0.000261 0.130825
WSC08-4 0.181683 ± 0 0.175812 ± 0.001998 0.180604 ± 0.001476 0.181683 ± 0 0.180149 ± 0.001553 0.168962
WSC08-5 0.158257 ± 0.000409 0.140024 ± 0.002234 0.150427 ± 0.005761 0.154543 ± 0.001248 0.148781 ± 0.004893 0.146512
WSC08-6 0.13877 ± 0.000784 0.136855 ± 0.000457 0.137388 ± 0.000878 0.137572 ± 0.000251 0.138903 ± 0.000851 0.162561
WSC08-7 0.155868 ± 0.001971 0.145899 ± 0.00104 0.147377 ± 0.002597 0.151623 ± 0.001254 0.150155 ± 0.002666 0.140096
WSC08-8 0.140659 ± 0.00028 0.138724 ± 0.000381 0.139543 ± 0.000493 0.140014 ± 0.000162 0.140249 ± 0.000375 0.140389

Task T2

Method PMFEA-EDA PMFEA-EDA-WTO PMFEA [26] EDA [20] FL [16] PathSearch [43]
WSC08-1 0.783246 ± 0.004123 0.77537 ± 0.005286 0.78094 ± 0.003956 0.780501 ± 0.005908 0.779276 ± 0.003184 0.275044
WSC08-2 0.810462 ± 0.003182 0.792539 ± 0.008051 0.796973 ± 0.011255 0.804669 ± 0.005148 0.798272 ± 0.007808 0.745933
WSC08-3 0.73858 ± 0.000144 0.736444 ± 0.000254 0.737742 ± 0.000522 0.737772 ± 0.000163 0.737822 ± 0.000394 0.736360
WSC08-4 0.778908 ± 0 0.775306 ± 0.002071 0.77849 ± 0.001029 0.778908 ± 0 0.777783 ± 0.001245 0.774642
WSC08-5 0.761759 ± 0.00042 0.74463 ± 0.003025 0.754992 ± 0.006117 0.757012 ± 0.001323 0.752598 ± 0.004912 0.727467
WSC08-6 0.74079 ± 0.000159 0.738981 ± 0.000254 0.740372 ± 0.000701 0.739996 ± 0.000153 0.740168 ± 0.000354 0.707353
WSC08-7 0.761402 ± 0.000417 0.748287 ± 0.001869 0.754869 ± 0.004231 0.757697 ± 0.00085 0.754984 ± 0.003319 0.735627
WSC08-8 0.748496 ± 0.00029 0.738195 ± 0.001043 0.743635 ± 0.002428 0.74168 ± 0.000886 0.742857 ± 0.002489 0.722568

Task T3

Method PMFEA-EDA PMFEA-EDA-WTO PMFEA [26] EDA [20] FL [16] PathSearch [43]
WSC08-1 0.786634 ± 0.103967 0.783322 ± 0.005268 0.798704 ± 0.008522 0.803764 ± 0.008859 0.798732 ± 0.005459 0.803575
WSC08-2 0.878406 ± 0 0.876893 ± 0.002883 0.876137 ± 0.005002 0.87791 ± 0.001854 0.876441 ± 0.002861 0.796941
WSC08-3 0.22369 ± 0.000218 0.219439 ± 0.000521 0.222456 ± 0.001023 0.221868 ± 0.000288 0.222154 ± 0.000612 0.217205
WSC08-4 0.253553 ± 0 0.248326 ± 0.002299 0.253038 ± 0.001563 0.253549 ± 2e − 05 0.252369 ± 0.001297 0.263426
WSC08-5 0.24297 ± 0.000782 0.222143 ± 0.001811 0.236261 ± 0.006324 0.234794 ± 0.002012 0.230628 ± 0.00512 0.187677
WSC08-6 0.226387 ± 0.000262 0.222613 ± 0.000784 0.2259 ± 0.001693 0.225165 ± 0.000223 0.225222 ± 0.000924 0.127144
WSC08-7 0.249391 ± 0.00029 0.232944 ± 0.001898 0.241935 ± 0.005391 0.243889 ± 0.001904 0.240343 ± 0.003232 0.211617
WSC08-8 0.231538 ± 0.000315 0.21998 ± 0.000939 0.22664 ± 0.002304 0.223648 ± 0.000975 0.225382 ± 0.002224 0.180967

Task T4

Method PMFEA-EDA PMFEA-EDA-WTO PMFEA [26] EDA [20] FL [16] PathSearch [43]
WSC08-1 0.216365 ± 0.018324 0.175843 ± 0.012607 0.204841 ± 0.019299 0.21709 ± 0.015455 0.204375 ± 0.013322 0.223000
WSC08-2 0.362814 ± 0 0.360104 ± 0.004077 0.357579 ± 0.01212 0.362814 ± 0 0.357846 ± 0.010539 0.211233
WSC08-3 0.098541 ± 0.000257 0.094654 ± 0.000391 0.097468 ± 0.000966 0.096868 ± 0.000288 0.097154 ± 0.000612 0.092205
WSC08-4 0.128553 ± 0 0.123964 ± 0.002133 0.128012 ± 0.001311 0.128549 ± 2e − 05 0.127289 ± 0.001313 0.138426
WSC08-5 0.117822 ± 0.000908 0.097303 ± 0.002245 0.111215 ± 0.006349 0.109794 ± 0.002012 0.105628 ± 0.00512 0.062677
WSC08-6 0.101324 ± 0.000315 0.097761 ± 0.000633 0.10097 ± 0.001524 0.100165 ± 0.000223 0.100187 ± 0.000957 0.002144
WSC08-7 0.1244 ± 0.000302 0.107739 ± 0.001348 0.117175 ± 0.005221 0.118889 ± 0.001904 0.115343 ± 0.003232 0.086617
WSC08-8 0.106516 ± 0.000354 0.09512 ± 0.000775 0.101716 ± 0.002423 0.098648 ± 0.000975 0.100382 ± 0.002224 0.055967

