Asymptotic Approximations to the Distributed Activation Energy Model

M.J.McGuinness ${ }^{1}$, E. Donskoi ${ }^{2}$, D.L.S. McElwain ${ }^{2}$.
School of Math \& Comp Sci ${ }^{1}$, Victoria University of Wellington, New Zealand; CiSSaIM ${ }^{2}$, Queensland University of Technology, Brisbane, Qld 4001 Australia.

Applied Mathematics Letters 12 (1999) pp.27-34.

Abstract

We present approximations to the Distributed Activation Energy Model (DAEM) also known as the multiple reaction model (MRM), which is widely used in complex chemical systems such as coal pyrolysis. MRM assumes that the process can be represented by a continuum distribution in activation energy of individual reactions. An individual reaction is characterised by a pre-exponential coefficient and an activation energy. The distribution, usually Gaussian, is over the activation energy. The solution for the amount of product requires the evaluation of a double integral. This paper develops asymptotic approximations to this double integral, based on the assumptions that the mean of the Gaussian is large and that its standard deviation is small. The method will have wide applicability in situations, such as computational fluid dynamics modelling of coal-fired boilers, where it is important to be able to evaluate this double integral quickly. It also provides analytical insights into solution behaviour, since the asymptotic forms are explicit.

1 Introduction

The Distributed Activation Energy Model (DAEM) or multiple reaction model (MRM) for coal pyrolysis [4] may be applied to either the total amount of volatiles released, or to the amount of an individual volatile constituent like carbon monoxide or tar. It is also called the Distributed Rate Model, and adapts Vand's treatment of independent parallel processes [6] in modelling the resistance of metallic films. We will refer to the model as the MRM in this paper. The description here follows the development for the total amount of volatiles in [4] and [3]. The thermal decomposition due to a particular reaction i within the coal structure is modelled as a first order irreversible reaction,
with the mass of reacted or released volatile V_{i} taken to vary in time t according to the equation

$$
\begin{equation*}
\frac{d V_{i}}{d t}=k_{i}\left(V_{i}^{*}-V_{i}\right) \tag{1}
\end{equation*}
$$

where V_{i}^{*} is the total mass of volatile originally available for reaction, so that $V_{i}^{*}-V_{i}$ is the amount of unreacted volatile remaining at time t. The reaction rate k_{i} is taken to be of Arrhenius form,

$$
\begin{equation*}
k_{i}(t)=k_{0 i} e^{-E_{i} /(R T(t))}, \tag{2}
\end{equation*}
$$

where $T(t)$ is the time varying absolute temperature of the coal, $R=8.3 \mathrm{~J} / \mathrm{K}$ is the universal gas constant, E_{i} is the activation energy and $k_{0 i}$ is the pre-exponential factor. Values of $k_{0 i}, E_{i}$ and V_{i}^{*} are estimated from matching to experimental data. While the theoretical work developed here allows for a rather general temperature variation with time, typical experiments use a constant ramping rate $d T / d t$.

The solution to equation (1) may be written in terms of the mass of volatiles remaining to be released at time t,

$$
\begin{equation*}
\frac{V_{i}^{*}-V_{i}}{V_{i}^{*}}=\exp \left(-\int_{0}^{t} k_{i}(u) d u\right) . \tag{3}
\end{equation*}
$$

Early modelling was based on just one reaction $(i=1)$. Some materials can be accurately modelled by a single-reaction scheme, with k_{0} and E_{0} fitted to a series of experiments conducted at different heating rates. However, more complicated reactions like coal pyrolysis cannot be adequately modelled by a single reaction, due to large variations in the values of k_{0} and E_{0} with the heating rate $d T / d t[5, ?, ?]$.

