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SANTOS Ltd is Australia’s biggest supplier of natural gas. It oper-
ates nearly 600 wells, most of which are in South Australia. Generally
the wells produce a mixture of raw, dense gas with some water and
a kerosene-like condensate. These fluids pass through a compressor
and are then pumped at high pressure through pipelines up to 180
km long to processing facilities. Both gas and liquid are carried in
the one pipe, but they travel at different speeds.

At the outlet of the pipeline, the gas output is more or less steady,
but the liquid flowrate varies considerably. This is due to the liquid
travelling in the form of slugs, with the peak flows being up to 10
times the average; the slugs are often cyclic in nature. Slugging is
a worldwide problem in pipelines carrying both liquid and gas. Not
only does it make flows at the outlet difficult to handle, but it can
induce severe mechanical vibrations in the pipe.

In pipes across undulating terrain, such as those operated by SAN-
TOS, a major cause of slugging is the topography. Liquid tends to
build up and sit at the lowest points of the pipeline, until it is forced
onwards through the rest of the pipe by the pressure of the gas caught
behind. See Fig. (1) for an illustration. SANTOS asked the MISG
to develop a simple way of estimating peak liquid flow rates, slug
sizes and the period between the peaks. The team concluded that
the flow in downhill sections should be stratified with liquid and gas
separated, whereas there would be a strong correlation between the
length and slope of the uphill sections and the depth of the liquid in
them.
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Figure 1: A sketch illustrating typical terrain-induced slugging, with the denser
phase accumulating in elbows and uphill sections of pipe. Flow is from left to
right.

1. Introduction

Slugging is a worldwide problem in pipelines carrying both liquid and gas,
and is a particular problem in offshore wells. It makes control of flows at the out-
let difficult, and may lead to shutting down of pipeline systems, at considerable
expense.

Many mechanisms have been advanced for why slugging occurs, and different
explanations may be valid for different pipelines. More than one mechanism may
be acting at a time. But it is commonly assumed that in pipes across undulating
terrain, such as those operated by SANTOS, a major cause of slugging is the
topography itself. Liquid tends to build up and sit at the lowest points of the
pipeline, until it is forced onwards through the rest of the pipe by the pressure
of the gas caught behind.

Because of the expense and technical difficulty, there are no sensors in the
SANTOS pipelines, and almost all the operational data comes from measure-
ments taken at each end. So SANTOS asked the MISG to develop a simple
way of estimating peak liquid flow rates, slug sizes and the period between the
peaks. As an example with which to work, the company provided data on the
180-kilometre pipeline it operates between Ballera and Moomba in South Aus-
tralia.

The team began with a general analysis of the problem. It found there was a
more or less regular period of about 4 to 5 hours between peak liquid flows at the
outlet, and that the form of the flow output resembled what would be expected
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from two sine waves added together, suggesting the possibility of two dominant
frequencies of slugging. Experimental and engineering experience suggested that
slugging was due to the uphill segments of the pipeline, with the holdup (fraction
of the flow area occupied by the lower layer) being larger on uphill sections. One
possibility suggested was that the period between slugs was determined totally
by the characteristics of the last uphill segment.

In addition to terrain, other mechanisms put forward to explain slugging
included hydrodynamic reasons, where the different pressures and rates of flow
of the gas and liquid induce waves in the liquid phase, some of which can be
big enough to fill the pipe. This could be alleviated by increasing the diameter
of the pipe or increasing the pressure or the pressure gradient under which the
fluids flow.

The team was intrigued by the possibility that the equation for waves on
shallow water developed by the Dutch mathematicians Korteweg and de Vries
might be applicable, which would raise the possibility of the establishment of
solitary waves and wave trains. The observed slugging period of 4.3 hours to-
gether with a fluid velocity of 0.4 m/s corresponds to a wavelength of about 6
km, while the depth of the liquid phase is a fraction of the pipe diameter of
0.4 m, so that the shallow-water approximation is a good one. However, it was
eventually realised that there was no dispersive mechanism apparent, so that
the KdV equation was not after all so relevant. Slugging might also be initiated
by abrupt changes in the rate of output of the well or by starting up or shut-
ting down the compressor and pump, thereby inducing transitions which moved
along the pipeline either backwards or forwards.

