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Abstract: The work proposes a mathematical model of the process of
Covid-19 epidemic as it evolved in New Zealand. The model uses a system
of differential equations which emanate from natural assumptions on some
probability measure and evolution of this measure on evolving family of
simplexes.

The authors did not aim at mathematical complications – the model
is simple and easy to follow. The aim rather was practical – to come to
justifiable estimations of important parameters like the rate of infection
as function of time, thus quantifying effectiveness of the Government mea-
sures. Another parameters estimated were the probability distribution of
detection times and recovery times.
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1. General outlook

SARS-CoV-2 (Covid-19) infection arrived in New Zealand at the end of February
2020. At that time there was already much discussion and much anxiety around
epidemics in China, and also in Italy. The public opinion was prepared for the
idea that strong measures will be necessary.

It turned out that the Government understood well what was about to unfold
if no measures were taken, and had a plan. According to this plan, there were
four levels of social restrictions, from level 1, least restrictive, to level 4, the
complete lockdown with strict limits on contacts between people everywhere:
in public transport, in supermarkets, between neighbours and within extended
families. Even in small shops one in, one out policy was implemented, cafes
and restaurants were closed. Older people were promised essential supplies to
be delivered to their homes. In principle, police could enforce the restrictions.
This is not a social research, but as citizens of the country, we did not feel much
interference from the police.

In parallel, testing and contact tracing capacities were ramped-up. At the
beginning of the epidemic, on average, there were around 2000 tests conducted
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daily. This number has increased to more than 5000 daily tests in the lockdown
period, cf. NZ MOH-1 [2020]. Similarly, over the same time period, contact
tracing capacity has increased from the ability to trace contacts of couple of
hundred daily cases to the ability to trace contacts of up to 1000 daily cases, cf.
NZ MOH-2 [2020]. These measures: closure of the boarder, social distancing,
timely testing of large numbers of people and quick and effective contact tracing
all contributed to the final result which made New Zealand one of the most
effective countries in the fight against Covid-19.

At the announcement of the Government’s policy, Prime Minister called the
epidemic the “textbook case”. The events and the handling of these events have
shown that this was correct. To come up with an adequate quantitative model
became a task for probabilistic and statistical community of New Zealand. The
cleaner and closer to “textbook” it gets, the more useful it becomes. In this
work we did not try to fit the data as such, but to explain the data in its several
aspects.

There is a temptation and, we think, a danger, in work like this: it is tempting
to write a model of how we think the epidemic should evolve in clean, almost a
laboratory conditions. We, however, devote only one section, section 2, to this.
Mostly, we analyse the process of eradication of the infection as it evolved in
reality of the country, along with the data which described this process.

2. The model: simplexes, differential equations

Consider a population of people, who may be vulnerable to disease, like, in our
case, the population of New Zealand. Let N denote the size of this population.
Suppose we start observations at some moment called t “ 0; say, the day zero
is chosen as 1 January 2020. We describe each individual in this population
by three moments in time: S is the moment when the unaffected individual
becomes infected; if the person was never infected, we say the S is infinite; T is
the incubation period, the time which elapses from infection until the symptoms
become apparent and the person is ill; Z is the time until recovery or, in rare
unhappy cases death. In other words, S is calendar time after zero, when the
person becomes infected, S ` T is the calendar time when the person becomes
ill, and S ` T ` Z is the calendar time of recovery.

These S, T and Z are for us non-negative random variables, and below we say
what we assume about their distribution(s). Therefore, our model starts with
N triplets pSi, Ti, Ziq

N
i“1. Now introduce several point processes, which are of

central importance in description of the epidemic. Three of them will be counting
processes, i.e. of cumulative character, with non-decreasing trajectories, and two
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of them will be queues, that is, differences of counting processes. Namely,

X0ptq “
ÿ

i

IpSiďtq,

X1aptq “
ÿ

i

IpSi`Tiďtq, (1)

X2aptq “
ÿ

i

IpSi`Ti`Ziďtq.

