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CHURCH’S THESIS FOR ω1

Throughout, we assume that R ⊂ L, and so that the continuum
hypothesis holds.

FACT (KRIPKE, PLATEK, SACKS, KOEPKE, S. FRIEDMAN)
The following are equivalent for a set A ⊆ ω1:

1. A is decidable by a Turing machine with tape of length ω1,
for which halting computations are allowed to run for
countably many steps.

2. Membership in A can be deduced in countable many steps
from basic axioms in a reasonable deduction calculus.

3. A is ∆1 definable over Lω1 with parameters.



COMPUTABLY ENUMERABLE SETS, COMPUTABLE

FUNCTIONS, ETC.

This motivates us to define a set A ⊆ Lω1 to be computably
enumerable if it is Σ1-definable over Lω1 with parameters.

This yields all familiar notions of recursion theory: computable
functions (via their graph), Turing reducibility (via Turing
functionals), and so on.



RECURSION

The main tool for defining computable functions is recursion:

FACT
If I : Lω1 → Lω1 is computable, then there is a unique,
computable function f : ω1 → Lω1 such that for all α < ω1,

f (α) = I(f�α).



IN PRACTICE

Applying Church’s thesis,
• A computable process can consider countably many

elements simultaneously.
• A computable process can non-uniformly be given

countably much information.
• A computable bijection between ω1 and Lω1 means that we

may pass between ω1 and Lω1 with impunity.



COMPUTABLE LINEAR ORDERINGS

Examples of computable linear orderings:
1. R
2. η1, the saturated linear ordering.
3. R · ω1, the long line.
4. Q · ω1, the long line with many holes.
5. 2 · R, the double arrow space.



DEGREES OF LINEAR ORDERINGS

The degree spectrum of a linear ordering L is the collection of
Turing degrees which compute a copy of L:

DegSpec(L) =
{

d : ∃L′ ∼= L (L′ 6T d)
}
.

The degree of L is d if DegSpec(L) = D(≥ d).

THEOREM (RICHTER)
If L is not computable, then there is some L′ ∼= L such that the
Turing degrees of L and L′ form a minimal pair, i.e.
degT(L) ∧ degT(L′) = 0.
Hence, if L has a degree d, then d = 0.



BUT FOR ω1

THEOREM
Every degree is the degree of some linear ordering.



JUMP DEGREES

The jump-spectrum of a linear ordering L is

{d′ : d ∈ DegSpec(L)}.

L has jump-degree d if the jump spectrum of L is D(≥ d). The
jump-degree d is proper if L doesn’t have a degree.

THEOREM (ASH, KNIGHT,RICHTER,...)
If a linear ordering has jump-degree d then d = 0′.

THEOREM
Every degree d ≥ 0′ is the proper jump-degree of some linear
ordering.



DOUBLE-JUMP-DEGREES
Iterating, we get the double-jump spectrum and double-jump
degrees.

THEOREM (ASH, KNIGHT, RICHTER, JOCKUSCH, SOARE,...)
Every degree d ≥ 0′′ is a (proper) double-jump-degree of some
linear ordering.

THEOREM
Every degree d ≥ 0′ is a proper double-jump degree of some
linear ordering.
In fact,

THEOREM
There is a linear ordering whose degree spectrum is the
collection of all non-low degrees.



COMPUTABLE CATEGORICITY

A computable linear ordering L is computably categorical if for
every computable L′ ∼= L, there is a computable isomorphism
between L and L′.

THEOREM (DZGOEV, GONCHAROV; REMMEL)
A computable linear ordering L is computably categorical if and
only if it has only finitely many adjacencies.



The proof doesn’t transfer, because countably much restraint
can create uncountably many intervals. So for example,

PROPOSITION

1. The double arrow space 2 · R is computably categorical.
2. Q ∪Q · (R \Q) (replacing each irrational number by Q) is

not computably categorical.

But,

PROPOSITION
Q ∪ η1 · (R \Q) is computably categorical.



THE CORRECT GENERALISATION

THEOREM
A linear order is computably categorical if and only if there is a
countable set of parameters p and a disjoint collection of c.e.
sets {Vn}n∈ω−{0} such that every p-interval is either finite or η1,
and every p-interval of size n is an element of Vn.



ADJACENCIES

Given a linear order L, let Succ(L) denote the set of
successivities (adjacencies) of L, i.e. the set
{(a,b) | a,b ∈ L,a < b, & ∀x¬(a < x < b)}.
The successivity spectrum of L is the collection

SuccSpec(L) = {degT(Succ(L′)) : L′ computable, L′ ∼= L}.

This is a collection of c.e. Turing degrees.



THEOREM (FROLOV,DOWNEY,LEMPP,WU)
If L is a computable linear order with infinitely many
adjacencies, then SuccSpec(L) is upwards closed in the c.e.
degrees.

THEOREM (DOWNEY,MOSES)
For any c.e. degree d, there is a computable linear ordering L
such that

SuccSpec(L) = R(≥ d).



PROPOSITION
SuccSpec(2 · R) = {0}.
In fact,

PROPOSITION
For any c.e. degree d, there is a computable linear order L
such that SuccSpec(L) = {d}.



R-LIKE LINEAR ORDERINGS

A linear ordering L is R-like if there is a countable set of
parameters p such that any p-interval is either finite or dense.

THEOREM
If L is a computable linear order which is not R-like, then
SuccSpec(L) is upwards closed in the c.e. degrees.



Let L be an R-like computable linear ordering, witnessed by p.

Define Ip
>1(L) to be the set of p-intervals containing more than 1

element. This is a c.e. set, so fix an injective enumeration
g : ω1 → A.

For n > 1, define Ip
n (L) to be the set of α < ω1 such that the

interval g(α) contains precisely n many elements.

Define Ip
n (L) to be the set of α ∈ ω1 such that the interval g(α)

contains infinitely many elements.



THEOREM
If L is an R-like computable linear ordering, then for any
computable L′ ∼= L,

Ip
∞(L) ≤T Succ(L′) ≤wtt

⊕
n∈ω−{0,1}

Ip
n (L).

Further, the spectrum achieves these upper and lower bounds.
There exists a linear order where not every Π0

1 degree
consistent with the above is in the spectrum. But there is also
an R-like linear ordering L such that SuccSpec(L) = R.


