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Abstract

We present approximations to the Distributed Activation Energy Model (DAEM)
also known as the multiple reaction model (MRM), which is widely used in com-
plex chemical systems such as coal pyrolysis. MRM assumes that the process can
be represented by a continuum distribution in activation energy of individual re-
actions. An individual reaction is characterised by a pre-exponential coefficient
and an activation energy. The distribution, usually Gaussian, is over the activation
energy. The solution for the amount of product requires the evaluation of a double
integral. This paper develops asymptotic approximations to this double integral,
based on the assumptions that the mean of the Gaussian is large and that its stan-
dard deviation is small. The method will have wide applicability in situations, such
as computational fluid dynamics modelling of coal-fired boilers, where it is impor-
tant to be able to evaluate this double integral quickly. It also provides analytical
insights into solution behaviour, since the asymptotic forms are explicit.

1 Introduction

The Distributed Activation Energy Model (DAEM) or multiple reaction model (MRM)
for coal pyrolysis [4] may be applied to either the total amount of volatiles released,
or to the amount of an individual volatile constituent like carbon monoxide or tar. It
is also called the Distributed Rate Model, and adapts Vand’s treatment of independent
parallel processes [6] in modelling the resistance of metallic films. We will refer to the
model as the MRM in this paper. The description here follows the development for the
total amount of volatiles in [4] and [3]. The thermal decomposition due to a particular
reaction i within the coal structure is modelled as a first order irreversible reaction,
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with the mass of reacted or released volatile Vi taken to vary in time t according to the
equation

dVi

dt
= ki(V

∗

i − Vi) (1)

where V ∗

i is the total mass of volatile originally available for reaction, so that V ∗

i − Vi

is the amount of unreacted volatile remaining at time t. The reaction rate ki is taken to
be of Arrhenius form,

ki(t) = k0ie
−Ei/(RT (t)) , (2)

where T (t) is the time varying absolute temperature of the coal, R = 8.3 J/K is the
universal gas constant, Ei is the activation energy and k0i is the pre-exponential factor.
Values of k0i, Ei and V ∗

i are estimated from matching to experimental data. While the
theoretical work developed here allows for a rather general temperature variation with
time, typical experiments use a constant ramping rate dT/dt.

The solution to equation (1) may be written in terms of the mass of volatiles remaining
to be released at time t,

V ∗

i − Vi

V ∗

i

= exp

(

−
∫ t

0

ki(u)du

)

. (3)

Early modelling was based on just one reaction (i = 1). Some materials can be ac-
curately modelled by a single-reaction scheme, with k0 and E0 fitted to a series of
experiments conducted at different heating rates. However, more complicated reac-
tions like coal pyrolysis cannot be adequately modelled by a single reaction, due to
large variations in the values of k0 and E0 with the heating rate dT/dt [5, ?, ?].

One approach is to consider many single reactions, and to assume that the ki’s differ
only in activation energy, that is, that k0i = k0 for all i, and that Ei may be represented
as a distribution F (E). The fraction of potential total volatile loss that has an activation
energy between E and E+dE is represented by F (E)dE. Then V ∗

i and Vi are replaced
by dV ∗ = V ∗F (E)dE and dV = V F (E)dE respectively in equation (3), and the
equation is integrated over E to get

V ∗ − V

V ∗
=

∫

∞

0

exp

[

−k0

∫ t

0

e−E/RT dt

]

F (E)dE . (4)

A popular choice for F is the Gaussian distribution with mean E0 and variance σ ,

F (E) =
1

σ
√

2π
exp

(

−(E − E0)
2

2σ2

)

. (5)

Hence the solution for the MRM model is
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v ≡
V ∗ − V

V ∗
=

1

σ
√

2π

∫

∞

0

exp

[

−k0

∫ t

0

e−E/RT dt −
(E − E0)

2

2σ2

]

dE . (6)

2 Asymptotic Expansions

We seek approximations to v which avoid the double integration, as there are some
applications which require many evaluations of v. One approximation is a narrow
Gaussian, or σ → 0. Another is that E0/RT is large.