WANG et al.: USING AN ESTIMATION OF DISTRIBUTION ALGORITHM TO ACHIEVE MULTITASKING SEMANTIC WEB SERVICE COMPOSITION 11

TABLE III: Mean fitness values of solutions per task for our approaches in comparison to PMFEA [26], EDA [20], FL [16]
and PathSearch [43] for WSC09 (Note: the higher the fitness the better)

Task T1

Method PMFEA-EDA PMFEA-EDA-WTO PMFEA [26] EDA [20] FL [16] PathSearch [43]
WSC09-1 0.196195 ± 0.000547 0.193173 ± 0.002266 0.192864 ± 0.003543 0.196316 ± 0.000314 0.193947 ± 0.003276 0.136890
WSC09-2 0.15621 ± 0.000806 0.141811 ± 0.000646 0.148709 ± 0.00488 0.145844 ± 0.001347 0.146254 ± 0.002946 0.137212
WSC09-3 0.158664 ± 0.001038 0.147505 ± 0.001923 0.150053 ± 0.003885 0.156733 ± 0.001425 0.15355 ± 0.002688 0.140160
WSC09-4 0.142097 ± 0.000467 0.139684 ± 0.000359 0.140255 ± 0.00073 0.140256 ± 0.000673 0.141451 ± 0.000515 0.135814
WSC09-5 0.145391 ± 0.000337 0.143159 ± 0.000389 0.143447 ± 0.000946 0.145045 ± 0.000278 0.144942 ± 0.000705 0.137544

Task T2

Method PMFEA-EDA PMFEA-EDA-WTO PMFEA [26] EDA [20] FL [16] PathSearch [43]
WSC09-1 0.815627 ± 0.002673 0.808235 ± 0.003689 0.809369 ± 0.007696 0.816144 ± 0 0.807483 ± 0.005398 0.261890
WSC09-2 0.761226 ± 0.00064 0.74019 ± 0.001354 0.752848 ± 0.006956 0.74704 ± 0.005348 0.74895 ± 0.006425 0.732288
WSC09-3 0.77392 ± 0.003505 0.755821 ± 0.003864 0.760746 ± 0.006192 0.772646 ± 0.001529 0.761924 ± 0.006194 0.727531
WSC09-4 0.741242 ± 0.000261 0.738214 ± 0.000567 0.739866 ± 0.000853 0.739946 ± 0.000233 0.739826 ± 0.000692 0.733738
WSC09-5 0.74173 ± 0.000756 0.738334 ± 0.000293 0.73936 ± 0.001217 0.739431 ± 0.000255 0.739467 ± 0.000735 0.734080

Task T3

Method PMFEA-EDA PMFEA-EDA-WTO PMFEA [26] EDA [20] FL [16] PathSearch [43]
WSC09-1 0.806034 ± 0.097563 0.820217 ± 0.003495 0.820107 ± 0.007241 0.823483 ± 0.000978 0.819418 ± 0.003768 0.788172
WSC09-2 0.242136 ± 0.000241 0.222519 ± 0.001753 0.234557 ± 0.00651 0.232177 ± 0.00283 0.22968 ± 0.004616 0.205492
WSC09-3 0.791989 ± 0 0.787464 ± 0.002324 0.789012 ± 0.002968 0.791938 ± 0.000146 0.788726 ± 0.002576 0.190768
WSC09-4 0.227768 ± 0.000446 0.221226 ± 0.000789 0.224278 ± 0.001957 0.224629 ± 0.00063 0.224127 ± 0.001467 0.206797
WSC09-5 0.224546 ± 0.000719 0.219729 ± 0.000897 0.221169 ± 0.002244 0.2218 ± 0.000243 0.221102 ± 0.001248 0.206344

Task T4

Method PMFEA-EDA PMFEA-EDA-WTO PMFEA [26] EDA [20] FL [16] PathSearch [43]
WSC09-1 0.226227 ± 0.011127 0.22145 ± 0.009191 0.219863 ± 0.013342 0.22731 ± 0.003251 0.221582 ± 0.00946 0.206402
WSC09-2 0.117137 ± 0.000241 0.097486 ± 0.001454 0.109708 ± 0.00659 0.107177 ± 0.00283 0.10468 ± 0.004616 0.080492
WSC09-3 0.222379 ± 0 0.215091 ± 0.005245 0.217783 ± 0.005575 0.222212 ± 0.00034 0.216698 ± 0.00533 0.065768
WSC09-4 0.102637 ± 0.000634 0.096245 ± 0.001065 0.099276 ± 0.001935 0.099674 ± 0.000596 0.099127 ± 0.001467 0.081797
WSC09-5 0.099487 ± 0.000716 0.094344 ± 0.000876 0.096085 ± 0.002181 0.096785 ± 0.000271 0.096102 ± 0.001248 0.081344

TABLE IV: Mean execution time (in seconds) over all the tasks for our approaches in comparison to PMFEA [26],
EDA [20], FL [16] and PathSearch [43] for WSC08 (Note: the shorter the time the better)

Tasks T1, T2, T3 and T4

Method PMFEA-EDA PMFEA-EDA-WTO PMFEA [26] EDA [20] FL [16] PathSearch [43]
WSC08-1 66 ± 15 151 ± 14 79 ± 23 310 ± 103 228 ± 230 8
WSC08-2 31 ± 4 62 ± 8 35 ± 20 131 ± 67 64 ± 56 15
WSC08-3 901 ± 90 1483 ± 123 1956 ± 531 3682 ± 338 8084 ± 3657 43
WSC08-4 39 ± 5 85 ± 9 84 ± 22 132 ± 63 351 ± 265 18
WSC08-5 763 ± 100 1516 ± 184 1548 ± 596 3516 ± 351 7128 ± 3632 48
WSC08-6 11356 ± 1040 15714 ± 1305 16486 ± 3464 36824 ± 2664 65212 ± 30075 320
WSC08-7 1140 ± 172 2463 ± 210 2972 ± 1637 5536 ± 444 10862 ± 8071 306
WSC08-8 1856 ± 144 3183 ± 364 2998 ± 800 7842 ± 652 12424 ± 5387 908

