Effective properties of uncountable linear orderings

Noam Greenberg, Asher Kach, Steffen Lempp, Dan Turetsky

3rd May 2010

CHURCH'S THESIS FOR ω_1

Throughout, we assume that $\mathbb{R} \subset L$, and so that the continuum hypothesis holds.

FACT (KRIPKE, PLATEK, SACKS, KOEPKE, S. FRIEDMAN) The following are equivalent for a set $A \subseteq \omega_1$:

- 1. A is decidable by a Turing machine with tape of length ω_1 , for which halting computations are allowed to run for countably many steps.
- 2. Membership in A can be deduced in countable many steps from basic axioms in a reasonable deduction calculus.
- 3. A is Δ_1 definable over L_{ω_1} with parameters.

COMPUTABLY ENUMERABLE SETS, COMPUTABLE FUNCTIONS, ETC.

This motivates us to define a set $A \subseteq L_{\omega_1}$ to be computably enumerable if it is Σ_1 -definable over L_{ω_1} with parameters.

This yields all familiar notions of recursion theory: computable functions (via their graph), Turing reducibility (via Turing functionals), and so on.

RECURSION

The main tool for defining computable functions is recursion:

FACT

If I: $L_{\omega_1} \to L_{\omega_1}$ is computable, then there is a unique, computable function $f: \omega_1 \to L_{\omega_1}$ such that for all $\alpha < \omega_1$,

$$f(\alpha) = I(f \upharpoonright_{\alpha}).$$

IN PRACTICE

Applying Church's thesis,

- A computable process can consider countably many elements simultaneously.
- A computable process can non-uniformly be given countably much information.
- A computable bijection between ω_1 and L_{ω_1} means that we may pass between ω_1 and L_{ω_1} with impunity.

COMPUTABLE LINEAR ORDERINGS

Examples of computable linear orderings:

- $1. \mathbb{R}$
- 2. η_1 , the saturated linear ordering.
- 3. $\mathbb{R} \cdot \omega_1$, the long line.
- 4. $\mathbb{Q} \cdot \omega_1$, the long line with many holes.
- 5. $2 \cdot \mathbb{R}$, the double arrow space.

DEGREES OF LINEAR ORDERINGS

The degree spectrum of a linear ordering \mathcal{L} is the collection of Turing degrees which compute a copy of \mathcal{L} :

$$\mathsf{DegSpec}(\mathcal{L}) = \left\{ \textbf{d} \, : \, \exists \mathcal{L}' \cong \mathcal{L} \; (\mathcal{L}' \leqslant_{\mathcal{T}} \textbf{d}) \right\}.$$

The degree of \mathcal{L} is **d** if DegSpec(\mathcal{L}) = \mathcal{D} (\geq **d**).

THEOREM (RICHTER)

If \mathcal{L} is not computable, then there is some $\mathcal{L}'\cong\mathcal{L}$ such that the Turing degrees of \mathcal{L} and \mathcal{L}' form a minimal pair, i.e. $\deg_T(\mathcal{L}) \wedge \deg_T(\mathcal{L}') = \mathbf{0}$.

Hence, if \mathcal{L} has a degree **d**, then **d** = **0**.

BUT FOR ω_1

THEOREM

Every degree is the degree of some linear ordering.

JUMP DEGREES

The jump-spectrum of a linear ordering $\mathcal L$ is

$$\{ \boldsymbol{d}' \, : \, \boldsymbol{d} \in \mathsf{DegSpec}(\mathcal{L}) \}.$$

 \mathcal{L} has jump-degree **d** if the jump spectrum of \mathcal{L} is $\mathcal{D}(\geq \mathbf{d})$. The jump-degree **d** is proper if \mathcal{L} doesn't have a degree.

THEOREM (ASH, KNIGHT, RICHTER,...) If a linear ordering has jump-degree \mathbf{d} then $\mathbf{d} = \mathbf{0}'$.

THEOREM

Every degree $\mathbf{d} \geq \mathbf{0}'$ is the proper jump-degree of some linear ordering.

DOUBLE-JUMP-DEGREES

Iterating, we get the double-jump spectrum and double-jump degrees.

THEOREM (ASH, KNIGHT, RICHTER, JOCKUSCH, SOARE,...)

Every degree $\mathbf{d} \geq \mathbf{0}''$ is a (proper) double-jump-degree of some linear ordering.

THEOREM

Every degree $\mathbf{d} \geq \mathbf{0}'$ is a proper double-jump degree of some linear ordering.

In fact,

THEOREM

There is a linear ordering whose degree spectrum is the collection of all non-low degrees.