2.1 Energy or small σ expansions

When σ → 0, Laplace’s method can be used [2] to expand the outer integral, which is
in the Laplace form

v(x) =

∫

∞

0

f(E) exp(xg(E))dE , x → ∞ , (7)

where

f(E) ≡
1

σ
√

2π
exp

(

−k0

∫ t

0

exp

(

−E

RT (t′)

)

dt′
)

, (8)

and
g(E) ≡ −(E − E0)

2/2 , (9)

and x ≡ 1/σ2.

The function g(E) takes its maximum at E0, so we expand f in a Taylor series about
E0,

f(E) ∼
1

σ
√

2π

[

f(E0) + (E − E0)f
′

(E0) + (E − E0)
2f

′′

(E0)/2+

(E − E0)
3f

′′′

(E0)/6 + (E − E0)
4f iv(E0)/24

]

, E → E0 . (10)

Here we define

ej(E) ≡
∫ t

0

e−E/RT (t′) dt′

(RT (t′))j
, j = 0, 1, 2 . . . , (11)

and noting that
dej

dE
= −ej+1 , (12)
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we have
f(E0) = exp(−k0e0) , (13)

f ′(E) = k0e1e
−k0e0 , (14)

f
′′

(E) = e−k0e0 [(k0e1)
2 − k0e2] , (15)

f
′′′

(E) = e−k0e0 [(k0e1)
3 − 3k2

0e1e2 + k0e3] , (16)

and
f iv(E) = e−k0e0 [(k0e1)

4 − 6k3
0e

2
1e2 + 3k2

0e
2
2 + 4k2

0e1e3 − k0e4] . (17)

Laplace’s method involves approximating v by reducing the range of integration to the
neighbourhood of E0, expanding about E0, and sending the range of integration to
±∞ for evaluation, so that the leading term is

v(σ) ∼ v0(σ) (18)

where

v0(σ) =
1

σ
√

2π
exp

(

−k0

∫ t

0

exp

(

−E0

RT (t′)

)

dt′
)
∫

∞

−∞

exp

(

−(E − E0)
2

2σ2

)

dE , σ → 0 .

(19)
The energy integral evaluates to σ

√
2π, so that the leading behaviour is

v0 = exp

[

−k0

∫ t

0

e−E0/(RT (t′))dt′
]

, σ → 0 . (20)

This is the same as the solution that is obtained for the simplest first-order model with
a single activation energy E0, by just taking i = 1 above. It may alternatively be
obtained by replacing the distribution F (E) by a delta function F = δ(E − E0).

Odd terms f ′, f
′′′

do not contribute to the asymptotic behaviour of v, since the inte-
grands are odd functions, giving integrals that evaluate to zero.

Then v − v0 ∼ v2 , σ → 0 where

v2 =
v0k0f

′′

(E0)

2σ
√

2π

∫

∞

−∞

(E − E0)
2 exp

(

−(E − E0)
2

2σ2

)

dE . (21)

The integral evaluates to
√

2π σ3, so that

v2 = v0k0f
′′

(E0)σ
2/2 . (22)

To second order then, we have

v ∼ exp

[

−k0

∫ t

0

e−E0/(RT (t′))dt′
]

[

1 +
k0σ

2

2

(

k0

{
∫ t

0

e−
E0
RT

dt′

RT

}2

−
∫ t

0

e−
E0
RT

dt′

R2T 2

)]

, σ → 0 .(23)
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The next term is fourth order in E − E0, and is calculated in a similar manner, giving
the term σ4

8 f iv(E0), and we have

v ∼ f(E0) +
σ2

2
f

′′

(E0) +
σ4

8
f iv(E0) , σ → 0 . (24)

2.2 Time or large energy expansions

We seek asymptotic expansions for the time integrals that remain, assuming that the
mean activation energy is large, in particular, that E0/(RT0) → ∞, where T0 is a
representative temperature. This will help to see what size the derivative terms in f
are, and it will also speed up the evaluation of v.