TABLE V: Mean execution time (in seconds) over all the tasks for our approaches in comparison to PMFEA [26],
EDA [20], FL [16] and PathSearch [43] for WSC09 (Note: the shorter the time the better)

Tasks T1, T2, T3 and T4

Method PMFEA-EDA PMFEA-EDA-WTO PMFEA [26] EDA [20] FL [16] PathSearch [43]
WSC09-1 54 ± 8 52 ± 11 79 ± 87 184 ± 12 150 ± 151 20
WSC09-2 1571 ± 181 1533 ± 218 2371 ± 804 7058 ± 369 8479 ± 3002 463
WSC09-3 1085 ± 186 975 ± 122 1821 ± 740 5057 ± 885 5926 ± 3199 728
WSC09-4 57788 ± 6902 50310 ± 7535 71903 ± 19042 202464 ± 9366 250146 ± 55355 3894
WSC09-5 9671 ± 1092 8834 ± 819 13689 ± 6723 39257 ± 1885 47879 ± 16126 3138

an Intel Core i7-4770 CPU (3.4GHz) and 8 GB RAM. This820
hardware configuration is used for all the methods compared821
in this paper.822

A. Comparison of the Fitness823

Wilcoxon rank-sum test is employed at a significance level824
of 5% to verify the observed differences in fitness values. Par-825
ticularly, pairwise comparisons of all the competing methods826
are carried out to count the number of times they are found827
to be better, similar, or worse than the others. Consequently,828
we can rank all the competing methods and highlight the top829
performance in green color.830

Table II and III show the mean value of the solution fitness831
and the standard deviation over 30 repetitions for each task832

solved by PMFEA-EDA, PMFEA-EDA-WOT, PMFEA, EDA, 833
and FL, and deterministic fitness value over 1 run for each 834
task solved by PathSearch. We observe that the quality (i.e., 835
QoSM and QoS) of solutions produced by using our PMFEA- 836
EDA, and EDA [20] are generally higher than those obtained 837
by PMFEA and FL [16]. This corresponds well with our 838
expectation that learning the knowledge of promising solutions 839
explicitly can effectively improve the quality of composite 840
services. 841

Furthermore, PMFEA-EDA performs better than single- 842
tasking EDA [20]. This observation indicates that address- 843
ing multiple tasks collectively is often more effective than 844
addressing each task individually, through the use of NHM. 845
Particularly, compared to single-tasking EDA, multitasking 846

12 MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

methods are more likely to evolve a well-diversified popu-847
lation of solutions. Consequently, we can easily prevent the848
evolutionary process from converging prematurely.849

In addition, PMFEA-EDA also outperforms PMFEA-EDA-850
WTO significantly and is labeled as top performance. This851
corresponds well with our expectation that explicit knowledge852
sharing through multitasking NHMs can significantly improve853
its ability in finding high-quality solutions.854

Lastly, PathSearch [43] achieves the worst performance in855
finding high-quality solutions, despite 5 out of 52 composition856
tasks are marked in green. It is due to that PathSearch [43] was857
designed to make the locally best choice over the k services at858
each step and gradually build a path-based composite solution.859

B. Comparison of the Execution Time860

Wilcoxon rank-sum test at a significance level of 5% is861
also employed to verify the observed differences in values of862
execution time (in seconds). Table IV and V show the mean863
value of the execution time and the standard deviation over864
30 repetitions for all tasks solved by PMFEA-EDA, PMFEA-865

EDA-WOT, PMFEA, EDA, and FL, and the value of execution 866
time over 1 run for all tasks solved by PathSearch. 867

Firstly, PathSearch [43] requires the least execution time. 868
This is because PathSearch [43] only searches the constructed 869
path based on the k best services from a pre-stored service 870
dependency graph. However, efficiency is not the focus of this 871
paper because finding high-quality composite services at the 872
design stage is our focus. 873

Apart from PathSearch [43], PMFEA-EDA, PMFEA-EDA- 874
WTO, and PMFEA appear to be more efficient than EDA [20] 875
and FL [16]. Although the same number of evaluations is 876
assigned for each run of every method, EDA [20] and FL [16] 877
are single-tasking methods that have to solve each composition 878
task one by one. 879

Lastly, PMFEA-EDA-WTO requires slightly less execution 880
time for all the tasks since PMFEA-EDA demands more time 881
for learning NHMs when service repository SR becomes 882
larger and larger. However, the extra time incurred in PMFEA- 883
EDA is not substantial compared to other multitasking meth- 884
ods. 885

●

●

●
●

●
●●
●
●
●
●
●●
●●
●
●●●

●
●
●●●●

●●●
●●●●●

●●●●●
●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●

0.137

0.138

0.139

0.140

0 50 100 150 200
Generation

M
ea

nF
itn

es
s

● EDA (single−tasking)

FL (single−tasking)

PMFEA (multitasking)

PMFEA−EDA (multitasking)

PMFEA−EDA−WTO (multitsking)

(a) WSC08-8 Task 1

●
●●
●●
●●
●
●●
●●●

●●●
●●●●

●●●●
●●●●●●●●●●

●●●●●●
●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●

●●
●●

●

0.735

0.740

0.745

0 50 100 150 200
Generation

M
ea

nF
itn

es
s

● EDA (single−tasking)

FL (single−tasking)

PMFEA (multitasking)

PMFEA−EDA (multitasking)

PMFEA−EDA−WTO (multitsking)

(b) WSC08-8 Task 2

●

●

●
●
●
●
●●
●●
●●●

●●●●
●●●

●●●●●●●
●●●●●●●

●●●●
●●●●●●●●●●●●

●●●●●
●●

●●
●●●

0.215

0.220

0.225

0.230

0 50 100 150 200
Generation

M
ea

nF
itn

es
s

● EDA (single−tasking)

FL (single−tasking)

PMFEA (multitasking)

PMFEA−EDA (multitasking)

PMFEA−EDA−WTO (multitsking)

