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Abstract

Dimensional Analysis can make a contribution to model formation
when some of the measurements in the problem are of physical factors.
The analysis constructs the set of independent dimensionless factors
that should be used as the major variables of the regression in place of
the original measurements. There are fewer of these than the originals
and they may have a more appropriate interpretation. The technique
is described briefly and its proposed role in regression illustrated with
an example.

1 Introduction

When setting up a problem we should, to paraphrase Einstein, “use all the
information we have but no more.” To use all our information suggests a
Bayesian approach; to use no more is in the spirit of Maximum Entropy.
Despite this sage advice we often ignore information carried by the physical
characteristics of the variables involved. Dimensional Analysis, written as
DA throughout the rest of this paper, ensures that this physical information
is always used.
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Experienced statisticians have long agreed that there is more to a sta-
tistical analysis than throwing all the data into a computer program and
reporting the results of the regression. They will go through a phase of ex-
ploratory analysis of the data inspecting graphs and examining residuals.
Based on the observed curvatures they will manipulate and transform the
data until approximately linear relationships are obtained.

DA can be used in this preliminary analysis and assists, and may replace,
the stage of data transformation. It was, and is, a standard working tool for
many of the greatest mathematical physicists, such as Rayleigh[7]. Tt should
also be quite familiar to readers but I have discovered that it is new to many
statisticians and operations research analysts. Or perhaps it is not new, for
many will have learned it at school or college. What is novel is that it might
actually be useful.

I propose to demonstrate its application to a regression problem where
at least some of the variables involved are physical quantities. For those to
whom it is unfamiliar, DA is introduced in the next section.

2 What is Dimensional Analysis?

DA is a technique for restructuring the original dimensional variables of a
problem into a set of dimensionless products using the constraints imposed
upon them by their dimensions [4, 9, 10]. It is ultimately based on the
simple requirement for dimensional homogeneity in any relationship between
the variables.

Buckingham|[1] showed in his Pi theorem that if the original unknown
relationship is represented by f(x1,zs,...,2,) = 0, where the z; are the
variables, it can be transformed into a new function ¢(my,ma, ..., Tp_pm) of
n —m independent dimensionless products 7; of the original z; variables. m
is the number of fundamental dimensions out of which the dimensions of the
original physical variables are ultimately composed. In the physical sciences
these are length, mass, and time [L, M, T]. In my own discipline we would
add quantity and cost [@Q, 9].

Some problems also involve special dimensional constants such as viscos-
ity, or resistance, each of which correspond to the statement of a relevant
physical relationship such as Stokes law or Ohm’s law.

The dimensionless s can be constructed in a pretty mechanical manner.
One needs a basis of m of the original variables to satisfy the m constraints



in the exponents corresponding to the m fundamental dimensions. Any basis
can be used but some bases have advantages over others. The basis should
include only variables with linearly independent exponent vectors (e.g. one
cannot have two velocities in the basis). This leaves n — m independent 7s
for the regression.

Immediately we see an advantage in the analysis. The number of variables
to be included has been reduced from the original n to n —m. This certainly
makes the problem simpler and may make it trivial. It may even make the
regression unnecessary.

A popular demonstration of DA involves the derivation of the formula
for the period of a pendulum[8]. What starts out as a 4-variable problem
is reduced to finding the value of a single dimensionless constant. A similar
collapse to a single dimensionless constant is seen in the derivation of the
optimum lot-size in simple deterministic inventory problems|6, 9, 10].

Reminded again of Maximum entropy methods, it appears at first sight
that in using DA we are getting something for nothing. In fact we are only
applying to the problem at the start those constraints that we know must be
satisfied by the final solution.

3 An Example - Hocking’s Automobile Data

This classical data analysis problem is to fit a regression model to predict
the gas consumption m (miles per gallon) from other characteristics of the
automobile. The collection of gas mileage data from the 1974 Motor Trend
magazine was used as a test case by Hocking[3] to investigate automatic
methods of regression. Henderson and Velleman|2] examined the same data
(and also a second set, collected from Consumer Reports), and argued for an
alternative philosophy of computer assisted data analysis - a collaboration
between the analyst and the computer in an interactive mode. This is in
accord with the philosophy of ‘data analysis’ rather than blind regression.

Here we add a preliminary Dimensional Analysis, combined with some
physical insight. We introduce some additional dimensional constants and
convert, the set of variables to a smaller number of dimensionless products.
The regression is then carried out on the products.
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Figure 1: Automobile Miles per Gallon, m, versus Weight, w. The curve is
given by the simplest dimensionless model.

3.1 Examining the variables

The data (reproduced in [2]) contains 11 variables, of which 6 are already
dimensionless, being, in the previous authors’ notation, either ratios (such as
DRAT, the final drive ratio) or numbers (CY L, the number of cylinders).
The four variables that have physical dimensions, m, h, w and q are listed in
Table 1 with their dimensions. The remaining variable, DI.SP, the cylinder
displacement, has an intermediate nature in that it has dimensions (cubic
inches in this case) but is really a surrogate for engine size.

The dimensionless variables and ratios are appropriate candidates for in-
clusion in the data analysis or regression; they are already of the correct
dimensionless product form that we hope to construct from the other vari-
ables and may carry information about the behaviour of the system.