Think about X0 as the main, “driving” counting process, with Si labeled in
increasing order, so that S1 is the moment when the first infection occurs, S2

is the second such moment, and so on. Think about the pair pTi, Ziq as a 2-
dimensional mark, associated with Si. Summation runs over all individuals in
our initial population. Here IA is indicator function of an event A. For example,

IpSiďtq “

#

1, if Si ď t,

0, if Si ą t,
and IpSi`Tiątq “

#

1, if Si ` Ti ą t

0, if Si ` Ti ď t

are indicator functions of events Si ď t and Si ` Ti ą t.
According to their definitions,

X0ptq is the number of individuals, infected up to time t,

X1aptq is the number of individuals, which became symptomatic up to time t,

X2aptq is the number of individuals who were ill and recovered up to time t.

The process X0, although of major importance, is not observable. One can
make guesses about the moments Si-s, not of many of them, and this would
not be what one calls observation. However, the processes X0, X1a and X2a are
interconnected and, as the model below shows, evolution of X0 can be inferred
from observations of X1a and X2a.

Now introduce two more processes,

X1ptq “
ÿ

i

IpSiďtqIpSi`Tiątq “ X0ptq ´X1aptq,

X2ptq “
ÿ

i

IpSi`TiďtqIpSi`Ti`Ziątq “ X1a ´X2aptq,

which are differences of our counting processes and, thus, form queues, see, e.g.
Breamud [1981]. Their heuristic meaning is also clear:

X1ptq is the number of infected but still asymptomatic individuals at time t,

X2ptq is the number of individuals who are ill (symptomatic) at the time t.

In contrast to the process X2, which was observable and the data accurately
reported, the process X1 was, although important, unobservable.1

1In New Zealand, community testing has been done to a certain degree, especially towards
the end of lockdown. However, there was no case detected as the result of it, probably, due to
small prevalence of infection.
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Later we will use the same notations for populations themselves, not just for
size of these populations; we may say, for example, that individual belongs to
population X1ptq meaning that at time t the individual was infected but not
symptomatic.

Let us think about t as time measured in days; intensities (or rates) below
will, therefore, be daily intensities or rates.

Distribution of the triplets. Assume now that within each triplet pSi, Ti, Ziq,
the random variables Ti and Zi are independent from Si and independent from
each other. Also assume that distribution of all Ti, i “ 1, 2, . . . , is the same
and G is the distribution function of each of them. Similarly, assume that
Zi, i “ 1, 2, . . . , are identically distributed with distribution function F . The
last assumptions are some simplifications, as distributions G and F may de-
pend, for example, on the age of the individual, and also on the viral load.
However, for adequate description of the populations this may not be very im-
portant.

The spread of our triplets in the positive quadrant R3
` can be fully described

by the counting measure νN : for any set A P R3
`,

νN pAq “
ÿ

i

IppSi,Ti,ZiqPAq.

For example, on rectangles we have

νN pp0, ts ˆ p0, xs ˆ p0, zsq “
ÿ

i

IpSiďtqIpTiďxqIpZiďzq

and
νN pp0, ts ˆ Rˆ Rq “

ÿ

i

IpSiďtq “ X0ptq.

The assumption of independence of Si, Ti and Zi implies that the expected value
of νN is the product measure,

EνN pp0, ts ˆ p0, xs ˆ p0, zsq “ HptqGpxqF pzq “ Qpt, x, zq,

where Hptq is the expected value of X0ptq:

EνN pp0, ts ˆ Rˆ Rq “ EX0ptq “ Hptq.

Introduce the following simplexes, which depend on t, and their complements:

A1aptq “ tps, x, zq : s` x ď tu,

A1ptq “ tps, x, zq : s ď t, s` x ą tu,

A2aptq “ tps, x, zq : s` x` z ď tu,

A2ptq “ tps, x, zq : s` x ă t, s` x` z ą tu,
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Note that νN pA1aptqq and νN pA1ptqq are nothing else but the processes X1aptq,
and X1ptq, respectively. Indeed, if the triplet pSi, Ti, Ziq P A1aptq then the corre-
sponding person belongs to the sub-population X1aptq and if pSi, Ti, Ziq P A1ptq
then the corresponding person belongs to the sub-population X1ptq. Similarly,

νN pA2aptqq “ X2aptq, and νN pA2ptqq “ X2ptq.