(c) WSC08-8 Task 3

●

●

●
●
●
●
●●
●●
●●●

●●●●
●●●

●●●●●●●
●●●●●●●

●●●●
●●●●●●●●●●●●

●●●●●
●●

●●
●●●

0.090

0.095

0.100

0.105

0 50 100 150 200
Generation

M
ea

nF
itn

es
s

● EDA (single−tasking)

FL (single−tasking)

PMFEA (multitasking)

PMFEA−EDA (multitasking)

PMFEA−EDA−WTO (multitsking)

(d) WSC08-8 Task 4

●

●
●
●●
●●
●●●●●

●●●●●●
●●●●●

●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

0.140

0.145

0.150

0.155

0 50 100 150 200
Generation

M
ea

nF
itn

es
s

● EDA (single−tasking)

FL (single−tasking)

PMFEA (multitasking)

PMFEA−EDA (multitasking)

PMFEA−EDA−WTO (multitsking)

(e) WSC09-2 Task 1

●
●
●●●

●●●
●●
●●●

●●●●
●●●●

●●
●●●

●●●●●●●●
●●●

●●●●
●●●●

●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

0.740

0.745

0.750

0.755

0.760

0 50 100 150 200
Generation

M
ea

nF
itn

es
s

● EDA (single−tasking)

FL (single−tasking)

PMFEA (multitasking)

PMFEA−EDA (multitasking)

PMFEA−EDA−WTO (multitasking)

(f) WSC09-2 Task 2

●

●
●●
●
●
●●
●
●
●●
●●
●●
●●●

●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●

0.215

0.220

0.225

0.230

0.235

0.240

0 50 100 150 200
Generation

M
ea

nF
itn

es
s

● EDA (single−tasking)

FL (single−tasking)

PMFEA (multitasking)

PMFEA−EDA (multitasking)

PMFEA−EDA−WTO (multitasking)

(g) WSC09-2 Task 3

●

●
●●
●
●
●●
●
●
●●
●●
●●
●●●

●●
●●●●

●●●●●
●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●

0.09

0.10

0.11

0 50 100 150 200
Generation

M
ea

nF
itn

es
s

● EDA (single−tasking)

FL (single−tasking)

PMFEA (multitasking)

PMFEA−EDA (multitasking)

PMFEA−EDA−WTO (multitasking)

(h) WSC09-2 Task 4

Fig. 5: Mean fitness over generations for tasks 1-4, for WSC08-8 and WSC09-2 (Note: the larger the fitness the better)

WANG et al.: USING AN ESTIMATION OF DISTRIBUTION ALGORITHM TO ACHIEVE MULTITASKING SEMANTIC WEB SERVICE COMPOSITION 13

C. Comparison of the Convergence Rate886

We also study the convergence rate of PMFEA-EDA,887
PMFEA-EDA-WTO, PMFEA, EDA [20], and FL [16]. Us-888
ing WSC08 and WSC09-2 as two examples, we show the889
behaviours of the effectiveness of all the methods in Fig. 5.890

Fig. 5 shows the evolution of the mean fitness value of the891
best solutions found so far along 200 generations for all the892
approaches. We can see that PMFEA-EDA converges much893
faster than all the other methods in all the tasks (except task 1894
on WSC 08-08). Besides that, PMFEA-EDA converges faster895
than PMFEA-EDA-WTO, and eventually reaches the highest896
plateau. This observation matches well with our expectation897
that knowledge sharing across tasks is very effective.898

D. Comparison of the Population Diversity899

To explore the effectiveness of our proposed sampling900
strategy from multitasking NHMs with knowledge sharing,901
we investigated the diversity of the sampled population using902
30 independent runs. We have used WSC08-8 and WSC09-2903
as examples to illustrate the population diversity of the two904
methods, i.e., PMFEA-EDA and PMFEA-EDA-WTO. To905
examine the population diversity of these two methods over906
WSC08-8 and WSC09-2, we run 500 generations, instead907
of 200 generations, for WSC08-8 because the size of the908
service repository in WSC08-8 (i.e., 16238) is much bigger909
(with larger searching space) than that of WSC09-2 (i.e.,910
8258). Fig. 6 shows the population diversity, measured by911
the standard deviation of fitness values in Eq. (5) across 500912
and 200 generations for WSC08-8 and WSC09-2, respectively.913

914

0.004

0.008

0.012

0.016

0 100 200 300 400 500
Generation

S
ta

nd
ar

d
de

vi
at

io
n

PMFEA−EDA

PMFEA−EDA−WTO

(a) WSC08-8

0.005

0.010

0.015

0 50 100 150 200
Generation

S
ta

nd
ar

d
de

vi
at

io
n

PMFEA−EDA

PMFEA−EDA−WTO

(b) WSC09-2

Fig. 6: Population diversity measured by standard deviation
over generations

In Fig. 6 (a) and (b), PMFEA-EDA focuses more on915
exploration than PMFEA-EDA-WOT at the beginning of the916

evolutionary process, with the standard deviation of fitness 917
values reaching its peak at generation 120 and 50 for WSC08-8 918
and WSC09-2, respectively. Starting from generation 350 and 919
100 for WSC08-8 and WSC09-2, respectively, PMFEA-EDA 920
focuses comparatively more on exploitation than PMFEA- 921
EDA-WOT, and the corresponding fitness standard deviation 922
continues to decrease to a low level. This observation matches 923
well with our expectation that more exploration is performed 924
in the beginning, and more exploitation happens in later phases 925
of the evolution. On the other hand, PMFEA-EDA-WOT 926
performs exploitation all the time as the standard deviation 927
of fitness values stays at roughly the same levels. 928

E. Sensitivity Analysis of the Model Parameter 929

In the literature, bratio was set to 0.0002 in the single- 930
tasking context [20], [58]. To study its sensitivity in a 931
multitasking context, we study the performance of PMFEA- 932
EDA with vary values of bratio. Particularly, we use WSC08-8 933
as an example to test the sensitivity of bratio under a wide 934
range of settings, i.e., 0.2, 0.02, 0.002, and 0.0002. 935