Temperature T (t) (and hence the function −1/T , which has the same shape) is typi-
cally monotonic increasing until the reaction is finished. We re-scale T (t) = T0τ(t),
and take z = E0/(RT0) → ∞.

Then
∫ t

0

e−E0/(RT (t′))dt′ =

∫ t

0

e−z/τ(t′)dt′ , (25)

and the exponent function −1/τ has its maximum value at t. Noting the expansion (as
t′ → t)

−1/τ(t′) ∼
−1

τ(t)
+ (t′ − t)

τ
′

(t)

τ2(t)
+

(t′ − t)2

2

(

τ
′′

(t)

τ2(t)
− 2

(τ
′

(t))2

τ3(t)

)

, (26)

equation (25) becomes (as z → ∞)
∫ t

0

e−z/τ(t′)dt′ ∼
∫ t

t−ε

e−z/τ(t′)dt′ (27)

∼
∫ t

t−ε

e−z/τ(t)ez(t′−t)τ/τ2

e
z(t′−t)2/2

(

τ
′′

(t)

τ2(t)
−2

(τ
′

(t))2

τ3(t)

)

(28)

which becomes

∼ e−z/τ

∫ t

−∞

exp

(

z(t′ − t)
τ

′

τ2

)[

1 +
z(t′ − t)2

2

(

τ
′′

τ2
− 2

(τ
′

)2

τ3

)]

dt′ , (29)

where all τ functions and their derivatives are evaluated at t.

These integrals may now be evaluated, and the temperature rescaling reversed, to give
(as E0/(RT0) → ∞)
∫ t

0

e−E0/(RT (t′))dt′ ∼
exp(−E0/(RT ))

E0/(RT )

(

T

T ′

)

[

1 +

(

RT

E0

)

(

T
′′

T

(T ′)2
− 2

)]

,

(30)
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where all T functions and derivatives are evaluated at time t.

The leading term in the above expansion is well-known in the literature for single
reactions when heating rate is constant (eg [?]). The derivation here applies to more
general temperature histories, and also indicates the accuracy of the approximation
through the second term.

Some care is needed to obtain the second term in the expansions for the remaining
integrals in equation (23), as both the exponent and the coefficient functions contribute
to second order in E0/(RT0). We find that
∫ t

0

e−z/τ(t′) dt′

RT (t′)
∼ e−z/τ

∫ t

−∞

ez(t′−t) τ
′

τ2

(

1 +
z(t′ − t)2

2

(

τ
′′

τ2
−

2(τ ′)2

τ3

)

+ . . .

)

.

(

1

RT
−

(t′ − t)

R

(

T ′

T 2

)

+ . . .

)

dt′ , z → ∞ , (31)

where all T and τ terms are to be evaluated at t. The cross terms involving z(t′ − t)2

and t′ − t both contribute to the second order asymptotic behaviour. Evaluating the
integrals gives
∫ t

0

e−z/τ(t′) dt′

RT (t′)
∼

exp(−E0/(RT ))

E0

(

T

T ′

)

[

1 +
RT

E0

(

TT
′′

(T ′)2
− 1

)]

, z → ∞

(32)

and similarly (with both cross terms again contributing at second order)
∫ t

0

e−z/τ(t′)) dt′

R2T 2(t′)
∼

exp(−E0/(RT ))

E0RT ′

(

1 +
RT

E0

(

TT
′′

(T ′)2
− 1

))

, z → ∞ .