Therefore, to describe evolution of our point processes is the same as to describe
the evolution of νN on the simplexes above.

Expected values of X1a and X1. To draw parallels, note that the assumption
of independence of Si and Ti and i.i.d-ness of Ti-s, will render the pairs pSi, Tiq-s
a classical model of a stationary population with Si-s as the moments of birth
and Ti-s as the lifetimes. If the population is not stationary and its growth rate
can change in time, the expected value Hptq “ EX0ptq should be anticipated to
follow differential equation

dHptq “ mptqdt` rptqHptqdt (2)

(out of many sources, we refer, e.g., to Bjornstad [2018], Pollard [1973] and
Khmaladze [2013], Lecture 14). In the first term, mptq is the (daily) immigration
rate, or for us, the daily immigration rate of infected people. Even in absence
of the exact data, one could model mptq as a given fraction of the total arrivals
to New Zealand. However, Ministry of Health knows, and has published, the
dates of arrival of such people. We consider the case of the time varying mptq,
because due to the Government measures, the daily arrivals indeed changed
in time down to zero; it may change again and gradually increase. Some finer
points of this data we consider in Section 3. In the second term, rptq denotes the
growth rate, or for us, the infection rate of the population. Heuristically, rptq is
the expected number of people a randomly selected infected person will infect
on the day t. In fixed social conditions and habits of life this intensity depends
on how aggressive the virus is and can be assumed constant. However, social
conditions in New Zealand did not stay the same – we moved through levels.
Therefore it also should be considered variable in time. We discuss the concept
of infection rate again in Section 3.

No assumptions about the “lifetimes” Ti-s participate in equation (2). If we
turn from the “birth” or arrival process X0 to “death” or exit process X1a

formed by those with confirmed infection, and then to the population X1, the
usual model for X0 and X1a, or the model for their expected values will be

dHptq “ mptqdt` rptqQ1ptqdt, dQ1aptq “ dptqQ1ptqdt, (3)

where Q1a and Q1 are expected values of X1a and X1, respectively. Here dptq
would be what is called the exit rate, and the heuristic reasoning behind the
equations (3) would be that a randomly selected individual from the population
X1ptq in the time interval rt, t ` dtq will create a new infected individual with
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probability rptqdt and will exit with probability dptqdt, or will do neither of these
with probability 1´ prptq ` dptqqdt. Taking the difference of the two equations,
we obtain very familiar equation for the expected population size:

dQ1ptq “ mptqdt` ρptqQ1ptqdt,

where ρptq “ rptq ´ dptq is the Malthusian population growth rate. This indeed
would be familiar equation, but not a very useful one, in the present situation.

We see two reasons for saying this. The first is that the rate ρptq is much
less interesting object than the infection rate rptq. It is the infection rate which
describes how aggressive the virus is and how favourable the social conditions
are for its spread. The second is that we can not observe the size of population
X1ptq. What we have are the observations of the exit process X1aptq: the ac-
curate count of daily new cases and therefore cumulative number of cases have
been an object of acute interests and was counted with all possible accuracy.

Therefore, what we found ourselves in was the following situation: given ob-
servations on the exit process X1aptq can we say something about the rate of
increase rptq of the unobservable arrival process X0ptq? The answer is “yes” if
we have correct mathematical connection between the two processes.

For this we retain the equation for H in (3), or

dHptq “ mptqdt` rptqrHptq ´Q1aptqsdt, (4)

and then note that if Ti-s are independent and identically distributed with
distribution G, then Q1a is convolution of H and G:

Q1aptq “

ż t

0

Hpt´ sqdGpsq “

ż t

0

Gpt´ sqdHpsq (5)

so that

dQ1aptq “

ż t

0

gpt´ sqdHpsq.