936
Fig. 7 shows the mean fitness values of the best solutions 937

found after 200 generations for tasks T1, T2, T3, and T4 with 938
respect to four different bratio values over 30 runs. As shown 939
in Fig. 7, we observed no significant differences in the mean 940
fitness values for different values of bratio in each task. This 941
finding indicates that the performance of PMFEA-EDA is not 942
sensitive to the settings of bratio. 943

Fig. 7: Mean fitness values of PMFEA-EDA with
different bratio over four tasks in WSC08-8

VI. CONCLUSIONS 944

In this paper, we introduced a new permutation-based multi- 945
factorial evolutionary algorithm based on Estimation of Dis- 946
tribution Algorithm to solve service composition tasks from 947
multiple user segments with different QoSM preferences in the 948

14 MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

context of fully automated web service composition. In partic-949
ular, single-tasking and multitasking NHMs are constructed to950
learn explicit knowledge of promising solutions for each task951
and every two adjacent tasks, respectively. This explicit learn-952
ing mechanism is expected to perform knowledge learning953
and sharing better with an aim to find high-quality composite954
services for multiple tasks simultaneously. In addition, we also955
allow explicit knowledge to be effectively shared across every956
two adjacent tasks through the use of multitasking NHMs.957
Furthermore, a sampling mechanism is proposed to balance958
the exploration and exploitation of the evolutionary search959
process for multiple tasks. Our experimental evaluations show960
that our proposed method outperforms two state-of-art single-961
tasking and one recent multitasking EC-based approaches for962
finding high-quality solutions. Besides that, the execution time963
of our approach is comparable to the recent multitasking964
approach and outperforms two state-of-art single-tasking EC965
approaches by saving a large fraction of time. Future work can966
investigate the adaptions of NMHs for handling a dynamically967
updated service repository in an online fashion and study our968
EDA-based multitasking techniques to handle the dynamic and969
multitasking semantic web service composition problem.970

REFERENCES971

[1] F. Curbera, W. Nagy, and S. Weerawarana, “Web services: Why and972
how,” in Workshop on Object-Oriented Web Services-OOPSLA, 2001.973

[2] Geographic information systems (gis): Mit geodata repository. [Online].974
Available: https://libguides.mit.edu/gis/Geodata975

[3] Y. Wu, G. Peng, H. Wang, and H. Zhang, “A heuristic algorithm976
for optimal service composition in complex manufacturing networks,”977
Complexity, vol. 2019, 2019.978

[4] G. Mesfin, G. Ghinea, T.-M. Grønli, and S. Alouneh, “Rest4mobile:979
A framework for enhanced usability of rest services on smartphones,”980
Concurrency and Computation: Practice and Experience, vol. 32, no. 1,981
p. e4174, 2020.982

[5] G. Mesfin, G. Ghinea, T.-M. Grønli, and M. Younas, “Web service983
composition on smartphones: The challenges and a survey of solutions,”984
in International Conference on Mobile Web and Intelligent Information985
Systems. Springer, 2018, pp. 126–141.986

[6] A. M. Saettler, K. R. Llanes, P. Ivson, D. L. Nascimento, E. T. Corseuil,987
and G. M. da Silva, “An ontology-driven framework for data integration988
and dynamic service composition: Case study in the oil & gas industry.”989

[7] M. Hamzei and N. J. Navimipour, “Toward efficient service composition990
techniques in the internet of things,” IEEE Internet of Things Journal,991
vol. 5, no. 5, pp. 3774–3787, 2018.992

[8] A. Krishna, M. Le Pallec, R. Mateescu, L. Noirie, and G. Salaün, “Iot993
composer: Composition and deployment of iot applications,” in 2019994
IEEE/ACM 41st International Conference on Software Engineering:995
Companion Proceedings (ICSE-Companion). IEEE, 2019, pp. 19–22.996

[9] S. Chitra and A. Bhuvaneswari, “Application of perfect domination in997
logistics services using web service composition,” Journal of Computer998
and Mathematical Sciences, vol. 10, no. 1, pp. 207–214, 2019.999

[10] P. K. Keserwani, S. G. Samaddar, and P. Kumar, “e-learning web services1000
and their composition strategy in soa,” in Smart Computing Paradigms:1001
New Progresses and Challenges. Springer, 2020, pp. 291–302.1002

[11] L. Bao, Y. Qi, M. Shen, X. Bu, J. Yu, Q. Li, and P. Chen, “An evolution-1003
ary multitasking algorithm for cloud computing service composition,”1004
in World Congress on Services. Springer, 2018, pp. 130–144.1005

[12] P. Rodriguez-Mier, M. Mucientes, M. Lama, and M. I. Couto, “Com-1006
position of web services through genetic programming,” Evolutionary1007
Intelligence, vol. 3, no. 3-4, pp. 171–186, 2010.1008

[13] A. S. da Silva, H. Ma, Y. Mei, and M. Zhang, “A hybrid memetic1009
approach for fully automated multi-objective web service composition,”1010
in IEEE ICWS, 2018, pp. 26–33.1011

[14] A. S. da Silva, H. Ma, and M. Zhang, “Genetic programming for QoS-1012
aware web service composition and selection,” Soft Computing, pp. 1–1013
17, 2016.1014

[15] A. S. da Silva, Y. Mei, H. Ma, and M. Zhang, “Fragment-based 1015
genetic programming for fully automated multi-objective web service 1016
composition,” in GECCO. ACM, 2017, pp. 353–360. 1017

[16] ——, “Evolutionary computation for automatic web service composi- 1018
tion: an indirect representation approach,” Journal of Heuristics, pp. 1019
425–456, 2018. 1020

[17] C. Wang, H. Ma, A. Chen, and S. Hartmann, “Comprehensive quality- 1021
aware automated semantic web service composition,” in Australasian 1022
Joint Conference on Artificial Intelligence. Springer, 2017, pp. 195– 1023
207. 1024

[18] ——, “Towards fully automated semantic web service composition 1025
based on estimation of distribution algorithm,” in Australasian Joint 1026
Conference on Artificial Intelligence. Springer, 2018. 1027