One approach is to consider many single reactions, and to assume that the k_{i} 's differ only in activation energy, that is, that $k_{0 i}=k_{0}$ for all i, and that E_{i} may be represented as a distribution $F(E)$. The fraction of potential total volatile loss that has an activation energy between E and $E+d E$ is represented by $F(E) d E$. Then V_{i}^{*} and V_{i} are replaced by $d V^{*}=V^{*} F(E) d E$ and $d V=V F(E) d E$ respectively in equation (3), and the equation is integrated over E to get

$$
\begin{equation*}
\frac{V^{*}-V}{V^{*}}=\int_{0}^{\infty} \exp \left[-k_{0} \int_{0}^{t} e^{-E / R T} d t\right] F(E) d E \tag{4}
\end{equation*}
$$

A popular choice for F is the Gaussian distribution with mean E_{0} and variance σ,

$$
\begin{equation*}
F(E)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(\frac{-\left(E-E_{0}\right)^{2}}{2 \sigma^{2}}\right) . \tag{5}
\end{equation*}
$$

Hence the solution for the MRM model is

$$
\begin{equation*}
v \equiv \frac{V^{*}-V}{V^{*}}=\frac{1}{\sigma \sqrt{2 \pi}} \int_{0}^{\infty} \exp \left[-k_{0} \int_{0}^{t} e^{-E / R T} d t-\frac{\left(E-E_{0}\right)^{2}}{2 \sigma^{2}}\right] d E \tag{6}
\end{equation*}
$$

2 Asymptotic Expansions

We seek approximations to v which avoid the double integration, as there are some applications which require many evaluations of v. One approximation is a narrow Gaussian, or $\sigma \rightarrow 0$. Another is that $E_{0} / R T$ is large.

2.1 Energy or small σ expansions

When $\sigma \rightarrow 0$, Laplace's method can be used [2] to expand the outer integral, which is in the Laplace form

$$
\begin{equation*}
v(x)=\int_{0}^{\infty} f(E) \exp (x g(E)) d E, \quad x \rightarrow \infty \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
f(E) \equiv \frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-k_{0} \int_{0}^{t} \exp \left(\frac{-E}{R T\left(t^{\prime}\right)}\right) d t^{\prime}\right) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
g(E) \equiv-\left(E-E_{0}\right)^{2} / 2 \tag{9}
\end{equation*}
$$

and $x \equiv 1 / \sigma^{2}$.
The function $g(E)$ takes its maximum at E_{0}, so we expand f in a Taylor series about E_{0},

$$
\begin{align*}
f(E) \sim & \frac{1}{\sigma \sqrt{2 \pi}}\left[f\left(E_{0}\right)+\left(E-E_{0}\right) f^{\prime}\left(E_{0}\right)+\left(E-E_{0}\right)^{2} f^{\prime \prime}\left(E_{0}\right) / 2+\right. \\
& \left.\left(E-E_{0}\right)^{3} f^{\prime \prime \prime}\left(E_{0}\right) / 6+\left(E-E_{0}\right)^{4} f^{i v}\left(E_{0}\right) / 24\right], E \rightarrow E_{0} \tag{10}
\end{align*}
$$

Here we define

$$
\begin{equation*}
e_{j}(E) \equiv \int_{0}^{t} e^{-E / R T\left(t^{\prime}\right)} \frac{d t^{\prime}}{\left(R T\left(t^{\prime}\right)\right)^{j}}, j=0,1,2 \ldots, \tag{11}
\end{equation*}
$$

and noting that

$$
\begin{equation*}
\frac{d e_{j}}{d E}=-e_{j+1} \tag{12}
\end{equation*}
$$

we have

$$
\begin{gather*}
f\left(E_{0}\right)=\exp \left(-k_{0} e_{0}\right), \tag{13}\\
f^{\prime}(E)=k_{0} e_{1} e^{-k_{0} e_{0}}, \tag{14}\\
f^{\prime \prime}(E)=e^{-k_{0} e_{0}}\left[\left(k_{0} e_{1}\right)^{2}-k_{0} e_{2}\right], \tag{15}\\
f^{\prime \prime \prime}(E)=e^{-k_{0} e_{0}}\left[\left(k_{0} e_{1}\right)^{3}-3 k_{0}^{2} e_{1} e_{2}+k_{0} e_{3}\right], \tag{16}
\end{gather*}
$$

and

$$
\begin{equation*}
f^{i v}(E)=e^{-k_{0} e_{0}}\left[\left(k_{0} e_{1}\right)^{4}-6 k_{0}^{3} e_{1}^{2} e_{2}+3 k_{0}^{2} e_{2}^{2}+4 k_{0}^{2} e_{1} e_{3}-k_{0} e_{4}\right] . \tag{17}
\end{equation*}
$$