The assumption that the incubation times are identically distributed is not the
assumption that the population X1 is stationary. The rate rptq still can be
variable, within this model, and was variable in reality. Substitution of (5) into
(4) gives us the eventual form of equation for H:

dHptq “ mptqdt` rptq

ż t

0

r1´Gpt´ sqsdHpsqdt (6)

Equation (6) is the Volterra integral equation of the second kind. Very clear
introduction to its theory can be found, e.g., in the classical monograph Tricomi
[1985], Ch I. It is well known that the solution for H, or rather for its derivative
hptq “ dHptq{dt, can be explicitly represented through the resolvent of this
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equation. However, if we think about dHptq as a “small increment forward”,
from t to t`dt, then the recurrent nature of (6) becomes very clear: to calculate
dHptq one needs only past dHpsq with s ă t. Therefore, solution for h becomes,
numerically, simple and convenient procedure, which we followed.

Expected value of X2aptq. Again, from the definition of νpA2aptqq it follows
that

Q2aptq “ EνpA2aptqq “

ż t

0

F pt´ sqdQ1apsq.

To express it in terms of H, introduce the convolution of distributions F and
G:

F ‹Gptq “

ż t

0

F pt´ sqgpsqds.

Then for both Q2a and Q2 we have

Q2aptq “

ż t

0

F ‹Gpt´ sqdHpsq

Q2ptq “

ż t

0

rF pt´ sq ´ F ‹Gpt´ sqsdHpsq

In differential form the expression for Q2a was convenient for numerical calcu-
lations:

dQ2aptq “

ż t

0

f ‹ gpt´ yqdHpyq dt. (7)

The choice of distributions G and F . The presence of convolution here has
some bearings on the practical question of how to choose densities f and g in our
model. The data on duration of incubation period, at least at present, is scant. It
would be highly speculative to try and estimate g from this data. The situation
with data on duration of illness may be better, but reliable estimation of density
in purely non-parametric fashion requires many data, cf., e.g., Silverman [1986].
We can, however, significantly reduce the difficulty by choosing both g and f
from a family of distributions, which is closed under convolution. These are
families of distributions tLα, α ě 0u, indexed by a scalar parameters α, and
such that convolution of Lα and Lβ is the distribution Lα`β .

Now imagine that we choose as distribution of incubation periods, G, some
Lα, and choose as distribution of the period of illness, F , some Lβ . If the family
tLα, α ě 0u, is sufficiently rich family, then to make such choice will be possible
and will require only estimation of two numbers, α and β, from the data, which
statistically is much more simple and stable process. And at the same time, we
will know the distribution Lα`β straightaway.
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One such family, we believe, is available for us. It is the family of Gamma
distributions with the same scale parameter λ:

lαpxq “
λαxα´1

Γpαq
e´λx

is the density of Lα.

3. Statistical discussions. What was found.

In this section we consider the differences between relatively idealised model of
Section 2 and reality of data. Let us do this more or less along the time-line of
the process and start with immigration.

Immigration. The data on when the people, who later proved to be infected,
arrived in the country is fully available. There have been 570 such persons. Until
when? later arrivals? We did not try to smooth this data in any way and used
it as it is. Therefore the derivative of H, denoted h, as a solution of equation
(6) looks “smoother” than m, but can not be very smooth, see Figure 6. There
was, however, a question whether some infections have been secondary, that is,
acquired after the arrival. This could affect the estimation of rptq. To safeguard
from this, one can use the density g of detection times and cut off the mani-
festation times, which happen to be longer than 90%-quantile point of our g.
This reduced the number 570 to 529 of those who can be prudently assumed
to acquire infection overseas. Figure 1 shows the date of arrival (on x-axis) and
the date infection was confirmed (on y-axis). The green diagonal line shows the
90% cut-off line.

Fig 1. Arrivals of persons who were later found infected. The date of arrival is on x-axis.