[19] C. Wang, H. Ma, G. Chen, and S. Hartmann, “GP-based approach to 1028
comprehensive quality-aware automated semantic web service composi- 1029
tion,” in Asia-Pacific Conference on Simulated Evolution and Learning. 1030
Springer, 2017, pp. 170–183. 1031

[20] ——, “Knowledge-driven automated web service composition — an 1032
EDA-based approach,” in International Conference on Web Information 1033
Systems Engineering. Springer, 2018. 1034

[21] J. Rao and X. Su, “A survey of automated web service composition 1035
methods,” in Semantic Web Services and Web Process Composition. 1036
Springer, 2005, pp. 43–54. 1037

[22] Y. Chen, J. Huang, and C. Lin, “Partial selection: An efficient approach 1038
for qos-aware web service composition,” in 2014 IEEE International 1039
Conference on Web Services. IEEE, 2014, pp. 1–8. 1040

[23] H. Yin, C. Zhang, B. Zhang, Y. Guo, and T. Liu, “A hybrid multiob- 1041
jective discrete particle swarm optimization algorithm for a SLA-aware 1042
service composition problem,” Mathematical Problems in Engineering, 1043
2014. 1044

[24] C. Wang, H. Ma, and G. Chen, “Using eda-based local search to improve 1045
the performance of nsga-ii for multiobjective semantic web service 1046
composition,” 2019. 1047

[25] Y. Yu, H. Ma, and M. Zhang, “An adaptive genetic programming 1048
approach to QoS-aware web services composition,” in IEEE CEC, 2013, 1049
pp. 1740–1747. 1050

[26] C. Wang, H. Ma, G. Chen, and S. Hartmann, “Evolutionary multitasking 1051
for semantic web service composition,” In Proceedings of the IEEE 1052
Congress on Evolutionary Computation), pp. 2490–2497, 2019. 1053

[27] A. Gupta, Y.-S. Ong, and L. Feng, “Multifactorial evolution: toward 1054
evolutionary multitasking,” IEEE Transactions on Evolutionary Compu- 1055
tation, vol. 20, no. 3, pp. 343–357, 2016. 1056

[28] J. Li, Y. Yan, and D. Lemire, “Full solution indexing for top-k web 1057
service composition,” IEEE Transactions on Services Computing, 2016. 1058

[29] H. Wang, X. Hu, Q. Yu, M. Gu, W. Zhao, J. Yan, and T. Hong, 1059
“Integrating reinforcement learning and skyline computing for adaptive 1060
service composition,” Information Sciences, vol. 519, pp. 141–160, 1061
2020. 1062

[30] H. Wang, M. Gu, Q. Yu, Y. Tao, J. Li, H. Fei, J. Yan, W. Zhao, and 1063
T. Hong, “Adaptive and large-scale service composition based on deep 1064
reinforcement learning,” Knowledge-Based Systems, vol. 180, pp. 75–90, 1065
2019. 1066

[31] H. Liang, X. Wen, Y. Liu, H. Zhang, L. Zhang, and L. Wang, “Logistics- 1067
involved qos-aware service composition in cloud manufacturing with 1068
deep reinforcement learning,” Robotics and Computer-Integrated 1069
Manufacturing, vol. 67, p. 101991, 2021. [Online]. Available: 1070
https://www.sciencedirect.com/science/article/pii/S0736584520302027 1071

[32] V. R. Chifu, C. B. Pop, I. Salomie, D. S. Suia, and A. N. Niculici, 1072
“Optimizing the semantic web service composition process using cuckoo 1073
search,” in Intelligent distributed computing V. Springer, 2011, pp. 93– 1074
102. 1075

[33] Y.-Y. FanJiang and Y. Syu, “Semantic-based automatic service compo- 1076
sition with functional and non-functional requirements in design time: 1077
A genetic algorithm approach,” Information and Software Technology, 1078
vol. 56, no. 3, pp. 352–373, 2014. 1079

[34] F. Lécué, “Optimizing QoS-aware semantic web service composition,” 1080
in International Semantic Web Conference. Springer, 2009, pp. 375– 1081
391. 1082

[35] S. Liu, Y. Liu, N. Jing, G. Tang, and Y. Tang, “A dynamic web service 1083
selection strategy with QoS global optimization based on multi-objective 1084
genetic algorithm,” in International Conference on Grid and Cooperative 1085
Computing. Springer, 2005, pp. 84–89. 1086

[36] H. Wada, J. Suzuki, Y. Yamano, and K. Oba, “E3: A multiobjective 1087
optimization framework for sla-aware service composition,” IEEE Trans- 1088
actions on Services Computing, vol. 5, no. 3, pp. 358–372, 2011. 1089

[37] H. Wu, S. Deng, W. Li, M. Fu, J. Yin, and A. Y. Zomaya, “Service 1090
selection for composition in mobile edge computing systems,” in 2018 1091

WANG et al.: USING AN ESTIMATION OF DISTRIBUTION ALGORITHM TO ACHIEVE MULTITASKING SEMANTIC WEB SERVICE COMPOSITION 15

IEEE International Conference on Web Services (ICWS). IEEE, 2018,1092
pp. 355–358.1093

[38] J. Liao, Y. Liu, J. Wang, J. Wang, and Q. Qi, “Lightweight approach for1094
multi-objective web service composition,” IET Software, vol. 10, no. 4,1095
pp. 116–124, 2016.1096

[39] L. Feng, Y.-S. Ong, A.-H. Tan, and I. W. Tsang, “Memes as building1097
blocks: a case study on evolutionary optimization+ transfer learning for1098
routing problems,” Memetic Computing, vol. 7, no. 3, pp. 159–180, 2015.1099

[40] Y. Yuan, Y.-S. Ong, A. Gupta, P. S. Tan, and H. Xu, “Evolutionary1100
multitasking in permutation-based combinatorial optimization problems:1101
Realization with TSP, QAP, LOP, and JSP,” in TENCON 2016. IEEE,1102
pp. 3157–3164.1103