Table 1: The variables and their dimensions

variable symbol Description Dimensions
m MPG  miles per gallon LGt

h HP horsepower ML?T—3

w wT weight M

q QSEC Quarter mile time T

3.2 Further Consideration

If one considers how these four variables might be collected together into
the form of dimensionless products, one is immediately struck by the fact
that m [LG™!] cannot be combined with the others because of the [G] term
which does not appear in any of the other three. (DA experts will notice that
I have kept dimension [G] separate rather than replacing it with a volume
measurement, [L3])

One notes that gallons are those of a fuel containing energy. This suggests
that we introduce a new dimensional constant E [ML?*T—2G™!] giving the
energy content in each gallon to reflect the implied physical “law” that 1
gallon contains contains a fixed amount of energy. Energy has conventional
dimensions, M L?*T 2,

This has added another dimensional constant £ to our set of 4 variables
with the gain of a sensible link between m and the others. We expect F
to remain constant, though with a more extensive data set this could be
included as a variable which might change its value with different types of
fuel.

The variable ¢ [T], Quarter mile time, is really a surrogate measure of
acceleration. At least we should add to the variables the distance over which
this acceleration was measured, d [L].

3.3 Other physical relationships

We may wish to consider further physical effects that could be involved.
These might include the possible effect of rolling or frictional resistance,
and the effect of air resistance. These will have “laws” that connect the
variables to each other and to new dimensional constants. Since rolling or



frictional resistance is likely to be important, I have added the gravitational
acceleration g [LT 2] to the set of variables.

3.4 Dimensional analysis

Including the energy coefficient of gas E, the acceleration of gravity g, and
the distance measurement, d, we are presented with 7 dimensionless variables
and constants. 7 variables and 4 fundamental dimensions (M, L, T, G) gives
us 7 — 4 = 3 7s to connect them.

Though problems of this size can be analysed by hand[4, 8], an S program
was written that, provided with a basis, carries out the analysis, generates a
list of the expressions for the 7s and then goes on to complete the regression.

The dimensional analysis yields the following dimensionless products:

1. the first represents the effect of energy use and weight (mass), perhaps
due to rolling or frictional resistance:

mwg

m=Tg M

2. the second represents the effect of Horsepower and weight (mass) on
acceleration:

h
T2 = wdO5gls (2)

3. the third shows that g is indeed a surrogate for acceleration. This rep-
resents the distance versus time relationship, where acceleration is measured
as a ratio to g:

0.5

qqg
3= 105 (3)

3.5 Regression with the new dimensionless products

DA by itself cannot get us further. In the absence of further physical or
engineering input, we must leave the final determination of the relationship
between these factors and the other dimensionless factors of the original
problem to the usual methods of regression. In terms of the products we
have:
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If we are interested in a forecast of the m we would expect a relation of
the form:

E h qq®
m= w_g¢ (wd0~5g1~5’ 05 (5)

where the ... represent the list of dimensionless variables such as DRAT
and CY L in the observations.

Based on the data analysis, Henderson and Velleman|2] noted that it
might be sensible to use m~! as the dependent variable to get a linear re-
lationship with w. Our analysis confirms this observation. Alternatively we
could use mw as a variable if we do not know the dimensional constant g/E.

Regression with the ms will bring in the natural nonlinearities of the
problem but it will also bring in an alternative error structure. Minimising
the sum of squared deviations about mwg/E is not the same as the (assumed)
original problem of deviations about m. Of course, any transformation of the
variables would have a similar effect.

4 Conclusion

The DA literature is replete with warnings about the inappropriate use of the
technique. First one should not make the mistake of applying it to situations
in which even the physical laws involved are unknown. Taylor[8] remarks
that such attempts “give the subject the reputation of being a black art,
which in these circumstances it is indeed.”

Though the conversion from the original variables to a set of 7s is auto-
matic and programs have been written to do this easily, the initial consider-
ation of the problem is important. DA cannot invent variables and can only
deal with the variables it is presented with.

How we choose the basis and hence the particular set of 7s is also im-
portant. Though their number is fixed, the set of ws can be manipulated by
multiplying them together or dividing one by another to produce new, but
still dimensionless, factors. These operations correspond to changing basis
in the exponent space of the original variables.



We therefore have the option of choosing the best set of ws. One criterion
is essentially an aesthetic one - good products are those that have a physical
interpretation. For example, one factor may represent the balance of two
important effects. Many named dimensionless products, such as Reynold’s
number, are of this kind.

Alternatively we can choose a set that forms the simplest model when
the regression is done. This is an appeal to Ockham’s razor. We might be
lucky in that such a model would have a clear physical meaning.

We are, of course, not limited to linear regression in the ms. We would,
however, hope that a good fitted model would be simple in that it is either
linear or of simple polynomial form. Even here there is some freedom of
choice for the analyst and more sophisticated but still simple models might
be tested. Kasprzak[5, p. 28] give an example of a search for such a simple
model.

Using another criterion, we might use a non-linear programming algo-
rithm to minimise the residuals not only by fitting the regression parameters
but also, by changing the basis, the 7s to be used in it. Work is continuing
on ways of doing this.

While there is often a tendency to regard the data as mere numbers, to
throw them into a computer package and then try to interpret the results,
good statisticians recognise the need for careful preliminary investigations. I
believe that Dimensional Analysis will prove to be a useful addition to the
set of tools available for this purpose.
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