Distribution of incubation time Ti. We introduced these as times from
the moment of infection to the moment of becoming symptomatic, i.e. ill. These
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are important moments in the management of epidemic because from this mo-
ment on, up to recovery, the person had to be isolated. In practice, however,
infection was detected often through contact tracing and testing process, with-
out being necessarily symptomatic. All such persons also had to be isolated
from population. Therefore, the estimated distribution of Ti-s we denoted G is
not the distribution of incubation time, but the distribution of the detection
time. It would be very interesting from medical point of view to evaluate the
distribution of the incubation times, but the distribution of detection times is
also very interesting object: it gives numerical description of effectiveness of the
policy of tracing of the infection. It shows that the policy was effective. The
authorities would not spare resources in testing, large number of people have
been tested and, relative to this number, not so many detected. Thus one can
expect that this G will be close to exponential distribution, and Figure 2 shows
its graph. The distribution of incubation times could not have been exponential
– the process of incubation should have been happening and symptoms could
not have been appearing spontaneously.

Fig 2. More to the left is the graph of density g of detection times (red line). It is the Γ-density
with shape parameter α “ 1.72 and scale parameter λ “ 0.21 . More to the right (blue line)
is the graph of density f of recovery times. As we say in “Distribution of recovery time Zi”,
it is a mixture of two distributions with weights p “ 0.92, for those who followed “normal”
recovery process, and 1´p “ 0.08 for those who met with complications. Both admixtures are
Γ-densities with scale parameter λ “ 0.6 and shape parameters α “ 9 and 28.8, respectively.

The rate of infection. This is important characteristic of the process. Our
rptq can change from day to day. It describes not an individual, but the social
conditions of life. Intuitively speaking, it is the expected number of people an
infected person will infect in the day t. So, it measures how aggressive the illness
is and how much do people mix with each other. While what the virus is, it is –
we do not presume the strain has changed en masse during the several months
of epidemic, the social condition have been changing. As we said, complete
lockdown was declared in New Zealand on 24 March, 2020. In the mind of
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everybody, this would mean that rptq abruptly changed from some noticeable
level to nearly zero.

The change indeed took place, but it was surprising to see that the process
was not very rapid even in law-obedient and morally prepared population. It
is not strange to see that the rate started to decline few days earlier than the
declaration of lockdown: people started keeping some distance from each other.
However, it was surprising to see that, numerically, sharper change in rptq can
not be achieved even with some flexibility in the choice of g.

It was not possible to achieve the level of agreement with the data, which
is demonstrated in Figures 7 and 8, as soon as we tried to change rptq more
sharply.

Fig 3. Explicit mathematical form of rptq, in our view, is not so important, given that it stays
on some relatively high level up to declaration of the lockdown, and then decreases relatively
quickly to essentially smaller values – as quickly as the data allows us to assume. In our
case rptq “ r1r1 ´ Φµ,σ2 ptqs ` r0, where Φµ,σ2 ptq denotes the normal distribution function

with expected value and variance µ and σ2, respectively. We have r1 “ 0.116, r0 “ 0, while
µ “ 35, which is close to the number of days from the ban on international flights and the
day of lockdown, and σ2 “ 4.

We have to conclude, therefore, that some social inertia exists, in spite of best
intentions of everybody, and too rapid changes is very difficult to achieve, at
least without resorting to the methods on martial law. In bigger populations this
phenomenon will be, presumably, pronounced more sharply. In New Zealand,
however, without any martial law, and in less than two weeks time, the rate
rptq “ 0 was achieved. The fitted graph is shown in Figure 3

In conclusion, it may be good to notice, for not necessarily statistically
minded reader, that there is difference between interpretation of rptq and what
can be infectiousness of an individual. How infectious an individual can be, cer-
tainly, depends on the individual, on the viral load, on the stage of infection, see,
e.g., To et al. [2020], on the social activity of the person, the nature of the job,
and so on. However, in population, the notion “randomly selected individual”
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smoothes over individual variations and makes analysis simple, useful, and yet
statistically correct.