[41] L. Zhou, L. Feng, J. Zhong, Y.-S. Ong, Z. Zhu, and E. Sha, “Evolu-1104
tionary multitasking in combinatorial search spaces: A case study in1105
capacitated vehicle routing problem,” in 2016 IEEE Symposium Series1106
on Computational Intelligence (SSCI). IEEE, 2016, pp. 1–8.1107

[42] S. Chattopadhyay, A. Banerjee, and N. Banerjee, “A scalable and1108
approximate mechanism for web service composition,” in 2015 IEEE1109
International Conference on Web Services. IEEE, 2015, pp. 9–16.1110

[43] ——, “A fast and scalable mechanism for web service composition,”1111
ACM Transactions on the Web (TWEB), vol. 11, no. 4, pp. 1–36, 2017.1112

[44] M. Chen and Y. Yan, “Qos-aware service composition over graphplan1113
through graph reachability,” in Services Computing (SCC), 2014 IEEE1114
International Conference on. IEEE, 2014, pp. 544–551.1115

[45] P. Hennig and W.-T. Balke, “Highly scalable web service composition1116
using binary tree-based parallelization,” in 2010 IEEE International1117
Conference on Web Services. IEEE, 2010, pp. 123–130.1118

[46] W. Jiang, C. Zhang, Z. Huang, M. Chen, S. Hu, and Z. Liu, “Qsynth:1119
A tool for qos-aware automatic service composition,” in 2010 IEEE1120
International Conference on Web Services. IEEE, 2010, pp. 42–49.1121

[47] Y. Yan and M. Chen, “Anytime qos-aware service composition over the1122
graphplan,” Service Oriented Computing and Applications, vol. 9, no. 1,1123
pp. 1–19, 2015.1124

[48] A. Klein, F. Ishikawa, and S. Honiden, “Efficient heuristic approach1125
with improved time complexity for qos-aware service composition,” in1126
2011 IEEE International Conference on Web Services. IEEE, 2011,1127
pp. 436–443.1128

[49] L. Zeng, B. Benatallah, M. Dumas, J. Kalagnanam, and Q. Z. Sheng,1129
“Quality driven web services composition,” in Proceedings of the 12th1130
international conference on World Wide Web. ACM, 2003, pp. 411–421.1131

[50] M. Paolucci, T. Kawamura, T. R. Payne, and K. Sycara, “Semantic1132
matching of web services capabilities,” in International Semantic Web1133
Conference. Springer, 2002, pp. 333–347.1134

[51] F. Lécué, A. Delteil, and A. Léger, “Optimizing causal link based web1135
service composition.” in ECAI, 2008, pp. 45–49.1136

[52] K. Shet, U. D. Acharya et al., “A new similarity measure for taxonomy1137
based on edge counting,” arXiv preprint arXiv:1211.4709, 2012.1138

[53] H. Ma, K.-D. Schewe, B. Thalheim, and Q. Wang, “A formal model for1139
the interoperability of service clouds,” Service Oriented Computing and1140
Applications, vol. 6, no. 3, pp. 189–205, 2012.1141

[54] H. Ma, A. Wang, and M. Zhang, “A hybrid approach using genetic1142
programming and greedy search for QoS-aware web service composi-1143
tion,” Trans. Large-Scale Data Knowledge-Centered Syst., vol. 18, pp.1144
180–205, 2015.1145

[55] A. S. da Silva, H. Ma, and M. Zhang, “Graphevol: a graph evolution1146
technique for web service composition,” in DEXA. Springer, 2015, pp.1147
134–142.1148

[56] A. S. da Silva, Y. Mei, H. Ma, and M. Zhang, “Particle swarm1149
optimisation with sequence-like indirect representation for web service1150
composition,” in European Conference on Evolutionary Computation in1151
Combinatorial Optimization. Springer, 2016, pp. 202–218.1152

[57] C.-L. Hwang and K. Yoon, “Lecture notes in economics and mathe-1153
matical systems,” Multiple Objective Decision Making, Methods and1154
Applications: A State-of-the-Art Survey, vol. 164, 1981.1155

[58] S. Tsutsui, “A comparative study of sampling methods in node histogram1156
models with probabilistic model-building genetic algorithms,” in 20061157
IEEE International Conference on Systems, Man and Cybernetics, vol. 4.1158
IEEE, 2006, pp. 3132–3137.1159

[59] S. Sadeghiram, H. Ma, and G. Chen, “Composing distributed data-1160
intensive web services using distance-guided memetic algorithm,” in1161
International Conference on Database and Expert Systems Applications.1162
Springer, 2019, pp. 411–422.1163

[60] A. Bansal, M. B. Blake, S. Kona, S. Bleul, T. Weise, and M. C. Jaeger,1164
“Wsc-08: continuing the web services challenge,” in E-Commerce Tech-1165
nology and the Fifth IEEE Conference on Enterprise Computing, E-1166
Commerce and E-Services, 2008 10th IEEE Conference on. IEEE,1167
2008, pp. 351–354.1168

[61] S. Kona, A. Bansal, M. B. Blake, S. Bleul, and T. Weise, “Wsc-2009: 1169
a quality of service-oriented web services challenge,” in 2009 IEEE 1170
Conference on Commerce and Enterprise Computing. IEEE, 2009, pp. 1171
487–490. 1172

[62] E. Al-Masri and Q. H. Mahmoud, “QoS-based discovery and ranking 1173
of web services,” in International Conference on Computer Communi- 1174
cations and Networks. IEEE, 2007, pp. 529–534. 1175

[63] J. Ling and L. Jiang, “Semantic description of iot services: a method of 1176
mapping wsdl to owl-s,” Comput. Sci, vol. 4, pp. 89–94, 2019. 1177

[64] S. Schwichtenberg, C. Gerth, and G. Engels, “From open api to 1178
semantic specifications and code adapters,” in 2017 IEEE International 1179
Conference on Web Services (ICWS). IEEE, 2017, pp. 484–491. 1180

[65] W. Zhang, L. Jiang, and H. Cai, “An ontology-based resource-oriented 1181
information supported framework towards restful service generation and 1182
invocation,” in 2010 Fifth IEEE International Symposium on Service 1183
Oriented System Engineering. IEEE, 2010, pp. 107–112. 1184