One interesting fact uncovered by the team was that the time it would take
the last uphill segment of the pipe before the outlet (about 800 m) to fill with
liquid is about 3.4 hours, which is close to the cycle time of the slugging measured
at the outlet (about 3 to 4 hours). So one possibility is that in addition to any
slugging that might take place within the pipeline itself, the characteristics of
the slugs at the outlet could be determined solely by the last uphill stretch.

The MISG team, however, concentrated on the impact of terrain. It noted
that the pipe was of larger diameter than generally employed worldwide for such
gas flows, and also that the gas itself was highly compressed, so that it was
nearly as dense as the liquid phase. It appeared that the stratified flow could in
this case be treated as liquid flowing over liquid rather than gas over liquid. The
team began building a mathematical model of the pipeline system, exploring
the operating conditions of the pipeline, and looking for simple approximate
solutions. They started by looking at conditions and assumptions that would be
necessary to build such a model.
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Initially they decided on a model with two layers of incompressible liquid
where the lower (denser) fluid flow is driven by the upper fluid due to the velocity
contrast. The assumptions undelying this modelling are in Section 3. There
would also be interactions, in the form of shear stresses, at the boundary between
the fluids and the pipe, and between the fluids at their interface. The gas phase
(the liquid on top) would flow much faster than the liquid below. The group
then developed equations based on conservation principles (Section 3.1), and
explored smooth (Section 3.1) and shock-wave (Sections 3.2 and 3.3) solutions
for various regimes.

Owing to the complicated nature of the model equations and of the flows that
can develop, the group was unable to find simple expressions for slug amplitude
and period. However, a good foundation has been laid for further study of this
model and of this challenging problem.

2. Two-phase pipeline flow

The pipeline from Ballera to Moomba is 180 km long and about 40 cm in diam-
eter. It carries gas, condensate and water at high pressure (between 70 and 130
atmospheres) at about 1.5 kilometres per hour for the liquid and 15 kilometres
per hour for the gas. There is no data on the actual conditions inside the pipe.
What happens along the pipe has to be inferred on the basis of measurements
collected at the end points and from the evidence of laboratory experiments
conducted with glass channels. Flowrates measured at the output end, which
show evidence of slugging in the liquid phase, are graphed in Fig. (2).

A set of simplified pipeline and flow data deduced from that provided by
SANTOS is outlined in Table 1. For each flow layer, mean fluxes are used to
calculate superficial velocities (based on the total pipeline cross-section) and
these are used to calculate superficial Reynolds numbers. The latter indicate
that the flows are in the high Re regime, and approximations may be made
accordingly in the modelling and in the use of shear stress correlations.

3. A simplified model

After a good deal of discussion about the properties of the fluids flowing in
the SANTOS pipelines, it was decided that the following assumptions could be
made:

1. The flow generally consists of two layers of incompressible fluid, both
liquid-like despite the lighter fraction usually being termed “gas”, with
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Figure 2: Graphs of flows at the pipeline outlet, and of the topography of the
pipeline. The first graph is of the flowrates of gas and liquid phases measured at
the separator at the outflow end of the pipeline from Ballera to Moomba, showing
oscillating liquid flows (the lower data set) consistent with the presence of slug
flow in the pipe. The upper data set shows that the gas phase does not exhibit
comparable oscillations, in period or in magnitude. The second graph shows the
topography of the pipeline - note the exaggerated vertical scale. The steepest
sections of pipeline are at angles less than 6◦. There has been no attempt to
draw a smooth line between points, which are based on measurements of the
elevation and distance along the pipe.
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Table 1: Data from a typical pipeline installation, based on that from Ballera
to Moomba, together with representative fluid properties.
Quantity Symbol Value Units

internal pipe radius R 0.200 m

internal pipe diameter D 0.400 m

internal cross-sectional pipe area Ac = πR2 0.126 m2

pipe length Lp 180,000 m

pressure change along pipe ∆p -5.5 MPa

average pressure gradient dp
dx = ∆p

Lp
- 30 Pa m−1

lower layer (“liquid”)

