Stephen Hawking <u>and</u> Quantum Gravity

Matt Visser

Physics Department
Washington University
Saint Louis
USA

Science Saturdays

4 Nov 2000

Stephen Hawking and Quantum Gravity

Abstract:

Through a combination of his extreme physical limitations, and the equally extreme nature of the subjects of his research, Stephen Hawking has captured a place in the popular imagination.

Quantum gravity in its various incarnations (for example, superstring theory) is now such a widely recognized enigma that many popular books are appearing, including Hawking's own "Brief History of Time".

Many of these books still leave non-experts in the dark.

Just what is involved?

Perceptions:

As is quite common with famous physicists, there is somewhat of a mismatch between the public perception of what he is famous for and the professional opinions of fellow physicists.

(Everyone agrees he's famous.)

Public perception:

- Brief history of time.
- Black holes.
- Baby universes/wormholes.
- Something quantum.

Perceptions:

Professional opinions:

- Singularity theorems (Classical).
- Hawking radiation (Semi-classical).
 - Black hole explosions.
 - Black hole thermodynamics.
 - Black hole geometric entropy.
- Quantum gravity? (Unfinished business).

Brief Biography:

- 1942: Born, Oxford, England.
- 1959: "went up to Oxford";
 University College (founded 1249).
- 1962: B.Sc. 1st class, U Oxford.
- 1963: Begins Ph.D. with Denis Sciama;
 Diagnosis; meets Jane Wilde.
- 1965: Ph.D. U Cambridge;
 Marriage (Jane Wilde);
 Postdoc: Gonville and Caius [Keys].
- 1967-1970: Singularity theorems (Classical).

- 1973: Large scale structure (Classical).
- 1974: Black hole explosions (Semi-classical).
- 1974: Inducted Royal Society.
- 1979: Lucasian Professor, Cambridge. (Inaugural Lecture: End of physics?)
- 1984: (Approx) Quantum gravity. (Fully quantum; still unfinished business).
- 1985: Trachectomy.
- 1988: Brief History of Time.
- 1990: Divorce (Jane Wilde);
 Re-marriage (Elaine Mason).

• 1990s: More quantum gravity.

• 1990s: More books.

• 1990s: String theory.

• 1999: AdS/CFT correspondence (string theory).

• 2000: Braneworld cosmologies.

• 2000: "Brane new world".

• 2000: Braneworld inflation.

Health:

Stephen Hawking has "atypical" ALS:

- Amyotrophic Lateral Sclerosis.
- Motor neuron disease.
- Motor neurone disease.
- Lou Gehring's disease.

Stephen's comments on ALS:

http://www.hawking.org.uk

The classical period:

The singularity theorems.

Theorem A:

Assume:

- 1. Classical Einstein gravity.
- 2. "Energy is always positive".
- 3. "The universe is expanding right now".

Deduce:

- There is a singularity in our past. (The Big Bang).
- 2. "Time had a beginning".

The classical period:

- The singularity theorems.
- 1. These are theorems of mathematics:
- 2. Assumptions in \Rightarrow Conclusions out.
- 3. If you don't like the Conclusions, you must reject one (or more) of the Assumptions.
- 4. But these are pretty basic Assumptions.
- 5. Violating any of these Assumptions is almost as interesting as the singularity Theorem itself.

The classical period:

Theorem B:

Assume:

- 1. Classical Einstein gravity.
- 2. "Energy is always positive".
- 3. "Stars can start to collapse".

Deduce:

- 1. "If stars collapse too far, they can't stop".
- 2. Black holes are common, and they contain singularities inside them.

The semi-classical period:

- Black hole explosions?
- Black hole thermodynamics?
- Black hole geometric entropy?

Main points:

- Black holes are not completely black.
- There is a subtle quantum effect that lets energy leak out.
- Temperature proportional to surface gravity.

The semi-classical period:

- Temperature inversely proportional to mass.
- As it loses mass it gets hotter;
 - it radiates more;
 - loses mass more quickly;
 - finally leading to an explosion?
- "Sorry Stephen, this is all rubbish."

The quantum period:

- Einstein: "God does not play dice with the universe".
- Hawking: "God not only plays dice; sometimes He throws them where they cannot be seen".

What comes out the back end of a black hole explosion?

- Naked singularity?
- Complete evaporation?
- Stable remnant?

The quantum period:

The issue of the final state?

(Of the Hawking evaporation process.)

To answer this question you need to go beyond semi-classical gravity.

You need a full-fledged quantum theory of gravity.

(Because the Hawking temperature has shot up to infinity.)

• Hawking: "Wrong again, Albert."

The quantum period:

Quantum gravity is an unfinished tapestry:

- Quantum mechanics good.
- General relativity good.
- Put them together: a right proper mess.

Two main candidates:

- Quantum geometry
 [based in the relativity community].
- M-theory
 [aka TOE, brane theory, string theory,
 nee dual resonance model].

The Planck scale:

Basic problem: Vacuum fluctuations.

Heisenberg says — (one version of the Uncertainty Principle) —

You can borrow energy from the vacuum provided you pay it back quickly enough:

$$\Delta E \Delta T \leq \hbar$$
.

But the energy you borrow will be tightly localized:

$$\Delta L \leq c \Delta T$$
.

(Speed of light limitation.)

<u>The Planck scale:</u>

If you borrow enough energy, quickly enough, the vacuum fluctuation will form a (virtual) black hole. This happens when:

$$\frac{G\left(\Delta E/c^2\right)}{\Delta L} \ge c^2.$$

Unwrap these equations:

Vacuum fluctuations with

$$\Delta E \geq \sqrt{\frac{G c^5}{\hbar}}$$

should form (virtual) black holes and curdle the vacuum...

This does not seem to happen in real life?

What is going on?

The Cosmological constant:

Problem:

(Just another way of looking at it.)

- The observational astronomers look out into the night sky and measure a (small) nonzero cosmological constant.
- The theorists try to calculate it.
- Oops:

$$(Theory) = 10^{123} (Observation).$$

What is going on?

Conclusion:

- There is an ancient Chinese curse:
- "May you live in interesting times".
- The times are certainly interesting
- (though I don't think of this as a curse)
- Stephen Hawking is right in the thick of it.