Laplace's method involves approximating v by reducing the range of integration to the neighbourhood of E_{0}, expanding about E_{0}, and sending the range of integration to $\pm \infty$ for evaluation, so that the leading term is

$$
\begin{equation*}
v(\sigma) \sim v_{0}(\sigma) \tag{18}
\end{equation*}
$$

where
$v_{0}(\sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-k_{0} \int_{0}^{t} \exp \left(\frac{-E_{0}}{R T\left(t^{\prime}\right)}\right) d t^{\prime}\right) \int_{-\infty}^{\infty} \exp \left(\frac{-\left(E-E_{0}\right)^{2}}{2 \sigma^{2}}\right) d E, \sigma \rightarrow 0$.
The energy integral evaluates to $\sigma \sqrt{2 \pi}$, so that the leading behaviour is

$$
\begin{equation*}
v_{0}=\exp \left[-k_{0} \int_{0}^{t} e^{-E_{0} /\left(R T\left(t^{\prime}\right)\right)} d t^{\prime}\right], \sigma \rightarrow 0 \tag{20}
\end{equation*}
$$

This is the same as the solution that is obtained for the simplest first-order model with a single activation energy E_{0}, by just taking $i=1$ above. It may alternatively be obtained by replacing the distribution $F(E)$ by a delta function $F=\delta\left(E-E_{0}\right)$.

Odd terms $f^{\prime}, f^{\prime \prime \prime}$ do not contribute to the asymptotic behaviour of v, since the integrands are odd functions, giving integrals that evaluate to zero.

Then $v-v_{0} \sim v_{2}, \sigma \rightarrow 0$ where

$$
\begin{equation*}
v_{2}=\frac{v_{0} k_{0} f^{\prime \prime}\left(E_{0}\right)}{2 \sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(E-E_{0}\right)^{2} \exp \left(\frac{-\left(E-E_{0}\right)^{2}}{2 \sigma^{2}}\right) d E . \tag{21}
\end{equation*}
$$

The integral evaluates to $\sqrt{2 \pi} \sigma^{3}$, so that

$$
\begin{equation*}
v_{2}=v_{0} k_{0} f^{\prime \prime}\left(E_{0}\right) \sigma^{2} / 2 \tag{22}
\end{equation*}
$$

To second order then, we have

$$
\begin{align*}
v \sim & \exp \left[-k_{0} \int_{0}^{t} e^{-E_{0} /\left(R T\left(t^{\prime}\right)\right)} d t^{\prime}\right] \\
& {\left[1+\frac{k_{0} \sigma^{2}}{2}\left(k_{0}\left\{\int_{0}^{t} e^{-\frac{E_{0}}{R T}} \frac{d t^{\prime}}{R T}\right\}^{2}-\int_{0}^{t} e^{-\frac{E_{0}}{R T}} \frac{d t^{\prime}}{R^{2} T^{2}}\right)\right], \sigma \rightarrow 0 } \tag{23}
\end{align*}
$$

The next term is fourth order in $E-E_{0}$, and is calculated in a similar manner, giving the term $\frac{\sigma^{4}}{8} f^{i v}\left(E_{0}\right)$, and we have

$$
\begin{equation*}
v \sim f\left(E_{0}\right)+\frac{\sigma^{2}}{2} f^{\prime \prime}\left(E_{0}\right)+\frac{\sigma^{4}}{8} f^{i v}\left(E_{0}\right), \sigma \rightarrow 0 \tag{24}
\end{equation*}
$$

2.2 Time or large energy expansions

We seek asymptotic expansions for the time integrals that remain, assuming that the mean activation energy is large, in particular, that $E_{0} /\left(R T_{0}\right) \rightarrow \infty$, where T_{0} is a representative temperature. This will help to see what size the derivative terms in f are, and it will also speed up the evaluation of v.

Temperature $T(t)$ (and hence the function $-1 / T$, which has the same shape) is typically monotonic increasing until the reaction is finished. We re-scale $T(t)=T_{0} \tau(t)$, and take $z=E_{0} /\left(R T_{0}\right) \rightarrow \infty$.