volume flux Q1 0.008 m3 s−1

density ρ1 550 kg m−3

dynamic viscosity µ1 130×10−6 kg m−1 s−1

kinematic viscosity ν1 2.4×10−7 m2 s−1

superficial velocity u1s = Q1/Ac 0.064 m s−1

superficial Re Re1s = u1sD/ν1 107,000 –

actual velocity u1 0.4 m s−1

surface tension γ 6.8 × 10−3 N m−1

upper layer (“gas”)

volume flux Q2 0.4 m3 s−1

density ρ2 140 kg m3

dynamic viscosity µ2 18×10−6 kg m−1 s−1

kinematic viscosity ν2 1.3×10−7 m2 s−1

superficial velocity u2s = Q2/Ac 3.17 m s−1

superficial Re Re2s = u2sD/ν2 10,000,000 –

actual velocity u2 4 m s−1

drag function

C Re−m C 0.046 –

m 0.2 –
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the more dense fluid flowing under the lighter layer. The Mach number is
small, so internal gas shocks are not relevant phenomena and the densities
of the fluid layers are, locally, uniformly constant. Fluid properties would
change only slowly along the pipeline.

2. The pipeline slopes are small.

3. The interface between the layers is well-defined and generally has very
small or zero gradient relative to the pipeline axis. The fluid velocity is
closely parallel to the pipeline walls nearly everywhere, except perhaps at
sudden transitions.

4. The calculated Reynolds number for each layer is high. (The “superficial
Re” values shown in Table 1 are calculated using the superficial velocity
values. The Re values based on actual mean velocities and hydraulic di-
ameter will be typically of the same order as the superficial Re values.)
Each layer flows with a nearly uniform velocity profile and with significant
velocity variations (shear) only near the pipeline walls and the interface.

5. Cross-pipe pressure variations are close to hydrostatic, with axial pressure
variation controlling the thermodynamic properties of the two phases. The
axial pressure gradient is small, so phase changes on a local scale are
ignored.

6. Transitions between flow regimes along the pipeline could be modelled
as jumps which were stationary or travelled steadily either forwards or
backwards along the pipe, with the interface heights and layer speeds in
front being different from those behind.

7. The flows are driven by a net force resulting from a balance between pres-
sure gradient and flow resistance caused by wall friction. The force on each
layer is also affected by the shear between the layers at the interface.

3.1 Steady flow regions

The equations which describe the flow can be deduced from the standard mass,
momentum and energy conservation equations. These are set out in various
published works to which the group referred, and are not repeated here (see De
Henau & Raithby, (1; 2; 3), Spedding (4), and Fozard (5)). In particular, Fozard
sets out a system of equations which describe in detail the various simplifications
and correlations which aid an attack on the problem. Some attention was paid
by Fozard to current thinking on the quantification and characterisation of the
shear stresses on the flow induced by the stationary pipeline surface, and by the
interface between the layers.
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Figure 3: Lateral and cross-sectional views of the pipeline of diameter D = 2R.
The interface is at height d above the bottom (y, z) = (0, 0).

A simplified model where the flow is assumed to be locally steady and par-
allel to the pipe is considered here. Such sections of flow may be separated by
stationary or moving “jumps” which feature abrupt changes in interface height.
The pipeline slopes at an angle α to the horizontal in the direction of flow. In
terms of a Cartesian (x, y, z) coordinate system with the x-axis along the bottom
of the pipeline, y-axis in the vertical plane and z-axis horizontal (see Fig. (3)),
the fluid velocity within each layer is of the form v = (u, v, w) = (u, 0, 0) , where
mass conservation and incompressibility ensures that u = u(y, z). The corre-
sponding Navier-Stokes (momentum conservation) equations are, in the x-, y-
and z-directions respectively,

∂p

∂x
= −ρg sinα + µ∇2

2u , (1)

∂p

∂y
= −ρg cos α , (2)