Distribution of recovery time Zi. The smooth black line in Figure 4 is
asymmetric. It is also shown as the most right line in Figure 6. What should be
responsible for this asymmetry is the density f of recovery times.

Formally, there are many ways to model asymmetric distributions. However,
it would be much more informative to find the one which agrees with medical
intuition. Neither of the authors are medical doctors, but we had an advantage
of discussions with medical practitioners. The model we used was the mixture
pf1pzq` p1´ pqf2pzq. Here the density f1pzq describes recovery times for people
who in this process did not experience complication. This was the majority of
cases, p “ 0.92. The density f2pzq, which also belongs to Γ-family, describes
recovery times of the cases with complications. Existence of the cases with com-
plications does not constitute a discovery, but it was not very clear whether they
can “blend” with the general population or not, whether there is some sort of
dichotomy – either cases with complications or cases without. As soon as one
assumes the existence of the mixture, the data then dictates that the mode of
f2pzq is about 45 days, more than twice more than the mode of distribution of
recoveries without complications.

Fig 4. The graph shows the daily recovery rate and its model. In our notations it is dX2aptq
and dQ2aptq{dt, see equation (7). Very noticeable asymmetry, which we comment on in “Dis-
tribution of recovery time”. We show this curve also in comparison with hptq and dQ1aptq{dt
on Figure 6

Somewhat better judgement of fit can be made from the graphs of cumulative
quantities Xdaptq and Q2aptq in Figure 5

Fitting the model to the data.

imsart-generic ver. 2012/04/10 file: Covid-popul_3.tex date: August 5, 2020



E. Khmaladze and G. Kvizhinadze/COVID-19 epidemic in New Zealand 12

Fig 5. The graph shows cumulative number of recovered people and its model. In our notations
these are X2aptq and Q2aptq.

The main source of information we had are given in Figures 7 and Figure
6 and their cumulative versions in Figures 8. and 5. We also should add the
immigration data, shown in Figure 1. From the shapes of these empirical curves
it may not be very visible what are the forms of the main curves of the model,
which are Hptq, Q1aptq and Q2aptq. That is because the model did not attempt
to “directly” approximate empirical data, but rather try to detect what may be
revealed from them.

On Figure 6 we show the graphs of the “speed” hptq “ dHptq{dt of arrivals of
new infections, unobservable but calculable as the solution of (4), and then the
speed of exit dQ1aptq{dt and dQ2aptq{dt as solutions of (5) and (7), respectively.
the graph of hptq is irregular in shape because of irregularity of the shape in
daily immigration mptq. The next convolution smoothes the graph of dQ1aptq{dt
very much.
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Fig 6. The graph on the left, in red, shows the graph of hptq “ dHptq{dt which is solution
of equation (4), or equivalently, equation (6). It is irregular in shape because of irregularity
of the shape in daily immigration mptq. The unimodal graph in the middle, in blue, shows
the derivative of Q1aptq, see equation (5) and the display formula immediately after it. The
graph on the right, in green, is the derivative of Q2a, see (7). It is smooth but asymmetric –
as discussed in sub-section “Distribution of recovery time Zi”.

Fig 7. The graph shows daily reported cases and its expected value, from the model. In our
notations these are daily increments of X1a and Q1a, respectively. Overlaid on the graph are
periods of New Zealand levels 2 and 3, and then the strongest level 4 (the “lockdown”) of
social restrictions.
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Fig 8. The graph shows cumulative number of reported cases and its expected value, from the
model. In our notations these are X1a and Q1a, respectively. Again, overlaid on the graph
we show periods of New Zealand levels 2 and 3, and then the strongest level 4, of social
restrictions. From 13 May, 2020, the restrictions have been relaxed, relatively quickly, back
to level 2

imsart-generic ver. 2012/04/10 file: Covid-popul_3.tex date: August 5, 2020



E. Khmaladze and G. Kvizhinadze/COVID-19 epidemic in New Zealand 15

References

Ottar N. Bjornstad (2018), Epidemics: Models and data using R, Springer
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