Chen Wang received his B.Eng degree from Jiangsu 1185
University, China (2010), and his MBA degree from 1186
National Institute of Development Administration, 1187
Thailand (2015). He received his PhD degree in 1188
Engineering from Victoria University of Wellington, 1189
Wellington, New Zealand (2020). He is currently a 1190
data scientist at HPC and data science department 1191
from the National Institute of Water and Atmo- 1192
spheric Research, New Zealand. His research inter- 1193
ests include evolutionary computation and machine 1194
learning for combinatorial optimization. 1195

Hui Ma received her B.E. degree from Tongji Uni- 1196
versity (1989) and her Ph.D degrees from Massey 1197
University (2008). She is currently an Associate 1198
Professor in Software Engineering at Victoria Uni- 1199
versity of Wellington. Her research interests include 1200
service composition, resource allocation in cloud, 1201
conceptual modelling, database systems, resource 1202
allocation in clouds, and evolutionary computation 1203
in combinatorial optimization. Hui has more than 1204
120 publications, including leading journals and 1205
conferences in databases, service computing, cloud 1206

computing, evolutionary computation, and conceptual modelling. She has 1207
served as a PC member for about 90 international conferences, including 1208
seven times as a PC chair for conferences such as ER, DEXA, and APCCM. 1209

Gang Chen obtained his B.Eng degree from Beijing 1210
Institute of Technology in China and PhD degree 1211
from Nanyang Technological University (NTU) in 1212
Singapore, respectively. He is currently a senior 1213
lecturer in the School of Engineering and Com- 1214
puter Science at Victoria University of Wellington. 1215
His research interests include evolutionary compu- 1216
tation, reinforcement learning, multi-agent systems, 1217
and cloud and service computing. He has more 1218
than 120 publications, including leading journals 1219
and conferences in machine learning, evolutionary 1220

computation, and distributed computing areas, such as IEEE TPDS, IEEE 1221
TEVC, JAAMAS, ACM TAAS, IEEE ICWS, IEEE SCC. He is serving as 1222
the PC member of many prestigious conferences, including ICLR, ICML, 1223
NeurIPS, IJCAI, and AAAI, and co-chair for Australian AI 2018 and CEC 1224
2019. 1225

Sven Hartmann received his Ph.D. in 1996 and his 1226
D.Sc. in 2001, both from the University of Rostock 1227
(Germany). From 2002 to 2007 he worked first as an 1228
associate professor, then full professor for informa- 1229
tion systems at Massey University (New Zealand). 1230
Since 2008 he is a full professor of computer science 1231
and chair for databases and information systems 1232
at Clausthal University of Technology (Germany). 1233
There he is also serving as academic dean at the 1234
Faculty of Mathematics, Informatics and Mechanical 1235
Engineering. Sven has more than 150 publications. 1236

He served as a PC member for more than 80 conferences, including 10 1237
times as PC chair. His research interests include database systems, big data 1238
management, conceptual modelling, and combinatorial optimization. 1239

16 MANUSCRIPT SUBMITTED TO IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION

APPENDIX1240

A. Assortative Mating1241

The procedure of assortative mating for breeding offspring1242
for K composition tasks is outlined in ALGORITHM 3. As1243
addressed in [27], the principle of assortative mating is that1244
individuals are more likely to mate those associated with1245
the same skill factors. Meanwhile, implicit knowledge of1246
promising individuals is allowed to be transferred across tasks1247
by crossover. Apart from that, rand is predefined to balance1248
exploitation and exploration.

ALGORITHM 3. Assortative Mating [27]

1: Randomly select two parents Πg
a and Πg

b from Pg;
2: rand ← Rand(0, 1);
3: if τΠ

g
a = τΠ

g
b or rand < rmp then

4: Perform crossover on Πg
a and Πg

b to generate two
children Πg

c and Πg
d;

5: else
6: Perform mutation on Πg

a to generate one child Πg
e ;

7: Perform mutation on Πg
b to generate one child Πg

f ;

1249

B. Vertical Cultural Transmission1250

In MFEA [27], only one task is evaluated for any child1251
produced by assortative mating. This task is determined by1252
the vertical cultural transmission that is outlined in AL-1253
GORITHM 4, which allows cultural (i.e., skill factor) to be1254
inherited from parents. Therefore, any produced child will only1255
be evaluated on the inherited task.

ALGORITHM 4. Vertical Cultural Transmission [27]
1: if Πg

k is produced by two parents Πg
a and Πg

b then
2: Generate a random rand between 0 and 1;
3: if rand < 0.5 then
4: Πg

k imitates the skill factor τΠ
g
a of Πg

a;
5: Πg

k is only evaluated on task T
τΠ

g
a

;
6: else
7: Πg

k imitates the skill factor τΠ
g
b of Πg

b ;
8: Πg

k is only evaluated on task T
τΠ

g
b

;

9: else
10: Let Πg

e be the only one parent of Πg
k;

11: Πg
k imitates the skill factor τΠ

g
e of Πg

e ;
12: Πg

k is only evaluated on task T
τΠ

g
e

;

1256

C. Node Histogram-Based Sampling Algorithm1257

Node Histogram-Based Sampling Algorithm (NHBSA) [58]1258
is proposed to sample new candidate solutions from a learned1259
NHMg . Particularly, NHBSA starts with sampling an ele-1260
ments for a random position of a permutation with a probabil-1261
ity calculated based on elements of NHMg , and recursively1262
continue sampling other elements of other positions in the1263
permutation.1264

ALGORITHM 5. NHBSA [58]
Input : NHMg

Output: a sequence of service index Πg+1
k

1: Generate a random position index permutation r[] of
[0,1, ..., n-1];

2: Generate a candidate list C = [0, 1, ..., n− 1];
3: Set the position counter p ← 0;
4: while p < n− 1 do
5: Sample node x with probability

eg
r[p],x∑

j∈C eg
r[p],j

;

6: Set c[r[p]]← x and remove node x from C;
7: p← p+ 1;

8: Πg+1
k ← c[];

9: return Πg+1
k ;