∂p

∂z
= 0 , (3)

where ∇2 ≡ (0, ∂
∂y , ∂

∂z ). Using Equations (2) and (3), the pressures within the
lower and upper layers are given by

p1 = p0(x)−ρ1g cos α y and p2 = p0(x)−ρ1g cos α d−ρ2g cos α (y−d) , (4)

where p0 = p(x, 0, 0) is the pressure at the bottom of the pipe. The areal
averages of the pressures within the flowing layers, each with respect to its flow
cross-section, are

p1 =
1

A1

∫∫

A1

p1dS = p0(x) − ρ1g cos α R +
2ρ1g cos α

3A1

[R2 − (R − d)2]3/2
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and

p2 =
1

A2

∫∫

A2

p2dS

= p0(x) − ρ1g cos α d − ρ2g cosα (R − d) −
2ρ2g cos α

3A2

[R2 − (R − d)2]3/2

and the total force exerted on the flow in the axial direction by the pressure is
then p1A1 + p2A2. The corresponding areal integration of Equation (1) over a
cross-section of the flow for layer 1 (note from Equation (4) that ∂p1

∂x = dp1

dx = dp0

dx )
leads to the following expression for the axial pressure gradient:

dp0

dx
= −ρ1g sinα +

1

A1

∫∫

A1

µ1∇
2
2u1 dS .

Using a variant of Green’s theorem in the plane, this may be written as

dp0

dx
= −ρ1g sinα +

1

A1

∫

∂A1

µ1∇2u1 · n ds ,

where ∂A1 is the boundary of the flow cross-sectional area A1 in the y−z plane.
The line integral represents the net normal component of shear force at the edge
of the lower flowing layer, part of which is in contact with the pipe wall, and
part in contact with the upper flowing layer. This mean shear stress (tangential
force per unit area) on the flow’s surface may be divided into those two parts,
and the equation written as

dp0

dx
= −ρ1g sinα +

τ1wP1 + τ1ISI

A1

, (5)

where τ1w and τ1I are the linearly-averaged mean shear stresses on the flow by
the pipeline wall (perimeter P1) and the interface between the fluid layers (width
SI) respectively. A similar process for the upper layer gives

dp0

dx
= −ρ2g sinα +

τ2wP2 + τ2ISI

A2

. (6)

The τ values may be expressed in terms of the fluid density, flow speed and
Reynolds number for the flow in the form:

τ = −
1

2
ρU |U |C Re −m . (7)

Here, U is the mean speed of the flow relative to that of the relevant boundary
and C and m are (known) experimentally-determined parameters. The Reynolds
number for each layer depends on the kinematic viscosity, the mean speed and
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a typical length scale, usually the hydraulic diameter, for that layer. Fozard (5)
explains that it is common practice to assume, when the upper layer is moving
much faster than a lower, much denser layer, that the lower layer is an “open
channel” flow and the upper layer a “closed pipe” flow. The hydraulic diameter
used in the calculation of Re depends on the case assumed (see Table 2) while
the mean speed of the flow for layer i is ui = Qi/Ai.

Table 2: Parameters for flow geometry in terms of the pipeline radius R and the
angle θ (the interface subtends an angle 2θ at the pipeline axis — see Fig. (3)).
Quantity Symbol Formula Units

interface

surface width SI 2R sin θ m

lower layer

depth d R(1 − cos θ) m

cross-sectional area A1 (θ − sin θ cos θ)R2 m2

area fraction A = A1/Ac (θ − sin θ cos θ)/π –

pipe contact perimeter P1 2Rθ m

hydraulic diameter DH1 open : 4A1/P1 m

closed: 4A1/(SI + P1) m

upper layer

depth D − d R(1 + cos θ) m

cross-sectional area A2 (π − θ + sin θ cos θ)R2 m2

area fraction 1 − A = A2/Ac (π − θ + sin θ cos θ)/π –

pipe contact perimeter P2 2R(1 − θ) m

hydraulic diameter DH2 open : 4A2/P2 m

closed: 4A2/(SI + P2) m

The shear stresses at the fluid layer interface must be equal and opposite,
i.e. τ1I = −τ2I . Since the expression (7) for τ1I and τ2I will use different Re and
ρ (density) values, even though the relative speed U = ±|u1 − u2| is the same
in both expressions, the magnitudes of the calculated shear stress values will be
different. Fozard explains that the appropriate value of interface shear to use is
that calculated from the upper (faster) layer flow properties.