Then

$$
\begin{equation*}
\int_{0}^{t} e^{-E_{0} /\left(R T\left(t^{\prime}\right)\right)} d t^{\prime}=\int_{0}^{t} e^{-z / \tau\left(t^{\prime}\right)} d t^{\prime} \tag{25}
\end{equation*}
$$

and the exponent function $-1 / \tau$ has its maximum value at t. Noting the expansion (as $t^{\prime} \rightarrow t$)

$$
\begin{equation*}
-1 / \tau\left(t^{\prime}\right) \sim \frac{-1}{\tau(t)}+\left(t^{\prime}-t\right) \frac{\tau^{\prime}(t)}{\tau^{2}(t)}+\frac{\left(t^{\prime}-t\right)^{2}}{2}\left(\frac{\tau^{\prime \prime}(t)}{\tau^{2}(t)}-2 \frac{\left(\tau^{\prime}(t)\right)^{2}}{\tau^{3}(t)}\right) \tag{26}
\end{equation*}
$$

equation (25) becomes (as $z \rightarrow \infty$)

$$
\begin{align*}
\int_{0}^{t} e^{-z / \tau\left(t^{\prime}\right)} d t^{\prime} & \sim \int_{t-\epsilon}^{t} e^{-z / \tau\left(t^{\prime}\right)} d t^{\prime} \tag{27}\\
& \sim \int_{t-\epsilon}^{t} e^{-z / \tau(t)} e^{z\left(t^{\prime}-t\right) \tau / \tau^{2}} e^{z\left(t^{\prime}-t\right)^{2} / 2\left(\frac{\tau^{\prime \prime}(t)}{\tau^{2}(t)}-2 \frac{\left(\tau^{\prime}(t)\right)^{2}}{\tau^{3}(t)}\right)} \tag{28}
\end{align*}
$$

which becomes

$$
\begin{equation*}
\sim e^{-z / \tau} \int_{-\infty}^{t} \exp \left(z\left(t^{\prime}-t\right) \frac{\tau^{\prime}}{\tau^{2}}\right)\left[1+\frac{z\left(t^{\prime}-t\right)^{2}}{2}\left(\frac{\tau^{\prime \prime}}{\tau^{2}}-2 \frac{\left(\tau^{\prime}\right)^{2}}{\tau^{3}}\right)\right] d t^{\prime} \tag{29}
\end{equation*}
$$

where all τ functions and their derivatives are evaluated at t.
These integrals may now be evaluated, and the temperature rescaling reversed, to give (as $\left.E_{0} /\left(R T_{0}\right) \rightarrow \infty\right)$

$$
\begin{equation*}
\int_{0}^{t} e^{-E_{0} /\left(R T\left(t^{\prime}\right)\right)} d t^{\prime} \sim \frac{\exp \left(-E_{0} /(R T)\right)}{E_{0} /(R T)}\left(\frac{T}{T^{\prime}}\right)\left[1+\left(\frac{R T}{E_{0}}\right)\left(\frac{T^{\prime \prime} T}{\left(T^{\prime}\right)^{2}}-2\right)\right] \tag{30}
\end{equation*}
$$

where all T functions and derivatives are evaluated at time t.
The leading term in the above expansion is well-known in the literature for single reactions when heating rate is constant (eg [?]). The derivation here applies to more general temperature histories, and also indicates the accuracy of the approximation through the second term.

Some care is needed to obtain the second term in the expansions for the remaining integrals in equation (23), as both the exponent and the coefficient functions contribute to second order in $E_{0} /\left(R T_{0}\right)$. We find that

$$
\begin{align*}
\int_{0}^{t} e^{-z / \tau\left(t^{\prime}\right)} \frac{d t^{\prime}}{R T\left(t^{\prime}\right)} \sim & e^{-z / \tau} \int_{-\infty}^{t} e^{z\left(t^{\prime}-t\right) \frac{\tau^{\prime}}{\tau^{2}}}\left(1+\frac{z\left(t^{\prime}-t\right)^{2}}{2}\left(\frac{\tau^{\prime \prime}}{\tau^{2}}-\frac{2\left(\tau^{\prime}\right)^{2}}{\tau^{3}}\right)+\ldots\right) \\
& \left(\frac{1}{R T}-\frac{\left(t^{\prime}-t\right)}{R}\left(\frac{T^{\prime}}{T^{2}}\right)+\ldots\right) d t^{\prime}, z \rightarrow \infty \tag{31}
\end{align*}
$$

where all T and τ terms are to be evaluated at t. The cross terms involving $z\left(t^{\prime}-t\right)^{2}$ and $t^{\prime}-t$ both contribute to the second order asymptotic behaviour. Evaluating the integrals gives