(33)

To leading order only,
∫ t

0

e−z/τ(t′)) dt′

(RT (t′))j
∼

exp(−E0/(RT ))

E0/(RT )

T

T ′

1

(RT )j
, j ≥ 0 , z → ∞ . (34)

In summary, the behaviour of v is

v ∼ v0 + v1 + v2 + v4 , E0/(RT ) → ∞ , σ → 0 . (35)

where

v0 = exp

[

−k0e
−E0/RT

(

RT

E0

)(

T

T ′

)]

, (36)

v1 = −v0k0e
−E0/RT

(

RT

E0

)2(
T

T ′

)2
(

T
′′

T ′
−

2T ′

T

)

, (37)
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and

v2 =
v0k0

2
e−E0/RT

(

RT

E0

)(

T

T ′

)

( σ

RT

)2
[

k0e
−E0/RT

(

RT

E0

)(

T

T ′

)

− 1

]

,

(38)
and

v4 =
v0σ

4

8

[

(k0a1)
4 − 6k3

0a
2
1a2 + 3k2

0a
2
2 + 4k2

0a1a3 − k0a4

]

, (39)

or
v4 =

1

8

( σ

RT

)4
[

(k0a0)
4 − 6(k0a0)

3 + 7(k0a0)
2 − k0a0

]

, (40)

where

aj ≡
a0

(RT )j
, a0 ≡

exp(−E0/RT )

E0/RT

T

T ′
. (41)

3 Asymptotic Validity

Comparisons have been made between the values of v computed by doing the double
integrals, and the values obtained by using the above asymptotic approximations. Good
fits, independent of heating rate, are obtained. Note that while the theory developed
applies to any increasing temperature history, the experiments referred to here all have
constant heating rates.

For example, in figure (1), data and fits are presented for pyrolysis of lignite from
Savage Mine, Montana [4]. Parameter values used for both data and fits for the Savage
Mine lignite are k0 = 1.07E10 s−1, E0 = 2.05E05 J/mole and σ = 1.0E04 J/mole.
With the exception of σ, which has been reduced from the fitted value of 1.0E04 J/mole
so that v2 < v0, these are the values fitted to Savage Mine lignite when using the MRM
model, as in [4]. Note that reducing σ while holding the other parameters constant has
the effect of narrowing the distribution F (E).

The plot shows v(t) against log10 t for various heating rates, calculated using the MRM
model integrals (data shown as circles), and calculated using v0 and v0 + v2 (solid
lines). The fits are so close that an expanded view of the 650 K/s case is shown in
figure (??).

In figure (2) the data (MRM model results) from Savage Mine lignite is presented using
the actual fitted value for σ = 40 kJ/mole from [4], and the fits use 1/4 of this value, to
illustrate that the asymptotics cannot match the data spread. Heating rate is 650 K/s. In
figure (3) is shown the result of using the (too large) quoted value of σ in the asymptotic
expansion v0 + v2, when heating rate is 650 K/s.

We find that adding the term v1 makes no observable difference to v0, indicating that
the large activation energy expansion is very accurate at leading order.
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log  t (s)
10.50-0.5-1-1.5

v

1

0.8

0.6

0.4

0.2

0

Figure 1: Data and fits for Savage Mine lignite. Circles are the MRM model, solid
lines are v0 and v0 + v2 (closest to the data).
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t (s)
2.121.91.81.71.61.5

v

1

0.8

0.6

0.4

0.2

0

Figure 2: Data and fits for Savage Mine lignite, when heating rate is 650◦C/s. Circles
are the MRM model, solid lines are v0 and v0 + v2 (closest to the data).
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t (s)
3.02.52.01.51.00.5

v

1.0

0.8

0.6

0.4

0.2

0.0

Figure 3: Data and fits for Savage Mine lignite, when heating rate is 650 K/s. Circles
are the MRM model using the actual value σ = 40, 000 J fitted to data, solid lines are
v0 and v0 + v2 (closest to the data) with σ = 10, 000 J.
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t (s)
2.521.510.5

v

2

1.5

1

0.5

0

-0.5

Figure 4: A graph of v0 + v2 for Savage Mine lignite when σ = 40, 000 J is used,
violating the asymptotics.
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4 Conclusions

Asymptotic analysis has given simpler expressions for the time dependence of volatile
release from coal. These simpler expressions apply for arbitrary but monotonically
increasing temperatures with time, and are robust under changes of heating rate. They
will be much faster to compute, important in models that require many evaluations of
v. However, there is a limitation on how large the variance of activation energy may
be, due to the approximation that σ → 0.
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