For a steady flow, the two axial pressure gradients given by Equations (5)
and (6) must be equal. For given layer flow rates, the problem reduces to finding
the interface level d (see Fig. (3) and Table 1) which provides equality. For given
flow rates, small interface heights will lead to very large axial pressure gradient
requirements for the lower layer, and relatively smaller values for the upper layer.
This is reversed for interface positions near the top of the pipeline. Somewhere
in between, there is an interface height d for which the axial pressure gradients
required to maintain both flows against gravitational and shear forces are equal.
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That value of d “solves” the problem.

A calculation using the parameter values given in Table 1 and for a zero
pipeline slope (α = 0) was made to find the value of the interface height which
makes the axial pressure gradients for both layers the same. The calculated
value of d is close to 0.044 m, and the corresponding axial pressure gradient is
about -14 Pa m−1. This compares with the overall average pressure gradient for
the whole pipeline of -30 Pa m−1; there must therefore be regions in the pipeline
where the pressure gradient is significantly larger, so that the overall pressure
drop matches the drop between inlet and outlet conditions. The calculated
mean fluid speeds in lower and upper layers are approximately 1.1 and 3.4 m
s−1 respectively, which are in the ranges of values provided by SANTOS during
the workshop session. While these calculations were made after the MISG week,
there is clearly some potential for further investigation along these lines, and
such work is being continued by some members of the group.

3.2 Kelvin-Helmholtz instability

When two fluids move relative to each other as in this model, the interface is
inherently unstable. This instability is generally called the Kelvin-Helmholtz
instability (see, for example, Drazin and Reid (6)). The flow is unstable if (see
Table 1 for symbols)

kρ1ρ2(u1 − u2)
2 > g(ρ2

1 − ρ2
2) ,

where g = 9.8 m s−2 and k is the wavenumber (2π over the wavelength). We
have ignored waves transverse to the pipe. Hence if u1 6= u2 all short enough
wavelengths are unstable. Using the parameter values in Table 1, the longest
wavelength that is unstable is then ∼2m, too short to account for the Santos
observations. If surface tension γ is added into the model, very short wavelengths
are stabilised, and instability requires

ρ1ρ2(u1 − u2)
2 > 2(ρ1 + ρ2)

√

gγ(ρ1 − ρ2) .

We find that this condition is satisfied for our parameter values, and that the
shortest unstable wavelength

λ = 2π

√

γ

g(ρ1 − ρ2)

is about 8mm, so that wavelengths between approximately 8mm and 2m are
unstable according to the Kelvin-Helmholtz instability. Hence, while this does
provide a mechanism for initiating jumps and transitions, it does not account
for the observed slugging period.
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3.3 Moving transitions

Another aspect considered was that where an abrupt change in flow conditions
(a “jump”) moves along the pipeline, separating two flow regimes each of which
can be described by the analysis above. With the assumption that the transition
moves at a constant speed V along a section where the pipeline slope remained
constant, a frame of reference moving with the transition (see Fig.(4)) allows
equations to be formulated which express conservation of mass and momentum
flux through the “jump”.

Figure 4: Schematic of a moving transition, speed V . (a) Speeds relative to a
fixed frame of reference. (b) Speeds relative to the moving transition.

If the jump speed V is taken to be positive in the direction of the positive x-
axis, the flow regime ahead of the jump is designated “ahead” (subscript a) and
the regime behind is “behind” (subscript b). Conservation of mass (or volume,
since the layers are incompressible) through the jump for the lower and upper
layers gives, relative to the moving coordinate system,

ρ1A1b(u1b − V ) = ρ1A1a(u1a − V ) ,

and

ρ2A2b(u2b − V ) = ρ2A2a(u2a − V ) .