$$
\begin{equation*}
\int_{0}^{t} e^{-z / \tau\left(t^{\prime}\right)} \frac{d t^{\prime}}{R T\left(t^{\prime}\right)} \sim \frac{\exp \left(-E_{0} /(R T)\right)}{E_{0}}\left(\frac{T}{T^{\prime}}\right)\left[1+\frac{R T}{E_{0}}\left(\frac{T T^{\prime \prime}}{\left(T^{\prime}\right)^{2}}-1\right)\right], z \rightarrow \infty \tag{32}
\end{equation*}
$$

and similarly (with both cross terms again contributing at second order)

$$
\begin{equation*}
\int_{0}^{t} e^{\left.-z / \tau\left(t^{\prime}\right)\right)} \frac{d t^{\prime}}{R^{2} T^{2}\left(t^{\prime}\right)} \sim \frac{\exp \left(-E_{0} /(R T)\right)}{E_{0} R T^{\prime}}\left(1+\frac{R T}{E_{0}}\left(\frac{T T^{\prime \prime}}{\left(T^{\prime}\right)^{2}}-1\right)\right), z \rightarrow \infty \tag{33}
\end{equation*}
$$

To leading order only,

$$
\begin{equation*}
\int_{0}^{t} e^{\left.-z / \tau\left(t^{\prime}\right)\right)} \frac{d t^{\prime}}{\left(R T\left(t^{\prime}\right)\right)^{j}} \sim \frac{\exp \left(-E_{0} /(R T)\right)}{E_{0} /(R T)} \frac{T}{T^{\prime}} \frac{1}{(R T)^{j}}, j \geq 0, z \rightarrow \infty \tag{34}
\end{equation*}
$$

In summary, the behaviour of v is

$$
\begin{equation*}
v \sim v_{0}+v_{1}+v_{2}+v_{4}, \quad E_{0} /(R T) \rightarrow \infty, \quad \sigma \rightarrow 0 \tag{35}
\end{equation*}
$$

where

$$
\begin{gather*}
v_{0}=\exp \left[-k_{0} e^{-E_{0} / R T}\left(\frac{R T}{E_{0}}\right)\left(\frac{T}{T^{\prime}}\right)\right] \tag{36}\\
v_{1}=-v_{0} k_{0} e^{-E_{0} / R T}\left(\frac{R T}{E_{0}}\right)^{2}\left(\frac{T}{T^{\prime}}\right)^{2}\left(\frac{T^{\prime \prime}}{T^{\prime}}-\frac{2 T^{\prime}}{T}\right), \tag{37}
\end{gather*}
$$

and

$$
\begin{equation*}
v_{2}=\frac{v_{0} k_{0}}{2} e^{-E_{0} / R T}\left(\frac{R T}{E_{0}}\right)\left(\frac{T}{T^{\prime}}\right)\left(\frac{\sigma}{R T}\right)^{2}\left[k_{0} e^{-E_{0} / R T}\left(\frac{R T}{E_{0}}\right)\left(\frac{T}{T^{\prime}}\right)-1\right] \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
v_{4}=\frac{v_{0} \sigma^{4}}{8}\left[\left(k_{0} a_{1}\right)^{4}-6 k_{0}^{3} a_{1}^{2} a_{2}+3 k_{0}^{2} a_{2}^{2}+4 k_{0}^{2} a_{1} a_{3}-k_{0} a_{4}\right], \tag{39}
\end{equation*}
$$

or

$$
\begin{equation*}
v_{4}=\frac{1}{8}\left(\frac{\sigma}{R T}\right)^{4}\left[\left(k_{0} a_{0}\right)^{4}-6\left(k_{0} a_{0}\right)^{3}+7\left(k_{0} a_{0}\right)^{2}-k_{0} a_{0}\right], \tag{40}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{j} \equiv \frac{a_{0}}{(R T)^{j}}, \quad a_{0} \equiv \frac{\exp \left(-E_{0} / R T\right)}{E_{0} / R T} \frac{T}{T^{\prime}} . \tag{41}
\end{equation*}
$$

3 Asymptotic Validity

Comparisons have been made between the values of v computed by doing the double integrals, and the values obtained by using the above asymptotic approximations. Good fits, independent of heating rate, are obtained. Note that while the theory developed applies to any increasing temperature history, the experiments referred to here all have constant heating rates.