COMPUTABLE CATEGORICITY

A computable linear ordering \mathcal{L} is computably categorical if for every computable $\mathcal{L}'\cong\mathcal{L}$, there is a computable isomorphism between \mathcal{L} and \mathcal{L}' .

THEOREM (DZGOEV, GONCHAROV; REMMEL)

A computable linear ordering \mathcal{L} is computably categorical if and only if it has only finitely many adjacencies.

The proof doesn't transfer, because countably much restraint can create uncountably many intervals. So for example,

PROPOSITION

- 1. The double arrow space $2 \cdot \mathbb{R}$ is computably categorical.
- 2. $\mathbb{Q} \cup \mathbb{Q} \cdot (\mathbb{R} \setminus \mathbb{Q})$ (replacing each irrational number by \mathbb{Q}) is not computably categorical.

But,

PROPOSITION

 $\mathbb{Q} \cup \eta_1 \cdot (\mathbb{R} \setminus \mathbb{Q})$ is computably categorical.

THE CORRECT GENERALISATION

THEOREM

A linear order is computably categorical if and only if there is a countable set of parameters \overline{p} and a disjoint collection of c.e. sets $\{V_n\}_{n\in\omega-\{0\}}$ such that every \overline{p} -interval is either finite or η_1 , and every \overline{p} -interval of size n is an element of V_n .

ADJACENCIES

Given a linear order L, let Succ(L) denote the set of successivities (adjacencies) of L, i.e. the set $\{(a,b) \mid a,b \in L, a < b, \& \forall x \neg (a < x < b)\}$. The successivity spectrum of $\mathcal L$ is the collection

$$\mathsf{SuccSpec}(\mathcal{L}) = \{\mathsf{deg}_\mathsf{T}(\mathsf{Succ}(\mathcal{L}')) \, : \, \mathcal{L}' \text{ computable, } \mathcal{L}' \cong \mathcal{L}\}.$$

This is a collection of c.e. Turing degrees.

THEOREM (FROLOV, DOWNEY, LEMPP, WU)

If $\mathcal L$ is a computable linear order with infinitely many adjacencies, then $SuccSpec(\mathcal L)$ is upwards closed in the c.e. degrees.

THEOREM (DOWNEY, MOSES)

For any c.e. degree \mathbf{d} , there is a computable linear ordering $\mathcal L$ such that

$$\text{SuccSpec}(\mathcal{L}) = \mathcal{R}(\geq \textbf{d}).$$

PROPOSITION

SuccSpec $(2 \cdot \mathbb{R}) = \{\mathbf{0}\}.$ In fact,

PROPOSITION

For any c.e. degree \mathbf{d} , there is a computable linear order \mathcal{L} such that $SuccSpec(\mathcal{L}) = \{\mathbf{d}\}.$

R-LIKE LINEAR ORDERINGS

A linear ordering \mathcal{L} is \mathbb{R} -like if there is a countable set of parameters \overline{p} such that any \overline{p} -interval is either finite or dense.

THEOREM

If $\mathcal L$ is a computable linear order which is not $\mathbb R$ -like, then $SuccSpec(\mathcal L)$ is upwards closed in the c.e. degrees.

Let \mathcal{L} be an \mathbb{R} -like computable linear ordering, witnessed by \overline{p} .

Define $I^{\overline{p}}_{>1}(L)$ to be the set of \overline{p} -intervals containing more than 1 element. This is a c.e. set, so fix an injective enumeration $g \colon \omega_1 \to A$.

For n > 1, define $I_n^p(L)$ to be the set of $\alpha < \omega_1$ such that the interval $g(\alpha)$ contains precisely n many elements.

Define $I_n^{\overline{p}}(L)$ to be the set of $\alpha \in \omega_1$ such that the interval $g(\alpha)$ contains infinitely many elements.

THEOREM

If L is an \mathbb{R} -like computable linear ordering, then for any computable $\mathcal{L}'\cong\mathcal{L}$,

$$I^{\overline{p}}_{\infty}(\mathcal{L}) \leq_{\mathsf{T}} \mathsf{Succ}(\mathcal{L}') \leq_{\mathsf{wtt}} \bigoplus_{n \in \omega - \{0,1\}} I^{\overline{p}}_{n}(\mathcal{L}).$$

Further, the spectrum achieves these upper and lower bounds. There exists a linear order where not every Π^0_1 degree consistent with the above is in the spectrum. But there is also an \mathbb{R} -like linear ordering \mathcal{L} such that $\operatorname{SuccSpec}(\mathcal{L}) = \mathcal{R}$.