Attribution of the change in total axial momentum from “a” to “b” with the
net pressure force across the jump (with the assumption that the jump region
is short) gives:

[

ρ1(u1 − V )2A1 + ρ2(u2 − V )2A2

]

a
−

[

ρ1(u1 − V )2A1 + ρ2(u2 − V )2A2

]

b
=

[p1A1 + p2A2]b − [p1A1 + p2A2]a ,
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or, that the modified momentum flux relative to the moving jump,
[

ρ1(u1 − V )2 + p1

]

A1 +
[

ρ2(u2 − V )2 + p2

]

A2 ,

is conserved across the jump. For a given flow regime either ahead or behind
such a transition, the above equations, together with the requirement that the
axial pressure gradients for both layers within each region are equal (but will be
different ahead and behind), are enough to uniquely solve for the jump speed V
and the interface height in the other region. Such calculations may be useful in
working out all possible flow states and transitions through the pipeline, without
having to resort to massive CFD simulations.

3.4 Steady transitions

One other inferred possibility is that there can be stationary jumps at points in
the pipeline, perhaps where there are slope changes due to topography. Such
transitions would “link” different steady flow regimes, each of which would have
to satisfy the condition that the axial pressure gradients within each layer were
the same. Calculations comparing a horizontal pipeline section with sections
which slope upwards or downwards with angle α, by solving equations (5) and (6)
using the parameter values in Table (1), lead to the results in Table 3.

Table 3: Comparison of flows with the same fluxes but different pipeline slopes.

angle α axial pressure gradient interface height d u1 u2

(degrees) (Pa m−1) (m) (m s−1) (m s−1)

-1 +11.3 0.034 1.55 3.31

-0.5 -1.0 0.037 1.35 3.34

0 -13.8 0.044 1.05 3.39

+1 -69 0.16 0.17 5.1

It can be seen that very small pipeline slopes induce significant changes in
axial pressure gradient. For negative slopes, the flow “runs away downhill” and
is restrained by a positive pressure gradient, while a significant pressure drop is
needed to maintain the “uphill” flow. In the latter case, the lower layer thickens
(the “holdup” increases), and requires the faster-moving upper layer to “pull” it
up the slope through increased interfacial shear. A downward slope of about 0.5◦

produces a flow where the gravitational and shear forces are nearly balanced,
and the axial pressure gradient is close to zero.

Most of the values calculated above are within the ranges that were given
by SANTOS from simulation data; the overall pressure gradient for the pipeline
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is -30 Pa m−1, while the lower and upper fluid speeds are in the ranges 0.2–0.5
m s−1 and 3–5.5 m s−1 respectively.

3.5 Choking

Complete choking of the flow was considered a possibility, especially since evi-
dence from measurements made by SANTOS indicated large variations in liquid
flow rates at the outlet. A simple calculation of the volume of the last section of
the pipeline, which has a rise of 12m over its last 800m length, giving an upward
slope of about 0.85◦, showed that it would take a time of about 3.4 hours to fill
it with the liquid phase at the indicated flowrate (see Table 1). The cycle time
at the outlet was measured to be approximately 3 to 4 hours, so a choking effect
may explain the phenomenon.

4. Conclusions and recommendations

The SANTOS problem is not an easy one. Oil and gas companies have
devoted a large amount of resources to try to simulate the flow in pipelines,
with a view to designing systems which have favourable characteristics only.
The MISG group wrestled with the complications of current full mathematical
models before deciding to try some very simple models which might reveal good
descriptions of basic phenomena.

The angle of inclination of the pipeline is very important, with flow in down-
hill sections smoothing out to an evenly stratified behaviour, while flow in uphill
sections develops slower and deeper condensate flows and has an increased prob-
ability of slugs forming. Given this, perhaps the most important section of a
pipeline is the last section, and for smooth operating conditions this section
should be slightly downhill, effectively operating as a separator and smooth-
ing out any slugs that have developed in the previous downhill section. Such
considerations, while of little help in controlling the existing setup, could affect
decisions on future plant placement, for example.

The simple models described here were just part of the approaches considered
by the MISG group. There was vigorous discussion about some subtle math-
ematical and modelling details, but these did not lead to immediately-obvious
ways to proceed.

The problem remains. Some further investigations of points noted above
may bear fruit.
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