For example, in figure (1), data and fits are presented for pyrolysis of lignite from Savage Mine, Montana [4]. Parameter values used for both data and fits for the Savage Mine lignite are $k_{0}=1.07 E 10 \mathrm{~s}^{-1}, E_{0}=2.05 E 05 \mathrm{~J} / \mathrm{mole}$ and $\sigma=1.0 E 04 \mathrm{~J} / \mathrm{mole}$. With the exception of σ, which has been reduced from the fitted value of $1.0 E 04 \mathrm{~J} / \mathrm{mole}$ so that $v_{2}<v_{0}$, these are the values fitted to Savage Mine lignite when using the MRM model, as in [4]. Note that reducing σ while holding the other parameters constant has the effect of narrowing the distribution $F(E)$.

The plot shows $v(t)$ against $\log _{10} t$ for various heating rates, calculated using the MRM model integrals (data shown as circles), and calculated using v_{0} and $v_{0}+v_{2}$ (solid lines). The fits are so close that an expanded view of the $650 \mathrm{~K} / \mathrm{s}$ case is shown in figure (??).

In figure (2) the data (MRM model results) from Savage Mine lignite is presented using the actual fitted value for $\sigma=40 \mathrm{~kJ} / \mathrm{mole}$ from [4], and the fits use $1 / 4$ of this value, to illustrate that the asymptotics cannot match the data spread. Heating rate is $650 \mathrm{~K} / \mathrm{s}$. In figure (3) is shown the result of using the (too large) quoted value of σ in the asymptotic expansion $v_{0}+v_{2}$, when heating rate is $650 \mathrm{~K} / \mathrm{s}$.

We find that adding the term v_{1} makes no observable difference to v_{0}, indicating that the large activation energy expansion is very accurate at leading order.

Figure 1: Data and fits for Savage Mine lignite. Circles are the MRM model, solid lines are v_{0} and $v_{0}+v_{2}$ (closest to the data).

Figure 2: Data and fits for Savage Mine lignite, when heating rate is $650^{\circ} \mathrm{C} / \mathrm{s}$. Circles are the MRM model, solid lines are v_{0} and $v_{0}+v_{2}$ (closest to the data).

Figure 3: Data and fits for Savage Mine lignite, when heating rate is $650 \mathrm{~K} / \mathrm{s}$. Circles are the MRM model using the actual value $\sigma=40,000 \mathrm{~J}$ fitted to data, solid lines are v_{0} and $v_{0}+v_{2}$ (closest to the data) with $\sigma=10,000 \mathrm{~J}$.

Figure 4: A graph of $v_{0}+v_{2}$ for Savage Mine lignite when $\sigma=40,000 \mathrm{~J}$ is used, violating the asymptotics.

4 Conclusions

Asymptotic analysis has given simpler expressions for the time dependence of volatile release from coal. These simpler expressions apply for arbitrary but monotonically increasing temperatures with time, and are robust under changes of heating rate. They will be much faster to compute, important in models that require many evaluations of v. However, there is a limitation on how large the variance of activation energy may be, due to the approximation that $\sigma \rightarrow 0$.

References

[1] R.Armstrong and B.L.J.Kulesza, An approximate solution to the equation $x=$ $\exp (-x / \epsilon)$, Bull. Institute of Mathematics and its Applications, 1756 (1981).
[2] C.M.Bender and S.A.Orszag, Advanced Mathematical Methods for Scientists and Engineers, McGraw-Hill, 1978.
[3] E.Donskoi and D.L.S.McElwain, Approximate modelling of coal pyrolysis, submitted to Fuel, June 1998.
[4] J.B.Howard, Fundamentals of Coal Pyrolysis and Hydropyrolysis, chapter 12 of the book Chemistry of Coal Utilization, Ed. M.A.Elliott, Wiley \& Sons (1981).
[5] P.R.Solomon, M.A.Serio and E.M.Suuberg, Coal Pyrolysis: Experiments, Kinetic Rates and Mechanisms, Proc. Energy Combust. Sci. 18, 133 (1992).
[6] V.Vand, A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum, Proc. Phys. Soc. Lond. A 55222 (1943).

